高三第一次月考题数学试题

合集下载

2024-2025学年陕西省西安中学高三上学期10月月考数学试题及答案

2024-2025学年陕西省西安中学高三上学期10月月考数学试题及答案

陕西省西安中学高2025届高三第一次质量检测考试数学试题(时间:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}(){}2210,log 1A x xB x x x =-≤≤=-≤,则A B = ( )A. {}10x x -≤≤ B. {}10x x -<≤ C. {}10x x -≤< D. {}10x x -<<2. “01a <<”是“函数()()log 2a f x a x =-在(),1-∞上单调递增”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的图象大致为()A. B.C. D.4. 已知521log 2,log ,2ba b a c ⎛⎫=== ⎪⎝⎭,则( )A. c b a>> B. c a b>> C. a b c>> D. b c a>>5. 已知定义在R 上的函数()f x 满足()()32f x f x +=,且()21f =-,则()100f =( )A. 1- B. 1C. 3- D. 36. 已知函数()e 1,0,2,0,x x f x x x⎧-≥⎪=⎨<⎪⎩()1g x kx =-,若关于x 的方程()()f x g x =有2个不相等的实数解,则实数k 的取值范围是( )A. {}eB. [)e,+∞ C. {}1,0e 8⎛⎫- ⎪⎝⎭D. {}1,e 8⎛⎫-∞- ⎪⎝⎭7. 已知函数3()1f x x x =-+,则( )A. ()f x 有三个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =对称中心D. 直线2y x =是曲线()y f x =的切线8. 已知函数24,0()log ,0x x f x x x x ⎧+>⎪=⎨⎪<⎩,2()g x x ax b =++,若方程()0g f x =⎡⎤⎣⎦有且仅有5个不相等的整数解,则其中最大整数解和最小整数解的和等于( )A. 28- B. 28C. 14- D. 14二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列导数运算正确的是( )A.1()x '= B. (e )e x x --'= C. 21(tan )cos x x'=D. 1(ln )x x'=10. 甲乙丙等5人的身高互不相同,站成一排进行列队训练,则( )A. 甲乙不相邻的不同排法有48种B. 甲乙中间恰排一个人不同排法有36种C. 甲乙不排在两端的不同排法有36种D. 甲乙丙三人从左到右由高到矮的不同排法有20种11. 已知0c b a <<<,则( )A. ac b bc a+<+ B. 333b c a +<C.a c ab c b +<+ D.>三、填空题:本题共3小题,每小题5分,共15分.12. 某学校组织学生参加数学测试,成绩的频率分布直方图如下,数据的分组依次是[20,40),[40,60),[60,80),[80,100],则可估计这次数学测试成绩的第40百分位数是_________.的的13. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则a =__________.14. 51(2)y x y x ⎛⎫-+⎪⎝⎭的展开式中,23x y 的系数为__________.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数3212()232a f x x x ax +=-+.(1)若1a =,求函数()f x 极值;(2)讨论函数()f x 的单调性.16. 为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线e bx a y +=的附近,请根据下表中的数据求出月份x 123456体重超标人数y987754483227lnz y= 4.58 4.34 3.98 3.87 3.46 3.29(1)该年级体重超重人数y 与月份x 之间的经验回归方程(系数ˆ,a b的最终结果精确到0.01);的(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.附:经验回归方程:ˆˆˆy bx a =+中,1221ˆni ii nii x y nx ybxnx ==-⋅=-∑∑,ˆˆa y bx=-;参考数据:6123.52i i z ==∑,6177.72i i i x z ==∑,62191i i x ==∑,ln10 2.30.≈17. 已知函数()log (1)a f x x =+,()()()2log 2a g x x t t =+∈R ,0a >,且 1.a ≠(1)当01a <<且1t =-时,求不等式()()f x g x ≤解集;(2)若函数()2()21f x F x a tx t =+-+在区间(1,2]-上有零点,求t 的取值范围.18. 某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:[45,55),[55,65),[65,75),[75,85),[85,95].根据长期检测结果,得到芯片的质量指标值X 服从正态分布()2,N μσ,并把质量指标值不小于80的产品称为A 等品,其它产品称为B 等品. 现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值. 若从生产线中任取一件芯片,试估计该芯片为A 等品的概率(保留小数点后面两位有效数字);(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827,(22)0.9545P P μσξμσμσξμσ-<<+≈-<<+≈,(33)0.9973P μσξμσ-<<+≈. )(2)(i )从样本质量指标值在[45,55)和[85,95]的芯片中随机抽取3件,记其中质量指标值在[85,95]的芯片件数为η,求η的分布列和数学期望;(ii )该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装. 已知一件A 等品芯片的的的利润是(124)m m <<元,一件B 等品芯片的利润是ln(25)m -元,根据(1)的计算结果,试求m 的值,使得每箱产品的利润最大.19. 已知函数1()e ln (1).x f x a x a x -=+-+(1)当0a =时,求函数()f x 的单调区间;(2)当1a =时,证明:函数()f x 在(0,)+∞上单调递增;(3)若1x =是函数()f x 的极大值点,求实数a 的取值范围.陕西省西安中学高2025届高三第一次质量检测考试数学试题(时间:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}(){}2210,log 1A x xB x x x =-≤≤=-≤,则A B = ( )A. {}10x x -≤≤ B. {}10x x -<≤ C. {}10x x -≤< D. {}10x x -<<【答案】C 【解析】【分析】先根据对数函数的单调性解不等式化简集合B ,然后利用交集运算求解即可.【详解】因为()222log 1log 2x x -≤=,所以202x x <-≤,解得12x <≤或10x -≤<,故{10B x x =-≤<或}12x <≤,又{}10A x x =-≤≤,所以A B = {}10x x -≤<.故选:C2. “01a <<”是“函数()()log 2a f x a x =-在(),1-∞上单调递增”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】根据对数函数和一次函数的单调性,再结合复合函数“同增异减”的判断法则求得对应的a 的取值范围即可得出结论.【详解】易知()()log 2a f x a x =-的定义域为(),2a -∞,且函数2y a x =-为单调递减函数;根据复合函数单调性可知若函数()()log 2a f x a x =-在(),1-∞上单调递增,可得0121a a <<⎧⎨≥⎩,解得112a ≤<;显然112a a ⎧⎫|≤<⎨⎬⎩⎭是{}|01a a <<的真子集,所以“01a <<”是“函数()()log 2a f x a x =-在(),1-∞上单调递增”的必要不充分条件.3. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的图象大致为()A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42ef ⎛⎫⎛⎫=-+->--=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.4. 已知521log 2,log ,2ba b a c ⎛⎫=== ⎪⎝⎭,则( )A. c b a >>B. c a b>> C. a b c>> D. b c a>>【答案】B 【解析】【分析】判断出01a <<,0b <,1c >,即可求解.【详解】555log 1log 2log ,0151a a <=<∴<=< 22log log 10b a =<= ,故0b <;1122bc ⎛⎫⎛⎫=> ⎪ ⎪⎝⎭⎝⎭,故1c >,故c a b >>.5. 已知定义在R 上的函数()f x 满足()()32f x f x +=,且()21f =-,则()100f =( )A. 1- B. 1C. 3- D. 3【答案】C 【解析】【分析】由条件推得函数的周期为4,结合函数的周期,即可求解.【详解】由()()32f x f x +=,可得()()()342f x f x f x +==+,所以()f x 的周期为4,则()()()3100032f f f ===-.故选:C.6. 已知函数()e 1,0,2,0,x x f x x x⎧-≥⎪=⎨<⎪⎩()1g x kx =-,若关于x 的方程()()f x g x =有2个不相等的实数解,则实数k 的取值范围是( )A. {}e B. [)e,+∞ C. {}1,0e 8⎛⎫- ⎪⎝⎭D. {}1,e 8⎛⎫-∞- ⎪⎝⎭【答案】C 【解析】【分析】根据题意,转化为()y f x =与1y kx =-的图象有2个交点,分0k =、0k <和0k >,三种情况讨论,结合导数的几何意义与函数的图象,即可求解.【详解】由题意,关于x 的方程()()f x g x =有2个不相等的实数解,即()y f x =与1y kx =-的图象有2个交点,如图所示,当0k =,直线1y =-与2y x=图象交于点()2,1--,又当0x ≥时,e 10x -≥,故直线1y =-与e 1x y =-(0x ≥)的图象无公共点,故当0k =时,()y f x =与1y kx =-的图象只有一个交点,不合题意;当0k >,直线1y kx =-与曲线e 1x y =-(0x ≥)相切时,此时()y f x =与1y kx =-的图象有2个交点,设切点()00,e 1xP x -,则00e x x x k y =='=,又由1y kx =-过点()0,1-,所以()000e 11e 0x x x ---=-,解得01x =,所以e =k ;当0k <时,若21kx x=-,则220kx x --=,由180k ∆=+=,可得18k =-,所以当18k =-时,直线1y kx =-与2y x=的图象相切,由图得当108k -<<时,直线1y kx =-与()y f x =的图象有2个交点.综上所述,实数k 的取值范围是{}1,0e 8⎛⎫- ⎪⎝⎭.故选:C .7 已知函数3()1f x x x =-+,则( )A. ()f x 有三个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =的对称中心D. 直线2y x =是曲线()y f x =的切线【答案】C 【解析】【分析】求导后判断单调性,从而求得极值点即可判断A ;利用单调性结合零点存在性定理即可判断B ;令3()h x x x =-,得到()h x 是奇函数,(0,0)是()h x 的对称中心,再结合图象的平移规律即可判断C ;由导数的几何意义求得切线方程即可判断D.【详解】对于A ,由题,()231f x x '=-,令()0f x '>得x >或x <()0f x '<得x <<的.所以()f x在(,-∞,)+∞上单调递增,(上单调递减,所以x =是极值点,故A 不正确;对应B,因(10f =+>,10f =->,()250f -=-<,所以,函数()f x在⎛-∞ ⎝上有一个零点,当x ≥时,()0f x f ≥>,即函数()f x在⎫∞⎪⎪⎭+上无零点,综上所述,函数()f x 有一个零点,故B 错误;对于C ,令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 的对称中心,将()h x 的图象向上移动一个单位得到()f x 的图象,所以点(0,1)是曲线()y f x =的对称中心,故C 正确;对于D ,令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+,故D 错误.故选:C8. 已知函数24,0()log ,0x x f x x x x ⎧+>⎪=⎨⎪<⎩,2()g x x ax b =++,若方程()0g f x =⎡⎤⎣⎦有且仅有5个不相等的整数解,则其中最大整数解和最小整数解的和等于( )A. 28- B. 28C. 14- D. 14【答案】A 【解析】【分析】利用换元法结合一元二次方程根的分布,数形结合计算即可.【详解】先作出()f x 的大致图象,如下令()f x t =,则()20g t t at b =++=,根据()f x 的图象可知:要满足题意必须()0g t =有两个不等根()1212,t t t t <,且()1f x t =有两个整数根,()2f x t =有三个整数根,结合对勾函数和对数函数图象与性质知,两函数14,y t y x x==+相切时符合题意,因为44x x +≥=,当且仅当2x =时取得等号,又()()22log log 0y x x x ==-<,易知其定义域内单调递减,即()14f x t ==,此时有两个整数根2x =或16x =-,而要满足()2f x t =有三个整数根,结合()f x 图象知必有一根小于2,显然只有1x =符合题意,当1x =时有()15f =,则25t =,解方程45x x+=得25t =的另一个正根为4x =,又()2log 5x -=⇒32x =-,此时五个整数根依次是32,16,1,2,4x =--,显然最大根和最小的根和为()43228+-=-.故选:A二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列导数运算正确的是( )A. 211()x x '=-B. (e )e x x --'=C. 21(tan )cos x x'=D. 1(ln )x x'=【答案】ACD【解析】的的【分析】利用求导公式逐项判断即可.【详解】对于A ,211(x x '=-,故A 正确;对于B ,(e )e x x --'=-,故B 错误;对于C ,2222sin cos sin 1(tan )()=cos cos cos x x x x x x x+''==,故C 正确;对于D ,()(ln ),01(ln )ln ,0x x x x x x '>⎧⎪==⎨⎡⎤-<⎪⎣⎦⎩'',故D 正确.故选:ACD10. 甲乙丙等5人的身高互不相同,站成一排进行列队训练,则( )A. 甲乙不相邻的不同排法有48种B. 甲乙中间恰排一个人的不同排法有36种C. 甲乙不排在两端的不同排法有36种D. 甲乙丙三人从左到右由高到矮的不同排法有20种【答案】BCD 【解析】【分析】根据排列和组合的定义、结合捆绑法逐一判断即可.【详解】A :甲乙不相邻的不同排法有3234A A 72=种,所以本选项不正确;B :甲乙中间恰排一个人的不同排法有123323C A A 36=种,所以本选项正确;C :甲乙不排在两端的不同排法有2333A A 36=种,所以本选项正确;D :甲乙丙三人从左到右由高到矮的不同排法有5533A 20A =种,所以本选项正确.故选:BCD11. 已知0c b a <<<,则( )A. ac b bc a+<+ B. 333b c a +<C.a c ab c b +<+D.>【答案】ABD 【解析】【分析】选项ABD ,利用不等式的性质计算即可,选项C ,因为b c +可正可负,所以不容易化简解决,一般当乘或除以一个不知正负的数,基本上错误,我们只需要找反例即可.【详解】因为0c b a <<<,所以ac bc ac b bc a <⇒+<+,故A 正确;因为0c b a <<<,所以333333,0b a c b c a <<⇒+<,故B 正确;因为0c b a <<<,不妨令3,2,1a b c ===-,得32,2a c abc b +==+,此时a c ab c b +>+,故C 错误;因为0c b a <<<0>>⇒<⇒>,故D 正确.故选:ABD三、填空题:本题共3小题,每小题5分,共15分.12. 某学校组织学生参加数学测试,成绩的频率分布直方图如下,数据的分组依次是[20,40),[40,60),[60,80),[80,100],则可估计这次数学测试成绩的第40百分位数是_________.【答案】65【解析】【分析】利用百分位数的定义求解.【详解】解:成绩在[20,60)的频率是()0.0050.01200.3+⨯=,成绩在[20,80)的频率为0.30.02200.7+⨯=,所以第40百分位数一定在[60,80)内,所以这次数学测试成绩的第40百分位数是0.40.36020650.4-+⨯=,故答案为:6513. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则a =__________.【答案】ln 2【解析】【分析】先求出曲线e xy x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e xy x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e xy x =+在()0,1处的切线方程为21yx =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214. 51(2)y x y x ⎛⎫-+⎪⎝⎭展开式中,23x y 的系数为__________.【答案】40【解析】【分析】根据二项式的通项公式进行求解即可.【详解】二项式5(2)x y +的通项公式为()515C 2rrr r T x y -+=⋅⋅,所以23x y 的系数为()233255C 21C 240⋅+-⋅⋅=,故答案为:40四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数3212()232a f x x x ax +=-+.(1)若1a =,求函数()f x 的极值;(2)讨论函数()f x 的单调性.【答案】(1)极小值为23,极大值为56(2)答案见解析【解析】的【分析】(1)对()f x 求导,分析单调性,再根据极值定义即可求解;(2)()()(2)f x x a x =--',对a 分2a =,2a >和2a <讨论单调性即可.【小问1详解】3213()2,()(1)(2)32f x x x x f x x x =-+'=--.所以x <1或x >2时,'()0f x >,12x <<时,'()0f x <,则()f x 在(1,2)上递减,在(,1),(2,)-∞+∞递增,所以()f x 的极小值为2(2)3f =,极大值为5(1)6f =.【小问2详解】()()(2)f x x a x =--',当2a =时,'()0f x ≥,所以()f x 在(,)-∞+∞上递增,当2a >时,2x <或x a >时,'()0f x >;2x a <<时,'()0f x <,所以()f x 在(,2),(,)a -∞+∞上递增,在(2,)a 上递减,当2a <时,x a <或2x >时,'()0f x >;2a x <<时,'()0f x <,所以()f x 在(,),(2,)a -∞+∞上递增;在(,2)a 上递减.16. 为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线e bx a y +=的附近,请根据下表中的数据求出月份x 123456体重超标人数y987754483227ln z y= 4.58 4.34 3.98 3.87 3.46 3.29(1)该年级体重超重人数y 与月份x 之间的经验回归方程(系数ˆ,a b的最终结果精确到0.01);(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.附:经验回归方程:ˆˆˆy bx a =+中,1221ˆni ii nii x y nx ybxnx ==-⋅=-∑∑,ˆˆa y bx=-;参考数据:6123.52ii z==∑,6177.72i ii x z==∑,62191i i x ==∑,ln10 2.30.≈【答案】(1)0.26 4.83ex y -+=(2)从第十个月开始【解析】【分析】(1)由计算公式与参考数据,求出ˆ,a b则可得回归方程;(2)根据经验回归方程建立不等式0.26 4.83e 10x -+<,解出不等式则可预测.【小问1详解】由e bx a y +=得ln z y bx a ==+,由题意得1(123456) 3.56x =+++++=,11123.52 3.9266n i i z z ===⨯=∑,所以6162221677.726 3.5 3.92ˆ0.26916 3.56i i i ii x zx zbxx ==-⋅-⨯⨯==≈--⨯-∑∑,ˆˆ 3.92(0.26) 3.5 4.83az bx =-≈--⨯=,所以ˆˆln 0.26 4.83zy x ==-+,即y 关于x 的经验回归方程为0.26 4.83e x y -+=【小问2详解】令0.26 4.83ln10 2.3e 10e e x -+<=≈,所以0.26 4.83 2.3x -+<,又由于x ∈N ,所以解得10x ≥,且x *∈N ,所以从第十个月开始,该年级体重超标的人数降至10人以下.17. 已知函数()log (1)a f x x =+,()()()2log 2a g x x t t =+∈R ,0a >,且 1.a ≠(1)当01a <<且1t =-时,求不等式()()f x g x ≤的解集;(2)若函数()2()21f x F x a tx t =+-+在区间(1,2]-上有零点,求t 的取值范围.【答案】(1)15|24x x ⎧⎫<≤⎨⎬⎩⎭(2)2t ≤-或t ≥【解析】【分析】(1)当1t =-时,将不等式()()f x g x ≤转化为()()2log 1log 21a a x x +≤-,利用对数函数的单调性结合一元二次不等式求解即可;(2)解法一:分离参数,将原函数的零点问题转化为22(2x t x x +=-≠-且12)x -<≤有根,设2U x =+(14U <≤且2U ≠+,则124t U U=--+,利用对勾函数的单调性求解值域即可求解;解法二:先判断0t =时,不合题意,当0t ≠时,根据二次函数零点分布分类讨论,列不等式组求解即可.【小问1详解】当1t =-时,()()2log 1log 21a a x x +≤-,又0<a <1,则x +1≥(2x−1)22x−1>0,∴4x 2−5x ≤0x >12⇒12<x ≤54,∴不等式()()f x g x ≤的解集为15|24x x ⎧⎫<≤⎨⎬⎩⎭;【小问2详解】解法一:由题设()222F x tx x t =+-+,由()0F x =,得22(2x t x x +=-≠-且12)x -<≤,则()()222422x t x x +=-+-++,设2U x =+(14U <≤且2U ≠+,则212424U t U U U U=-=-+--,令2()U U Uϕ=+,当1U <<时,()U ϕ4U <<时,()U ϕ单调递增,且()()913,42ϕϕϕ===,故()92U ϕ≤≤且() 4.U ϕ≠12402U U ∴-≤--<或2044U U<--≤-t 的取值范围为:2t ≤-或t ≥解法二:()222F x tx x t =+-+,若0t =,则()2F x x =+在(1,2]-上没有零点.下面就0t ≠时分三种情况讨论:①方程()0F x =在(1,2]-上有重根12x x =,则0∆=,解得t =,又1212x x t ==-(]1,2∈-⇒t =;②F (x )在(1,2]-上只有一个零点,且不是方程的重根,则()()120F F -<,解得2t <-或1t >,经检验2t =-或1t =时,F (x )在(1,2]-上都有零点,则2t ≤-或 1.t ≥③方程()0F x =在(1,2]-上有两个相异实根,则有t >0Δ>0−1<−12t <2F(−1)>0F(2)>0或t <0Δ>0−1<−12t <2F(−1)<0F(2)<0,解得1t <<,综上可知:t 的取值范围为2t ≤-或t ≥18. 某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:[45,55),[55,65),[65,75),[75,85),[85,95].根据长期检测结果,得到芯片的质量指标值X 服从正态分布()2,N μσ,并把质量指标值不小于80的产品称为A 等品,其它产品称为B 等品. 现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值. 若从生产线中任取一件芯片,试估计该芯片为A 等品的概率(保留小数点后面两位有效数字);(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827,(22)0.9545P P μσξμσμσξμσ-<<+≈-<<+≈,(33)0.9973P μσξμσ-<<+≈. )(2)(i )从样本的质量指标值在[45,55)和[85,95]的芯片中随机抽取3件,记其中质量指标值在[85,95]的芯片件数为η,求η的分布列和数学期望;(ii )该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装. 已知一件A 等品芯片的利润是(124)m m <<元,一件B 等品芯片的利润是ln(25)m -元,根据(1)的计算结果,试求m 的值,使得每箱产品的利润最大.【答案】(1)0.16 (2)(i )分布列见解析,32;(ii )794m =【解析】【分析】(1)根据频率分布直方图求得样本平均数,然后利用正态分布的对称性求解概率.(2)(i )先求出η的取值,然后求出对应的概率,即可求出分布列,代入期望公式求解即可;(ii )先根据二项分布的期望求出()E Z 1684ln(25)m m =+-,然后构造函数()1684ln(25)(124)f x x x x =+-<<,利用导数求出最大值时的m 即可.【小问1详解】由题意,估计从该品牌芯片的生产线中随机抽取100件的平均数为:10(0.01500.025600.04700.015800.0190)69x =⨯⨯+⨯+⨯+⨯+⨯=.即69x μ≈=,11s σ≈≈,所以2(69,11)X N ~,因为质量指标值X 近似服从正态分布2)(69,11N ,所以1(69116911)(80)2P X P X --<<+≥=1()2P X μσμσ--<<+=10.68270.158650.162-≈=≈,所以从生产线中任取一件芯片,该芯片为A 等品的概率约为0.16.【小问2详解】(i )(0.010.01)1010020+⨯⨯=,所以所取样本的个数为20件,质量指标值在[]85,95的芯片件数为10件,故η可能取的值为0,1,2,3,相应的概率为:301010320C C 2(0)C 19η===P ,211010320C C 15(1)C 38η===P ,15(2)38η===P ,031010320C C 2(3)C 19η===P ,随机变量η的分布列为:η0123P21915381538219所以η的数学期望2151523()0123193838192E η=⨯+⨯+⨯+⨯=.(ii )设每箱产品中A 等品有Y 件,则每箱产品中B 等品有(100)Y -件,设每箱产品的利润为Z 元,由题意知:(100)ln(25)(ln(25))100ln(25)Z mY Y m m m Y m =+--=--+-,由(1)知:每箱零件中A 等品的概率为0.16,所以~(100,0.16)Y B ,所以()1000.1616E Y =⨯=,所以()[(ln(25))100ln(25)]E Z E m m Y m =--+-(ln(25))100ln(25)m m EY m =--+-16(ln(25))100ln(25)m m m =--+-1684ln(25)m m =+-.令()1684ln(25)(124)f x x x x =+-<<,由84()16025f x x '=-=-得,794x =,又79(1,)4∈x ,()0f x '>,()f x 单调递增,79(,24)4∈x ,()0f x '<,()f x 单调递减,所以当79(1,24)4x =∈时,()f x 取得最大值.所以当794m =时,每箱产品利润最大.19. 已知函数1()e ln (1).x f x a x a x -=+-+(1)当0a =时,求函数()f x 的单调区间;(2)当1a =时,证明:函数()f x 在(0,)+∞上单调递增;(3)若1x =是函数()f x 的极大值点,求实数a 的取值范围.【答案】(1)答案见解析(2)证明见解析(3)(,1).-∞【解析】【分析】(1)代入a 的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)对函数()f x ()f x 导函数的单调性,求出导函数的最小值,即可证明;(3)对()f x 求导得,11()e 1x f x a a x -'=+--,令11()e 1x h x a a x-=+--,再求导,分a 的不同取值讨论()h x 的性质,即可求出a 的取值范围.【小问1详解】当0a =时,()ln f x x x =-,且知11()1x f x x x-='-=,在(0,1)上,()0f x '>, ()f x 在(0,1)上单调递增;在(1,)+∞上,()0f x '<, ()f x 在(1,)+∞上单调递减;所以函数()f x 的单调增区间为(0,1),单调减区间为(1,)+∞【小问2详解】证明:因为1a =,所以1()e ln 2x f x x x -=+-,且知11()e2x f x x-'=+-,要证函数()f x 单调递增,即证()0f x '≥在(0,)+∞上恒成立,设11()e 2x g x x-=+-,0x >,则121()e x g x x -'=-,注意1e x y -=,21y x =-在(0,)+∞上均为增函数,故()g x '在(0,)+∞上单调递增,且(1)0g '=,于是()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,()(1)0g x g ≥=,即()0f x '≥,因此函数()f x 在(0,)+∞上单调递增;【小问3详解】由11()e 1x f x a a x-'=+--,有(1)0f '=,令11()e 1x h x a a x -=+--,有121()e x h x a x -'=-,①当0a ≤时,11()e 0x xh x a x -'=-<在(0,)+∞上恒成立,因此()f x '在(0,)+∞上单调递减,注意到(1)0f '=,故函数()f x 的增区间为(0,1),减区间为(1,)+∞,此时1x =是函数()f x 的极大值点;②当0a >时,1e x y a -=与21y x=-在(0,)+∞上均为单调增函数,故()h x '在(0,)+∞上单调递增,注意到(1)1h a '=-,若(1)0h '<,即01a <<时,此时存在(1,)n ∈+∞,使()0h n '=,因此()f x '在(0,)n 上单调递减,在(,)n +∞上单调递增,又知(1)0f '=,则()f x 在(0,1)上单调递增,在(1,)n 上单调递减,此时1x =为函数()f x 的极大值点,若(1)0h '>,即1a >时,此时存在(0,1)m ∈,使()0h m '=,因此()f x '在(0,)m 上单调递减.在(,)m +∞上单调递增,又知(1)0f '=,则()f x 在(,1)m 上单调递减,在(1,)+∞上单调递增,此时1x =为函数()f x 的极小值点.当1a =时,由(1)可知()f x 单调递增,因此1x =非极大值点,综上所述,实数 a 的取值范围为(,1).-∞【点睛】关键点点睛:已知函数的极大值点,求出函数的导数,根据导数的导数121()e x h x a x -'=-分类讨论,确定函数极值点是解题的关键,据此可得符合题意的参数取值范围.。

