《整式的加减》单元复习与巩固(基础)知识讲解
人教版七年级上册数学《整式的加减》培优说课教学复习课件巩固
3本笔记本,2支圆珠笔;小明买4本笔记本,3支圆珠笔.买这些笔记本和
圆珠笔,小红和小明一共花费多少钱?
解法1:
解法2:
小红买笔记本和圆珠笔共花费(
)元,小红和小明买笔记本共花费(
小明买笔记本和圆珠笔共花费( 小红和小明一共花费:
)元. 买圆珠笔共花费(
)元
小红和小明一共花费:
)元,
答:小红和小明一共花费(
2b 1.5a
(2)做大纸盒比做小纸盒多用料(单位:cm2)
大纸盒的表面积是 小纸盒的表面积
(6ab 8bc 6ca) (2ab 2bc 2ca)
6ab 8bc 6ca 2ab 2bc 2ca 4ab 6bc 4ca
答:做大纸盒比小纸盒多用料( 4ab 6bc 4ca )cm2.
谢谢观看!
左右两面面积和 2 b c 2bc
c
前后两面面积和 2 c a 2ca
小纸盒的表面积是( 2bc 2ca )cm2
b a
环节二 实际应用
例8.(书本第68页)做大小两个长方体纸盒,尺寸如下(单位:cm).
长 宽高
小纸盒 a
b
c
大纸盒 1.5a 2b 2c
解: 上下两面面积和 2 1.5a 2b 6ab 左右两面面积和 2 2b 2c 8bc 前后两面面积和 2 2c 1.5a 6ca
大纸盒的表面积是(6ab 8bc 6ca )cm2
1.5a
2c 2b
环节二 实际应用
例8.(书本第68页)做大小两个长方体纸盒,尺寸如下(单位:cm).
长 宽高
小纸盒 a
b
c
大纸盒 1.5a 2b 2c
c
b a
2c
2b 1.5a
《整式的加减》复习提纲
第二章 《整式的加减》复习提纲一.知识梳理1. 单项式:数字与字母乘积的式子.单独的一个数或一个字母也是单项式.单项式中的数字因数叫做这个单项式的系数.一个单项式中,所有字母的指数的和叫做这个单项式的指数.2. 多项式:几个单项式的和.在多项式中,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项.多项式里次数最高项的次数,叫做这个多项式的次数.注:多项式没有系数.3. 多项式的排列:通常把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列.4. 整式:单项式与多项式统称为整式.5. 同类项:所含字母相同,并且相同字母的指数也相同的项.几个常数项也是同类项.把多项式中的同类项合并成一项,叫做合并同类项.6. 同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.7.去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.8. 整式加减的运算法则:几个整式相加减,如果有括号就先去括号,然后再合并同类项.二.三. 不等式(组)基本练习选择题 1.下面的正确结论的是( )A .0不是单项式 B .52abc 是五次单项式 C .-4和4是同类项 D .2332330m n m n -=2.下面运算正确的是( ) A .ab b a 963=+ B .03333=-ba b a C .a a a 26834=- D .61312122=-y y 3.两个四次多项式的和的次数是( ) A.八次 B.四次 C.不低于四次 D.不高于四次 填空题4.一个多项式与221x x -+的和是32x -,则这个多项式为_______. 5.n 为整数,不能被3整除的数表示为 . 6.单项式83ab -的系数是 ,次数是 . 7.单项式25x y 、223x y 、24xy -的和为 . 8.已知单项式23m a b 与4123n a b --的和是单项式,那么m = ,n = . 9.规定一种新运算:1+--⋅=∆b a b a b a ,如1434343+--⨯=∆,请比较大小:()()34 43-∆∆- .10.轮船在逆水中前进的速度是m 千米/时,水流的速度是2千米/时,则这轮船在静水中航行的速度是 千米/时.11.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x 立方米(x >60),则该户应交煤气费 元.12.观察下列单项式:0,23x ,38x ,415x ,524x ,……,按此规律写出第13个单项式是______.解答题13. 化简: (1)2237(43)2x x x x ⎡⎤----⎣⎦; (2)22225(3)2(7)a b ab a b ab ---.14.已知041|2|2=⎪⎭⎫ ⎝⎛-++b a ,求)43()2(22ab ab ab b a +--的值.15.已知多项式238x my +-与多项式227nx y -++的差中,不含有x 、y ,求m n n m +的值.16.当m 为何值时,||2322(4)3m m x y x y --+是五次二项式.17.我国进口关税近年来有两次大幅度下调,第一次降低了40%,第二次又在第一次的基础上降低了30%.(1)若未降税前某种商品的税款为a 万元,用整式表示现在的实际税款.(2)若a =600万元,试求现在的实际税款.18.某农户2006年承包荒山若干亩,投资7800•元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a 元,在果园就地销售每千克售b 元(b <a ).该农户将水果拉到市场出售平均每天出售1000千克,需8•人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.(1)分别用a ,b 表示两种方式出售水果的收入?(2)若a =1.3元,b =1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.(3)该农户加强果园管理,力争到明年纯收入达到15000元,那么纯收入增长率是多少(纯收入=总收入-总支出),该农户采用了(2)中较好的出售方式出售)?。
《整式的加减》单元复习与巩固(基础)知识讲解
《整式的加减》全章复习与巩固(基础)知识讲解【学习目标】1.理解并掌握单项式与多项式的相关概念;2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3.深刻体会本章体现的主要的数学思想----整体思想.【知识网络】【要点梳理】要点一、整式的相关概念1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、整式的相关概念1.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式.(1)3a - (2)5 (3)2b a - (4)2x y - (5)3xy (6)x π (7)5m n + (8)1+a% (9)1()2a b h + 【答案与解析】解:整式:(1)、(2)、(4)、(5)、(6)、(7)、(8)、(9)单项式:(2)、(5)、(6),其中:5的系数是5,次数是0;3xy 的系数是3,次数是2;x π的系数是1π,次数是1. 多项式:(1)、(4)、(7)、(8)、(9),其中: 3a -是一次二项式;2x y -是一次二项式;5m n +是一次二项式;1+a%是一次二项式; 1()2a b h +是二次二项式。
整式的加减知识点复习及习题
《整式的加减》全章复习与巩固【知识网络】【要点梳理】知识点一、整式的相关概念1.单项式:由数字或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.①圆周率π是常数;②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;③单项式次数只与字母的指数有关。
