连接世界的海底光缆

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连接世界的海底光缆

那么今天我们所享受到的互联网“宽带”沟通又是如何实现的呢?答案就是海底光缆。其实所谓的全球互联网,就是世界各国的网络相互联接而组成的超大型局域网,其中实现洲际间的联接靠的是卫星通信和海底光缆。不过考虑到卫星通信带宽有限且价格不菲,因此全球90%以上的国际数据都是通过海底光缆进行传输的,也就是说,基本上是海底光缆构建了今天的全球“宽带”互联网!比互联网早100年的海底通信两大发明引领两次变革

说起海底通信,其历史比互联网还要早100年,只不过当时的海底通信还是借助电缆来实现的——1850年盎格鲁-法国电报公司开始在英法之间铺设了世界第一条海底电缆,当时只能发送莫尔斯电报密码;而到了1866年,英国在美英两国之间铺设全成了跨大西洋海底电缆(The Atlantic Cable)的成功铺设,首次实现了欧美大陆之间跨大西洋的电报通讯。随后,贝尔于1876年发明了电话,人们对于实现全球沟通的梦想越发强烈,这也加速了全球海底电缆的建设——1902年环球海底通信电缆建成。

而说起我国的第一条海底电缆,则可追溯到清朝时期,当时的台湾首任巡抚刘铭传为实现两岸的电报通信,于1886年开始铺设通联台湾全岛以及大陆的水路电线,并于1888年建成,其中一条是福州川石岛与台湾沪尾(淡水)之间的水路电线(全场177海里),另外一条为台南安平通往澎湖的水路电线(全长53海里)。

当然,人类的梦想是永无止境的!进入20世纪50年代,随着互联网开始崭露头角,人们对于海底通信的通话质量、以及数据传输速度有了更高的要求。而就在这时,世界上第一台激光器问世了(1960年),人们开始尝试借助激光

实现在光导纤维中传输数据信息。随后进入20世纪70、80年代,互联网已经开始在全球的发达国家中兴起,而海底电缆的不足(带宽有线、传输稳定性差等等)也开始逐步凸显,因此,具备传输距离长、容量大等特性的光纤(即海底光缆)被寄予了厚望!

1988年,美英法之间的首个越洋海底光缆(TAT-8)系统建成,该海底光缆全长6700公里,含有3对光纤,每对的传输速率高达280Mb/s,速度远超海底电缆,这也标志着海底光缆时代正式到来。随后一年,跨越太平洋的海底光缆(全长13200公里)也建设成功,从此,洲际间的海底通信全部由光缆取代了同轴电缆;同年,我国也开始步入海底光缆时代。

贰全球海底光缆及我国海底光缆分布

全球海底光缆概况

随着互联网的高速发展,全球海淀光缆的建设也在不断提速,目前全球已投入使用的海底光缆超过230条,实现了除南极洲之外的六个大洲的联接;此外还有十余条正在建设的海底光缆;而想要清晰、全面地了解全球海底光缆的分布,可参考TeleGeography提供的2015全球海底光缆布局图。

TeleGeography提供的2015全球海底光缆布局图

我国海底光缆概况:4个入口和8条光缆

我国于1989年开始投入到全球海底光缆的投资与建设中来,并于1993年实现了首条国际海底光缆的登陆(中日之间C-J海底光缆系统);随后在1997年,我国参与建设的全球海底光缆系统(FLAG)建成并投入运营,这也是第一条在我国登陆的洲际海底光缆;而时间来到2000年,随着亚欧海底光缆上海登陆站的开通,我国实现了与亚欧33个国家和地区的联接,也标志着我国海底通信达到了新的高度。

亚太2号海底光缆(蓝色)

东亚海底光缆系统(左)和城市到城市海底光缆(右)

东南亚及日本海底光缆

环球海底光缆

亚欧海底光缆

中美海底光缆中美直达海底光缆

数量虽少安全性高

通过上述介绍不难看出,无论是登陆站数量,还是海底光缆数量,我国(大陆地区)相比欧美发达国家均相对较少,但其带来的好处是显而易见的——加强网络安全防护。要知道,海底光缆同样会带来网络安全威胁,而我国只有四个登陆站允许入境,这就为安全防护提供了极大地便利,即只需加强这四个“入口”的安全防护能力,即可抵御外来的网络安全威胁。

叁没那么简单:海底光缆的设计与铺设

海底光缆的设计:防腐蚀、防渗透、还要防鲨鱼

相比同轴电缆,光纤的优势相当明显,但其本身却是相当脆弱的,因此这就对保护光纤的海底光缆外围保护结构提出了更高的要求。具体来说,海底光缆的设计必须保证内部光纤不受外力和环境的影响,其基本要求包括适应海底压力,耐磨损、不易腐蚀等等;同时还要防止内部产生氢气(因此不能用铝)及外部氢气入侵(防气体渗入);此外,其还要有合适的铠装层防止渔轮拖网、船锚及鲨鱼的伤害。而当光缆断裂时,还要尽可能的减少海水渗入光缆内的长度;同时能承受敷设与回收时的张力;最后也是最重要的一点,海底光缆的使用寿命一般要求在25年以上。

海底光缆的结构(图片来自网络)

法国电信的光缆敷设船及水下机器人(小图)

海底光缆铺设过程

如上图所示,这就是一次海底光缆的铺设过程,其中在浅海区域,敷设船停留在距离海岸数公里的位置,通过岸上牵引机的牵引,将放置在浮包上的光缆向岸边牵引,然后拆除浮包,使光缆沉至海底;而在深海区域,敷设船主要负责释放出光缆,然后由水下检测器搭配水下遥控车进行水下监视和调整,以避开海底不平整、有岩石的地方。随后,水下机器人开始进行三步工作:第一步,利用高压冲水在海底产生一条深约2米的沟槽;第二步将光缆放入沟槽之中;第三步,借助旁边的沙土将其覆盖好。

在这里特别需要说明的是,一条洲际海底光缆是难以一次完成铺设的,因为目前最先进的光缆敷设船也就只能搭载2000公里长的光缆(且目前的铺设速度仅能达到200公里/天),因此铺设要分段进行,而每一段的“光缆对接”,都需要在敷设船上完成,并需要极高的技术。

肆海底光缆修复:比铺设更加困难!

海底光缆修复:比铺设更加困难!

其实自诞生之日起,海底通信就面临着各种威胁和挑战,而一旦海缆(包括电缆和光缆)被破坏,通信就将被中断,造成的影响不言而喻。而说起海缆的中断,其中在上世纪七八十年代,它们极易遭到捕鱼船(拖网)、船锚的破坏,甚至还会被鲨鱼咬断。还好,随着相关法规(禁止在海缆上方区域停船抛锚)和海缆防护能力的提升,这些破坏海缆的情况开始显著减少。

不过还有一种破坏海缆的情况难以避免,那就是地震。例如在2006年台湾地区发生的强震,就造成了多条国际海底光缆受损、甚至中断,导致国内互联网用户无法正常访问国外网站;同样的,2011年日本地区发生的强震,也导致国内用户无法登录到美国网站。所以说,海底光缆的受损不可避免,因此修复海底光缆,就成为了必不可少的工作。

相关文档
最新文档