河南省郑州市宇华实验学校2024-2025学年高三上学期8月月考数学试题(含答案)

河南省郑州市宇华实验学校2024-2025学年高三上学期8月月考数学试题(含答案)

郑州市宇华实验学校2024—2025学年高三上学期第一次月考数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每道选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考试结束后,请将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,0,2παβ⎛⎫∈ ⎪⎝⎭,则“1cos()4αβ-<”是“1cos sin 4αβ+<”的( )A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知实数x ,y ,z 满足e ln e y x x y =且1e lne z x z x =,若01y <<,则( )A .x y z >> B .x z y >> C .y z x >>D .y x z >>3.已知函数2||,(),x m x m f x x x m +≤⎧=⎨>⎩,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则实数m 的取值范围是()A .(0,2) B .(,2)(0,2)-∞-C .(2,0)-D .(2,0)(2,)-+∞ 4.定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在棱长为1的正方体1111ABCD A B C D -中,直线BD 与1CB 的距离为( )A .1BC .12D5.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC △的面积为S ,若22cos bc A b c +=+,则sin cos cos A B C=+( )A B .12C D6.已知z 为复数,且||1z =,则|3i |z -的取值范围是()A .[]2,3B .[]3,4C .[]2,4D .4⎡⎤⎣⎦7.若样本空间Ω中的事件123,,A A A 满足()()()()()223113231221,,,4356P A P A A P A P A A P A A =====∣∣∣,则()13P A A =( )A .114 B .17 C .27 D .5288.已知a ,b 均为正实数,若直线y x a =-与曲线ln(2)y x b =+相切,则2a b ab ab ++的最小值是( )A .8 B .9 C .10 D .11二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.下列函数()f x 的最小值为2的是()A .2()21f x x x =--+B .()23()log 210f x x x =++C .()22x x f x -=+D .1()32x f x -=+10.如图,在棱长为的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足13PD PB +=+,则下列结论正确的是( )A .1B D PB ⊥B .直线1B P 与平面11A BC 所成角为定值C .点P 的轨迹的周长为D .三棱锥11P BB C -体积的最大值为11.对于函数3()()ln ,()f x f x x x g x x ==,则下列说法正确的是( )A .()g x 在x =12eB .(2)g g >C .()g x 只有一个零点D .若方程2()kf x x =恰好只有一个实数根,则0k <三、填空题:本大题共3个小题,每小题5分,共15分.12.一批小麦种子的发芽率是0.7,每穴只要有一粒发芽,就不需补种,否则需要补种.则每穴至少种_________粒,才能保证每穴不需补种的概率大于97%.()lg 30.48≈13.已知函数2()2sin cos 0)222xxxf x ωωωω=-+>的最小正周期为T ,若223T ππ<<,且3π是()f x 的一个极值点,则ω=_________.14.过点P 作斜率为k 的直线l 交圆22:8E x y +=于,A B 两点,动点Q 满足||||||||PA QA PB QB =,若对每一个确定的实数k ,记||PQ 的最大值为max d ,则当k 变化时,max d 的最小值为_________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)各项都为整数的数列{}n a 满足272,4a a =-=,前6项依次成等差数列,从第5项起依次成等比数列.(1)求数列{}n a 的通项公式;(2)求出所有的正整数m ,使得1212m m m m m m a a a a a a ++++++=.16.(15分)如图,正方体111ABCD A B C D -.(1)求证:1A B ⊥面1A BC ;(2)若E 为线段1AC 的中点,求平面ABE 与平面BCE 所成锐二面角的大小.17.(15分)书籍是精神世界的入口,阅读让精神世界闪光,阅读逐渐成为许多人的一种生活习惯,每年4月23日为世界读书日.某研究机构为了解某地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,估计这100位年轻人每天阅读时间的平均数x (单位:分钟);(同一组数据用该组数据区间的中点值表示)(2)若年轻人每天阅读时间X 近似地服从正态分布(,100)N μ,其中μ近似为样本平均数x ,求(6494)P X <≤;(3)为了进一步了解年轻人的阅读方式,研究机构采用分层抽样的方法从每天阅读时间位于分组[50,60),[60,70),[80,90)的年轻人中抽取10人,再从中任选3人进行调查,求抽到每天阅读时间位于[80,90)的人数ξ的分布列和数学期望.附参考数据:若,则①()0.6827P X μδμδ-<≤+=;②(22)0.9545P X μδμδ-<≤+=;③(33)0.9973P X μδμδ-<≤+=.18.(17分)已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设不经过点Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为2-,直线AB 是否过定点,若过定点,写出定点坐标.19.(17分)已知函数()ln f x x x =.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间;(3)若对于任意1,x e e ⎡⎤∈⎢⎥⎣⎦,都有()1f x ax ≤-,求实数a 的取值范围.数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B 【解析】,0,2παβ⎛⎫∈ ⎪⎝⎭,则0cos 1,0sin 1βα<<<<,所以cos()cos cos sin sin cos sin αβαβαβαβ-=+<+,所以由1cos()4αβ-<不能推出1cos sin 4αβ+<,充分性不成立;反之,11cos sin cos()44αβαβ+<⇒-<成立,即必要性成立;,0,2παβ⎛⎫∴∈ ⎪⎝⎭,则“1cos()4αβ-<”是“1cos sin 4αβ+<”的必要不充分条件.故选:B .2.【答案】A【解析】由e ln e y xx y =得ln e ex y x y =,由1e ln e z x z x =得ln e e x z x z -=,因此e ey z y z -=,又01y <<,所以0e e z y z y =-<,又e 0z >,所以0z <,利用01y <<得ln 0e ex y x y =>,又e 0x >,所以ln 0x >,即1x >,所以10x y z >>>>,即x y z >>.故选A .3.【答案】B【解析】分情况讨论,当0m >时,要使()f x b =有三个不同的根,则2|2|020m m m m ⎧>⇒<<⎨>⎩;当0m <时,要使()f x b =有三个不同的根,同理可知,需要2|2|20m m m m ⎧>⇒<-⎨<⎩.当0m =时,两个分段点重合,不可能有三个不同的根,故舍去.所以m 的取值范围是(,2)(0,2)-∞- .故选B .4.【答案】D【解析】设M 为直线BD 上任意一点,过M 作1MN CB ⊥,垂足为N ,可知此时M 到直线1CB 距离最短,设111,DM DB DA DC CN CB DA DA DD λλλμμμμ==+===+ ,1(1)()MN DN DM DC CN DM DC DA DD λμλμ=-=+-=-+-+ ,11CB DA DD =+ ,因为1MN CB ⊥,所以10MN CB ⋅= ,即()11(1)()0DC DA DD DA DD λμλμ⎡⎤-+-+⋅+=⎣⎦ ,所以0μλμ-+=,即=2λμ=,所以1(12)MN DC DA DD μμμ=--+ ,所以||MN === ,所以当13μ=时,||MN,所以直线BD 与1CB.故选:D .5.【答案】D【解析】由22cos bc A b c +=+22sin cos A bc A b c +=+,22cos 2sin 6b c b c A A A bc c b π+⎛⎫+=⇒+=+ ⎪⎝⎭,由于2,2sin 26b c A c b π⎛⎫+≥+≤ ⎪⎝⎭,当且仅当b c c b =,以及62A ππ+=时,等号成立,结合2sin 6b c A c b π⎛⎫+=+ ⎪⎝⎭,因此2sin 26b c A c b π⎛⎫+=+= ⎪⎝⎭,且b c c b =,以及3A π=,故3B C π==,因此sin cos cos A B C ==+故选D .6.【答案】C【解析】因为复数z 满足||1z =,不妨设cos isin ,R z θθθ=+∈,则|3i ||cos i(sin 3)|z θθ-=+-==.因为sin [1,1]θ∈-,所以[2,4],所以|3i |z -的取值范围是[2,4].故选:C .7.【答案】A【解折】因为()()()()()113223231221,,,4356P A P A A P A P A A P A A =====∣∣∣,所以()()()()()2323323P A P A P A A P A P A A =+∣∣()()()()()3233231P A P A A P A PA A =+-∣∣,解得()357P A =,()()31311P A A P A A =-∣∣()()()()()133131111P A A P A P A A P A P A =-=-∣()()()13311P A A P A A P A =∣()()()1133115144714P A P A A P A =-=-⨯=∣.故选:A .8.【答案】C 【解析】由于直线y x a =-与曲线ln(2)y x b =+相切,设切点为(,)m n ,而12y x b '=+,故112ln(2)m b m b m a⎧=⎪+⎨⎪+=-⎩,解得m a =,故21,,a b a b +=均为正实数,故22122(2)16610a b ab a b a b ab b a ba ++⎛⎫=+++=++≥+= ⎪⎝⎭,当且仅当22a b b a =,结合21a b +=,即得13a b ==时等号成立,故2a b ab ab ++的最小值是10,故选:C .二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.【答案】BC【解析】对于A,由二次函数性质可知,()f x 无最小值,A 错误;对于B,令22210(1)99t x x x =++=++≥,因为3log y t =单调递增,所以3()log 92f x ≥=,当1x =-时等号成立,所以min ()2f x =,B 正确;对于C,因为20x >,所以1()222x x f x =+≥,当且仅当122x x =,即0x =时,等号成立,所以min ()2f x =,C 正确;对于D,由指数函数性质可知,130x ->,所以1()322x f x -=+>,D 错误.故选:BC .10.【答案】ABD【解析】对于A,连接11B D ,因为四边形1111A B C D 为正方形,则1111A C B D ⊥,因为1DD ⊥平面111111,A B C D A C ⊂平面1111A B C D ,则111A C DD ⊥,因为111111,B D DD D B D = 、1DD ⊂平面11B DD ,所以11A C ⊥平面11B DD ,1B D ⊂平面11B DD ,所以111B D A C ⊥,同理可得11B D A B ⊥,因为1111111,A C A B A A C A B =⊂ 、平面11A BC ,所以1B D ⊥平面11A BC ,因为PB ⊂平面11A BC ,所以1B D PB ⊥,故A 正确;对于C,由A 选项知1B D ⊥平面11A BC ,设1B D 平面11A BC E =,即1B E ⊥平面11,A BC DE ⊥平面11A BC ,因为1111111116,A B BC AC A B BB B C ======,所以三棱锥111B A BC -为正三棱锥,因为1B E ⊥平面11A BC ,则E 与正11A BC △的中心,则12sin 3A BBE π==,所以1B E ==,因为1B D ==所以DE =,因为13PD PB +=+,3=+,3+=+(3=+-,两边平方化简可得0)PE PE =>,因为E 点到等边三角形11A BC 的边的距离为163PE ==,所以点P 的轨迹是在11A BC △内,且以E所以点P 的轨迹的周长为,故C 错误;对于B,由选项C 可知,点P 的轨迹是在11A BC △内,且以E 的圆,EP =1B E =1B E ⊥平面11A BC ,所以1B PE ∠就是直线1B P 与平面11A BC 所成角,所以11tan B E B PE PE ∠===102B PE π<∠<,所以直线1B P 与平面11A BC 所成角为定值,故B 正确;对于D,因为点E 到直线1BC点P 到直线1BC =,故1BPC △的面积的最大值为162⨯=,因为1B E ⊥平面11A BC ,则三棱锥11B BPC -体积的最大值为13⨯=,故D 正确.故选:ABD .11.【答案】AC【解新】对于A ,函数32()ln ()ln ,()f x xf x x xg x x x===,则24312ln 12ln (),0x x xxx g x x x x⨯--'==>,令()0g x '=,即12ln 0x -=,解得x =当0x <<时,()0g x '>,故函数()g x在上为单调递增函数,当x >时,()0g x '<,故函数()g x在)+∞上为单调递减函数,故()g x在x =处取得极大值12eg =,故选项A 正确;对于B,当x >()0g x '<,故函数()g x在)+∞上为单调递减函数,所以(2)g g <,故选项B 错误;对于C,令函数()0g x =,则ln 0x =,解得1x =,所以函数()g x 只有一个零点,故选项C 正确;对于D,易知1x =不是方程的解;当1x ≠时,()0f x ≠,方程2()kf x x =恰好只有一个实数根,等价于y k =和()ln xh x x=只有一个交点,则2ln 1(),0(ln )x h x x x -'=>且1x ≠,令()0h x '=,即ln 10x -=,解得e x =,当e x >时,()0h x '>,故函数()h x 在(e,)+∞上为单调递增函数,当01,1e x x <<<<时,()0h x '<,故函数()h x 在(0,1),(1,e)上均单调递减,1x =是一条渐近线,当01x <<时,()0h x <,当1e x <<时,()0h x >,故()h x 在e x =处取得极小值(e)e h =,结合条件可知k e =或0k <,故选项D 错误;故选:AC.三、填空题:本大题共3个小题,每小题5分,共15分.12.【答案】3【解析】记事件A 为“种一粒种子,发芽”,则()0.7,(0.3P A P A ==设每穴种n 粒,则相当于做了n 次独立重复实验,记事件B 为“每穴至少有一粒发芽”,则00()C 0.7(10.7)0.3,()1()10.3n n n n P B P B P B =-==-=-若保证每穴不需补种的概率大于97%,则10.30.97n ->即0.30.03n <,两边取对数得,lg 0.3lg 0.03n <,即(lg 31)lg 32n -<-又lg 30.48≈,则lg 322.92lg 31n ->≈-,又n 为整数,则每穴至少种3粒,才能保证每穴不需补种的概率大于97%.故答案为:3.13.【答案】72【解析】2()2sincossin 2sin 2223xxxf x x x x ωωωπωωω⎛⎫=-+==+ ⎪⎝⎭所以()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭的最小正周期为2T πω=,于是2223πππω<<,解得34ω<<,因为3π是()f x 的一个极值点,则,Z 332k k πππωπ+=+∈,解得13,2k k Z ω=+∈,所以1k =时,7(3,4)2ω=∈.故答案为:72.14.【答案】2【解析】由题设1348+=<,即P 在圆22:8E x y +=内,令||||P APA PB P Bλ'=='且1λ≠,显然P 是A ,B 内分比点,若P '为外分比点,则||||P APA PB P Bλ'==',此时PP '的中点C 为P ,Q 所在阿氏圆的圆心,对于每一个确定的实数,||k PQ 最大值为max d PP '=,即,Q P '重合时max d 为对应圆直径,根据圆的对称性,如上图,讨论1λ>的情况,而||2OP =,当AB为直径时,max ||3||PA PB λ===+,3=+可得4P B '=-故||PQ 的最大值为max ||2d PP P B PB ''==+=;当AB不为直径时134||AB λ<<+<<,且,||AB λ增减趋势相同,由||P A P B AB P B P Bλ''+=='',得||1AB P B λ'=-,显然||1AB P B λ'=-接近于1时P B '趋向无穷大,此时||PQ 的最大值为max d 趋向无穷大.综上,max d 的最小值是2.故答案为:2.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)【答案】(1)()*54,14N 2,5n n n n a n n --≤≤⎧=∈⎨≥⎩;(2){1,3}【解析】(1)设前6项的公差为d ,所以2151612,4,5a a d a a d a a d =+=-=+=+,所以()()12112445a d a d a d +=-⎧⎪⎨+⨯=+⎪⎩,化简可得(43)(1)0d d --=,所以1d =或34,又因为{}n a 各项均为整数,所以d 为整数,所以1d =,当*14,n n ≤≤∈N 时,2(2)4n a a n d n =+-=-,当*5,N n n ≥∈时,555621,2,121n n n a a a --⎛⎫===⨯= ⎪⎝⎭,综上所述,()*54,14N 2,5n n n n a n n --≤≤⎧=∈⎨≥⎩;(2)当1m =时,1231236,6a a a a a a ++=-=-,满足条件;当2m =时,2342343,0a a a a a a ++=-=,不满足条件;当3m =时,3453450,0a a a a a a ++==,满足条件;当4m =时,4564562,0a a a a a a ++==,不满足条件;当5m ≥时,52n n a -=,若1212m m m m m m a a a a a a ++++++=,则有22111m m m m m m a a a a a a ++++++=,则5311222m m -+-++=,所以28722m -=,所以2727m -=,又因为273m -≥,所以2728m -≥,所以2727m -=无解,综上所述,m 的取值为{1,3}.16.(15分)【答案】(1)证明见解析;(2)3π【解析】(1)因为正方体1111ABCD A B C D -,所以四边形11ABB A 是正方形,所以11AB BA ⊥,又BC ⊥平面111,ABB A AB ⊂平面11ABB A ,所以1BC AB ⊥,又111,,AB BA BA BC ⊥是平面1A BC 内的两条相交直线,所以1AB ⊥面1A BC(2)如图,以A 为原点,以1,,AB AA AD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体1111ABCD A B C D -的边长为a ,又E 为线段1AC 的中点,则(0,0,0),(,0,0),(,,0),,,222a a a A B a C a a E ⎛⎫⎪⎝⎭,所以(,0,0),,,,(0,,0),,,222222a a a a a a AB a AE BC a BE ⎛⎫⎛⎫====- ⎪ ⎪⎝⎭⎝⎭,设平面ABE 的法向量为(,,)m x y z =,则0000222ax m AB a a ax y z m AE ⎧=⎧⋅=⎪⎪⇒⎨⎨++=⋅=⎪⎪⎩⎩,令1y =,则0,1x z ==-,所以(0,1,1)m =- ,设平面BCE 的法向量为()111,,n x y z =,11110000222ay n BC a a a x y z n BE ⎧=⎧⋅=⎪⎪⇒⎨⎨-++=⋅=⎪⎪⎩⎩,令1111,0x z y ===,所以(1,0,1)n = ,设平面ABE 与平面BCE 所成锐二面角的大小为θ.所以1cos ||||2m n m n θ⋅== ,又0,2πθ⎛⎫∈ ⎪⎝⎭,所以3πθ=17.(15分)【答案】(1)74;(2)0.8186;(3)分布列见解析;期望为65【解析】(1)根据频率分布直方图得:(550.01650.02750.045850.02950.005)1074x =⨯+⨯+⨯+⨯+⨯⨯=.(2)由题意知~(74,100)X N ,即74,10μσ==,所以0.68270.9545(6494)(2)0.81862P X P X μδμδ+<≤=-<≤+==.(3)由题意可知[50,60),[60,70)和[80,90)的频率之比为:1:2:2,故抽取的10人中[50,60),[60,70)和[80,90)分别为:2人,4人,4人,随机变量ξ的取值可以为0,1,2,3,321664331010C C C 11(0),(1)C 6C 2P P ξξ======,123644331010C C C 31(2),(3)C 10C 30P P ξξ======,故ξ的分布列为:ξ0123P1612310130所以11316()01236210305E ξ=⨯+⨯+⨯+⨯=.18.(17分)【答案】(1)221(2)43x y x +=≠-;(2)直线l 过定点.【解析】(1)设动圆P 的半径为r ,因为动圆P 与圆M 外切,所以||1PM r =+,因为动圆P 于圆N 外切,所以||3PN r =-,则||||(1)(3)4||2PM PN r r MN +=++-=>=,由椭圆的定义可知,曲线C 是以(1,0),(1,0)M N -为左、右焦点,长轴长为4的椭圆.设椭圆方程为22221(0)x y a b a b+=>>,则2,1a c ==,故2223b a c =-=,所以曲线C 的方程为221(2)43x y x +=≠-.(2)①当直线l斜率存在时,设直线:,l y kx m m =+≠联立22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 可得()()222438430k x kmx m +++-=,则()()222(8)164330km k m ∆=-+->,化简得22430k m -+>.设()()1122,,,A x y B x y ,则()12221228434343km x x k m x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩.由题意可知,因为2QA QB k k +=-.2==-,所以)1221121220x y x y x x x x +-++=,所以()())1221121220x kx m x kx m x x x x +++++=,即()1212(22)(0k x x m x x ++-+=,()222438(22)(04343m km k m k k -⎛⎫+⋅+⋅-= ⎪++⎝⎭,即()2(1)3(0k m km m +--=,即(1)]0m m k -++=.因为m ≠,所以1)0m k +=,即m =所以直线l的方程为(y kx k x =-=-,所以直线l过定点.②当直线l 斜率不存在时,设直线:(0)l x t t =≠,且(2,2)t ∈-,则点,,A t B t ⎛⎛ ⎝⎝.所以k 2QA QBk k +=+==-,解得t =,所以直线l的方程为x =也过定点.综上所述,直线l过定点.19.(17分)【答案】(1)1y x =-(2)()f x 的单调递增区间是1,e⎛⎫+∞ ⎪⎝⎭;()f x 的单调递减区间是10,e ⎛⎫ ⎪⎝⎭(3)1a e ≥-.【解析】(1)因为函数()ln f x x x =,所以1()ln ln 1,(1)ln111f x x x x f x''=+⋅=+=+=.又因为(1)0f =,则切点坐标为(1,0),所以曲线()y f x =在点(1,0)处的切线方程为1y x =-.(2)函数()ln f x x x =定义域为(0,)+∞,由(1)可知,()ln 1f x x '=+.令()0f x '=解得1x e=.()f x 与()f x '在区间(0,)+∞上的情况如下:x10,e ⎛⎫ ⎪⎝⎭1e1,e ⎛⎫+∞ ⎪⎝⎭()f x -0+()f x '↘极小值↗所以,()f x 的单调递增区间是1,e⎛⎫+∞ ⎪⎝⎭;()f x 的单调递减区间是10,e ⎛⎫⎪⎝⎭.(3)当1x e e ≤≤时,“()1f x ax ≤-”等价于“1ln a x x≥+”.令22111111()ln ,,,(),,x g x x x e g x x e x e x x x e -⎡⎤⎡⎤'=+∈=-=∈⎢⎥⎢⎥⎣⎦⎣⎦.令()0g x '=解得1x =,当1,1x e ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在区间1,1e ⎛⎫ ⎪⎝⎭单调递减.当(1,)x e ∈时,()0g x '>,所以()g x 在区间(1,)e 单调递增.而111ln 1 1.5,()ln 1 1.5g e e e g e e e e e⎛⎫=+=->=+=+< ⎪⎝⎭.所以()g x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值为11g e e ⎛⎫=- ⎪⎝⎭.所以当1a e ≥-时,对于任意1,x e e⎡⎤∈⎢⎥⎣⎦,都有()1f x ax ≤-.。