2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点:(1)利用加法交换律重新排列时,各项应带着它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.知识点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,有括号先去括号,然后再合并同类项.【典型例题】类型一、整式的相关概念1.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式.(1)3a - (2)5 (3)2b a - (4)2x y - (5)3xy (6)x π (7)5m n + (8)1+a% (9)1()2a b h +举一反三:【变式1】(1)3xy -的次数与系数的和是________;(2)已知单项式26x y 的系数是等于单项式52m x y -的次数,则m =________;(3)若n ma b 是关于a 、b 的一个五次单项式,且系数为9,则-m+n =________.【变式2】多项式432231y y y y -+-+是______次_____项式,常数项是_______,三次项是_________.【变式3】把多项式321325x x x --+按x 的降幂排列是____________________.类型二、同类项及合并同类项2.合并同类项:(1)232338213223c c c c c c -+-+-+;(2)22220.50.40.20.8m n mn nm mn -+-.举一反三:【变式】若47a x y 与579b x y -是同类项,则a =________,b =________. 类型三、去(添)括号3. 计算 22232(12)[5(436)]x x x x x -----+举一反三:【变式1】下列式子中去括号错误的是( ).A .5x -(x -2y +5z )=5x -x +2y -5zB .2a 2+(-3a -b )-(3c -2d )=2a 2-3a -b -3c +2dC .3x 2-3(x +6)=3x 2-3x -6D .-(x -2y )-(-x 2+y 2)=-x +2y +x 2-y 2【变式2】化简:-2a+(2a-1)的结果是( ).A .-4a-1B .4a-1C .1D .-1类型四、整式的加减4. 求比多项式22523a a ab b --+少25a ab -的多项式.举一反三: 【变式】计算:11(812)3(22)32a a b c c b ---+-+类型五、化简求值5.(1)直接化简代入:已知12x =,1y =-,求225(23)2(43)x y x x x y ---的值.(2)条件求值:若523m x y +与3n x y 的和是单项式,则n m =________.(3)整体代入:已知x 2-2y =1,那么2x 2-4y+3=________.举一反三:【变式1】若实数a 满足2210a a -+=,则2245a a -+=________.【变式2】已知25m n -+=,求25(2)6360m n n m -+--的值.类型六、综合应用6. 已知多项式是否存在m ,使此多项式与x 无关?若不存在,说明理由;若存在,求出m 的值.《整式的加减》巩固练习一、选择题1.A 、B 、C 、D 均为单项式,则A+B+C+D 为().A .单项式B .多项式C .单项式或多项式D .以上都不对2.下列计算正确的个数( )① ab b a 523=+;② 32522=-y y ; ③ y x x y y x 22254=-;④ 532523x x x =+; ⑤ xy xy xy =+-33A .2B .1C .4D .03.现规定一种运算:a * b = ab + a - b ,其中a ,b 为有理数,则3 * 5的值为().A .11B .12C .13D .144.化简1(1)(1)n n a a +-+-(n 为正整数)的结果为().A .0B .-2aC .2aD .2a 或-2a5.已知a -b =-3,c+d =2,则(b+c )-(a -d )为().A .-1B .-5C .5D .16. 有理数a ,b ,c 在数轴上的位置如右图所示,则a c c b b a ++--+= ( )A .-2bB .0C .2cD .2c -2b7.当x =-3时,多项式535ax bx cx ++-的值是7,那么当x =3时,它的值是().A .-3B .-7C .7D .-178.如果32(1)n m a a --++是关于a 的二次三项式,那么m ,n 应满足的条件是().A .m =1,n =5B .m ≠1,n >3C .m ≠-1,n 为大于3的整数D .m ≠-1,n =5二、填空题9.nmx y -是关于x ,y 的一个单项式,且系数是3,次数是4,则m =________,n =________. ()()22222mx -x +3x +1-5x -4y +3x10.(1)-=+-222x y xy x (___________);(2)2a -3(b -c )=___________.(3)2561x x -+-(________)=7x+8.11.当b =________时,式子2a+ab -5的值与a 无关.12.若45a b c -+=,则30()b a c --=________. 13.某一铁路桥长100米,现有一列长度为l 米的火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟时间,则火车的速度为________.14.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要枚棋子,摆第n 个图案需要枚棋子.三、解答题15.先化简,再求值:4x 3- [-x 2-2( x 3-12x 2+1)],其中x= -13.16.已知:a 为有理数,3210a a a +++=,求23420121...a a a a a++++++的值.17. 如图所示,用三种大小不同的六个正方形和一个缺角的正方形拼成长方形ABCD,其中,GH=2cm, GK=2cm, 设BF=x cm,(1)用含x 的代数式表示CM=cm,DM=cm.(2)若x=2cm ,求长方形ABCD 的面积.…。
整式的加减全章知识点总结
整式的加减全章知识点总结一、整式的基本概念1、单项式由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如,单项式 5x 的系数是 5,次数是 1;单项式-3xy²的系数是-3,次数是 3。
2、多项式几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式里,次数最高项的次数,就是这个多项式的次数。
例如,多项式 2x²+ 3x 1 有三项,分别是 2x²、3x 和-1,其中-1 是常数项,次数最高项是 2x²,次数为 2,所以这个多项式的次数是 2。
3、整式单项式和多项式统称为整式。
二、整式的加减1、同类项所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如,5x²y 和-3x²y 是同类项,4 和-7 是同类项。
2、合并同类项把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
例如,计算 3x²+ 2x²,因为 3x²和 2x²是同类项,所以合并同类项后得到 5x²。
3、去括号法则(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
(2)括号前是“ ”号,把括号和它前面的“ ”号去掉后,原括号里各项的符号都要改变。
例如,a +(b c) = a + b c;a (b c) = a b + c 。
4、整式的加减运算一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
例如,计算(2x² 3x + 1) (x²+ 2x 3) ,先去括号得到 2x² 3x +1 x² 2x + 3 ,然后合并同类项得到 x² 5x + 4 。
第4章整式的加减整理与复习 复习课件(共35张PPT)
单项式
系数 次数
项,项数,常数项,最高次项 多项式
次数 同类项与合并同类项
去括号
化简求值
用字母来表示生活中的量
知识点梳理1
单项式:
定义: 由_数__字__或__字__母__的__乘__积__组成的式子. 单独的 一个数 或 一个字母也是单项式.
系数: 单项式中的_数__字__因__数__.
次数: 单项式中的_所__有__字__母__的__指__数__和___.
课堂小结
考点分析
多项式的项与次数
例4:请说出下列各多项式是几次几项式,并写出多项式的 最高次项和常数项.
四三
知识点梳理4
同类项的定义: 1. 字母 相同,
2. 相同的字母的指数也相同. 1.与系___数_无关
同类项:
2.与_字__母__的__位__置_无关.
注意:几个常数项也是_同__类__项_.