湖南师范大学附属中学2025届高三上学期第一次月考数学试题及答案

湖南师范大学附属中学2025届高三上学期第一次月考数学试题及答案

大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1.已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ()A.{}32xx −≤≤∣ B.{32}x x −≤<∣C.{12}x x <≤∣ D.{12}x x <<∣2.若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于()A.B.54C.D.3.已知平面向量()()5,0,2,1a b ==−,则向量a b +在向量b上投影向量为()A.()6,3− B.()4,2− C.()2,1− D.()5,04.记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A.21B.19C.12D.425.某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A 136人B. 272人C. 328人D.820人6.已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( )A.π6 B.π4C.π3D.2π37.已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条的.渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是()A.B.C.(D.(8.已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是()A.()0,1 B.()(),00,1−∞∪ C.[)1,+∞ D.()()0,11,+∞ 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A.E F M P ,,,四点共面B.平面PEF 被正方体截得的截面是等腰梯形C.//EF 平面PMND.平面MEF ⊥平面PMN10.已知函数()5π24f x x=+,则()A.()f x 的一个对称中心为3π,08B.()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C.()f x 在区间5π7π,88上单调递增D.若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈11.已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则()A.()f x 的图象关于点()2,1对称B.()f x 是以8为周期的周期函数C.()20240g =D.20241(42)2025k f k =−=∑ 三、填空题:本题共3小题,每小题5分,共15分.12.6(31)x y +−的展开式中2x y 的系数为______.13.已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.14. 已知点C 为扇形AOB 弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.ABC 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ,求CD 的长.16.已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围.17.已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.的(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD18.在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值; (2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.19.龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 12345678910销售量千张1.9 1.982.2 2.36 2.43 2.59 2.68 2.76 2.7 04经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ; (3)记(2)中所得概率n P 的值构成数列{}()N n P n ∗∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛...参考公式:()()()1122211ˆˆ,n ni ii ii i n n i i i i x x y y x y nx yay bx x xx nx====−−−==−−−∑∑∑∑.大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1.已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ()A.{}32xx −≤≤∣ B.{32}x x −≤<∣C.{12}x x <≤∣ D.{12}x x <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集. 【详解】集合{}()32,{lg 10}{12}A x x B x x x x =−≤≤=−<=<<∣∣∣,则{12}A B xx ∩=<<∣, 故选:D .2.若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于()A.B.54C.D.【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =−+,再由模长公式即可得出结果. 【详解】依题意()1i 3i z +=−+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z −+−−+−+====−+++−,所以z =. 故选:C3.已知平面向量()()5,0,2,1a b ==−,则向量a b +在向量b上的投影向量为( )A.()6,3− B.()4,2− C.()2,1− D.()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=−+⋅==所以向量a b +在向量b 上的投影向量为()()236,3||a b b b bb +⋅==− .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A.21 B.19C.12D.42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a ==故公差76162,53d a a a a d =−=∴=−=−,()767732212S ×∴=×−+×=, 故选:A5.某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A.136人B.272人C.328人D.820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22µσ=×==,()()(),0.750.547p k P k X k p µσµσ=−≤≤+≈ ,()5790P X ∴≤≤()0.750.547p ≈,()()900.510.5470.2265P X ≥×−,∴该校及格人数为0.22651200272×≈(人),故选:B . 6.已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( )A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 64αβαβ⋅+⋅=,解得1cos cos 62sin sin 3αβαβ⋅=⋅=,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅−⋅=−,π,0,2αβ∈,()0,παβ∴+∈,2π,3αβ∴+=,故选:D .7.已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是()A.B.C.(D.(【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay −=交于,A B 两点, 则2F 到渐近线0bx ay −=的距离d b,所以AB =, 因为123AB F F >,所以32c ×>,可得2222299a b c a b −>=+,即22224555a b c a >=−,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是 .故选:B8.已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是()A.()0,1 B.()(),00,1−∞∪ C.[)1,+∞ D.()()0,11,+∞ 【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可.【详解】令()u f x =,则()0f u =.①当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u==,得1u =.所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;②当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x==,可得2x =, 因为关于x 的方程()()0f f x =有且仅有两个实数根,则方程()1f x =在(,0∞−]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥;若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞,故选:C .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A.E F M P ,,,四点共面B.平面PEF 被正方体截得的截面是等腰梯形C.//EF 平面PMND.平面MEF ⊥平面PMN【答案】BD【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN , 由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF 平面QGMN W =, 所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=°, 90EMG ∴∠=°,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.故选:BD .10.已知函数()5π24f x x=+,则()A.()f x 的一个对称中心为3π,08B.()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C.()f x 在区间5π7π,88上单调递增D.若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x+求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f =+×=≠,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得:3π3π5ππ228842y f x x x x=−−++,为奇函数,故B 正确; 对于C ,当5π7π,88x∈时,则5π5π2,3π42x +∈ ,由余弦函数单调性知,()f x 在区间5π7π,88 上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x+ππ4x k =+或ππ,2k k +∈Z ,()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242,而第7个交点的横坐标为13π4,5π13π24m ∴<≤,故D 正确. 故选:BD11.已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A.()f x 的图象关于点()2,1对称B.()f x 是以8为周期的周期函数C.()20240g =D.20241(42)2025k f k =−=∑ 【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++−=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =−=∑,可得D 错误. 【详解】由题意()()()(),f x f x g x g x −=−=−,且()()()00,21g f x g x =++−=,即()()21f x g x +−=①,用x −替换()()21f x g x ++−=中的x ,得()()21f x g x −+=②,由①+②得()()222f x f x ++−=所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++−=,可得()()()()()42,422f x f x f x f x f x ++−=+=−−=−,所以()()()()82422f x f x f x f x +=−+=−−= ,所以()f x 是以8为周期的周期函数,故B 正确;由①知()()21g x f x =+−,则()()()()882121g x f x f x g x +=++−=+−=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数,所以()()202400g g ==,C 正确;又因为()()42f x f x ++−=,所以()()42f x f x ++=,令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…,令8090x =,则有()()809080942f f +=,所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =−=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12.6(31)x y +−的展开式中2x y 的系数为______.【答案】180− 【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅−,化简即可得到结果. 【详解】在6(31)x y +−的展开式中, 由()2213264C C 3(1)180x y x y ⋅⋅−=−,得2x y 的系数为180−. 故答案为:180−.13.已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,−∪+∞【解析】【分析】根据函数奇偶性并求导可得()()f x f x ′′−=,因此可得()()2f x f x ′>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论.【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x −=−,两边同时求导可得()()f x f x ′′−−=−,即()()f x f x ′′−=且()00f =,又因为当0x >时,()()2f x f x ′−>,所以()()2f x f x ′>.构造函数()()2xf x h x =e,则()()()22x f x f x h x ′−′=e ,所以当0x >时,()()0,h x h x ′>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零,又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零,因为()f x 为奇函数,所以()f x 在(),1∞−−上小于零,在()1,0−上大于零,综上所述,()0f x >的解集为()()1,01,−∪+∞.故答案为:()()1,01,−∪+∞14.已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.【答案】 【解析】【分析】建系设点的坐标,再结合向量关系表示λµ+,最后应用三角恒等变换及三角函数值域求范围即可. 【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ ,其中π,0,3BOC θθ∠=∈ ,由(),R OC OA OB λµλµ=+∈,即()()1cos ,sin 1,02θθλµ =+,整理得1cos sin 2λµθθ+=,解得cos λµθ=,则ππcos cos ,0,33λµθθθθθ+=++=+∈,ππ2ππ,,sin 3333θθ+∈+∈所以λµ +∈ . 方法二:设k λµ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λµ=+=; 当点C 运动到AB的中点时,k λµ=+,所以λµ +∈故答案为: 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.ABC 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.【答案】(1)2π3C =(2)3CD =【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解.【小问1详解】 由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=,因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠,因此1cos 2C =−,所以2π3C =. 【小问2详解】因为CD 是角C的平分线,AD DB=所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==,因此sin 3sin BADA BD==,即sin 3sin B A =,所以3b a =, 又由余弦定理可得2222cos c a b ab C =+−,即222293a a a =++,解得4a =,所以12b =.又ABCACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅, 即4816CD =,所以3CD =. 16.已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围.【答案】(1)1a = (2)(]()10,−∞−+∞ ,【解析】【分析】(1)直接根据极值点求出a 的值; (2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围. 【小问1详解】()()111ln ln 1a a f x ax x x x a x xα−−==′+⋅+,由1111ln 10e e e a f a −=+=′,得1a =, 当1a =时,()ln 1f x x =′+,函数()f x 在10,e上单调递减,在1,e∞ +上单调递增,所以1ex =为函数()ln af x x x =的极小值点,所以1a =. 【小问2详解】由(1)知min 11()e ef x f ==−.函数()g x 的导函数()()1e xg x k x −=−′①若0k >,对()1210,,x x k ∞∀∈+∃=−,使得()()12111e 1e k g x g f x k=−=−<−<−≤,即()()120f x g x −≥,符合题意. ②若()0,0kg x =,取11ex =,对2x ∀∈R ,有()()120f x g x −<,不符合题意.③若0k <,当1x <时,()()0,g x g x ′<在(),1∞−上单调递减;当1x >时,()()0,g x g x ′>在(+∞)上单调递增,所以()min ()1ekg x g ==,若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x −≥,只需min min ()()g x f x ≤, 即1e ek ≤−,解得1k ≤−.综上所述,k 的取值范围为(](),10,∞∞−−∪+.17.已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析(2)F 位于棱PC 靠近P 的三等分点【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证;(2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ∩平面,ABCD AB PE =⊂平面PAB ,所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以PE BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= , 所以BD EC ⊥,因为,,PE EC E PE EC ∩=⊂平面PEC , 所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥. 【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E −,设(),,,(01)F x y z PF PC λλ=<<, 所以()(),,11,2,1x y z λ−=−,所以,2,1x y z λλλ===−,即(),2,1F λλλ−.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==−=−,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⋅=⋅=,,即2020a b a b c += +−= ,,取()1,2,3m =−− ,设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅===整理得2620λλ−=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18.在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240r x r x r −+−+−=的两个解,即可利用韦达定理代入化简求解定点.【小问1详解】 由题意得椭圆的方程:221116y x +=,所以短半轴14b =所以112242p b ==×=,所以抛物线1C 的方程是2y x =. 设点()2,P t t ,则111222PQ PE ≥−=−=≥,所以当232ι=时,线段PQ .【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则:直线()222:b a MN y a x a b a −−=−−,即()21y a x a a b −=−+,即()0x a b y ab −++=.直线()21:111a DM y x a −−=−−,即()10x a y a −++=.由直线DMr =,即()()()2222124240r a r a r −+−+−=..同理,由直线DN 与圆相切得()()()2222124240r b r b r −+−+−=.所以,a b 是方程()()()2222124240r x r x r −+−+−=的两个解,22224224,11r r a b ab r r −−∴+==−−代入方程()0x a b y ab −++=得()()222440x y r x y +++−−−=,220,440,x y x y ++= ∴ ++= 解得0,1.x y = =− ∴直线MN 恒过定点()0,1−.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x −=−,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19.龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 1 2 3 4 5 6 7 8 9 10销售量千张 1.9 1.98 2.2 2.36 2.43 259 2.68 2.76 2.7 0.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑. (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()Nn P n ∗∈. ①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛. 参考公式:()()()1122211ˆˆ,n ni ii i i i n n ii i i x x y y x y nx y ay bx x x x nx ====−−−==−−−∑∑∑∑. 【答案】(1)673220710001200y t +(2)433774n n P =+⋅− (3)①最大值为1316,最小值为14;②证明见解析【解析】【分析】(1)计算出新数据的相关数值,代入公式求出 ,a b 的值,进而得到y 关于t 的回归方程; (2)由题意可知1213,(3)44n n n P P P n −−=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证.【小问1详解】 解:剔除第10天的数据,可得2.2100.4 2.49y ×−==新,12345678959t ++++++++=新,则9922111119.73100.4114,73,38510285i i i i t y t = =−×==−= ∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t == − −×× ==−× − ∑∑新新新新新,可得6732207ˆ 2.4560001200a =−×=,所以6732207ˆ60001200y t +. 【小问2详解】 解:由题意知1213,(3)44n n n P P P n −−=+≥,其中12111313,444416P P ==×+=, 所以11233,(3)44n n n n P P P P n −−−+=+≥,又由2131331141644P P ++×, 所以134n n P P − +是首项为1的常数列,所以131,(2)4n n P P n −+=≥ 所以1434(),(2)747n n P P n −−=−−≥,又因为1414974728P −=−=−,所以数列47n P − 是首项为928−,公比为34−的等比数列,故1493()7284n n P −−=−−,所以1934433()()2847774n n n P −=−−+=+−.【小问3详解】 解:①当n 为偶数时,19344334()()28477747n n n P −=−−+=+⋅>单调递减,最大值为21316P =; 当n 为奇数时,19344334()()28477747n n n P −=−−+=−⋅<单调递增,最小值为114P =, 综上可得,数列{}n P 的最大值为1316,最小值为14. ②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数,当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε−=⋅−=⋅<⋅=, 所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。

福建省福州市鼓楼区2024届高三下第一次月考数学试题试卷

福建省福州市鼓楼区2024届高三下第一次月考数学试题试卷

福建省福州市鼓楼区2024届高三下第一次月考数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集()(){}130U x Z x x =∈+-≤,集合{}0,1,2A =,则U C A =( ) A .{}1,3-B .{}1,0-C .{}0,3D .{}1,0,3-2.已知边长为4的菱形ABCD ,60DAB ∠=︒,M 为CD 的中点,N 为平面ABCD 内一点,若AN NM =,则AM AN ⋅=( )A .16B .14C .12D .83.在平面直角坐标系xOy 中,已知点()0,2A -,()1,0N ,若动点M 满足2MA MO= ,则·OM ON 的取值范围是( ) A .[]0,2B .0,22⎡⎤⎣⎦C .[]22-,D .22,22-⎡⎤⎣⎦4.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)5.设()f x 为定义在R 上的奇函数,当0x ≥时,22()log (1)1f x x ax a =++-+(a 为常数),则不等式(34)5f x +>-的解集为( ) A .(,1)-∞-B .(1,)-+∞C .(,2)-∞-D .(2,)-+∞6.设1F ,2F 分别为双曲线22221x y a b-=(a >0,b >0)的左、右焦点,过点1F 作圆222x y b += 的切线与双曲线的左支交于点P ,若212PF PF =,则双曲线的离心率为( ) A 2B 3C 5D 67.造纸术、印刷术、指南针、火药被称为中国古代四大发明,此说法最早由英国汉学家艾约瑟提出并为后来许多中国的历史学家所继承,普遍认为这四种发明对中国古代的政治,经济,文化的发展产生了巨大的推动作用.某小学三年级共有学生500名,随机抽查100名学生并提问中国古代四大发明,能说出两种发明的有45人,能说出3种及其以上发明的有32人,据此估计该校三级的500名学生中,对四大发明只能说出一种或一种也说不出的有( ) A .69人B .84人C .108人D .115人8.已知函数()()sin ,04f x x x R πωω⎛⎫=+∈> ⎪⎝⎭的最小正周期为π,为了得到函数()cos g x x ω=的图象,只要将()y f x =的图象( )A .向左平移8π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度 D .向右平移4π个单位长度 9.如图,在正方体1111ABCD A B C D -中,已知E 、F 、G 分别是线段11A C 上的点,且11A E EF FG GC ===.则下列直线与平面1A BD 平行的是( )A .CEB .CFC .CGD .1CC10.设复数z =213ii-+,则|z |=( ) A .13B .23C .12D .2211.已知函数32,1()ln ,1(1)x x x f x a x x x x ⎧-+<⎪=⎨≥⎪+⎩,若曲线()y f x =上始终存在两点A ,B ,使得OA OB ⊥,且AB 的中点在y轴上,则正实数a 的取值范围为( ) A .(0,)+∞B .10,e ⎛⎤ ⎥⎝⎦C .1,e ∞⎡⎫+⎪⎢⎣⎭D .[e,)+∞12.若复数z 满足i 2i z -=,则z =( )ABC .2D二、填空题:本题共4小题,每小题5分,共20分。

2024届河南省鹤壁一中高三下学期第一次月考(3月)数学试题

2024届河南省鹤壁一中高三下学期第一次月考(3月)数学试题

2024届河南省鹤壁一中高三下学期第一次月考(3月)数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()f x 是定义在R 上的偶函数,且在(0,)+∞上单调递增,则( ) A .()()0.63(3)log 132f f f -<-<B .()()0.63(3)2log 13f f f -<<-C .()()0.632log 13(3)ff f <-<- D .()()0.632(3)log 13ff f <-<-2.若实数x ,y 满足条件25024001x y x y x y +-≤⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,目标函数2z x y =-,则z 的最大值为( )A .52B .1C .2D .03.已知函数()1xf x xe-=,若对于任意的0(0,]x e ∈,函数()20()ln 1g x x x ax f x =-+-+在(0,]e 内都有两个不同的零点,则实数a 的取值范围为( ) A .(1,]eB .2(,]e e e-C .22(,]e e e e-+ D .2(1,]e e-4.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A .203π B .6πC .103π D .163π 5.数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为( ) A .72B .5319C .2319- D .12-6.设函数()()f x x R ∈满足()(),(2)()f x f x f x f x -=+=,则()y f x =的图像可能是A .B .C .D .7.抛物线方程为24y x =,一直线与抛物线交于A B 、两点,其弦AB 的中点坐标为(1,1),则直线的方程为( )A .210x y --=B .210x y +-=C .210x y -+=D .210x y ---=8.已知抛物线C :22y px =(0p >)的焦点为F ,01,2M y ⎛⎫⎪⎝⎭为该抛物线上一点,以M 为圆心的圆与C 的准线相切于点A ,120AMF ∠=︒,则抛物线方程为( ) A .22y x =B .24y x =C .26y x =D .28y x =9.设集合{|3}{|02}A x x B x x x =<=,或,则A B ⋂=( ) A .()0-∞,B .()23,C .()()023-∞⋃,, D .()3-∞, 10.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线y bx a =+近似地刻画其相关关系,根据图形,以下结论最有可能成立的是( )A .线性相关关系较强,b 的值为1.25B .线性相关关系较强,b 的值为0.83C .线性相关关系较强,b 的值为-0.87D .线性相关关系太弱,无研究价值11.已知2π()12cos ()(0)3f x x ωω=-+>.给出下列判断: ①若12()1,()1f x f x ==-,且12minπx x -=,则2ω=;②存在(0,2)ω∈使得()f x 的图象向右平移6π个单位长度后得到的图象关于y 轴对称; ③若()f x 在[]0,2π上恰有7个零点,则ω的取值范围为4147,2424⎡⎫⎪⎢⎭⎣; ④若()f x 在ππ,64⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为20,3⎛⎤ ⎥⎝⎦.其中,判断正确的个数为( ) A .1B .2C .3D .412.圆锥底面半径为5,高为2,SA 是一条母线,P 点是底面圆周上一点,则P 点到SA 所在直线的距离的最大值是( ) A .253B .453C .3D .4二、填空题:本题共4小题,每小题5分,共20分。

宁夏回族自治区银川一中2024-2025学年高三上学期第一次月考试题-数学(含答案)

宁夏回族自治区银川一中2024-2025学年高三上学期第一次月考试题-数学(含答案)