合并同类项概念:
“去括号,看符号. 是 ‘+’号,不变号,是‘-’号,全变号”.
(二)计算
1. 找同类项,做好标记.
找
2. 利用加法的交换律和结合律把同类项放在一起. 搬
3. 利用乘法分配律计算结果.
并
4. 按要求按“升”或“降”幂排列. 排
考点分析
去括号
例9:已知A=x3+2y3-xy2,B=-y3+x3+2xy2,
(两相同) (两无关)
把多项式中的同类项合并成一项 .
1._系__数___相加减; 合并同类项法则:
2._字__母__和__字__母__的__指__数__不变.
考点分析
同类项
例5:(2024•内江)下列单项式中,ab3的同类项是( )
A.3ab3
第三章《整式》全章复习知识讲解
第三章《整式的加减》全章复习、知识讲解【全章重点知识】1、用字母表示数的书写原则是什么?2、什么是代数式?3、求代数式的值的步骤是什么?4、什么是单项式?单项式的次数?单项式的系数?5、什么是多项式?多项式的次数?多项式的项?6、如何将多项式进行升、降幂排列?排列时要注意什么?7、什么是同类项?同类项与什么有关?与什么无关?8、合并同类项的法则?9、去括号、添括号的法则?10、整式的加法、减法的法则?做整式的加法、减法的一般步骤是什么?【全章重点知识概述】一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配律。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
整式的加减单元复习
提示:先设被减数为A,可由已知求出多项式A,再计算A-(3x2-5x+1)
积
第2章 |复习
多项式:几个单项式的____叫做多项式. 多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数. 整式:______________________统称整式. 2.同类项、合并同类项 同类项:所含字母________,并且相同字母的指数也______的项叫做同类项.几个常数项也是同类项. 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项,即把它们的系数相加作为新的系数,而字母部分不变.
根据加法的交换律和结合律,可以把一个多项式的各项重新排列,移动多项式的项时,需连同项的符号一起移动,这样的移动并没有改变项的符号和多项式的值。
01
把一个多项式按某个字母的指数从大到小的顺序排列起来叫做把该多项式按这个字母的降幂排列;
02
把一个多项式按某个字母的指数从小到大的顺序排列起来叫做把该多项式按这个字母的升幂排列。
不是
是
不是
是
多项式中的项:
4x2 ,- 8x , + 5 ,- 3x2 , - 6x , - 2
同类项:
4x2与- 3x2
- 8x与- 6x
+ 5与- 2
3.化简:(1)-xy2– xy2 (2) – 3x2y - 3xy2 + 2x2y - 2xy2
02
[例1]
关于去括号
1、去括号是本章的难点之一;去括号都是多项式的恒等变形;去括号时一定对照法则把去掉括号与括号的符号看成统一体,不能拆开。 法则:如果括号外的因数是正数,去括号后原括号内的各项的符号与原来的符号( ); 如果括号外的因数是负数,去括号后原括号内的各项的符号与原来的符号( )。 遇到括号前面是“-”时,容易发生漏掉括号内一部分项的变号,所以,要注意“各项”都要变号。不是只变第一项的符号。 去括号的顺口溜:去括号,看符号; 是正号,不变号; 是负号,全变号。
整式的加减--基础知识总结
第二章 《整式的加减》基础知识小结一、整式1. 单项式 ① 单项式:由数与字母的乘积组成的式子;② 单独的一个数或字母也是单项式;③ 单项式的系数:单项式前面的数字因数;④ 单项式的次数:单项式中所有字母指数的和;⑤ 单项式的判断:1)数与字母是否是乘积关系;2)分母中不能含有字母;3)式子中不含加、减运算关系。
2. 多项式 ① 多项式:几个单项式的和;② 多项式的项:多项式中的每个单项式。
其中不含字母的项叫常数项或零次单项式③ 多项式的次数:多项式里次数最高项的次数;④ 多项式的判断: 代数式中的每一项均为单项式;⑤ 多项式的排列:1)升幂排列:把一个多项式按某一个字母的指数从小到大的顺序排列;2)降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列。
3. 整式 ①整式:单项式与多项式统称整式;② 注意问题:1)单项式或多项式的某项的系数包括前面的符号;2)多项式重新排列时,各项要连同它前面的符号一起移动; 3)多项式不含的项,表示此项的系数为0。
4)当字母的指数是1时,“1”通常省略不写;5)系数是1或-1时,通常省略不写。
二、整式的加减1. 合并同类项 ① 同类项:所含字母相同,并且相同字母的指数也相同的项;② 几个常数项也是同类项(零次单项式);③ 同类项的判断:1)所含字母相同;2)相同字母的次数相同;3)同类项与系数大小、字母的排列顺序无关。
④ 合并同类项:把多项式中的同类项合并成一项.可以运用交换律,结合律和分配律⑤ 合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;2. 整式的加减 ① 去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。
②整式加减的一般步骤:1)“一去”:如果遇到括号按去括号法则先去括号;2)“二找”:结合同类项;3)“三合”:合并同类项。
1。
2024年新人教版七年级数学上册《第4章整式的加减 小结与复习》教学课件
当 x = 1,y = 2 时,M = 1×2 + 2×2 - 2×1 - 2 = 2. (2) M = xy + 2y - 2x - 2 = (y - 2)x +2y -2.
因为多项式 M 与字母 x 无关,所以 y - 2 = 0,y = 2.
考点5:与整式的加减有关的探索性问题
例5 如图,用相同的小正方形按照某种规律进行摆放. 根据图中小正方形的排列规律,猜想第 10 个图中小正 方形的个数为 131 .
例1 在 ,x + 1,-2, ,0.72xy, ,
式的个数有 ( C ) √ √
√√
A. 2个 B. 3个 C. 4个 D. 5个
分析: 是除法形式,不是单项式,
是多项式.