银川一中2025届高三年级第一次月考数 学 试 卷命题教师:注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、单项选择题(共8小题,满分40分,每小题5分)1.命题p :x ∀∈R ,2210x mx -+>的否定是A .x ∀∈R ,2210x mx -+≤B .x ∃∈R ,2210x mx -+<C .x ∃∈R ,2210x mx -+>D .x ∃∈R ,2210x mx -+≤2.已知函数21(1),()2(1).x x f x x x x -+<⎧=⎨-≥⎩则((1))f f -的值为A .﹣2B .﹣1C .0D .33.“3a > ”是“函数2()(2)2f x a x x =-- 在(1,+)∞上单调递增”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知2081.5.12,,log 42a b c -⎛⎫ ⎝⎭=⎪==,则,,a b c 的大小关系为A .c<a<bB .c b a<<C .b a c <<D .b<c<a 5.在同一个坐标系中,函数()log a f x x =,()x g x a -=,()a h x x =的图象可能是A .B .C .D .6.函数()f x ax x =的图象经过点(1,1)-,则关于x 的不等式29()(40)f x f x +-<解集为 A .(,1)(4,)-∞-+∞ B .(1,4)-C .(,4)(1,)∞∞--⋃+D .(4,1)-7.中国宋代数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个边长分别为a,b,c的三角形,其面积S 可由公式S =1=)2p a b c ++(,这个公式也被称为海伦-秦九韶公式,现有一个三角形的三边长满足14,6a b c +==,则 此三角形面积的最大值为A .6B .C .12D .8.定义在R 上的偶函数()f x 满足()()1f x f x +=-,当[]0,1x ∈时,()21f x x =-+,设函数()()11132x g x x -⎛⎫=-<< ⎪⎝⎭,则函数()f x 与()g x 的图象所有交点的横坐标之和为A .2B .4C .6D .8二.多项选择题(共3小题,满分18分,每小题6分)9.下列运算正确的是A=B .()326a a =C .42log 32log 3=D .2lg5lg2log 5÷=10. 已知函数()y f x =是定义域为R 上的奇函数,满足(2)()f x f x +=-,下列说法正确的有A .函数()y f x =的周期为4B .(0)0f =C .(2024)1f =D .(1)(1)f x f x -=+11.已知函数()24,0,31,0,x x x x f x x -⎧-≥=⎨-<⎩其中()()()f a f b f c λ===,且a b c <<,则A .()232f f -=-⎡⎤⎣⎦B .函数()()()g x f x f λ=-有2个零点C .314log ,45a b c ⎛⎫++∈+ ⎪⎝⎭D .()34log 5,0abc ∈-三、填空题(共3小题,满分15分,每小题5分)12.已知集合A ={}01x x ≤≤,B ={}13x a x -≤≤,若A B 中有且只有一个元素,则实数a 的值为 .13.已知函数()()231m f x m m x +=+-是幂函数,且该函数是偶函数,则f 的值是 .14.已知函数()34x f x x =--在区间[1,2]上存在一个零点,用二分法求该零点的近似值,其参考数据如下:(1.6000)0.200f ≈,(1.5875)0.133f ≈,(1.5750)0.067f ≈,(1.5625)0.003f ≈,(1.5562)0.029f ≈-,(1.5500)0.060f ≈-,据此可得该零点的近似值为 .(精确到0.01)四、解答题(共5小题,满分77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知x ,y ,z 均为正数,且246x y z ==.(1)证明:111x y z+>;(2)若6log 4z =,求x ,y 的值,并比较2x ,3y ,4z 的大小.16.(15分)已知函数()121(0),,R 4x f x m x x m =>∈+,当121x x =+时,()()1212f x f x +=. (1)求m 的值;(2)已知()120n n a f f f f n n n ⎫⎫⎫⎛⎛⎛=++++ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,求n a 的解析式.17.(15分)已知函数2ln(),0,()23,0,a x x f x x x x +-<⎧=⎨-++≥⎩且(e)3f -=.(1)求实数a 的值; (2)若函数()()=-g x f x k 在R 上恰有两个零点,求实数k 的取值范围.18.(17分)已知函数()e x f x =与函数()ln g x x =,函数()()()11x g x g x ϕ=++-的定义域为D .(1)求()x ϕ的定义域和值域;(2)若存在x D ∈,使得)(1)2(x f x mf -≥成立,求m 的取值范围; (3)已知函数()y h x =的图象关于点(),P a b 中心对称的充要条件是函数()y h x a b =+-为奇函数.利用上述结论,求函数()1ey f x =+的对称中心. 19.(17分)银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后将利息并入本金,这种计算利息的方法叫做复利.现在某企业进行技术改造,有两种方案:甲方案:一次性向银行贷款10万元,技术改造后第一年可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年向银行贷款1万元,技术改造后第一年可获得利润1万元,以后每年比前一年多获利5000元.(1)设技术改造后,甲方案第n 年的利润为n a (万元),乙方案第n 年的利润为n b (万元),请写出n a 、n b 的表达式;(2)假设两种方案的贷款期限都是10年,到期一次性归还本息.若银行贷款利息均以年息10%的复利计算,试问该企业采用哪种方案获得的扣除本息后的净获利更多?(精确到0.1)(净获利=总利润-本息和)(参考数据101.1 2.594≈,101.313.79)≈2025届高三第一次月考试卷答案一、单选题1. D 2. C 3. A 4. B5. C 6. B 7. B 8. B二、多选题9. BD 10. ABD 11. ACD.三、填空题12.2. 13.4 14.1.56.四、解答题15.已知x ,y ,z 均为正数,且246x y z ==.(1)证明:111x y z+>;(2)若6log 4z =,求x ,y 的值,并比较2x ,3y ,4z 的大小.【详解】(1)令2461x y z k ===>,则2log x k =,4log y k =,6log z k =,11log 2log 4log 8k k k x y ∴+=+=,1log 6k z=.1k > ,log 8log 6k k ∴>,111x y z∴+>.(2)6log 4z = ,64z ∴=,则244x y ==,2x ∴=,1y =,4664log 4log 256z ∴==.3462566<< ,63log 2564∴<<,342y z x ∴<<.16.已知函数()121(0),,R 4x f x m x x m =>∈+,当121x x =+时,()()1212f x f x +=.(1)求m 的值;(2)已知()120n n a f f f f n n n ⎫⎫⎫⎛⎛⎛=++++ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,求n a 的解析式.【详解】(1)()()1212111442x x f x f x m m +=+=++,即()()()()2112242444x x x x m m m m +++=++()()121212242444444x x x x x x m m m +⋅++=+⇒+()()()12122224444442x x x x m m m m ⇒=++=+---,()()()()()121222442024420x x x x m m m m ⇒---+=⇒-++-=,12444x x +≥== ,当且仅当1244x x =,即12x x =取等号,又0m >,124420,2x x m m ∴++->∴=.(2)由()120n n a f f f f n n n ⎫⎫⎫⎛⎛⎛=++++ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,得 ()10n n n a f f f n n -⎫⎫⎛⎛=+++ ⎪ ⎪⎝⎝⎭⎭,又当121x x =+时,()()1212f x f x +=所以两式相加可得 ()()1112002n n n n n a f f f f f f n n n n ⎡⎤⎡-⎤⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫=++++++= ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦,所以 14n n a +=17.已知函数2ln(),0,()23,0,a x x f x x x x +-<⎧=⎨-++≥⎩且(e)3f -=.(1)求实数a 的值;(2)若函数()()=-g x f x k 在R 上恰有两个零点,求实数k 的取值范围.【详解】(1)因为2ln(),0,()23,0,a x x f x x x x +-<⎧=⎨-++≥⎩且(e)3f -=,所以()(e)ln e 3f a -=+=,解得2a =;(2)由(1)可得22ln(),0()23,0x x f x x x x +-<⎧=⎨-++≥⎩,当0x <时()2ln()f x x =+-,函数()f x 在(),0∞-上单调递减,且()R f x ∈;当0x ≥时()22()2314f x x x x =-++=--+,则()f x 在[]0,1上单调递增,在()1,∞+上单调递减,且()14f =,()03f =,即()(],4f x ∞∈-;所以()f x 的图象如下所示:因为函数()()=-g x f x k 在R 上恰有两个零点,即函数()y f x =与y k =在R 上恰有两个交点,由图可知3k <或4k =,即实数k 的取值范围为(){},34∞-⋃.18.已知函数()e x f x =与函数()ln g x x =,函数()()()11x g x g x ϕ=++-的定义域为D .(1)求()x ϕ的定义域和值域;(2)若存在x D ∈,使得()()21mf x f x -…成立,求m 的取值范围;(3)已知函数()y h x =的图象关于点(),P a b 中心对称的充要条件是函数()y h x a b =+-为奇函数.利用上述结论,求函数()1ey f x =+的对称中心. 【详解】(1)由题意可得()()()()()11ln 1ln 1x g x g x x x ϕ=++-=++-.由1010x x +>⎧⎨->⎩,得11x -<<,故()1,1D =-.又()()2ln 1x x ϕ=-,且(]210,1x -∈,()x ϕ∴的值域为(],0-∞;(2)()()21mf x f x -…,即2e 1e x x m -…,则211e e x xm -…. 存在x D ∈,使得()()21mf x f x -…成立,2min 11ee x x m ⎛⎫∴- ⎪⎝⎭….而2211111e e e24x x x ⎛⎫-=-- ⎪⎝⎭,∴当11e 2x =,即ln2x D =∈时,211e ex x -取得最小值14-,故14m -…;(3)设()()1ey h x f x ==+的对称中心为(),a b ,则函数()()t x h x a b =+-是奇函数,即()1e e x a t x b +=-+是奇函数,则()()110e e e e x a x a t x t x b b -++-+=-+-=++恒成立,()()()()1122e e 2e 2e e e e 0e e e e x a x a x a x a a x a x ab +-+-+++-++++-+++∴=++恒成立,所以()()1122e e 2e 2e e e e 0x a x a x a x a a b +-+-+++++-+++=恒成立,所以22(12e)(e e )2(e e e )0x a x a a b b b +-+-++--=,因为上式对任意实数x 恒成立,所以2212e 0e e e 0a b b b -=⎧⎨--=⎩,得12e 1b a ⎧=⎪⎨⎪=⎩,所以函数()1e y f x =+图象的对称中心为11,2e ⎛⎫ ⎪⎝⎭.19.银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后将利息并入本金,这种计算利息的方法叫做复利.现在某企业进行技术改造,有两种方案:甲方案:一次性向银行贷款10万元,技术改造后第一年可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年向银行贷款1万元,技术改造后第一年可获得利润1万元,以后每年比前一年多获利5000元.(1)设技术改造后,甲方案第n 年的利润为n a (万元),乙方案第n 年的利润为n b (万元),请写出n a 、n b 的表达式;(2)假设两种方案的贷款期限都是10年,到期一次性归还本息.若银行贷款利息均以年息10%的复利计算,试问该企业采用哪种方案获得的扣除本息后的净获利更多?(精确到0.1)(净获利=总利润-本息和)(参考数据101.1 2.594≈,101.313.79)≈【答案】(1)11.3n n a -=,0.50.5n b n =+,N n *∈(2)采用甲方案获得的扣除本息后的净获利更多【详解】(1)对于甲方案,1年后,利润为1(万元).2年后,利润为111(10.3) 1.3+=⨯,3年后,利润为211.3(10.3) 1.3+=⨯(万元),……故n 年后,利润为11.3n -(万元),因此11.3n n a -=,N n *∈对于乙方案,1年后,利润为1(万元).2年后,利润为10.5+,3年后,利润为0.50.510.521++=+⨯(万元),……故n 年后,利润为()10.51n +⨯-(万元),因此()10.510.50.5n b n n =+⨯-=+,N n *∈(2)甲方案十年共获利109(1.3)11(130%)(130%)42.631.31-+++⋯++==-(万元),10年后,到期时银行贷款本息为1010(10.1)25.94+=(万元),故甲方案的净收益为42.6325.9416.7-≈(万元),乙方案十年共获利1 1.5(190.5)32.5++⋯++⨯=(万元),贷款本息为119101111(110%)(110%)(110%)17.530.1⋅-+++⋯++++=≈(万元),故乙方案的净收益为32.517.5315-=(万元),由16.715>,故采用甲方案获得的扣除本息后的净获利更多。

高三第一次月考试卷数学及答案

高三第一次月考试卷数学及答案

高三第一次月考试卷数学及答案一、选择题(共15题,每小题4分,共60分)1. 一幢大厦的边长为6米,高度为20米。

一个人从这座大厦的一侧往上望去,他的目视线与大厦顶端连线与大厦相交的角的大小为()。

A. 30°B. 45°C. 60°D. 90°2. 若函数 f(x) 在区间 (-∞, a) 上是增函数,在区间(a, +∞) 上为减函数,则 a 的值为()。

A. 0B. 1C. 2D. 33. 已知集合 A = {2, 4, 6, 8},集合 B = {3, 6, 9, 12},则A ∩ B 的元素个数为()。

A. 0B. 1C. 2D. 34. 若等差数列 {a_n} 的前 5 项和为 15,且公差为 2,则 a_5 等于()。

A. -1B. 0C. 1D. 25. 已知正整数 n 的个位数是 5,十位数是 3,百位数是 1,其千位数是()。

A. 0B. 1C. 3D. 56. 设甲, 乙两车同时从 A, B 两地相向而行,两车相遇后又同时返回原地,已知甲车以每小时 60 公里的速度行驶,求相对速度小的车(乙车)的速度是几公里每小时。

7. 已知等比数列 {a_n} 的前 3 项分别是 1, 2, 4,若 a_4 = 16,则 a_5 = ()。

A. 16B. 20C. 24D. 328. 已知函数 f(x) 关于 y 轴对称,且图像经过点 (1, 1),则函数图像在点 (-1, -1) 是否对称?()A. 是B. 否9. 在直角坐标系中,已知点 A(-1, 3)、B(4, -2),则 AB 的中点坐标为()。

A. (0.5, 0.5)B. (1.5, 0.5)C. (1.5, 2.5)D. (2.5, 0.5)10. 设函数 f(x) = x^2 - 2x - 3,则过点 (1, -4) 的切线方程为()。

A. y = -2x - 6B. y = 2x + 6C. y = 2x - 6D. y = -2x + 611. 已知向量 a = <2, -3>,向量 b = <6, -1>,则 |a + b| = ()。

2024-2025学年北京市海淀区清华大学附属中学高三上学期第一次月考数学试题(含答案)

2024-2025学年北京市海淀区清华大学附属中学高三上学期第一次月考数学试题(含答案)

2024-2025学年清华大学附属中学高三上学期第一次月考数学试题一、单选题:本题共10小题,每小题5分,共50分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A={x∣1<3x≤9},B={x∈Z∣x≥1},则A∩B=( )A. (1,2]B. {1,2}C. [1,2]D. {1}2.已知复数z=1+2i2−i,则z的共轭复数z=( )A. −12B. 2+iC. −iD. i3.已知a<b,则( )A. a2<b2B. e−a<e−bC. ln(|a|+1)<ln(|b|+1)D. a|a|<b|b|4.已知f(x)=sinωx(ω>0),f(x1)=−1,f(x2)=1,|x1−x2|min=π4,则ω=( )A. 1B. 2C. 3D. 45.如图,在▵ABC中,点D,E满足BC=2BD,CA=3CE.若DE=x AB+y AC(x,y∈R),则x+y=( )A. −12B. −13C. 12D. 136.若α是第二象限角,且tan(π−α)=12,则cos(π2+α)=( )A. 32B. −32C. 55D. −557.已知数列{a n}为无穷项等比数列,S n为其前n项和,a1>0,则“{S n}存在最小项”是“S2≥0”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件8.若过点(a,b)可以作曲线y=e x的两条切线,则( )A. e b<aB. e a<bC. 0<a<e bD. 0<b<e a9.血药浓度是指药物吸收后在血浆内的总浓度,药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的是A. 首次服用该药物1单位约10分钟后,药物发挥治疗作用B. 每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒C. 每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用D. 首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒10.数列{a n}满足a4n−3=−1,a4n−1=1,a2n=a n,该数列的前n项和为S n,则下列论断中错误的是( )A. a31=1B. a2024=−1C. ∃非零常数T,∀n∈N∗,使得a n+T=a nD. ∀n∈N∗,都有S2n=−2二、填空题:本题共5小题,每小题5分,共25分。

高三第一次月考数学试卷

高三第一次月考数学试卷

高三第一次月考数学试卷一、选择题(每题5分,共60分)1.已知集合A={x∣x2−3x−4≤0},则A的解集为:A. (−1,4]B. [−1,4]C. (−∞,−1]∪[4,+∞)D. [−4,3]2.复数z=1+i2i的共轭复数为:A. 1−iB. 1+iC. −1+iD. −1−i3.函数f(x)=log2(x2−2x−3)的定义域为:A. (−∞,−1)∪(3,+∞)B. (−1,3)C. [−1,3]D. (−∞,−1]∪[3,+∞)4.已知向量a=(1,2),b=(3,−1),则a⋅b=:A. 1B. -1C. 5D. -55.下列函数中,在区间(0,+∞)上单调递增的是:A. y=x1B. y=x2−2xC. y=log21xD. y=2x6.已知等差数列{an}的前n项和为Sn,若a1=1,S3=−3,则a2+a4=:A. -4B. -2C. 0D. 27.下列命题中,正确的是:A. 若a>b,则ac2>bc2B. 若a>b,c>d,则a−d>b−cC. 若a>b,c>d,则ac>bdD. 若a>b,则a1<b18.已知函数f(x)=sin(2x+6π),则f(6π)的值为:A. 21B. −21C. 23D. −239.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过F的直线与抛物线交于A,B两点,交准线l于D,若BF=3FA,则∣AB∣∣DF∣=:A. 21B. 31C. 32D. 4310.已知函数f(x)=ln(x+1)−x+1ax在其定义域内单调递增,则实数a的取值范围是:A. (−∞,1]B. [−1,+∞)C. (−∞,−1]D. [1,+∞)11.已知椭圆C:a2x2+b2y2=1(a>b>0)的左、右焦点分别为F1,F2,过F1的直线与椭圆C交于A,B两点,若∣BF2∣=2∣AF2∣,4cos∠AF1F2=10,则C的离心率为:A. 22B. 23C. 35D. 3612.已知函数f(x)={(3a−1)x+4a,log ax,x<1x≥1是(−∞,+∞)上的减函数,则实数a的取值范围是:A. (0,71]B. [71,31)C. (0,31]D. [31,1)二、填空题(每题5分,共20分)1.若x,y∈R,且xy=2,则x2+y2的最小值为 _______。

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。

数学高三第一次月考试卷

数学高三第一次月考试卷

一、选择题(每题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若f(x)的图像关于点(0,0)对称,则f(x)的对称中心是:A. (0,0)B. (0,1)C. (0,-1)D. (0,3)2. 已知数列{an}的前n项和为Sn,若an = 2^n - 1,则Sn的通项公式是:A. Sn = 2^n - n - 1B. Sn = 2^n - nC. Sn = 2^n + n - 1D. Sn = 2^n + n3. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为Q,则点Q的坐标是:A. (2,3)B. (3,2)C. (-2,-3)D. (-3,-2)4. 已知等差数列{an}的公差为d,若a1 + a3 + a5 = 0,则a2 + a4 + a6的值为:A. 0B. dC. -dD. 2d5. 已知圆C的方程为x^2 + y^2 = 1,若圆C上存在两点A、B,使得OA = OB = 1,则∠AOB的度数为:A. 60°B. 90°C. 120°D. 180°6. 已知函数f(x) = ax^2 + bx + c(a≠0),若f(x)的图像开口向上,且f(1)= 0,f(2) = 4,则a、b、c的值分别为:A. a=1,b=-3,c=2B. a=1,b=3,c=2C. a=-1,b=3,c=-2D. a=-1,b=-3,c=-27. 已知等比数列{an}的公比为q,若a1 = 2,a3 = 8,则q的值为:A. 2B. 4C. 8D. 168. 已知数列{an}的前n项和为Sn,若an = n^2 + n,则Sn的值是:A. n(n+1)(n+2)/3B. n(n+1)^2/2C. n(n+1)(n+2)/2D. n(n+1)^2/39. 在直角坐标系中,若直线y = kx + b与圆x^2 + y^2 = 4相切,则k、b的值分别为:A. k=±2,b=0B. k=±2,b=±2C. k=±1,b=0D. k=±1,b=±110. 已知函数f(x) = ax^2 + bx + c(a≠0),若f(x)的图像开口向下,且f(1) = 0,f(2) = -4,则a、b、c的值分别为:A. a=1,b=-3,c=2B. a=1,b=3,c=2C. a=-1,b=3,c=-2D. a=-1,b=-3,c=-2二、填空题(每题5分,共50分)11. 已知函数f(x) = x^2 - 4x + 3,则f(x)的图像的顶点坐标是______。

广东省揭阳市2025届高三上学期第一次月考数学试题(含答案)

广东省揭阳市2025届高三上学期第一次月考数学试题(含答案)

广东省揭阳市2025届高三上学期第一次月考数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A={x|x>1},B={x|(x+1)(x−3)<0},则(∁R A)∩B=( )A. (3,+∞)B. (−1,+∞)C. (−1,3)D. (−1,1]2.若复数(1−3i)z=3−i(i为虚数单位),则|z|−z在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.双曲线x2−y23=1的两条渐近线的夹角的大小等于( )A. π6B. π3C. 2π3D. 5π64.在△ABC中,D是BC上一点,满足BD=3DC,M是AD的中点,若BM=λBA+μBC,则λ+μ=( )A. 54B. 1 C. 78D. 585.若两个等比数列{a n},{b n}的公比相等,且b1=4,a2=2a3,则{b n}的前6项和为( )A. 578B. 638C. 124D. 2526.若函数f(x)=sinωx+3cosωx(ω>0)在区间[a,b]上是减函数,且f(a)=1,f(b)=−1,b−a=π,则ω=( )A. 13B. 23C. 1D. 27.已知点A(−1,0),B(0,3),点P是圆(x−3)2+y2=1上任意一点,则▵PAB面积的最小值为( )A. 6B. 112C. 92D. 6−1028.已知函数y=f(x)的定义域为R,且f(−x)=f(x),若函数y=f(x)的图象与函数y=log2(2x+2−x)的图象有交点,且交点个数为奇数,则f(0)=( )A. −1B. 0C. 1D. 2二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.设A,B为随机事件,且P(A),P(B)是A,B发生的概率.P(A),P(B)∈(0,1),则下列说法正确的是( )A. 若A,B互斥,则P(A∪B)=P(A)+P(B)B. 若P(AB)=P(A)P(B),则A,B相互独立C. 若A,B互斥,则A,B相互独立D. 若A,B独立,则P(B|A)=P(B)10.在△ABC中,内角A,B,C所对的边分别为a,b,c.若b=c cos A,内角A的平分线交BC于点D,AD=1,cos A=18,以下结论正确的是( )A. AC=34B. AB=8C. CDBD =18D. ▵ABD的面积为37411.设函数f(x)=(x−1)2(x−4),则( )A. x=1是f(x)的极小值点B. f(2+x)+f(2−x)=−4C. 不等式−4<f(2x−1)<0的解集为{x|1<x<2}D. 当0<x<π2时,f(sin x)>f(sin2x)三、填空题:本题共3小题,每小题5分,共15分。

2023-2024学年天津市耀华中学高三上学期第一次月考数学试题及答案

2023-2024学年天津市耀华中学高三上学期第一次月考数学试题及答案

天津市耀华中学2024届高三年级第一次月考数学学科试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷(选择题 共45分)一、选择题:本大题共9小题,每小题5分,共45分,在每小题给出的四个选项中,有且只有一项是符合题目要求的,请把正确答案填涂在答题卡上.1 已知集合{}220A x x x =+-<,{}lg 1B x x =<,A B = ( )A. ()2,10-B. ()0,1C. ()2,1-D. (),10-∞2. 设x ∈R ,则“11||22x -<”是“31x <”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件3. 函数()3ln xf x x=的部分图象是A. B.C. D.4. 5G 技术在我国已经进入调整发展的阶段,5G 手机的销量也逐渐上升,某手机商城统计了最近5个月手机的实际销量,如下表所示:.时间x12345销售量y (千只)0.50.81.01.21.5若x 与y 线性相关,且线性回归方程为 0.24y x a=+,则下列说法不正确的是( )A. 由题中数据可知,变量y 与x 正相关,且相关系数1r <B. 线性回归方程 0.24y x a=+中 0.26a =C. 当解释变量x 每增加1个单位时,预报变量 y 平均增加0.24个单位D. 可以预测6x =时,该商场5G 手机销量约为1.72(千只)5. 已知0.20.212log 0.5,0.5,log 0.4a b c ===,则a ,b ,c 的大小关系为( )A. a b c <<B. a c b<< C. b<c<a D. c<a<b6. 已知4log a a =,则2log a a +=( )A 11或238-B. 11或218-C. 12或238-D. 10或218-7. “送出一本书,共圆读书梦”,某校组织为偏远乡村小学送书籍的志愿活动,运送的卡车共装有10个纸箱,其中5箱英语书、2箱数学书、3箱语文书.到目的地时发现丢失一箱,但不知丢失哪一箱.现从剩下9箱中任意打开2箱都是英语书的概率为( )A.29B.18C.112D.588. 将函数()π2sin 23f x x ⎛⎫=- ⎪⎝⎭的图像上所有点横坐标变为原来的2倍,纵坐标不变,得到函数()g x 的图像,有下述四个结论:①()π2sin 6g x x ⎛⎫=-⎪⎝⎭②函数()g x 在π0,2⎛⎫⎪⎝⎭上单调递增③点4π,03⎛⎫⎪⎝⎭是函数()g x 图像的一个对称中心④当ππ,2x ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的最大值为2其中所有正确结论的编号是( )A. ①②③B. ②③C. ①③④D. ②④.9. 已知函数()()()()()()22121,1,11,1,1a x a x x f x a x ax x x ⎧-++-∈-⎪=⎨-++∉-⎪⎩有且只有3个零点,则实数a 的取值范围是( )A. ()0,1 B. ()(),80,1-∞- C. [)0,1 D. (][),80,1-∞- 第Ⅱ卷(非选择题 共105分)二、填空题:本大题共6小题,每小题5分,共30分,请将答案填写在答题卡上.10. 复数()21i 1iz -=+(i 为虚数单位),则z =______.11.在6的二项展开式中,2x 的系数为___________.12.若2sin sin αβ+=3π2αβ+=,则sin α=________;cos 2β=________.13. 某专业资格考试包含甲、乙、丙3个科目,假设小张甲科目合格的概率为34,乙、丙科目合格的概率均为23,且3个科目是否合格相互独立.设小张3科中合格的科目数为X ,则(2)P X ==___________;()E X =___________.14. 已知0a >,0b >的最大值为________.15. 设R ω∈,函数()2π2sin ,0,6314,0,22x x f x x x x ωω⎧⎛⎫+≥ ⎪⎪⎪⎝⎭=⎨⎪++<⎪⎩()g x x ω=.若()f x 在1π,32⎛⎫- ⎪⎝⎭上单调递增,且函数()f x 与()g x 图象有三个交点,则ω的取值范围是________.三、解答题:本大题共5小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答案卡上.16. 已知ABC 的内角A ,B ,C 的对边分别为a,b ,c ,满足22cos c b A =+.(1)求角B ;(2)若1cos 4A =,求sin(2)A B +的值;(3)若7c =,sin b A =b 的值.的17. 已知底面ABCD 是正方形,PA ⊥平面ABCD ,//PA DQ ,33PA AD DQ ===,点E 、F 分别为线段PB 、CQ 的中点.(1)求证://EF 平面PADQ ;(2)求平面PCQ 与平面CDQ 夹角的余弦值;(3)线段PC 上是否存在点M ,使得直线AM 与平面PCQ,若存在求出PM MC 的值,若不存在,说明理由.18. 已知{}n a 为等差数列,6,2,n n n a n b a n -⎧=⎨⎩为奇数为偶数,记n S ,n T 分别为数列{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 通项公式;(2)证明:当5n >时,n n T S >.19. 如图,已知椭圆E :22221(0)x y a b a b +=>>()F 且斜率为k 的直线交椭圆E 于,A B 两点,线段AB 的中点为M ,直线l :40x ky +=交椭圆E 于,C D 两点.(1)求椭圆E 的方程;(2)求证:点M 在直线l上;的(3)是否存在实数k ,使得3BDM ACM S S ∆∆=?若存在,求出k 的值,若不存在,说明理由.20 已知函数()()1211222x f x x ex x -=--++,()()24cos ln 1g x ax x a x x =-+++,其中a ∈R .(1)讨论函数()f x 的单调性,并求不等式()0f x >的解集;(2)用{}max ,m n 表示m ,n 的最大值,记()()(){}max ,F x f x g x =,讨论函数()F x 的零点个数..天津市耀华中学2024届高三年级第一次月考数学学科试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷(选择题 共45分)一、选择题:本大题共9小题,每小题5分,共45分,在每小题给出的四个选项中,有且只有一项是符合题目要求的,请把正确答案填涂在答题卡上.1. 已知集合{}220A x x x =+-<,{}lg 1B x x =<,A B = ( )A. ()2,10-B. ()0,1C. ()2,1-D. (),10-∞【答案】B 【解析】【分析】根据解一元二次不等式的解法,结合对数函数的单调性、集合交集的定义进行求解即可.【详解】因为{}()2202,1A x x x =+-<=-,{}()lg 10,10B x x =<=,所以A B = ()0,1,故选:B2. 设x ∈R ,则“11||22x -<”是“31x <”的A. 充分而不必要条件B 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A 【解析】【详解】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系.详解:绝对值不等式1122x -<⇔111222x -<-<⇔01x <<,由31x <⇔1x <..据此可知1122x -<是31x <的充分而不必要条件.本题选择A 选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.3. 函数()3ln xf x x =的部分图象是A. B.C. D.【答案】A 【解析】【分析】根据奇偶性排除B ,当1x >时,()3ln 0xf x x =>,排除CD ,得到答案.【详解】()()()33ln ln ,x xf x f x f x x x =-==--, ()f x 为奇函数,排除B 当1x >时,()3ln 0xf x x=>恒成立,排除CD 故答案选A【点睛】本题考查了函数图像的判断,通过奇偶性,特殊值法排除选项是解题的关键.4. 5G 技术在我国已经进入调整发展的阶段,5G 手机的销量也逐渐上升,某手机商城统计了最近5个月手机的实际销量,如下表所示:时间x12345销售量y (千只)0.50.8 1.0 1.2 1.5若x 与y 线性相关,且线性回归方程为 0.24y x a=+,则下列说法不正确的是( )A. 由题中数据可知,变量y 与x 正相关,且相关系数1r <B. 线性回归方程 0.24y x a=+中 0.26a =C. 当解释变量x 每增加1个单位时,预报变量 y 平均增加0.24个单位D. 可以预测6x =时,该商场5G 手机销量约为1.72(千只)【答案】ACD 【解析】【分析】根据已知数据,分析总体单调性,结合增量的变化判断A 选项;根据已知数据得到样本中心点,代入回归方程求解即可判断B 选项;根据回归方程判断CD 选项.【详解】从数据看y 随x 的增加而增加,故变量y 与x 正相关,由于各增量并不相等,故相关系数1r <,故A 正确;由已知数据得()11234535=++++=,()10.50.8 1.0 1.2 1.515y =++++=,代入ˆˆ0.24yx a =+中得到ˆ130.240.28a =-⨯=,故B 错;根据线性回归方程ˆ0.240.28yx =+可得x 每增加一个单位时,预报变量ˆy 平均增加0.24个单位,故C 正确.将6x =代入ˆ0.240.28yx =+中得到ˆ0.2460.28 1.72y =⨯+=,故D 正确.故选:ACD.5. 已知0.20.212log 0.5,0.5,log 0.4a b c ===,则a ,b ,c 的大小关系为( )A. a b c << B. a c b<< C. b<c<a D. c<a<b【答案】A 【解析】【分析】由指数函数与对数函数的单调性求解即可【详解】因为0.20.20.21log 0.5log log 2a ==<=,而150.2110.522b ⎛⎫==> ⎪⎝⎭,且0.20.51<,所以a b <.又12225log 0.4log log 212c ==>>,所以a b c <<,故选:A.6. 已知4log a a =,则2log a a +=( )A. 11或238-B. 11或218-C. 12或238-D. 10或218-【答案】A 【解析】【分析】对4log a a =43log 2a =或32-,讨论43log 2a =或32-时2log a a+的值,即可得出答案.【详解】由4log aa =()(4log 44log log aa=()49249log log4a ==,所以43log 2a =或32-.当43log 2a =时,33242a ===8,所以22log 8log 811a a +=+=;当43log 2a =-时,32148a -==,所以221123log log 888a a +=+=-,综上,a +2log 11a =或238-,故选:A.7. “送出一本书,共圆读书梦”,某校组织为偏远乡村小学送书籍的志愿活动,运送的卡车共装有10个纸箱,其中5箱英语书、2箱数学书、3箱语文书.到目的地时发现丢失一箱,但不知丢失哪一箱.现从剩下9箱中任意打开2箱都是英语书的概率为( )A.29B.18C.112D.58【答案】A 【解析】【分析】剩下9箱中任意打开2箱都是英语书的情况整体分为三种情况:丢失的英语书、数学书和语文书,计算出每种情况的概率即可.【详解】设事件A 表示丢失一箱后任取两箱是英语书,事件k B 表示丢失的一箱为,1,2,3k k =分别表示英语书、数学书、语文书.由全概率公式得()()()2223554222219999C C C 11382|2C 5C 10C C 9k k k P A P B P A B ===⨯+⨯+⨯==∑.故选:A8. 将函数()π2sin 23f x x ⎛⎫=- ⎪⎝⎭的图像上所有点横坐标变为原来的2倍,纵坐标不变,得到函数()g x 的图像,有下述四个结论:①()π2sin 6g x x ⎛⎫=-⎪⎝⎭②函数()g x 在π0,2⎛⎫⎪⎝⎭上单调递增③点4π,03⎛⎫⎪⎝⎭是函数()g x 图像的一个对称中心④当ππ,2x ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的最大值为2其中所有正确结论的编号是( )A. ①②③ B. ②③C. ①③④D. ②④【答案】B 【解析】【分析】根据图象变换可得()π2sin 3g x x ⎛⎫=-⎪⎝⎭,结合正弦函数的性质逐项分析判断.【详解】由题意可得:()π2sin 3g x x ⎛⎫=-⎪⎝⎭,故①错误;因为π0,2x ⎛⎫∈ ⎪⎝⎭,则πππ,336x ⎛⎫-∈- ⎪⎝⎭,且sin y x =在ππ,36⎛⎫- ⎪⎝⎭上单调递增,所以函数()g x 在π0,2⎛⎫⎪⎝⎭上单调递增,故②正确;因为4π4ππ2sin 2sin π0333g ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,所以点4π,03⎛⎫⎪⎝⎭是函数()g x 图像的一个对称中心,故③正确;因为ππ,2x ⎡⎤∈-⎢⎥⎣⎦,则π4ππ,336x ⎡⎤∈-⎢⎥⎣⎦-,所以当π4π33x -=-,即πx =-时,函数()g x 的最大值为()4ππ2sin 3g ⎛⎫-=-= ⎪⎝⎭,故④错误;故选:B.9. 已知函数()()()()()()22121,1,11,1,1a x a x x f x a x ax x x ⎧-++-∈-⎪=⎨-++∉-⎪⎩有且只有3个零点,则实数a 的取值范围是( )A. ()0,1 B. ()(),80,1-∞- C. [)0,1 D. (][),80,1-∞- 【答案】B【解析】【分析】先求1a =时函数()f x 的零点,再考虑1a ≠时,函数()f x 在(][),11,-∞+∞ 的零点,由此确定函数()f x 在()1,1-上的零点个数,结合二次函数性质求a 的取值范围.【详解】当1a =时,()()[)(]31,1,1,1,0,,1x x f x x x x x ∞∞⎧-∈-⎪=+∈+⎨⎪∈--⎩,所以区间(],1-∞-内的任意实数和13都为函数()f x 的零点,不满足要求;当1a ≠时,若(],1x ∈-∞-,则()()21f x a x ax x =-+-,令()0f x =,可得0x =(舍去),或=1x -,所以=1x -为函数()f x 的一个零点;若[)1,x ∞∈+,则()()21f x a x ax x =-++,令()0f x =,则()210a x ax x -++=,所以11a x a +=-,若111a a+≥-,即01a ≤<,则函数()f x 在[)1,+∞上有一个零点;若1a >或a<0时,则函数()f x 在[)1,+∞上没有零点;当01a ≤<时,函数()f x 在(][),11,-∞-⋃+∞上有两个零点;当1a >或a<0时,函数()f x 在(][),11,-∞-⋃+∞上有一个零点,因为当01a ≤<时,函数()f x 在(][),11,-∞-⋃+∞上有两个零点;又函数()f x 在R 上有3个零点,所以函数()f x 在()1,1-上有且只有一个零点,即方程()()21210a x a x -++-=在()1,1-上有一个根,由()()()22418a a a a ∆=++-=+,当0a =时,方程()()21210a x a x -++-=的根为1x =(舍去),故0a =时,方程()()21210a x a x -++-=在()1,1-上没有根,矛盾当01a <<时,0∆>,设()()()[]2121,1,1g x a x a x x =-++-∈-,函数()()()2121g x a x a x =-++-的对称轴为2122a x a+=>-,函数()g x 的图象为开口向下的抛物线,由方程()()21210a x a x -++-=在()1,1-上有一个根可得()()10,10g g >-<,所以()()()()1210,1210a a a a -++->--+-<,所以01a <<,当1a >时,则函数()f x 在(][),11,-∞-⋃+∞上有一个零点;又函数()f x 在R 上有3个零点,所以函数()f x 在()1,1-上有且只有两个零点,即方程()()21210a x a x -++-=在()1,1-上有两个根,由()()()[]2121,1,1g x a x a x x =-++-∈-可得函数()g x 的图象为开口向上的抛物线,函数()()()2121g x a x a x =-++-的对称轴为222a x a+=-,则()()()224180a a a a ∆=++-=+>,21122a a+-<<-, ()()10,10g g >->,所以4a >,()()()()1210,1210a a a a -++->--+->,满足条件的a 不存在,当a<0时,则函数()f x 在(][),11,-∞-⋃+∞上有一个零点;又函数()f x 在R 上有3个零点,所以函数()f x 在()1,1-上有且只有两个零点,即方程()()21210a x a x -++-=在()1,1-上有两个根,由()()()[]2121,1,1g x a x a x x =-++-∈-可得函数()g x 的图象为开口向下的抛物线,函数()()()2121g x a x a x =-++-的对称轴为222a x a+=-,则()()()224180a a a a ∆=++-=+>,21122a a +-<<-, ()()10,10g g <-<,所以8a <-,a<0,()()()()1210,1210a a a a -++-<--+-<,所以8a <-,故实数a 的取值范围是()(),80,1-∞- .故选:B【点睛】关键点睛:含绝对值函数的相关问题的解决的关键在于去绝对值,将其转化为不含绝对值的函数,分段函数的性质的研究可以分段研究.第Ⅱ卷(非选择题 共105分)二、填空题:本大题共6小题,每小题5分,共30分,请将答案填写在答题卡上.10. 复数()21i 1iz -=+(i 为虚数单位),则z =______.【解析】【分析】先利用复数的运算化简复数,再利用模长的公式求解模长.【详解】()()()()()21i 2i 1i 2i i 1i 1i 1i 1i 1i 1i z ----====--=--+++-.所以z ==.11. 在6的二项展开式中,2x 的系数为___________.【答案】38-【解析】【详解】试题分析:因为6263166((1)2r r r r r r r r T C C x ---+==-,所以由32r -=得1r =,因此2x 的系数为1463(1)28C --=-考点:二项式定理【方法点睛】1.求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n≥r );第二步是根据所求的指数,再求所求解的项的系数.2.有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.12. 若2sin sin αβ+=3π2αβ+=,则sin α=________;cos 2β=________.【答案】 ①. ②. 35##0.6【解析】【分析】由2sin sin αβ+=3π2αβ+=,可得出2sin cos αα-=,再结合同角平方关系即可求出sin α=,从而算出sin β=3cos 25β=.【详解】 2sin sin αβ+=3π2αβ+=,3π2sin sin()2αα∴+-=2sin cos αα-=,cos 2sin αα∴=-,又22sin cos 1αα+= ,∴(22sin 2sin 1,αα+=解得sin α=∴2sin β+=,解得sin β=,23cos 212sin 5ββ∴=-=.综上,sin α=3cos 25β=.,35.13. 某专业资格考试包含甲、乙、丙3个科目,假设小张甲科目合格的概率为34,乙、丙科目合格的概率均为23,且3个科目是否合格相互独立.设小张3科中合格的科目数为X ,则(2)P X ==___________;()E X =___________.【答案】①. 49; ②. 2512##1212.【解析】【分析】根据独立事件概率的公式,结合数学期望的公式进行求解即可.【详解】3223223224(2)(1(1(1)4334334339P X ==-⨯⨯+⨯-⨯+⨯⨯-=;3221(0)(1)(1(1)43336P X ==-⨯-⨯-=,3223223227(1)(1(1)(1)(1)(1)(143343343336P X ==⨯-⨯-+-⨯⨯-+-⨯-⨯=,3221(3)4333P X ==⨯⨯=,所以174125()012336369312E X =⨯+⨯+⨯+⨯=,故答案为:49;251214. 已知0a >,0b >的最大值为________.【解析】【分析】利用基本不等式可得答案.【详解】因为0a >,0b >,所以=≤==,当且仅当2a a b=+即a b=等号成立..15. 设Rω∈,函数()2π2sin,0,6314,0,22x xf xx x xωω⎧⎛⎫+≥⎪⎪⎪⎝⎭=⎨⎪++<⎪⎩()g x xω=.若()f x在1π,32⎛⎫- ⎪⎝⎭上单调递增,且函数()f x与()g x的图象有三个交点,则ω的取值范围是________.【答案】23⎤⎥⎦.【解析】【分析】利用()f x在1π,32⎛⎫- ⎪⎝⎭上单调递增可得1243ω≤≤,函数()f x与()g x的图象有三个交点,可转化为方程23610x xω++=在(),0x∈-∞上有两个不同的实数根可得答案.【详解】当π0,2x⎡⎫∈⎪⎢⎣⎭时,πππ,626ωω⎡⎫++⎪⎢⎣⎭x,因为()f x在1π,32⎛⎫- ⎪⎝⎭上单调递增,所以()π0ππ2624133π12sin62ω⎧+≤⎪⎪⎪-≤-⎨⎪⎪≥⎪⎩,解得1243ω≤≤,又函数()f x与()g x图象有三个交点,所以在(),0x∈-∞上函数()f x与()g x的图象有两个交点,即方程231422x x xωω++=在(),0x∈-∞上有两个不同的实数根,即方程23610x xω++=在(),0x∈-∞上有两个不同的实数根,的所以22Δ3612003060102ωωω⎧=->⎪⎪-<⎨⎪⨯+⨯+>⎪⎩,解得ω>当0x ≥时,令()()π2sin 6ωω⎛⎫-=+- ⎪⎝⎭f xg x x x ,由0x =时,()()10f x g x -=>,当π5π66ω+=x 时,7π3ω=x ,此时,()()7π203-=-<f x g x ,结合图象,所以0x ≥时,函数()f x 与()g x 的图象只有一个交点,综上所述,23ω⎤∈⎥⎦.故答案为:233⎤⎥⎦.【点睛】关键点点睛:解题的关键点是转化为方程23610x x ω++=在(),0x ∈-∞上有两个不同的实数根.三、解答题:本大题共5小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答案卡上.16. 已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c,满足22cos c b A =+.(1)求角B ;(2)若1cos 4A =,求sin(2)AB +的值;(3)若7c =,sin b A =b 的值.【答案】(1)6π.(2.(3【解析】【分析】(1)由正弦定理化边为角后,由诱导公式和两角和的正弦公式化简后可求得B ;(2)由二倍角公式求得sin 2,cos 2A A 后再由两角和的正弦公式可求值;(3)由正弦定理求得a ,再由余弦定理求得b .【详解】(1)∵22cos c b A =+,由正弦定理得,2sin 2sin cos C A B A=+∴2(sin cos cos sin )2sin cos A B+A B A B A =+,即2sin cos A B A =.∵sin 0A ≠,∴cos B =又0B π<<,∴6B π=(2)由已知得,sin A ==∴sin 22sin cos A A A ==,27cos 22cos 18A A =-=-∴sin(2)sin(2sin 2cos cos 2sin 666A B A A A πππ+++==.(3)由正弦定理sin sin a b A B =,得sin sin b A a B =.由(1)知,6B π=,∴a =由余弦定理得,2222cos 19b a c ac B =+-=.∴b =【点睛】本题考查正弦定理、余弦定理、考查两角和的正弦公式、二倍角公式、诱导公式,同角间的三角函数关系,考查公式较多,解题关键是正确选择应用公式的顺序.在三角形中出现边角关系时,常常用正弦定理进行边角转换.17. 已知底面ABCD 是正方形,PA ⊥平面ABCD ,//PA DQ ,33PA AD DQ ===,点E 、F 分别为线段PB 、CQ 中点.(1)求证://EF 平面PADQ ;(2)求平面PCQ 与平面CDQ 夹角的余弦值;(3)线段PC 上是否存在点M ,使得直线AM 与平面PCQ,若存在求出PM MC 的值,若不存在,说明理由.【答案】(1)证明见解析(2(3)存在;1PM MC =或15PM MC =【解析】【分析】(1)法一:分别取AB 、CD 的中点G 、H ,连接EG 、GH 、FH ,证明出平面//EGHF 平面ADQP ,利用面面平行的性质可证得结论成立;法二:以点A 为坐标原点,以AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可证得结论成立;(2)利用空间向量法可求得平面PCQ 与平面CDQ 夹角的余弦值;(3)假设存在点M ,使得PM PC λ= ,其中[]0,1λ∈,求出向量AM 的坐标,利用空间向量法可得出关于λ的方程,解之即可.【小问1详解】的证明:法一:分别取AB 、CD 的中点G 、H ,连接EG 、GH 、FH ,由题意可知点E 、F 分别为线段PB 、CQ 的中点.所以//EG PA ,//FH QD ,因为//PA DQ ,所以//EG FH ,所以点E 、G 、H 、F 四点共面,因为G 、H 分别为AB 、CD 的中点,所以//GH AD ,因为AD ⊂平面ADQP ,GH ⊄平面ADQP ,所以//GH 平面ADQP ,又因为//FH QD ,QD ⊂平面ADQP ,FH ⊄平面ADQP ,所以//FH 平面ADQP ,又因为FH GH H = ,FH 、GH Ì平面EGHF ,所以平面//EGHF 平面ADQP ,因为EF ⊂平面EGHF ,所以//EF 平面ADQP ;法二:因为ABCD 为正方形,且PA ⊥平面ABCD ,所以AP 、AB 、AD 两两互相垂直,以点A 为坐标原点,以AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,3P 、()3,3,0C 、()0,3,1Q 、()3,0,0B 、33,0,22E ⎛⎫⎪⎝⎭、31,3,22F ⎛⎫ ⎪⎝⎭,所以()0,3,1EF =- ,易知平面PADQ 的一个法向量()1,0,0a = ,所以0a EF ⋅= ,所以E F a ⊥ ,又因为EF ⊄平面ADQP ,所以//EF 平面ADQP .【小问2详解】解:设平面PCQ 的法向量(),,m x y z = ,()3,3,3PC =- ,()3,0,1CQ =- ,则333030m PC x y z m CQ x z ⎧⋅=+-=⎪⎨⋅=-+=⎪⎩ ,取1x =,可得()1,2,3m = ,所以平面PCQ 的一个法向量为()1,2,3m = ,易知平面CQD 的一个法向量()0,1,0n = ,设平面PCQ 与平面CQD 夹角为θ,则cos cos ,m n m n m n θ⋅=====⋅ ,所以平面PCQ 与平面CQD【小问3详解】解:假设存在点M ,使得()3,3,3PM PC λλλλ==- ,其中[]0,1λ∈,则()()()0,0,33,3,33,3,33AM AP PM λλλλλλ=+=+-=- ,由(2)得平面PCQ 的一个法向量为()1,2,3m = ,由题意可得c os ,AM = ,整理可得212810λλ-+=.即()()21610λλ--=,因为01λ≤≤,解得16λ=或12,所以,15PM MC =或1PM MC=.18. 已知{}n a 为等差数列,6,2,n n na nb a n -⎧=⎨⎩为奇数为偶数,记n S ,n T 分别为数列{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 的通项公式;(2)证明:当5n >时,n n T S >.【答案】(1)23n a n =+;(2)证明见解析.【解析】【分析】(1)设等差数列{}n a 的公差为d ,用1,a d 表示n S 及n T ,即可求解作答.(2)方法1,利用(1)的结论求出n S ,n b ,再分奇偶结合分组求和法求出n T ,并与n S 作差比较作答;方法2,利用(1)的结论求出n S ,n b ,再分奇偶借助等差数列前n 项和公式求出n T ,并与n S 作差比较作答.【小问1详解】设等差数列{}n a 的公差为d ,而6,21,N 2,2n n n a n k b k a n k*-=-⎧=∈⎨=⎩,则112213316,222,626b a b a a d b a a d =-==+=-=+-,于是41314632441216S a d T a d =+=⎧⎨=+-=⎩,解得15,2a d ==,1(1)23n a a n d n =+-=+,所以数列{}n a 的通项公式是23n a n =+.【小问2详解】方法1:由(1)知,2(523)42n n n S n n ++==+,23,21,N 46,2n n n k b k n n k*-=-⎧=∈⎨+=⎩,当n 为偶数时,12(1)34661n n b b n n n -+=--++=+,213(61)372222n n n T n n ++=⋅=+,当5n >时,22371()(4)(1)0222n n T S n n n n n n -=+-+=->,因此n n T S >,当n 奇数时,22113735(1)(1)[4(1)6]52222n n n T T b n n n n n ++=-=+++-++=+-,当5n >时,22351(5)(4)(2)(5)0222n n T S n n n n n n -=+--+=+->,因此n n T S >,所以当5n >时,n n T S >.方法2:由(1)知,2(523)42n n n S n n ++==+,23,21,N 46,2n n n k b k n n k*-=-⎧=∈⎨+=⎩,当n 为偶数时,21312412(1)3144637()()222222n n n n n n n T b b b b b b n n --+--++=+++++++=⋅+⋅=+ ,当5n >时,22371()(4)(1)0222n n T S n n n n n n -=+-+=->,因此n n T S >,当n 为奇数时,若3n ≥,则为132411231144(1)61()()2222n n n n n n n T b b b b b b --+-++-+-=+++++++=⋅+⋅ 235522n n =+-,显然111T b ==-满足上式,因此当n 为奇数时,235522n T n n =+-,当5n >时,22351(5)(4)(2)(5)0222n n T S n n n n n n -=+--+=+->,因此n n T S >,所以当5n >时,n n T S >.19. 如图,已知椭圆E :22221(0)x y a b a b +=>>()F 且斜率为k 的直线交椭圆E 于,A B 两点,线段AB 的中点为M ,直线l :40x ky +=交椭圆E 于,C D 两点.(1)求椭圆E 的方程;(2)求证:点M 在直线l 上;(3)是否存在实数k ,使得3BDM ACM S S ∆∆?若存在,求出k 的值,若不存在,说明理由.【答案】(1)22141x y +=(2)详见解析(3)存在,且k =【解析】【分析】(1)根据离心率和焦点坐标列方程组,解方程组求得,a b 的值,进而求得椭圆E 的方程.(2)写出直线AB 的方程,联立直线的方程和椭圆的方程,求得中点M 的坐标,将坐标代入直线l 的方程,满足方程,由此证得点M 在直线l 上.(3)由(2)知,A B 到l 的距离相等,根据两个三角形面积的关系,得到M 是OC 的中点,设出C 点的坐标,联立直线l 的方程和椭圆的方程,求得C 点的坐标,并由此求得k 的值.【详解】解:(1)解:由c a c ⎧=⎪⎨⎪=⎩,解得2a =,1b =所以所求椭圆的标准方程为22141x y +=(2)设()11,A x y ,()22,B x y ,()00,M x y,(2244y k x x y ⎧=+⎪⎨+=⎪⎩,消x 得,()2222411240k x x k +-+-=,解得12012022x x x y y y ⎧+==⎪⎪⎨+⎪==⎪⎩将()00,M x y 代入到40x ky +=中,满足方程所以点M 在直线l 上.(3)由(2)知,A B 到l 的距离相等,若BDM ∆的面积是ACM ∆面积的3倍,得3DM CM =,有DO CO =,∴M 是OC 的中点,设()33,C x y ,则302y y =,联立224044x ky x y +=⎧⎨+=⎩,解得3y =,=解得218k =,所以k =.【点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查根与系数关系,考查方程的思想,属于中档题.要证明一个点在某条直线上,那么先求得这个点的坐标,然后将点的坐标代入直线方程,如果方程成立,则这个点在直线上,否则不在这条直线上.20. 已知函数()()1211222x f x x e x x -=--++,()()24cos ln 1g x ax x a x x =-+++,其中a ∈R .(1)讨论函数()f x 的单调性,并求不等式()0f x >的解集;(2)用{}max ,m n 表示m ,n 的最大值,记()()(){}max ,F x f x g x =,讨论函数()F x 的零点个数.【答案】(1)增函数;()1,+∞;(2)答案见解析.【解析】【分析】(1)先对函数求导,得到()()()111x f x x e-'=--,根据导数的方法,即可判定其单调性,进而可求出不等式的解集.(2)1x >时,()0F x >恒成立,当11x -<<时,()0f x <恒成立,故()F x 的零点即为函数()g x 的零点,讨论()g x 在11x -<<的零点个数得到答案.【详解】(1)()()()()111111x x f x x e x x e --'=--+=--,当1x >时,10x ->,110x e -->,∴()0f x ¢>,当1x <时,10x -<,110x e --<,∴()0f x ¢>,当1x =时,()0f x '=,所以当x ∈R 时,()0f x '≥,即()f x 在R 上是增函数;又()10f =,所以()0f x >的解集为()1,+∞.(2))函数()F x 的定义域为(1,)-+∞由(1)得,函数()f x 在x ∈R 单调递增,()10f =当1x >时,()0f x >,又()max{(),()}F x f xg x =,所以1x >时,()0F x >恒成立,即1x >时,()0F x =无零点.当11x -<<时,()0f x <恒成立,所以()F x 零点即为函数()g x 的零点下面讨论函数()g x 在11x -<<的零点个数:1()214sin 1g x ax a x x '=--++,所以21()24cos (11)(1)g x a a x x x ''=---<<+①当0a >时,因为11x -<<,cos (cos1,1)x ∈又函数cos y x =在区间π0,2⎛⎫ ⎪⎝⎭递减,所以π1cos1cos 32>=即当11x -<<时,12cos 0x -<,21()2(12cos )0(1)g x a x x ''=--<+所以()g x '单调递减,由()00g '=得:当10x -<<时()0g x '>,()g x 递增的当01x <<时()0g x '<,()g x 递减当1x →-时ln(1)x +→-∞,()g x ∴→-∞,当0x =时(0)40g a =>又(1)14cos1ln 2g a a =-++,()10f =当1ln 2(1)014cos1g a ->⇒>+时,函数()F x 有1个零点;当1ln 2(1)014cos1g a -=⇒=+时,函数()F x 有2个零点;当1ln 2(1)0014cos1g a -<⇒<<+时,函数()F x 有3个零点;②当0a =时,()ln(1)g x x x =+-,由①得:当10x -<<时,()0g x '>,()g x 递增,当01x <<时,()0g x '<,()g x 递减,所以max ()(0)0g x g ==,(1)ln 210g =-<,所以当0a =时函数()F x 有2个零点③当a<0时,()2()4cos ln(1)g x a x x x x =+-++()24cos 0a x x +<,ln(1)0x x -++≤,即()0g x <成立,由()10f =,所以当a<0时函数()F x 有1个零点综上所述:当1ln 214cos1a ->+或a<0时,函数()F x 有1个零点;当1ln 214cos1a -=+或0a =时,函数()F x 有2个零点;当1ln 2014cos1a -<<+时,函数()F x 有3个零点.【点睛】思路点睛:导数的方法研究函数的零点时,通常需要对函数求导,根据导数的方法研究函数单调性,极值或最值等,有时需要借助数形结合的方法求解.。