中单项
练一练
1. (马尾期末) 下列说法正确的是 ( A ) A. -3ab²的系数是 -3 B. 4a3b 的次数是 3 4 C. 2a + b - 1 的各项分别为 2a,b,-1 D. 多项式 x2 - 1 是二次三项式
2 + 3×1 3 + 4×2 4 + 5×3 5 + 6×4 11 + 12×10
…
第 1 个图 第 2 个图 第 3 个图 第 4 个图
2×3 - 1 3×4 - 1 4×5 - 1 5×6 - 1 11×12 - 1
练一练
6. (埇桥期末) 如图,把同样大小的黑色棋子摆放在正 多边形的边上,按照这样的规律摆下去,则第 20 个图 需要黑色棋子的个数为440. 22×20
D. (-c) - (b - a) = -c - b + a = a - b - c,
练一练 3. (台江期末) 计算:
【精编】六年级数学上册《整式的加减》全章知识点总结及练习
第三章 整式的加减 基础知识复习知识点1、单项式的概念式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,像这样的式子叫做单项式,单独的一个数或一个字母也是单项式。
注意:单项式是一种特殊的式子,它包含一种运算、三种类型。
一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,。
【特别注意】分母中只要含有字母一定不是单项式,也不是多项式,而是分式。
知识点2、单项式的系数单项式中的数字因数叫做这个单项式的系数。
注意:(1)单项式的系数可以是整数,也可能是分数或小数。
如42x 的系数是2;3ab 的系数是31,2.7m 的系数是2.7。
(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如-()xy 2的系数是-2,(注意:千万不要忘记前边的符号)(3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1。
(单项式前边的系数是1或-1时,1可以省略不写。
)(4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如-2πxy 的系数就是-2π知识点3、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。
注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式z y x 342的次数是字母z y x ,,的指数和,即4+3+1=8,而不是7次,应注意字母Z 的指数是1而不是0.(2)单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。
(非要讨论的话,单独的一个数字的系数是它本身,次数是0)(3)单项式的指数只和字母的指数有关,与系数的指数无关。
整式的加减单元复习与巩固(基础)知识讲解及巩固练习
2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、整式的相关概念1.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式.(1)3a - (2)5 (3)2b a - (4)2x y - (5)3xy (6)x π (7)5m n + (8)1+a% (9)1()2a b h + 【答案与解析】解:整式:(1)、(2)、(4)、(5)、(6)、(7)、(8)、(9)单项式:(2)、(5)、(6),其中:5的系数是5,次数是0;3xy 的系数是3,次数是2;x π的系数是1π,次数是1. 多项式:(1)、(4)、(7)、(8)、(9),其中: 3a -是一次二项式;2xy -是一次二项式;5m n +是一次二项式;1+a%是一次二项式; 1()2a b h +是二次二项式。
【总结升华】①分母中出现字母的式子不是整式,故2b a -不是整式;②π是常数而不是字母,故x π是整式,也是单项式;③(7)、(9)表示的是加、减关系而不是乘积关系,而单项式中不能有加减.如5m n +其实质为55m n +,1()2a b h +其实质为1122ah bh +. 举一反三:【变式1】(1)3xy -的次数与系数的和是________;(2)已知单项式26x y 的系数是等于单项式52m x y -的次数,则m =________;(3)若n ma b 是关于a 、b 的一个五次单项式,且系数为9,则-m+n =________.【答案】 (1)3 (2)1 (3)-5【变式2】多项式432231y y y y -+-+是________次________项式,常数项是________,三次项是________.【答案】四,五, 1 , 3y -【变式3】把多项式321325x x x --+按x 的降幂排列是________.【答案】322531x x x -+-+ 类型二、同类项及合并同类项2.(2015•遵义)如果单项式﹣xy b+1与x a ﹣2y 3是同类项,那么(a ﹣b )2015= . 【答案】1.【解析】解:由同类项的定义可知a ﹣2=1,解得a=3,b+1=3,解得b=2,所以(a ﹣b )2015=1.【总结升华】考查了同类项,要求代数式的值,首先要求出代数式中的字母的值,然后代入求解即可.举一反三:【变式】若47a x y 与579b x y -是同类项,则a =________,b =________. 【答案】 5 , 4 类型三、去(添)括号3. 计算 22232(12)[5(436)]x x x x x -----+【答案与解析】解法1: 22232(12)[5(436)]x x x x x -----+222324(5436)x x x x x =-+--+- 2234236x x x x =+---+224x x =++解法2:22232(12)[5(436)]x x x x x -----+2223245(436)x x x x x =-+-+-+ 22242436x x x x =-+-+-+224x x =++【总结升华】根据多重括号的去括号法则,可由里向外,也可由外向里逐层推进,在计算过程中要注意符号的变化.若括号前是“-”号,在去括号时,括号里各项都应变号,若括号前有数字因数,应把数字因数乘到括号里,再去括号.举一反三:【变式1】下列式子中去括号错误的是( ).A .5x -(x -2y +5z )=5x -x +2y -5zB .2a 2+(-3a -b )-(3c -2d )=2a 2-3a -b -3c +2dC .3x 2-3(x +6)=3x 2-3x -6D .-(x -2y )-(-x 2+y 2)=-x +2y +x 2-y 2【答案】C【变式2】化简:-2a+(2a -1)的结果是( ).A .-4a -1B .4a -1C .1D .-1【答案】D类型四、整式的加减4. 求比多项式22523a a ab b --+少25a ab -的多项式.【答案与解析】解:依题意,列式为:222(523)(5)a a ab b a ab --+-- 2225235a a ab b a ab =--+-+222a ab b =--+【总结升华】当整式是一个多项式,不是一个单项式时,应用括号把一个整式作为一个整体来加减.举一反三: 【变式】计算:11(812)3(22)32a abc c b ---+-+ 【答案】原式11466632a abc c b =-++-+ 1106a b =-+类型五、化简求值5. (1)直接化简代入已知12x =,1y =-,求225(23)2(43)x y x x x y ---的值. (2)条件求值 (烟台)若523m x y +与3n x y 的和是单项式,则n m =________.(3)整体代入已知x 2-2y =1,那么2x 2-4y+3=________.【答案与解析】解:(1)5(2x 2y -3x )-2(4x -3x 2y )=10x 2y -15x -8x+6x 2y=16x 2y -23x当12x =,y =-1时,原式=211233116(1)2342222⎛⎫⨯⨯--⨯=--=- ⎪⎝⎭. (2) 由题意知:523m xy +和3n x y 是同类项,所以m+5=3,n =2,解得,m =-2,n =2,所以2(2)4n m =-=.