湖南省长沙2025届高三上学期月考(一)数学试题含答案

湖南省长沙2025届高三上学期月考(一)数学试题含答案

2025届高三月考试卷(一)数学(答案在最后)本试卷共8页.时量120分钟.满分150分.一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合[),A a =+∞,()1,2B =-,若A B =∅ ,则()A.1>-aB.2a > C.1a ≥- D.2a ≥【答案】D 【解析】【分析】根据题意,结合集合的交集的运算,即可求解.【详解】由集合[),A a =+∞,()1,2B =-,因为A B =∅ ,则满足2a ≥.故选:D.2.已知复数z 满足22z -=,z 的取值范围为()A.[]0,2 B.()0,2 C.[]0,4 D.()0,4【答案】C 【解析】【分析】根据题意,利用复数模的几何意义,得到复数z 在复平面内对应的轨迹,进而结合圆的性质,即可求解.【详解】由题意知复数z 满足22z -=,可得复数z 在复平面内对应的轨迹为以(2,0)A 为圆心,2r =为半径的圆,且z 表示圆上的点到原点(0,0)O 的距离,则max min 224,220z OA r z OA r =+=+==-=-=,所以z 的取值范围为0,4.故选:C.3.在ABC V 中,若2AB BC BC CA CA AB ⋅=⋅=⋅,则AB BC=A.1B.2C.2D.2【答案】C 【解析】【分析】根据题意,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v可以推得AB AC =,再利用向量运算的加法法则,即可求得结果.【详解】由题意得,AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v ,即A A =0+BC B C ⋅uu u v uu u v uuu v(),设BC 的中点为D ,则AD BC ⊥,即ABC V 为等腰三角形,B=C AB AC =∠∠,又因为2BC CA CA AB⋅=⋅uu u v uu v uu v uu u v即2222222C C cos 2C 2C cos 112C +22232C 2AB BC CA A B AB BC B A CA B C BC A BC A BC⋅=⋅-=-+-=-+⨯=uu u v uu u v uu v uu u v uuv uu u v uu u v uu u v uu v uuvuu u v uu u v uu u v uu u v uu u v ()所以2AB BC=uu u v uu u v .【点睛】本题主要考查平面向量的线性运算.4.若函数()2211x x f x x ++=+的最大值为M ,最小值为N ,则M N +=()A.1 B.2 C.3D.4【答案】B 【解析】【分析】将函数解析式化为()211xf x x =++,令()21xg x x =+,判断()g x 的奇偶性,然后利用函数的奇偶性求解即可.【详解】()2222221111111x x xf x x x x x x x +==+=+++++++,令()21x g x x =+,则其定义域为R ,又()()()2211x x g x g x x x --==-=-+-+,所以()21xg x x =+为奇函数,则()()max min 0g x g x +=,所以()()()()max min max min 112f x f x g x g x +=+++=,则2M N +=.故选:B.5.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面AB,是线段ED 的中点,则A.BM EN =,且直线,BM EN 是相交直线B.BM EN ≠,且直线,BM EN 是相交直线C.BM EN =,且直线,BM EN 是异面直线D.BM EN ≠,且直线,BM EN 是异面直线【答案】B 【解析】【分析】利用垂直关系,再结合勾股定理进而解决问题.【详解】如图所示,作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F .连BF , 平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知12EO ON EN ===,5,,22MF BF BM ==∴=.BM EN ∴≠,故选B .【点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.6.tan10tan503tan50︒+︒+︒︒的值为()A.3B.3C.3D.33【答案】B 【解析】【分析】利用正切的和角公式,逆用即可求出结果.【详解】tan10tan503tan10tan50︒+︒︒︒()()tan 10501tan10tan 503tan 50=︒+︒-︒︒+︒︒)31tan10tan503tan 50=-︒︒+︒︒33tan10tan503tan50=-︒︒︒︒3=故选:B.7.一枚质地均匀的正方体骰子,其六个面分别刻有1,2,3,4,5,6六个数字,投掷这枚骰子两次,设事件M =“第一次朝上面的数字是奇数”,则下列事件中与M 相互独立的是()A.第一次朝上面的数字是偶数B.第一次朝上面的数字是1C.两次朝上面的数字之和是8D.两次朝上面的数字之和是7【答案】D 【解析】【分析】根据题意,由相互独立事件的定义,对选项逐一判断,即可得到结果.【详解】抛掷骰子两次,共有6636⨯=个基本事件数,则()()()()()()()()()()()(){1,1,1,2,1,3,1,4,1,5,1,6,3,1,3,2,3,3,3,4,3,5,3,6M =,()()()()()()}5,1,5,2,5,3,5,4,5,5,5,6共18个基本事件,则()181362P M ==,设事件E 为第一次朝上面的数字是偶数,则事件M 与事件E 是对立事件,故A 错误;设事件F 为第一次朝上面的数字是1,则F M ⊆,故B 错误;设事件N 为两次朝上面的数字之和是8,则()()()()(){}2,6,3,5,4,4,5,3,6,2N =共5个基本事件,则()536P N =,且()(){}3,5,5,3MN =,则()213618P MN ==,()()()P MN P M P N ≠⋅,所以C 错误;设事件Q 两次朝上面的数字之和是7,则()()()()()(){}1,6,2,5,3,4,4,3,5,2,6,1Q =,则()61366P Q ==,且()()(){}1,6,3,4,5,2MQ =,则()313612P MQ ==,因为()()()P MQ P M P Q =⋅,所以事件M 与事件Q 相互独立.故选:D8.一只蜜蜂从蜂房A 出发向右爬,每次只能爬向右侧相邻的两个蜂房(如图),例如:从蜂房A 只能爬到1号或2号蜂房,从1号蜂房只能爬到2号或3号蜂房,…,以此类推,用n a 表示蜜蜂爬到n 号蜂房的方法数,则10a =()A.10B.55C.89D.99【答案】C 【解析】【分析】根据给定条件,求出数列{}n a 的递推公式,再依次计算求出10a .【详解】依题意,12n n n a a a --=+(*n ∈N ,3n ≥),11a =,22a =,所以34567893,5,8,13,21,34,55,a a a a a a a =======1089a =.故选:C二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知一组样本数据1x ,2x ,…,()201220x x x x ≤≤≤ ,下列说法正确的是()A.该样本数据的第60百分位数为12x B.若样本数据的频率分布直方图为单峰不对称,且在右边“拖尾”,则其平均数大于中位数C.剔除某个数据i x (1i =,2,…,20)后得到新样本数据的极差不大于原样本数据的极差D.若1x ,2x ,…,10x 的均值为2,方差为1,11x ,12x ,…,20x 的均值为6,方差为2,则1x ,2x ,…,20x 的方差为5【答案】BC 【解析】【分析】由百分位数的定义即可判断A ;由极差的定义即可判断C ,由频率分布直方图中中位数、平均数的求法画出图形即可判断B ;由方差计算公式即可判断D.【详解】对于A ,由2060%12⨯=,所以样本数据的第60百分位数为12132x x +,故A 错误;对于B ,数据的频率分布直方图为单峰不对称,向右边“拖尾”,大致如下图,由于“右拖”时最高峰偏左,中位数靠近高峰处,平均数靠近中点处,此时平均数大于中位数,故B 正确;对于C ,剔除某个数据i x (1i =,2,…,20)后得到新样本数据的极差不大于原样本数据的极差,故C 正确;对于D ,由10102642020x =⨯+⨯=,则()()22210101112426420202s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦,所以则1x ,2x ,…,20x 的方差为112,故D 错误.故选:BC.10.在平面直角坐标系中,O 为坐标原点,抛物线()220y px p =>的焦点为F ,点()1,2M ,()11,A x y ,()22,B x y 都在抛物线上,且0FA FB FM ++=ruu r uu r uuu r ,则下列结论正确的是()A.抛物线方程为22y x= B.F 是ABM 的重心C .6FA FM FB ++= D.2223AFO BFO MFO S S S ++=△△△【答案】BCD 【解析】【分析】把点代入可得抛物线的方程,结合向量运算可得F 是ABM 的重心,利用抛物线的定义可得6FA FM FB ++= ,利用三角形面积公式及122x x +=,可得2223AFO BFO MFO S S S ++=△△△.【详解】对于A ,由()1,2M 在抛物线上可得42p =,即抛物线方程为24y x =,错误;对于B ,分别取,AB AM 的中点,D E ,则2FA FB FD +=uu u u r uu r u r ,2FM FD =-uuu r uu u r,即F 在中线MD 上,同理可得F 也在中线BE 上,所以F 是ABM 的重心,正确;对于C ,由抛物线的定义可得121,2,1FA x FM FB x =+==+uu r uuu r uu r,所以124++=++FA FM FB x x uu r uuu r uu r.由()10F ,是ABM 的重心,所以12113x x ++=,即122x x +=,所以1246++=++=FA FM FB x x uu r uuu r uu r,正确;对于D ,112AFO S OF y =△,221114AFO S y x ==△;同理222214BFOSy x ==△,21MFO S =△,所以2221213AFO BFO MFO S S S x x ++=++=△△△,正确.故选:BCD.11.已知函数()()()322,,R ,f x x ax bx c a b c f x =-++'∈是()f x 的导函数,则()A.“0a c ==”是“()f x 为奇函数”的充要条件B.“0a b ==”是“()f x 为增函数”的充要条件C.若不等式()0f x <的解集为{1xx <∣且1}x ¹-,则()f x 的极小值为3227-D.若12,x x 是方程()0f x '=的两个不同的根,且12111x x +=,则0a <或3a >【答案】ACD 【解析】【分析】根据函数的奇偶性和充分、必要条件的判定方法,可判定A 正确;结合导数和函数的单调性间的关系,结合充分、必要条件的判定方法,可判定B 错误;利用导数求得函数()f x 的单调性,进而求得()f x 的极小值,可判定C 正确;结合二次函数的性质,结合0∆>,列出不等式,可判定D 正确.【详解】对于A 中,当0a c ==时,函数()3f x x bx =+,则满足()()3f x x bx f x -=--=-,所以()f x 为奇函数,所以充分性成立;若()f x 为奇函数,则()322f x x ax bx c -=---+=()322f x x ax bx c -=-+--,则24ax -20c =恒成立,所以0a c ==,所以必要性成立,所以A 正确;对于B 中,当0a b ==时,()3f x x c =+,可得()230f x x '=≥,所以()f x 为增函数;由()234f x x ax b =-+',当()f x 为增函数时,216120a b ∆=-≤,所以“0a b ==”是“()f x 为增函数”的充分不必要条件,所以B 错误;对于C 中,由()234f x x ax b =-+',若不等式()0f x <的解集为{|1x x <且1}x ¹-,则()f x 在R 上先增后减再增,则()1f '-=()()0,110f f =-=,解得21a b c ===-,故()()()232111f x x x x x x =+--=+-,可得()()()2321311f x x x x x '=+-=-+,令()0f x '=,解得=1x -或13x =,当(),1x ∈-∞-内,()0f x '>,()f x 单调递增;当11,3x ⎛⎫∈- ⎪⎝⎭内,()0f x '<,()f x 单调递减;当1,3x ⎛⎫∈+∞ ⎪⎝⎭内,()0f x '>,()f x 单调递增,所以()f x 的极小值为2111321133327f ⎛⎫⎛⎫⎛⎫=+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以C 正确.对于D 中,由()234f x x ax b =-+',因为12,x x 是方程()0f x '=的两个不同的根,所以216120a b ∆=->,即2430a b ->,且1x +2124,33a bx x x ==,由12111x x +=,可得1x +212x x x =,所以433a b =,即4b a =,联立方程组,可得230a a ->,解得0a <或3a >,所以D 正确.故选:ACD .三、填空题(本大题共3小题,每小题5分,共15分.)12.点M 在椭圆221259x y +=上,F 是椭圆的一个焦点,N 为MF 的中点,3ON =,则MF =_________.【答案】4【解析】【分析】根据椭圆的对称性,利用三角形中位线定理求得||MF ',再由椭圆定义求解||MF 即可.【详解】如图,根据椭圆的对称性,不妨设F 为左焦点,F '为右焦点,由椭圆221259x y +=,得5a =,210a =,N Q 是MF 的中点,O 是FF '的中点,ON ∴为FMF ' 的中位线,||2||6MF ON ∴'==,∴由椭圆的定义得||2||1064MF a MF =-'=-=.故答案为:4.13.如图,将一个各面都涂了油漆的正方体切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值()=E X ______.【答案】65【解析】【分析】根据题意得出X 的所有可能取值为0,1,2,3,然后分析出涂3面油漆,2面油漆,1面油漆,0面油漆的各有多少个小正方体,从而计算X 取每个值时的概率,从而求X 的均值.【详解】X 的所有可能取值为0,1,2,3,大正方体8个顶点处的8个小正方体涂有3面油漆;每一条棱上除了两个顶点处的小正方体外剩余的都涂有两面油漆,所以涂有两面油漆的有31236⨯=个;每个表面去掉四条棱上的16个小正方体,还剩9个小正方体,这9个都是一面涂漆,所以一共有9654⨯=个小正方体涂有一面油漆;剩余的()1258365427-++=个内部的小正方体6个面都没有涂油漆,所以()270125P X ==,()541125P X ==,()362125P X ==,()83125P X ==,()()()()()00112233E X P X P X P X P X =⨯=+⨯=+⨯=+⨯=2754368150601231251251251251255=⨯+⨯+⨯+⨯==.故答案为:65.14.若函数()()52cos sin 2f x a x x x =-+在R 上单调递增,则a 的取值范围是_________.【答案】11,22⎡⎤-⎢⎥⎣⎦【解析】【分析】求导,根据()0f x '≥在R 上恒成立,即可结合二次函数的性质求解.【详解】根据题意,()22259cos 2sin 2cos cos 4cos 22f x a x x x a x x '=+-+=-+,()f x 在R 上单调递增,()0f x '∴≥在R 上恒成立,令cos x t =,[]1,1t ∈-,则()f x '可写为()2942g t at t =-+,[]1,1t ∈-,根据题意()g t 在[]1,1-上的最小值非负,∴()()10,10,g g ⎧-≥⎪⎨≥⎪⎩解得1122a -≤≤.故答案为:11,22⎡⎤-⎢⎥⎣⎦四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知向量(),sin m b a C =-- ,(),sin sin n c b A B =++,满足//m n u r r .(1)求A ;(2)若角A 的平分线交边BC 于点D ,AD 长为2,求△ABC 的面积的最小值.【答案】(1)23A π=(2)【解析】【分析】(1)由//m n u r r 得出等式,再由正、余弦定理即可解出;(2)把ABC 的面积用等积法表示可得,b c 关系,再利用基本不等式得出bc 的最小值,即得面积最小值.【小问1详解】因为//m n u r r ,所以()()()()sin sin sin b a A B c b C -+=+-,由正弦定理得()()()()b a a b c b c -+=+-,所以222b c a bc +-=-,所以2221cos 222b c a bc A bc ab +--===-,因为()0,A π∈,故23A π=.【小问2详解】∵AD 平分∠BAC ,∴123BAD CAD BAC π∠=∠=∠=,∵ABD ACD ABC S S S +=△△△,∴1sin 2AB AD BAD ⋅⋅∠11sin sin 22AC AD CAD c A +⋅⋅∠=⋅⋅,即22sin 2sin sin 333c b bc πππ+=,∴22c b bc+=由基本不等式可得:22bc b c =+≥,∴16bc ≥,当且仅当4b c ==时取“=”,∴1sin 2ABC S bc A ==≥ 即ABC V的面积的最小值为.16.如图,已知点P 在圆柱1OO 的底面圆O 上,120AOP ∠=o ,圆O 的直径4AB =,圆柱的高13OO =.(1)求点A 到平面1A PO 的距离;(2)求二面角1A PB O --的余弦值大小.【答案】(1)32;(2)277.【解析】【分析】(1)根据等体积法,由11A AOP A A OP V V --=即可求出点A 到平面1A PO 的距离;(2)先证明PB AP ⊥,1PB AA ⊥,由线面垂直的判定定理可得PB ⊥面1AA P ,进而可得1A PA ∠即为所求二面角的平面角,在1Rt A PA 中,计算11cos AP A PA A P∠=即可求解.【详解】(1)因为113AA OO ==,122AO AB ==,所以1AO ===在AOP中,由余弦定理可得:AP ===所以1A P ==,2OP =,在1AOP中,由余弦定理可得222111121cos 27A P OP A O A PO A P OP +-∠===⋅,所1sin7A PO∠==,所以11227A OPS=⨯=,设点A到平面1A PO的距离为d,由11A AOP A A OPV V--=,得111133AOP AO PS AA S d⋅⋅=⋅⋅,即1111233223d⨯⨯⨯⨯=,解得:32d=,所以点A到平面1A PO的距离为32;(2)二面角1A PB O--即二面角1A PB A--,因为AB是圆O的直径,点P在圆柱1OO的底面圆O上,所以PB AP⊥,因为1AA⊥面ABP,PB⊂面ABP,可得1PB AA⊥,因为1AP AA A⋂=,所以PB⊥面1AA P,因为1A P⊂面1AA P,AP⊂面1AA P,所以PB⊥AP,PB⊥1A P,所以1A PA∠即为二面角1A PB O--的平面角,在1Rt A PA中,1A P=,AP=所以11cos7APA PAA P∠===,所以二面角1A PB O--的余弦值为7.17.双曲线()2222:10,0x yC a ba b-=>>的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且ABD△是直角三角形.(1)求双曲线C的方程;(2)M、N是C右支上的两动点,设直线AM、AN的斜率分别为1k、2k,若122k k=-,求点A到直线MN的距离d的取值范围.【答案】(1)2213y x -=(2)(⎤⎦【解析】【分析】(1)根据等腰直角三角形的性质,转化为,,a b c 的方程,即可求解;(2)首先设直线MN 的方程为x my n =+,与双曲线方程联立,利用韦达定理表示122k k =-,并根据2m 的取值范围,求点到直线的距离的取值范围.【小问1详解】依题意,90BAD ∠=,焦半径2c =,由AF BF =,得2b ac a+=,得22222a a a +=-,解得:1a =(其中20a =-<舍去),所以222413b c a =-=-=,故双曲线C 的方程为2213y x -=;【小问2详解】显然直线MN 不可能与轴平行,故可设直线MN 的方程为x my n =+,联立2233x my n x y =+⎧⎨-=⎩,消去x 整理得()()222316310m y mny n -++-=,在条件2310Δ0m ⎧-≠⎨>⎩下,设()11,M x y ,()22,N x y ,则122631mn y y m +=--,()21223131n y y m -=-,由122k k =-,得()()12122110y y x x +++=,即()()12122110y y my n my n +++++=,整理得()()()()2212122121210m y y m n y y n ++++++=,代入韦达定理得,()()()()()22222312112121310n m m n n n m -+-+++-=,化简可消去所有的含m 的项,解得:5n =或1n =-(舍去),则直线MN 的方程为50x my --=,得d =又,M N 都在双曲线的右支上,故有2310m -<,2103m ≤<,此时1≤<,(d ⎤=⎦,所以点A 到直线MN 的距离d的取值范围为(⎤⎦.18.已知函数()()e xf x x a =-,a ∈R .(1)当1a =时,求()f x 的极值;(2)若函数()()ln g x f x a x =-有2个不同的零点1x ,2x .(i )求a 的取值范围;(ii )证明:12112e x x a x x +->.【答案】(1)极小值为0,无极大值(2)(i )()e,+∞;(ii )证明见解析【解析】【分析】(1)将1a =代入函数解析式,求导,判断其单调性,进而得出极值;(2)(i )化简函数()g x 的解析式,令e x t x =,问题可转化为()ln h t t a t =-在(0,)t ∈+∞有2个零点1t ,2t ,再利用导数研究函数()h t 的性质即可得出答案;(ii )等价于证明21e a t t >,再利用极值点偏移法即可得证.【小问1详解】1a =时,()()e 1xf x x =-,()()1e 1x f x x =+'- ,令()()()(),2e xm x f x m x x ''=∴=+,(),2x ∞∴∈--,()0m x '<;()2,x ∞∈-+,()0m x '>,()f x ∴'在(),2∞--单调递减,()2,∞-+单调递增,x →-∞ 时,10x +<,e 0x >,则′<0,()21210ef '--=-<,()00f '=,x →+∞时,()f x ∞'→+,(),0x ∞∴∈-时,′<0;∈0,+∞,′>0,∴在(),0∞-单调递减,在0,+∞单调递增,∴的极小值为()00f =,无极大值.【小问2详解】(i )()()()()ln e ln e ln e x x x g x f x a x x a x x x a x =-=-+=-,∈0,+∞,令e x t x =,()0,t ∞∈+,()1e 0x t x =+'> ,e x t x ∴=在0,+∞单调递增,令()ln h t t a t =-,即()h t 在()0,t ∞∈+有2个零点1t ,2t ,且111e x t x =,222e xt x =,()1a t a h t t t-='-= ,0a ∴≤时,()0h t '>,()h t 在()0,t ∞∈+单调递增,不存在2个零点,0a ∴>,()0,t a ∈ 时,()0h t '<;(),t a ∞∈+时,()0h t '>,()h t ∴在()0,a 单调递减,在(),a ∞+单调递增,0t → 时,()h t ∞→+;t →+∞时,()h t ∞→+,()()()min 1ln 0h t h a a a ∴==-<,()e,a ∞∴∈+.(ii )设12t t <,()110h => ,()e e 0h a =-<,∴由(i )知,121e t a t <<<<,即证:12e t t a >,即证:21e a t t >,2t a > ,1e a a t >,()h t 在(),a ∞+单调递增,∴即证:()21e 0a h t h t ⎛⎫=> ⎪⎝⎭,11ln t a t = ,()1111111e e e e e e ln ln ln ln 1ln a a a h a a a t t t t t t t ⎛⎫⎛⎫⎡⎤∴=-=-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令()()111e ln ln 1p t t t =+-,()11,e t ∈,即证:()10p t <,()1112211111eln e 1ln ln t t p t t t t t t -=='-+,令()111eln q t t t =-,()11,e t ∈,()1111e e 10t q t t t -=-='< ,()1q t ∴在()1,e 单调递减,()()1e 0q t q >=,()10p t ∴'>,()1p t ∴在()1,e 单调递增,()()1e 0p t p ∴<=,【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.19.已知集合{}()1,2,3,,,3A n n n =∈≥ N ,W A ⊆,若W 中元素的个数为()2m m ≥,且存在u ,()v W u v ∈≠,使得()2k u v k +=∈N ,则称W 是A 的()P m 子集.(1)若4n =,写出A 的所有()3P 子集;(2)若W 为A 的()P m 子集,且对任意的s ,()t W s t ∈≠,存在k ∈N ,使得2k s t +=,求m 的值;(3)若20n =,且A 的任意一个元素个数为m 的子集都是A 的()P m 子集,求m 的最小值.【答案】(1){}{}1,2,3,1,3,4;(2)2;(3)13.【解析】【分析】(1)根据()P m 子集的定义,即可容易求得;(2)取{}1,3W =,求得2m =,再利用反证法假设3m ≥,推得10a <与11a ≥矛盾即可;(3)令{}020,19,18,17,11,10,9,3,16,8,4,2W =,讨论12m ≤时不满足题意,再验证13m ≥时的情况满足题意,即可求得m 的最小值.【小问1详解】当4n =时,{}1,2,3,4A =,A 的所有()3P 子集为{}{}1,2,3,1,3,4.【小问2详解】当3n ≥时,取{}1,3W =,因为2132+=,所以W 是A 的()2P 子集,此时2m =;若3m ≥,设123,,a a a W ∈且1231a a a ≤<<,根据题意,3121213232,2,2kk k a a a a a a +=+=+=,其中123,,N k k k ∈;因为121323a a a a a a +<+<+,所以312222k k k <<,所以123k k k <<;又因为123,,N k k k ∈,所以321k k ≥+;因为()3121232222k k k a a a ++=++,所以()31212312222k k k a a a ++=++,所以()()3331212111222222222k k k k k k k a =++-=+-;因为3122221222222k k k k k k ++<+=≤,所以3122220k k k +-<,所以10a <,与11a ≥矛盾.综上所述,2m =.【小问3详解】设{}{}{}{}{}1234520,12,19,13,18,14,17,15,11,5,A A A A A ====={}{}{}{}{}{}{}678123410,6,9,7,1,3,2,4,8,16A A AB B B B =======,设W 的元素个数为m ,若W 不是A 的()P m 子集,则W 最多能包含1238,,,,A A A A 中的一个元素以及1234,,,B B B B 中的元素;令{}020,19,18,17,11,10,9,3,16,8,4,2W =,易验证0W 不是A 的()12P 子集,当12m ≤时,0W 的任意一个元素个数为m 的子集都不是A 的()P m 子集,所以,若A 的任意一个元素个数为m 的子集都是A 的()P m 子集,则13m ≥;当13m ≥时,存在{}1,2,3,4,5,6,7,8i ∈,使得W 中必有两个元素属于i A ,同时i A 中两个元素之和为2的某个正整数指数幂,P m子集;所以W是A的()所以,m的最小值为13.P m子集的定义,【点睛】关键点点睛:本题考查集合新定义问题,处理问题的关键是充分把握题中对()同时要熟练的使用证明方法,属综合困难题.。