(3)因为222432(2)3x y x y -+=-+, 而221x y -=所以22432135x y -+=⨯+=.【总结升华】整体代入求值的一般做法是对代数式先进行化简,然后找到化简结果与已知条件之间的联系.举一反三:【变式1】(2015•娄底)已知a 2+2a=1,则代数式2a 2+4a ﹣1的值为( )A .0B .1C .﹣1D .﹣2【答案】B【变式2】已知25m n -+=,求25(2)6360m n n m -+--的值.【答案】225(2)63605(2)3(2)60m n n m m n n m -+--=-+-- 225m n n m -+=-=所以,原式=255356080⨯+⨯-=. 类型六、综合应用6. 已知多项式 是否存在m ,使此多项式与x 无关?若不存在,说明理由;若存在,求出m 的值.【答案与解析】 解:原式要使原式与x 无关,则需该项的系数为0,即有260m -=,所以3m = 答:存在m 使此多项式与x 无关,此时m 的值为3.【巩固练习】一、选择题1.已知a 与b 互为相反数,且x 与y 互为倒数,那么|a+b|-2xy 的值为( ).A .2B .-2C .-1D .无法确定2.(2015•厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .﹣2xy 2B . 3x 2C . 2xy 3D .2x 3()()22222mx -x +3x +1-5x -4y +3x 2222(215)(33)41(26)41m x x y m x y =--+-++=-++3.有下列式子:12x yz +,2b ,2323x x --,abc ,0,y x ,x ,a b ab+,对于这些式子下列结论正确的是( ).A .有4个单项式,2个多项式B .有5个单项式,3个多项式C .有7个整式D .有3个单项式,2个多项式4.对于式子421.210x y -⨯,下列说法正确的是( ).A .不是单项式B .是单项式,系数为-1.2×10,次数是7C .是单项式,系数为-1.2×104,次数是3D .是单项式,系数为-1.2,次数是35.下面计算正确的是( ).A .32x -2x =3B .32a +23a =55aC .3+x =3xD .-0.25ab +41ba =0 6.2a -(5b -c+3d -e )=2a □5b □c □3d □e ,方格内所填的符号依次是( ).A .+,-,+,-B .-,-,+,-C .-,+,-,+D .-,+,-,-7.某工厂现有工人a 人,若现有工人数比两年前减少了35%,则该工厂两年前工人数为( ).A .135%a +B .(1+35%)aC .135%a - D .(1-35%)a 8.若2237y y ++的值为8,则2469y y +-的值是( ).A .2B .-17C .-7D .7二、填空题9.比x 的15%大2的数是________.10.(2015•岳阳)单项式﹣x 2y 3的次数是 .11.22372x y x -++是________次________项式,最高次项的系数是________. 12.化简:2a -(2a -1)=________.13.如果24a ab +=,21ab b +=-,那么22a b -=________.14.一个多项式减去3x 等于2535x x --,则这个多项式为________.15.若单项式22m n x y +-与单项式323m y x 的和是单项式,那么3m n -= .16.如图所示,外圆半径是R 厘米,内圆半径是r 厘米,四个小圆的半径都是2厘米,则图中阴影部分的面积是________平方厘米.三、解答题17.(2014秋•镇江校级期末)合并同类项①3a ﹣2b ﹣5a+2b②(2m+3n ﹣5)﹣(2m ﹣n ﹣5) ③2(x 2y+3xy 2)﹣3(2xy 2﹣4x 2y )18.已知:2263A x x =+-,213B x x =--,2451C x x =--,当32x =-时,求代数式32A B C -+的值.19. 计算下式的值:其中114x ,y ,==-甲同学把14x =错抄成14x =-,但他计算的结果也是正确的,你能说明其中的原因吗?【答案与解析】一、选择题1. 【答案】B【解析】根据已知条件,a 与b 互为相反数,即a+b =0,x 与y 互为倒数,即xy =1,所以|a+b |-2xy =0-2×1=-2,故选B .2.【答案】D .【解析】此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A 、﹣2xy 2系数是﹣2,错误;B 、3x 2系数是3,错误;C 、2xy 3次数是4,错误;D 、2x 3符合系数是2,次数是3,正确;故选D .3. 【答案】A【解析】单项式有2b ,abc ,0,x ;多项式有12x yz +,2323x x --,其中y x ,a b ab +不是整式.4.【答案】 C【解析】此单项式的系数是以科学记数法形式出现的数,所以系数为-1.2×104,次数应为x 与y 的指数之和,不包括10的指数4,故次数为3.不要犯“见指数就相加”的错误.所以正确答案为C .5. 【答案】D6.【答案】 C【解析】因为括号前是“-”号,所以去括号时,括号里各项都变号,故选C .7. 【答案】C【解析】把减少前的工人数看作整体“1”,已知一个数的(1-35%)是a ,求这个数,则是135%a -,注意列式时不能用“÷”号,要写成分数形式. 8.【答案】C)4()2()242(33432242234y y x x y y x x y x y x x -+-++----【解析】22378y y ++=,2231y y +=,22462(23)212y y y y +=+=⨯=,故24697y y +-=-.二、填空题9.【答案】15%x+210.【答案】5.11.【答案】三, 三 , 12- 【解析】多项式的次数取决于次数最高项的次数,确定系数时不要忽视前面的“-”号.12.【答案】1【解析】先根据去括号法则去括号,然后合并同类项即可,2a -(2a -1)=2a -2a+1=1.13.【答案】5【解析】用前式减去后式可得225a b -=.14.【答案】255x -【解析】要求的多项式实际上是2(535)3x x x --+,化简可得出结果.15.【答案】 1【解析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义,可得1m =,2n =.16.【答案】22(16)R r πππ--【解析】阴影部分的面积=大圆面积-最中间的圆的面积-4个小圆的面积.三、解答题17.【解析】解:(1)原式=(3a ﹣5a )+(﹣2b+2b )=﹣2a ;(2)原式=2m+3n ﹣5﹣2m+n+5=(2m ﹣2m )+(3n+n )+(﹣5+5)=4n ;(3)原式=2x 2y+6xy 2﹣6xy 2+12x 2y=(2x 2y+12x 2y )+(6xy 2﹣6xy 2)=14x 2y .18.【解析】解:∵222263,31,45 1.A x x B x x C x x ⎧=+-⎪=--+⎨⎪=--⎩ ∴ 222263,3393,2810 2.A x x B x x C x x ⎧=+-⎪⎪-=+-⎨⎪=--⎪⎩∴2321358A B C x x -+=+- 当32x =-时, 32A B C -+33915117303213()5()81388132242444=⨯-+⨯--=⨯--=--=. 19. 【解析】解: ∵化简结果与x 无关 ∴将x 抄错不影响最终结果.43224223433432242234333(242)(2)(4)242242yx x y x y x x y y x x y y x x y x y x x y y x x y y ----++-+-----+-- =+- = 。
整式的加减全章知识点总结
整式的加减全章知识点总结一、整式的基本概念整式是代数式的一部分,为有理式的一部分,在有理式中可以包含加、减、乘、除、乘方五种运算,但在整式中除数不能含有字母。
1、单项式由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如,单项式 5x 的系数是 5,次数是 1;单项式-3xy²的系数是-3,次数是 3。