2024届河南省豫南市级示范性高中高三下学期第一次月考数学试题

2024届河南省豫南市级示范性高中高三下学期第一次月考数学试题

2024届河南省豫南市级示范性高中高三下学期第一次月考数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知六棱锥P ABCDEF -各顶点都在同一个球(记为球O )的球面上,且底面ABCDEF 为正六边形,顶点P 在底面上的射影是正六边形ABCDEF 的中心G ,若PA AB =,则球O 的表面积为( )A .163πB .94π C .6πD .9π2.在四边形ABCD 中,//AD BC ,2AB =,5AD =,3BC =,60A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,点M 在边CD 所在直线上,则AM ME ⋅的最大值为( ) A .714-B .24-C .514-D .30-3.过抛物线()220y px p =>的焦点F 的直线与抛物线交于A 、B 两点,且2AF FB =,抛物线的准线l 与x 轴交于C,ACF ∆的面积为AB =( )A .6B .9C .D .4.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q两点.若|PQ |=|OF |,则C 的离心率为A BC .2D 5.已知n S 是等差数列{}n a 的前n 项和,1252a a +=,234+=a a ,则10S =( ) A .85B .852C .35D .3526.复数z 满足()11z i -=-,则复数z 等于() A .1i -B .1i +C .2D .-27.已知函数()y f x =在R 上可导且()()f x f x '<恒成立,则下列不等式中一定成立的是( )A .3(3)(0)f e f >、2018(2018)(0)f e f >B .3(3)(0)f e f <、2018(2018)(0)f e f >C .3(3)(0)f e f >、2018(2018)(0)f e f <D .3(3)(0)f e f <、2018(2018)(0)f e f < 8.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )A .B .2C .D .9.已知随机变量X 服从正态分布()1,4N ,()20.3P X >=,()0P X <=( ) A .0.2B .0.3C .0.7D .0.810.函数()cos2xf x π=与()g x kx k =-在[]6,8-上最多有n 个交点,交点分别为(),x y (1i =,……,n ),则()1nii i xy =+=∑( )A .7B .8C .9D .1011.函数3222x xx y -=+在[]6,6-的图像大致为 A . B . C .D .12.下列函数中,既是偶函数又在区间0,上单调递增的是( ) A .y x =B .()sin f x x x =C .()2f x x x =+ D .1y x =+二、填空题:本题共4小题,每小题5分,共20分。

山东省青岛市即墨实验高级中学2025届高三上学期第一次月考数学试题

山东省青岛市即墨实验高级中学2025届高三上学期第一次月考数学试题

山东省青岛市即墨实验高级中学2025届高三上学期第一次月考数学试题一、单选题1.已知角α的终边过点(-,则cos α=()A B C .D .2.已知数列{}n a 满足:11a =且()*110N 1n na n a ++=∈+,则2022a =()A .2-B .12-C .0D .13.若π4cos 65α⎛⎫+= ⎪⎝⎭,则πsin 26α⎛⎫-= ⎪⎝⎭()A .2425-B .2425C .725D .725-4.已知π,02x ⎛⎫∈- ⎪⎝⎭,441sin cos 2x x +=,则sin cos x x -=()AB .CD .5.设α满足sin 2αα=-,则cos(π2)α-=()A .12B C .12-D .2-6.数列是递增的等差数列,前n 项和为n S ,满足853a a =,则下列选项不正确的是()A .0d >B .10a <C .当4n =时,n S 最小D .0n S >时,n 的最小值为77.锐角α、β满足sin cos()sin βαβα=+,若1tan 2α=,则cos()αβ+=()A .12B C .2D .2-8.在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,若,,cos cos cos a b cA B C成等差数列,则sin cos cos AB C的最小值为()A .3B .4C .5D .6二、多选题9.函数π()2sin 2(01)3f x x ωω⎛⎫=+<< ⎝⎭的图象如图所示,将其向左平移π6个单位长度,得到()y g x =的图象,则下列说法正确的是()A .12ω=B .函数()f x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称C .函数()y g x =的图象关于直线π4x =对称D .函数π23y g x ⎛⎫=+ ⎪⎝⎭在ππ,99⎡⎤-⎢⎥⎣⎦上单调递减10.如图所示,一半径为4米的水轮,水轮圆心O 距离水面2米,已知水轮每60秒逆时针转动一圈,如果当水轮上点P 从水中浮现时(图中点P 0)开始计时,则()A .点P 第一次到达最高点需要20秒B .当水轮转动155秒时,点P 距离水面1米C .当水轮转动50秒时,点P 在水面下方,距离水面2米D .点P 距离水面的高度h (米)与t (秒)的函数解析式为ππ4sin()2306h t =-+11.已知等差数列{}n a 的前n 项和为1,0n S a >,且316=S S ,则下列说法正确的是()A .当9n =或10时,n S 取得最大值B .190S >C .0n S <成立的n 的最大值为20D .9110a a <三、填空题12.已知数列{}n a 为正项等比数列,11089100,2a a a a ==-,若n T 是数列{}n a 的前n 项积,则当n T 取最大值时n 的值为.13.为了测量隧道口A 、B 间的距离,开车从A 点出发,沿正西方向行驶D 点,然后从D 点出发,沿正北方向行驶一段路程后到达C 点,再从C 点出发,沿东南方向行驶400米到达隧道口B 点处,测得BD 间的距离为1000米.则隧道口AB 间的距离是.14.等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,且313n n S n T n +=+,则220715a ab b +=+;若nna b 的值为正整数,则n =.四、解答题15.锐角ABC V 的内角,,A B C 所对的边分别为,,a b c ,若2cos 2b a B c +=,且a =3b =.(1)求边c 的值;(2)求内角A 的角平分线AD 的长.16.已知函数()πππsin cos sin 632f x x x x ⎛⎫⎛⎫⎛⎫=+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求函数()f x 的单调递减区间;(2)将函数()f x 图象上所有点的横坐标缩短为原来的12(纵坐标不变),再向右平移π6个单位,得到函数()g x 的图象,若()65g α=-,且π5π,612α⎛⎫∈- ⎪⎝⎭,求cos2α的值.17.已知ABC V 的内角,,A B C 的对边分别为,,a b c ,且sin sin 2A Ca b A +=.(1)求B ;(2)若ABC V为锐角三角形,且b =,求ABC V 周长的取值范围.18.已知数列的前n 项和为()()()*11,1,221n nn n n n S n a S S S +∈==--N .(1)求数列的通项公式;(2)若()()11211n n n n b a a -+=++,求数列的前n 项和n T .19.已知数列{}n a 的前n 项和()()113n n S a n *=-∈N .若1423log n n b a +=,且数列{}nc 满足n n n c a b =⋅.(1)求证:数列{}n b 是等差数列;(2)求证:数列{}n c 的前n 项和23n T <;(3)若()2114n c t t ≤+-对一切n *∈N 恒成立,求实数t 的取值范围.。

海南省文昌中学2024-2025学年高三上学期第一次月考数学试题

海南省文昌中学2024-2025学年高三上学期第一次月考数学试题

海南省文昌中学2024-2025学年高三上学期第一次月考数学试题一、单选题1.已知{*|3}A x x =∈≤N ,{}2|40B x x x =-≤,则A B =I ( )A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]2.若复数3i2ia ++是纯虚数,则实数a =( ) A .32-B .32C .23-D .233.“幂函数()()21mf x m m x =+-在()0,∞+上为增函数”是“函数()222x xg x m -=-⋅为奇函数”的( )条件 A .充分不必要 B .必要不充分 C .充分必要D .既不充分也不必要4.已知()1tan 3π2α-=,则()()πsin sin π2πcos cos π2αααα⎛⎫+-+ ⎪⎝⎭⎛⎫-+- ⎪⎝⎭等于( )A .1B .-12C .13D .-135.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.如图,1F ,2F 为椭圆E :()222210,0x ya b a b+=>>的左、右焦点,中心为原点,椭圆E,直线4x =上一点P 满足12F PF V 是等腰三角形,且12120F F P ∠=︒,则E 的离心率为( )ABC .15D .256.将甲、乙等8名同学分配到3个体育场馆进行冬奥会的志愿服务,每个场馆不能少于2人,则不同的安排方法有( ) A .2720B .3160C .3000D .29407.已知等边ABC VP 为ABC V 所在平面内的动点,且||1PA =u u u r ,则PB PC ⋅u u u r u u u r的取值范围是( ) A .39,22⎡⎤-⎢⎥⎣⎦B .111,22⎡⎤-⎢⎥⎣⎦C .[1,4]D .[1,7]8.已知函数()()e xf x x a =+⋅,若对任意121x x >>都有()()12210x f x x f x -<,则实数a 的取值范围是( ) A .[)4,-+∞B .[)3,∞-+C .[)2,-+∞D .[)1,-+∞二、多选题9.下列不等式一定成立的有( ) A .12x x+≥ B .12(1)4x x -≤ C.22311x x +≥+ D2≥ 10.已知前n 项和为n S 的正项等比数列{}n a 中,148a a =,322a a =+,2log 1nn n a b S =+,则( ) A .65448a a -=- B .7127S =C .21n n S a =-D .数列{}n b 中的最大项为2b11.四棱锥P ABCD -的底面为正方形,PA 与底面垂直,2PA =,1=AB ,动点M 在线段PC 上,则( )A .不存在点M ,使得AC BM ⊥B .MB MD +C .四棱锥P ABCD -的外接球表面积为6π D .点M 到直线AB的距离的最小值为三、填空题12.已知平面向量a r ,b r 满足||1a =r ,(1,2)b =r ,(2)a a b ⊥-r r r ,则向量a r,b r 夹角的余弦值为.13.设函数()y f x =的定义域为R ,且()1f x +为偶函数,()1f x -为奇函数,当[]1,1x ∈-时,()21f x x =-,则()20231k f k ==∑.14.已知函数()21,1ln ,1x x f x x x x⎧-<⎪=⎨≥⎪⎩,若关于x 的方程()()()22120f x m f x m +--=⎡⎤⎣⎦有5个不同的实数解,则实数m 的取值范围是.四、解答题15.已知a 、b ,c 分别是ΔABC 内角A ,B ,C 的对边,()cos (cos cos )b a C c A B -=-,22b ac =.(1)求cos C ;(2)若ΔABCc .16.如图,四棱锥P ABCD -的底面为直角梯形,PA ⊥底面ABCD ,AD BC ∥,60ADC ∠=︒,22AP AD BC ===,E 为棱CP 上一点.(1)证明:平面ABE ⊥平面ADP ;(2)若AE BE =,求平面ABE 与平面CDP 所成二面角的平面角的正弦值.17.已知椭圆方程为()222210+=>>x y a b a b,过点(),0A a -,()0,B b 的直线倾斜角为π6,原(1)求椭圆的方程;(2)对于()1,0D -,是否存在实数k ,使得直线2y kx =+分别交椭圆于点P ,Q ,且DP D Q =,若存在,求出k 的值;若不存在,请说明理由. 18.已知函数()()ln 1f x x =+. (1)求曲线y =f x 在3x =处的切线方程. (2)讨论函数()()()F x ax f x a =-∈R 的单调性; (3)设函数()()1111g x x f f x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭.证明:存在实数m ,使得曲线y =g x 关于直线x m =对称.19.若有穷数列12,n a a a L (n 是正整数),满足1n a a =,21n a a -=,…,1n a a =即1i n i a a -+=(i 是正整数,且1i n ≤≤),就称该数列为“对称数列”.(1)已知数列 b n 是项数为8的对称数列,且1b ,2b ,3b ,4b 成等差数列,11b =,410b =,试写出 b n 的每一项.(2)已知{}n c 是项数为2k (其中1k ≥,且Z k ∈)的对称数列,且122,,,k k k c c c ++L 构成首项为15,公差为2-的等差数列,数列{}n c 的前2k 项和为2k S ,则当k 为何值时,2k S 取到最大值?最大值为多少?(3)对于给定的正整数1i >,试写出所有项数为21i -的对称数列,使得211,2,22i -K 成为数列中的连续项;当2000i >时,并分别求出所有对称数列的前2024项和2024S .。