2、多项式几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
例如,多项式 2x²+ 3x 1 有三项,分别是 2x²、3x 和-1,其中-1 是常数项,该多项式的次数是 2。
3、整式单项式和多项式统称为整式。
二、整式的加减运算整式的加减实质上就是合并同类项。
1、同类项所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如,2x²y 和-5x²y 是同类项;3 和-7 是同类项。
2、合并同类项把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
例如,计算 3x²+ 2x²=(3 + 2)x²= 5x²。
三、整式加减的步骤1、去括号如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
例如,a +(b c) = a + b c;a (b c) = a b +c 。
2、合并同类项将同类项的系数相加,字母和字母的指数不变,得到最简结果。
四、整式加减的应用整式的加减在解决实际问题中有着广泛的应用。
例如,在行程问题中,如果已知速度和时间,可以用整式表示路程,然后通过整式的加减来计算不同情况下的路程和。
人教版数学七年级上册《整式的加减》全章复习与巩固(基础)知识讲解
《整式的加减》全章复习与巩固(基础)知识讲解【知识网络】【要点梳理】要点一、整式的相关概念1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、整式的相关概念1.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式.(1)3a - (2)5 (3)2b a - (4)2x y - (5)3xy (6)x π(7)5m n + (8)1+a% (9)1()2a b h +举一反三:【变式1】(1)3xy -的次数与系数的和是________;(2)已知单项式26x y 的系数是等于单项式52m x y -的次数,则m =________;(3)若nma b 是关于a 、b 的一个五次单项式,且系数为9,则-m+n =________.【变式2】多项式432231y y y y -+-+是________次________项式,常数项是________,三次项是________.【变式3】把多项式321325x x x --+按x 的降幂排列是________.类型二、同类项及合并同类项2.(2015•遵义)如果单项式﹣xy b+1与x a ﹣2y 3是同类项,那么(a ﹣b )2015= .举一反三:【变式】若47a x y 与579b x y -是同类项,则a =________,b =________.类型三、去(添)括号3. 计算 22232(12)[5(436)]x x x x x -----+举一反三:【变式1】下列式子中去括号错误的是( ).A .5x -(x -2y +5z )=5x -x +2y -5zB .2a 2+(-3a -b )-(3c -2d )=2a 2-3a -b -3c +2dC .3x 2-3(x +6)=3x 2-3x -6D .-(x -2y )-(-x 2+y 2)=-x +2y +x 2-y 2【变式2】化简:-2a+(2a -1)的结果是( ).A .-4a -1B .4a -1C .1D .-1类型四、整式的加减4. 求比多项式22523a a ab b --+少25a ab -的多项式.举一反三:【变式】计算:11(812)3(22)32a a b c c b ---+-+类型五、化简求值5. (1)直接化简代入已知12x =,1y =-,求225(23)2(43)x y x x x y ---的值.(2)条件求值(烟台)若523m x y +与3n x y 的和是单项式,则n m =________.(3)整体代入已知x 2-2y =1,那么2x 2-4y+3=________.举一反三:【变式1】(2015•娄底)已知a 2+2a=1,则代数式2a 2+4a ﹣1的值为()A .0B .1C .﹣1D .﹣2【变式2】已知25m n -+=,求25(2)6360m n n m -+--的值.类型六、综合应用6. 已知多项式 是否存在m ,使此多项式与x 无关?若不存在,说明理由;若存在,求出m 的值.【巩固练习】一、选择题1.已知a 与b 互为相反数,且x 与y 互为倒数,那么|a+b|-2xy 的值为( ).A .2B .-2C .-1D .无法确定2.(2015•厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .﹣2xy 2B . 3x 2C . 2xy 3D . 2x 33.有下列式子:12x yz +,2b ,2323x x --,abc ,0,y x ,x ,a b ab+,对于这些式子下列结论正确的是( ).A .有4个单项式,2个多项式B .有5个单项式,3个多项式C .有7个整式D .有3个单项式,2个多项式4.对于式子421.210x y -⨯,下列说法正确的是( ).A .不是单项式B .是单项式,系数为-1.2×10,次数是7C .是单项式,系数为-1.2×104,次数是3D .是单项式,系数为-1.2,次数是35.下面计算正确的是( ).A .32x -2x =3B .32a +23a =55aC .3+x =3xD .-0.25ab +41ba =0()()22222mx -x +3x +1-5x -4y +3x6.2a -(5b -c+3d -e )=2a □5b □c □3d □e ,方格内所填的符号依次是( ).A .+,-,+,-B .-,-,+,-C .-,+,-,+D .-,+,-,-7.某工厂现有工人a 人,若现有工人数比两年前减少了35%,则该工厂两年前工人数为( ).A .135%a +B .(1+35%)aC .135%a - D .(1-35%)a 8.若2237y y ++的值为8,则2469y y +-的值是( ).A .2B .-17C .-7D .7二、填空题9.比x 的15%大2的数是________.10.(2015•岳阳)单项式﹣x 2y 3的次数是 .11.22372x y x -++是________次________项式,最高次项的系数是________. 12.化简:2a -(2a -1)=________.13.如果24a ab +=,21ab b +=-,那么22a b -=________.14.一个多项式减去3x 等于2535x x --,则这个多项式为________.15.若单项式22m n x y +-与单项式323m y x 的和是单项式,那么3m n -= .16.如图所示,外圆半径是R 厘米,内圆半径是r 厘米,四个小圆的半径都是2厘米,则图中阴影部分的面积是________平方厘米.三、解答题17.(2014秋•镇江校级期末)合并同类项①3a ﹣2b ﹣5a+2b ②(2m+3n ﹣5)﹣(2m ﹣n ﹣5)③2(x 2y+3xy 2)﹣3(2xy 2﹣4x 2y )18.已知:2263A x x =+-,213B x x =--,2451C x x =--,当32x =-时,求代数式32A B C -+的值.。
人教版七年级数学上册 4.2整式的加法与减法(第四章 整式的加减 自学、复习、上课课件)
感悟新知
知3-讲
2. 去括号的注意事项 (1)括号内的每一项都包含前面的符号,特别是括号外的
数是负数时,注意符号; (2)不要漏乘括号内的项,特别是常数项.
感悟新知
知3-讲
特别解读 1. 去括号的根据是乘法分配律. 2. 括号内多项式本来是和的形式,所以乘括
号外的数所得的结果要相加.
感悟新知
知2-练
例 4 (1)某中学七年级一班数学活动中分为三个组,第一 组有a 人,第二组比第一组的一半多5 人,第三组 人数等于前两组人数的和,则第三组有 _(32_a_+__5_)人;
解题秘方:先根据数量关系列出整式,然后合并
同类项得到最后结果. 解:因为第一组有a 人,所以第二组有(12a+5)人. 由a+ 12a+5 =32a+5,可知,第三组有32a+5 人.
知2-讲
感悟新知
知2-讲
4.
升降幂排列:把一个多项式各项按某个字母的指数从大 ••
到小的顺序排列,叫作这个多项式按这个字母的降幂排
••
•••
列• . 若按某个字母的指数从小到大的顺序排列,叫作这
个多项式按这个字母的升幂排列. ••••
感悟新知
特别解读
知2-讲
1. 合并同类项法则可简记为“一相加,两不变”.其中,“一相
知2-练
感悟新知
知2-练
3-1.[期末·广州天河区] 下列各式中正确的是( C ) A.2x+2y=4xy B.3x2 - x2=2 C.3xy - 2xy=xy D.2x+4x=6x2
感悟新知
知2-练
3-2.[中考·黄冈] 先化简,再求值:4xy-2xy-(-3xy), 其 中x=2,y=-1. 解:4xy-2xy-(-3xy)=4xy-2xy+3xy=5xy. 当x=2,y=-1时,原式=5×2×(-1)=-10.
【知识学习】七年级数学上册《整式的加减》知识点整理复习
七年级数学上册《整式的加减》知识点整理复习教学内容:北师大版七年级数学上册第三章《整式的加减》单元复习教材分析:本章的主要内容是整式的加减运算,这个内容是紧密结合实际问题展开的;单项式、多项式、整式的概念以及合并同类项、去括号是进行整式加减运算的基础。
通过本章的学习,一方面应使学生熟悉上述概念,掌握合并同类项法则和去括号时符号的变化规律,能够熟练进行整式的加减运算;另一方面,在学习这些概念和法则的过程中,应使学生在分析和列式表示实际问题中的数量关系方面得到一定的训练,为后面的学习做好准备。
尤其是掌握一些易错题的做题方法以及易错题的归类。
提高学生在计算易错题中的运算能力及综合应用数学知识的能力。
教学目标:一、知识技能:、进一步理解整式、单项式、多项式、同类项的概念;2、能熟练指出单项式的系数、次数和多项式的项数、次数,能把一个多项式写成按某个字母的降幂或升幂排列;3、掌握合并同类项法则;4、能灵活应用去括号法则,进行整式加减运算。
二、过程与方法:、通过回忆和交流,经历对已有知识的归纳;对本章内容的认识更全面、更系统化。
2、通过应用与实践,提高分析问题、解决问题的能力;培养学生主动分析问题的习惯。
3、进一步加深学生对本章基础知识的理解以及基本技能的掌握、提高学生在计算易错题中的运算能力及综合应用数学知识的能力。
三、情感态度价值观:培养严谨的学习态度和积极思考的学习习惯,在独立思考的基础上,积极参与对数学问题的讨论与交流,从中获益;体会数学于生活又作用于生活,从而获得成功的喜悦。
教学重点和难点:重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
尤其是对各种易错点和易错题的正确计算。
难点:整式的加减运算的应用及去括号时的注意事项。
教学方法:分层次教学,情境激趣、讲授、练习、合作交流相结合。
学习方法:1、通过课前的总结性复习,使学生进一步理解整式的有关概念,能熟练地进行整式加减运算;2、通过上课的合作交流,进一步明确知识点的应用类型及关键点、易错点,进行知识网络的建构。
《整式的加减》复习课课件
通过例题解析,让学生了解在整式加减中,运算 顺序的变化规律,如去括号、合并同类项等操作 中,运算顺序的变化情况。
练习运算顺序
通过大量的练习,让学生熟练掌握运算的顺序规 则,提高运算的准确性和熟练度。
合并同类项错误纠正方法
01
明确同类项概念
强调同类项的定义和识别方法,同类项是指字母相同且字母的指数也相
整式加减运算实例解析
典型例题
通过一些典型的整式加减运算例 题,可以帮助学生更好地理解和
掌握运算技巧。
解题思路
解析整式加减运算实例时,需要明 确解题思路和步骤,引导学生逐步 掌握解题方法。
方法总结
通过对典型例题的解析和总结,可 以提炼出整式加减运算的一些方法 和技巧,帮助学生提高运算效率和 准确性。
01
通过整式的加减运算,可以将复杂的方程化简为简单的形式,
方便求解。
方程的求解
02
给定一个或多个方程,通过整式的加减运算可以求解这些方程
的解。
方程组的解法
03
给定一个方程组,通过整式的加减运算可以求解这个方程组的
解。
函数表达式问题
函数的化简
通过整式的加减运算,可以将复杂的函数表达式化简为简单的形 式,方便研究函数的性质。
合并原则
合并同类项需要遵循多项 式中字母及指数的保持不 变原则。
去括号与添括号技巧
去括号法则
在整式加减运算中,去括 号法则的应用是必要的, 需要明确去括号的方法和 注意事项。
添括号法则
添括号法则的应用也是常 见的,可以扩展表达式的 形式,使其更易于计算或 化简。
注意事项
在去括号和添括号的过程 中,需要注意符号的变化 和运算的顺序。
最新整式的加减复习ppt课件知识讲解
1、请你分别写出两种方案所需总钱数。
2、当x=40时,哪种方案更优惠?
你能说一种更优惠的购买方案吗?
三、单项式:
数与字母乘积组成的代数式叫单项式。单独一 个数或字母也是单项式。 1.单项式的系数:单项式中的数字因数。 2.单项式的次数:单项式中所有的字母的指数和。
练习:指出下列单项式的系数与指数各是多少。
用数值代替代数式里的字母,按照代数式中的运算关系 计算得出的结果,叫做代数式的值
4a 2 3a 2b
其中a=3,b=-4
已知x2 2x15
则3x2 6x2 _________
a3b2.
则7-2a6b_______
练一练
1 填空
(1)原来的温度是10ºC,上升tºC是________.
(2)某班学生总人数为x,其中男生占52%,男生人数___________.
整式的加减复习ppt课件
教学重点、难点
重点: 基础知识的运用;整式的加减运算。 难点: 本章基础知识的归纳、总结;
根据题意列出整式进行进行计算
本章知识结构图:
用字母表示数
列式表示 数量关系
单项式 多项式
整 式
合并同类项 整式加减
去括号
1.列整式能力 3. 培养符号感
2. 整式的加减计算能力
4. 注重数学思想
a,
2 x 3 y 4, 23 mn ,
Π ,
2 3
a 2b 3
四、多项式:
几个单项式的和叫多项式。 练习:下面多项式是由那些单项式组成?