2024-2025学年渭南市蒲城县高三数学上学期10月第一次月考卷及答案解析

2024-2025学年渭南市蒲城县高三数学上学期10月第一次月考卷及答案解析

蒲城中学2024—2025学年上学期高三第一次月考数学注意事项:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.本试卷命题范围:集合与逻辑、不等式、函数.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1. 已知集合{}13,5A =,,{}1,2,3B =,则A B = ( )A. {}3 B. {}1,2,5 C. {}1,2,3,5 D. {}1,2,3,4,5【答案】C【解析】【分析】根据并集的知识求得正确答案.【详解】依题意,A B = {}1,2,3,5.故选:C2. 已知命题2024:R,20230x p x x ∀∈+>,则p 的否定是( )A. 2024R,20230x x x ∀∈+≤ B. 2024R,20230x x x ∃∈+<C. 2024R,20230x x x ∃∈+≤ D. 2024R,20230x x x ∃∈+≠【答案】C【解析】【分析】根据全称命题的否定即可得到结果.【详解】先变量词,再否结论,而“202420230x x +>”的否定是“202420230x x +≤”,故p 的否定是:2024R,20230x x x ∃∈+≤.故选:C.3. 不等式304x x+≥-的解集为( )A. []3,4- B. [)3,4-C. ()(),33,∞∞--⋃+ D. (](),34,-∞-+∞ 【答案】B【解析】【分析】转化为一元二次不等式,求出解集.【详解】304x x +≥-等价于()()34040x x x ⎧+-≥⎨-≠⎩,解得[)3,4x ∈-.故选:B4. 函数211x y x -=+-的定义域是( )A. [)4,-+∞ B. ()4,-+∞C. [)()4,00,-+∞ D. [)()4,11,-+∞ 【答案】D【解析】【分析】根据给定条件,利用函数有意义列出不等式组求解即得.【详解】函数211x y x -=-有意义,则4010x x +≥⎧⎨-≠⎩,解得4x ≥-且1x ≠,所以所求定义域为[)()4,11,-+∞ .故选:D5. 函数()21ex x f x +=的大致图象为( )A. B.C. D.【答案】A【解析】【分析】利用导数研究函数的单调性,即可确定.【详解】()()()2222212e (1)e 21210e e e e x xx x x x x x x x x x x f x --+-+--+'===-=-≤恒成立,所以函数()21ex x f x +=在定义域R 上单调递减,且对任意R x ∈,都有210,e 0x x +>>,所以对任意R x ∈,都有()0f x >,所以结合选项可知A 满足,故选:A.6. 已知120232023202212024,log 2022,log 2023a b c ===,则,,a b c 的大小关系是( )A. a b c>> B. b a c >>C. c a b>> D. a c b>>【答案】A【解析】【分析】根据指数函数、对数函数的单调性确定范围即可比较大小.【详解】依题意102023202420241a =>=,2023202320230log 1log 2022log 20231<<<=,202220221log log 102023c =<=,所以a b c >>.故选:A7. 函数()f x =[]1,1-上单调递减,则a 的取值范围为( )A. 1a ≤- B. 1a <- C. 31a -≤≤- D. 31a -<<-【答案】C【解析】【分析】令()272t x ax x =+-,由题意可得()t x 需满足在区间[]1,1-上单调递减,且()min 0t x ≥,由此列出不等式,求得答案.【详解】令()272t x ax x =+-,则()f t =由题意可得()272t x ax x =+-需满足在区间[]1,1-上单调递减,且()min 0t x ≥,而()272t x ax x =+-图象开口向下,对称轴为t a =,故1a ≤-且()1620t a =+≥,即31a -≤≤-,故选:C8. 设0a >,0b >,则下列不等式中不恒成立的是( ).A. 12a a +≥ B. 222(1)a b a b +≥+-C. ≥D. 3322a b ab +≥【答案】D【解析】【详解】分析:根据基本不等式、作差法、分析法论证A,B,C 正确,举反例得D 错误.详解:332222()()a b ab a b a ab b +-=-+-,a b <<有3322a b ab <+,故D项错误,其余恒成立:1122,a a a a+≥=⇒+≥2222222(1)(1)(1)02(1),a b a b a b a b a b +-+-=-+-≥⇒+≥+-当a b ≥时0a b a b a b a b ---+≥---+=⇒-当a b <0>D .点睛:本题考查根据基本不等式、作差法、分析法论证等知识点,考查推理论证能力.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列函数在其定义域上既是奇函数又是增函数的是( )A. 1y x = B. e e x xy -=-的C. 3y x = D. 2log y x=【答案】BC【解析】【分析】根据解析式直接判断奇偶性与单调性即可求解.【详解】选项A :1y x =为奇函数不是增函数,选项B :e e x x y -=-,为奇函数和增函数,选项C :3y x =为奇函数和增函数,选项D :2log y x =不是奇函数.故选:BC.10. 下列四个命题中正确的是( )A. 若,a b c d >>,则a d b c->- B. 若22a m a n >,则m n >C. 若110a b <<,则2b ab > D. 若a b >,则11a b a>-【答案】ABC【解析】【分析】根据不等式的性质判断ABC ,举反例排除D ,从而得解.【详解】A.由条件可知,a b >,d c ->-,所以a d b c ->-,故A 正确;B.因为22a m a n >,所以20a >,所以m n >,故B 正确;C.因为110a b<<,所以0b a <<,所以2b ab >,故C 正确;D.因为a b >,取1,0a b ==,则111a b a ==-,故D 错误.故选:ABC11. 下列说法正确的是( )A. “万事俱备,只欠东风”,则“东风”是“赤壁之战东吴打败曹操”的必要不充分条件B. 若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件C. 方程20ax x a ++=有唯一解的充要条件是12a =±D. []x 表示不超过x 的最大整数,x 表示不小于x 的最小整数,则“[]ab =”是“a b ≥”的充要条件【答案】AB【解析】【分析】根据充分条件和必要条件的定义依次判断各选项即可.【详解】对于A ,“东风”是“赤壁之战东吴打败曹操”的必要条件,但不是充分条件,故A 正确;对于B ,若p 是q 的必要不充分条件,则q p ⇒,p q ¿;若p 是r 充要条件,则p r ⇒,r p ⇒;则有q r ⇒,r q ¿,即q 是r 的充分不必要条件,故B 正确;对于C ,当0a =时,方程20ax x a ++=可化为0x =,也满足唯一解的条件,故C 错误;对于D ,依题意,得[]a a ≥,b b ≥,所以“[]a b =”⇒“a b ≥”,即充分性成立;反之不成立,如3.1 1.5≥,[3.1]3=,1.52=,不能推出“[3.1] 1.5=”,即必要性不成立,故D 错误.故选:AB .三、填空题:本大题共3小题,每小题5分,共15分.12. 已知函数()()16log ,2,21,2x x f x f x x ≤⎧=⎨->⎩则(4)f =______.【答案】1【解析】【分析】根据自变量确定代入哪段,结合对数性质计算即可.【详解】因为()()()42342f f f ==,()1612log 24f ==,所以()()4421f f ==.故答案为:113. 若“x ∃∈R ,使得2210x mx -+<”是假命题,则实数m 的取值范围是______.【答案】⎡⎣-【解析】【分析】根据特称命题的定义和一元二次不等式的恒成立问题求解.【详解】因为“x ∃∈R ,使得2210x mx -+<”是假命题,所以“x ∀∈R ,使得2210x mx -+≥”是真命题,所以280m ∆=-≤,解得m ⎡∈-⎣,故答案为: ⎡⎣-.14. 已知函数e ()1x mx f x x =+-是偶函数,则m =__________.【答案】2【解析】【分析】求出f(x)定义域,根据f(x)是偶函数,可取定义域内任意x ,根据f(-x)=f(x)即可求得m 的值.【详解】由e 10x -≠得e ()1x mx f x x =+-的定义域为{}|0x x ≠,则∵e ()1x mx f x x =+-是偶函数,故f(-1)=f(1),即111e 1e 1m m ---+=+--,解得m=2.此时()1(e )e 1e 21x x x x x f x x +=+=--,而()()e (1e 1)x x xf x f x ---+-==-,故()f x 确为偶函数,故m=2.故答案为:2.四、解答题:本大题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15. 设集合{}52A x x =-<.{}121B x x m =<<+.(1)若A B =∅ ,求实数m 的取值范围;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数m 的取值范围.【答案】(1)1m ≤;(2)[)3,+∞.【解析】【分析】(1)分B =∅和B ≠∅两种情况讨论即可;(2)由题得A 是B 的真子集,根据集合间的基本关系求解即可.【小问1详解】{}{}{}5225237A x x x x x x =-<=-<-<=<<,当B =∅时,121m ≥+,解得0m ≤当B ≠∅时,由A B =∅ 得:0213m m >⎧⎨+≤⎩,解得01m <≤;综上,1m ≤;【小问2详解】由题得,A 是B 的真子集,所以31721m ≥⎧⎨≤+⎩,且等号不同时成立,解得3m ≥,所以实数m 的取值范围为[)3,+∞.16. 已知函数()21x b f x ax +=+,点()1,5A ,()2,4B 是()f x 图象上的两点.(1)求a ,b 的值;(2)求函数()f x 在[]1,3上的最大值和最小值.【答案】(1)18a b =⎧⎨=⎩(2)max ()5f x =,min 7()2f x =【解析】【分析】(1)把图象上的两点代入函数解析式,由方程组求a ,b 的值;(2)定义法求函数单调性,由单调性求最值.【小问1详解】因为点()1,5A ,()2,4B 是()f x 图象上的两点,所以2514421b a b a +⎧=⎪⎪+⎨+⎪=⎪+⎩,解得18a b =⎧⎨=⎩.【小问2详解】设1213x x ≤<≤,则()()()()()2112121212628281111x x x x f x f x x x x x -++-=-=++++,因为1213x x ≤<≤,所以210x x ->,()()12110x x ++>,则()()120f x f x ->,即()()12f x f x >,所以函数()281x f x x +=+在[]1,3上单调递减.故()max ()15f x f ==,()min 7()32f x f ==.17. 已知函数()2109f x x x =-+.(1)求不等式()0f x >的解集;(2)若0x >,不等式()f x ax ≥恒成立,求a 的取值范围.【答案】(1){1x x <或}9x >;(2)(],4-∞-【解析】【分析】(1)直接解不等式21090x x -+>即可;(2)转化问题转化为()9100x a x x +-≥>恒成立,然后利用基本不等式求出910x x +-的最小值即可.【小问1详解】不等式()0f x >,即为21090x x -+>,则有()()190x x -->,解得1x <或9x >,所以不等式()0f x >的解集为{1x x <或}9x >.【小问2详解】不等式()()0f x ax x ≥>,即为2109x x ax -+≥,所以()9100x a x x +-≥>,只需910x x+-的最小值大于或等于a 即可,因为910104x x +-≥-=-,当且仅当9x x =即3x =时取等号.所以910x x+-的最小值为4-,所以4a ≤-,故a 的取值范围是(],4-∞-18. 若定义在R 上的奇函数()f x 满足()()2=f x f x -,当[]0,1x ∈时,()22f x x x =-.(1)求()2024f 值;(2)当[]3,4x ∈时,求函数()f x 的解析式.【答案】(1)0 (2)()268x x f x =-+-的【解析】【分析】(1)根据函数的奇偶性、周期性等知识求得正确答案.(2)根据函数解析式的求法求得正确答案.小问1详解】定义在R 上的奇函数()f x 满足()()2=f x f x -,()()f x f x ∴-=-,()()()2+==f x f x f x --,()()4f x f x ∴+=,即函数()f x 是以4为周期的周期函数()()()2024450600f f f ∴=⨯==.【小问2详解】当[]0,1x ∈时,()22f x x x =-,∴当[]1,0x ∈-时,[]0,1x -∈,()()()22()22f x f x x x x x ⎡⎤=--=----=--⎣⎦,又当[]3,4x ∈时,[]41,0x -∈-,()()()224(4)2468f x f x x x x x ∴=-=----=-+-.19. 已知()f x 为偶函数、()g x 为奇函数,且满足1()()2x f x g x --=.(1)求()f x ,()g x ;(2)若方程2()[()]29mf x g x m =++有解,求实数m 的取值范围.【答案】(1)()()22,22x x x xf xg x --=+=- (2)10m ≥【解析】【分析】(1)根据函数的奇偶性列方程组来求得()(),f x g x .(2)利用分离常数法、构造函数法,结合基本不等式求得正确答案【小问1详解】依题意,()f x 为偶函数、()g x 为奇函数,且满足1()()2x f x g x --=,所以11()()2()()2x x f x g x f x g x -+⎧-=⎨---=⎩,则11()()2()()2xx f x g x f x g x -+⎧-=⎨+=⎩,解得()()22,22x x x x f x g x --=+=-.【.【小问2详解】若方程2()[()]29mf x g x m =++有解,即()()2222229x x x xm m --+-=++有解,即()()222222722225x x x x x x m ---⎡⎤-=++=++⎣⎦+,对于方程()()2222522x x x x m --⎡⎤-=++⎣⎦+①,当0x =时,方程左边为0,右边为9,所以0x =不是①的解.当0x ≠时,令22x x t -=+,由于222x x -+>=,所以2t >,20t ->,则方程①可化()()()2222429525,22t t t t m t m t t -+-++-=+==--9244102t t =-++≥+=-,当且仅当92,52t t t -==-时等号成立,所以10m ≥.【点睛】方法点睛:对于奇函数,有()()f x f x -=-,对于偶函数,有()()f x f x -=.当题目所给条件中包括奇函数或偶函数时,首先应想到运用上述两个式子来对问题进行求解.求方程有解的问题,可以考虑利用分离参数法来进行求解.为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省师大附中高三第一次月考题数学试题.9(考试用时120分钟,满分150分)第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分) 1.设函数)25,2(,1)(则过点x x x f +=处的切线的斜率是 ( )A .45 B .43C .2529D .25212.下列四个函数中,在区间(0,1)上为增函数的是 ( )A .x y 2log -=B .x y sin =C .x y )21(=D .21-=xy3.βα,是两个不重合的平面,在下列条件中,可判定平面βα和平行的是 ( )A .ββα//,//,,n m n m 且内两条直线是B .βα,都垂直于平面γC .α内不共线三点到β的距离都相等D .αββα//,//,,,,n m n m n m 且是两条异面直线⊂⊂4.若0为平行四边形ABCD 的中心,122123,6,4e e e BC e AB -==则等于 ( )A .B .C .COD .DO5.在等比数列的值是则中2625161565,),0(,}{a a b a a a a a a a n +=+≠=+( )A .abB .22abC .ab 2D .2ab 6.已知集合,8,|{**∈-∈=N x N x x M 且则M 中只含二个元素的子集的个数为( )A .3B .15C .21D .427.函数x x y 2cos 22sin -=的最大值是( )A .12-B .12+C .3D .28.若一个圆的圆心在抛物线x y 42=的焦点处,且此圆与直线01=++y x 相切,则这个圆的方程是( )A .01222=--+x y x B .01222=+++x y xC .01222=+-+y y xD .01222=+++y y x9.已知),2,2(0)(),,(0)(,)(),(22ba x gb a x f x g x f 的解集为的解集为奇函数>>则不等式的解集是0)()(>x g x f( )A .)2,2(2baB .),(22a b --C .),2()2,(22a bb a --⋃D .)2,2(2b a ⋃),(22a b --10.某人制定了一项旅游计划,从7个旅游城市中选择5个进行游览。

如果A 、B 为必选城市,并且在游览过程中必须按先A 后B 的次序经过A 、B 两城市(A 、B 两城市可以不相邻),则有不同的游览线路( ) A .120种 B .240种C .480种D .600种11.设偶函数)1()2(,),0(||log )(+-+∞+=a f b f b x x f a 与则上单调递减在的大小关系是( )A .)1()2(+=-a f b fB .)1()2(+>-a f b fC .)1()2(+<-a f b fD .不能确定12.设函数f (x )的定义域为D ,如果对于任意的D x D x ∈∈21,存在唯一的,使 )(2)()(21为常数C C x f x f =+成立,则称函数f (x )在D 上均值为C ,给出下列四个函数①3x y =②x y sin 4= ③x y lg = ④xy 2=则满足在其定义域上均值为2的所有函数是 ( )A .①②B .③④C .②④D .①③第Ⅱ卷二、填空题(本题共4小题,每小题4分,共16分)13.在的系数为的展开式中226,)1()1(x x x x ++- .14.设=+++++=)1110()119()112()111(,244)(f f f f x f xx 则和式 . 15.已知的两夹角是则321321321,,,1||||||,OP OP OP OP OP OP =+===++ . 16.关于复数:]2,0(,2sin2cos有下列命题πααα∈+=i z①若;2,πα==则z ②将复数z 在复平面内对应的向量90逆时针旋转OP 得到向量];2,0(,2cos 2sin,πααα∈+-i 对应的复数是则③复数z 在复平面内对应的轨迹是单位圆;④复数z 2的辐角主值是α.其中,正确命题的序号是 (把你认为正确的命题的序号都填上). 三、解答题:(本大题共6小题,共74分)17.(本题满分12分)已知函数]5,5[22)(2-∈++=x ax x x f (1)当a =-1时,求函数f (x )的最大值和最小值.(2)求实数a 的取值范围,使]5,5[)(-=在区间x f y 上是单调函数.18.(本题满分12分)设函数),(,),(),(:),1,0(log )(21n a x f x f x f a a a x x f 已知数列为常数≠>=…,是公差为2的等差数列,且x 1=a 4 (1)求数列}{n x 的通项公式;(2))(lim ,1021n n x x x a +++<<∞→ 求时当;(3)令.)()1(,1),()(的大小与试比较时当n g n g a x f x x g n n +>=19.(本题满分12分)如图,正四棱柱ABCD —A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E 、F 分别是棱AB ,BC 的中点,EF 与BD 相交于G (1)求证:B 1EF ⊥平面BDD 1B 1;(2)求点D 1到平面B 1EF 的距离d ; (3)求三棱锥B 1—EFD 1的体积V.20.(本题满分12分)某民营企业生产A 、B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位:万元)(1)分别将A 、B 两种产品的利润表示为投资的函数关系式写出(2)该企业已筹集到10万元资金,并全部投入A 、B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元)21.(本题满分12分) 已知二次函数],1,[,12)(),0,0()(2+∈+='++==n n x x x f c bx ax x f y 当导函数经过点n a x f N n 是整数的个数记为时)(,)(*∈(1)求a ,b,c 的值;(2)求数列}{n a 的通项公式; (3)令.}{,21n n n n n S n b a a b 项和的前求+⋅=22.(本题满分14分)已知二次函数有两个实数根设方程x x f R b a bx ax x f =∈>++=)(),0(1)(2x 1、x 2.(1)如果.1,)(,420021->=<<<x x x x f x x 求证的对称轴为设函数的解析式 (2)若.,2)(,200的取值范围求实数的两个实根相差为且b x x f x =<<湖南师大附中高三第一次月考题数学参考答案一、选择题答题卡题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BBDBCCAACDCD二、填空题答题卡13.10 14.5 15.120° 16.①② 三、解答题17.(本题满分12分)解:(1)1,37 (2)5,5≥-≤a a 18.(本题满分12分) 解:(1)222)1(4)(24log )(41+=⋅-+=∴===n n x f d a x f n a2222log :+=+=n n n a a x n x 即(2)由1022<<=+a ax n n 及 知:是以4a 为首项,a 2为公比等比数列 22422222242122421122242)()1()42()1()22()22()()()3(1)(lim ,1)1(a n n a n n n g n g a n n g a n n a x f x n g a a x x x a a a x m x x S n n n n n n n n n ⋅++=⋅++=+∴⋅+=+⋅+=+⋅==-=+++--=+++=+++∞→ 从而 )()1(,12,1n g n g n n a >+∴>++>又19.(本题满分12分)证:(1)EF//AC EF ⊥BD EF ⊥BB 1 可知EF ⊥平面BDD 1B 1,又EF ⊂面B 1EF ,111B BDD EFB ⊥∴(2)在对角面BDD 1B 1中,作D 1H ⊥B 1G ,垂足为H ,易证D 1H ⊥面B 1EFH D d 1=∴在,sin ,1111111H B D B D H D HB D Rt ∠⋅=∆中 3161722117163131)3(1717161716174sin sin ,42222111111111111111=⋅⋅⋅⋅=⋅⋅=-=-====∴==∠=∠=⋅==∴∆EF B D B S d EF B U EFD U U H D d GB B B GB B H B D B A B D20.(本题满分12分)解:(1)设投资为x 万元,A 产品的利润为 f (x ) 万元,B 产品的利润为 g (x ) 万元 由题设x k x g x k x f 21)(,)(==由图知4141)1(1=∴=k f )0(45)()0(41)(:45,25)4(2≥=≥==∴=x x x g x x x f k g 从而又(2)设A 产品投入x 万元,则B 产品投入10-x 万元;设企业利润为y 万元。

75.342510,41665,25)100(1665)25(4145410,10)100(,10454)10()(max 22=-=≈==≤≤+--=+-==-≤≤∴-+=-+=x y t t t t t y t x x x x x g x f y 此时时当则令答:当A 产品投入3.75万元,B 产品投入6.25万元时,企业获得大利润约4万元。

21.(本题满分12分)解:(1)]23,[)()2(;1,022+++===n n n n x f b a c 的值域为32+=n a n)52(5252151)521321()11191()9171()7151(521321)52()32(22)3(3211+=+-=+-+++-+-+-=++++=∴+-+=+⋅+=⋅=+n n n n n b b b b S n n n n a a B nn n n n22.(本题满分14分)解:.0,0,02.41231)1(20)2(,1)1(1244)1(4)()(,2,20,,01)(,2,20,,01)()2(1814114112,832411,81221443034160124,0)(0)2(,0)(,1)1()()()1(0222212212212121121212102<<∴>-=<-<+-<+-=+=--=-+=-=-∴<<>=-=-∴<<>=*=⨯->->-=-<<->-<<-⇒⎩⎨⎧>-+<-+><>*+-+=-=b b abx b b b g b a a a b x x x x x x x x x ax x x x x ax x aa b x a b a a a b a b a b a x g g a x b ax x x f x g 综上有又得代入有由得即两根同号即两根同号可知由也有得即且依条件得且设。

相关文档
最新文档