5 x 5 5 x 3 y x 2 y 3 1 x0 6 y
1.多项式的项及次数
组成多项式中的单项式叫多项式的项,多项式中次 数最高项的次数叫多项式的次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考分类解析《整式的加减》全章复习与巩固(基础)知识讲解责编:杜少波【学习目标】1.理解并掌握单项式与多项式的相关概念;2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3.深刻体会本章体现的主要的数学思想----整体思想.【知识网络】【要点梳理】要点一、整式的相关概念1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”: (1)“两相同”是指:①所含字母相同;②相同字母的指数相同; (2)“两无关”是指:①与系数无关;②与字母的排列顺序无关. 2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项. 【典型例题】类型一、整式的相关概念1.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式. (1)3a - (2)5 (3)2b a - (4)2x y - (5)3xy (6)xπ(7)5m n + (8)1+a% (9)1()2a b h + 【答案与解析】解:整式:(1)、(2)、(4)、(5)、(6)、(7)、(8)、(9)单项式:(2)、(5)、(6),其中:5的系数是5,次数是0;3xy 的系数是3,次数是2;x π的系数是1π,次数是1.多项式:(1)、(4)、(7)、(8)、(9),其中:3a -是一次二项式;2x y -是一次二项式;5m n+是一次二项式;1+a%是一次二项式; 1()2a b h +是二次二项式。
【总结升华】①分母中出现字母的式子不是整式,故2b a-不是整式;②π是常数而不是字母,故xπ是整式,也是单项式;③(7)、(9)表示的是加、减关系而不是乘积关系,而单项式中不能有加减.如5m n +其实质为55m n +,1()2a b h +其实质为1122ah bh +.举一反三:【变式1】(1)3xy -的次数与系数的和是________;(2)已知单项式26x y 的系数是等于单项式52mx y -的次数,则m =________;(3)若nma b 是关于a 、b 的一个五次单项式,且系数为9,则-m+n =________. 【答案】 (1)3 (2)1 (3)-5【变式2】多项式432231y y y y -+-+是________次________项式,常数项是________,三次项是________. 【答案】四,五, 1 , 3y -【变式3】把多项式321325x x x --+按x 的降幂排列是________. 【答案】322531x x x -+-+类型二、同类项及合并同类项2.(2015•遵义)如果单项式﹣xy b+1与x a ﹣2y 3是同类项,那么(a ﹣b )2015= .【答案】1. 【解析】解:由同类项的定义可知 a ﹣2=1,解得a=3, b+1=3,解得b=2,所以(a ﹣b )2015=1.【总结升华】考查了同类项,要求代数式的值,首先要求出代数式中的字母的值,然后代入求解即可. 举一反三: 【变式】若47ax y 与579bx y -是同类项,则a =________,b =________. 【答案】 5 , 4类型三、去(添)括号3. 计算 22232(12)[5(436)]x x x x x -----+ 【答案与解析】解法1: 22232(12)[5(436)]x x x x x -----+ 222324(5436)x x x x x =-+--+-2234236x x x x =+---+ 224x x =++ 解法2:22232(12)[5(436)]x x x x x -----+2223245(436)x x x x x =-+-+-+22242436x x x x =-+-+-+ 224x x =++【总结升华】根据多重括号的去括号法则,可由里向外,也可由外向里逐层推进,在计算过程中要注意符号的变化.若括号前是“-”号,在去括号时,括号里各项都应变号,若括号前有数字因数,应把数字因数乘到括号里,再去括号. 举一反三:【变式1】下列式子中去括号错误的是( ). A .5x -(x -2y +5z )=5x -x +2y -5zB .2a 2+(-3a -b )-(3c -2d )=2a 2-3a -b -3c +2dC .3x 2-3(x +6)=3x 2-3x -6D .-(x -2y )-(-x 2+y 2)=-x +2y +x 2-y 2【答案】C【变式2】化简:-2a+(2a-1)的结果是( ). A .-4a-1 B .4a-1 C .1 D .-1 【答案】D类型四、整式的加减4.(2016•邢台二模)设A ,B ,C 均为多项式,小方同学在计算“A ﹣B ”时,误将符号抄错而计算成了“A+B ”,得到结果是C ,其中A=x 2+x ﹣1,C=x 2+2x ,那么A ﹣B=( ) A .x 2﹣2x B .x 2+2x C .﹣2 D .﹣2x【思路点拨】根据题意得到B=C ﹣A ,代入A ﹣B 中,去括号合并即可得到结果. 【答案】C . 【解析】解:根据题意得:A ﹣B=A ﹣(C ﹣A )=A ﹣C+A=2A ﹣C=2(x 2+x ﹣1)﹣(x 2+2x )=x 2+2x ﹣2﹣x 2﹣2x=﹣2, 故选C.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.举一反三:【变式】计算:11(812)3(22)32a a b c c b ---+-+【答案】原式11466632a a b c c b =-++-+1106a b =-+类型五、化简求值5. (1)直接化简代入 已知12x =,1y =-,求225(23)2(43)x y x x x y ---的值. (2)条件求值 (烟台)若523m xy +与3n x y 的和是单项式,则n m =________.(3)整体代入已知x 2-2y =1,那么2x 2-4y+3=________. 【答案与解析】解:(1)5(2x 2y-3x)-2(4x-3x 2y)=10x 2y-15x-8x+6x 2y=16x 2y-23x 当12x =,y =-1时, 原式=211233116(1)2342222⎛⎫⨯⨯--⨯=--=- ⎪⎝⎭.(2) 由题意知:523m xy +和3n x y 是同类项,所以m+5=3,n =2,解得,m =-2,n =2,所以2(2)4nm =-=.(3)因为222432(2)3x y x y -+=-+, 而221x y -=所以22432135x y -+=⨯+=.【总结升华】整体代入求值的一般做法是对代数式先进行化简,然后找到化简结果与已知条件之间的联系. 举一反三:【变式1】(2015•娄底)已知a 2+2a=1,则代数式2a 2+4a ﹣1的值为( ) A .0 B .1 C .﹣1 D .﹣2 【答案】B【高清课堂:整式的加减单元复习388396经典例题7】【变式2】已知25m n -+=,求25(2)6360m n n m -+--的值. 【答案】225(2)63605(2)3(2)60m n n m m n n m -+--=-+--225m n n m -+=-=所以,原式=255356080⨯+⨯-=.类型六、综合应用【高清课堂:整式的加减单元复习388396经典例题1】6. 已知多项式是否存在m ,使此多项式与x 无关?若不存在,说明理由;若存在,求出m 的值. 【答案与解析】解:原式()()22222mx -x +3x +1-5x -4y +3x 2222(215)(33)41(26)41m x x y m x y =--+-++=-++要使原式与x 无关,则需该项的系数为0,即有260m -=,所以3m = 答:存在m 使此多项式与x 无关,此时m 的值为3.。