高等数学定积分的应用
应用高等数学第3章3.2.3 定积分的应用21页PPT
取x为积分变量,在 x[0,6]上任 取一子区间[x, xdx],当dx很小时, 在该微区间上阀门所受水的微压力是:
dF2gxydx29.8103x(1x3)dx
6
从而所求的压力为
F069.8103(1 3x26x)dx9.810391x33x260 8.23105N
一、微元法的基本思想
如图所示的曲边梯形的面积A是定积分
A
42(y4)y22
dx
-2
y2 = 2x
(2,-2) A
B (8,4) y = x-4
x
(
y2
4y
y3 4 )
2
6
2
18
a b 例4
求椭圆
x2 a2
by22
1,(a0,b0) 的面积.
解:如图,先求出椭圆在第一象限内的面积 A1 ,
它是由 yb a2 x2, x0,a与x轴、y轴所围
根据微分的定义有 f(x)dxdA,从而得到曲边梯形的
面积
b
b
AAadAaf(x)dx
一、微元法的基本思想
因此求曲边梯形面积A的方法是:
第一步,在[a,b]上任取一形式子区间[x,x+dx]
(其中dx为x的微元,即无限细分),并求出面
积A的微分dA=f(x)dx,即面积微元;
第二步,以微分表达式f(x)dx为被积表达式,在[a,
成的面积.
a
A1
ab 0a
a2 x2dx
令 x asint, x 0, a,
则 t arcsin x ,
a
dxacostdt.
A1
ab 0a
a2x2dx π 2b
0a
a2a2sin2tacostdt
高等数学第五章定积分及其应用
⾼等数学第五章定积分及其应⽤第五章定积分及其应⽤第⼀节定积分概念1、内容分布图⽰★曲边梯形★曲边梯形的⾯积★变速直线运动的路程★变⼒沿直线所作功★定积分的定义★定积分存在定理★定积分的⼏何意义★定积分的物理意义★例1 ★定积分的近似计算★例2★内容⼩结★课堂练习★习题5-1 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1利⽤定积分的定义计算积分01dx x 2?.讲解注意:例2的近似值.⽤矩形法和梯形法计算积分-102dx ex讲解注意:第⼆节定积分的性质1、内容分布图⽰★性质1-4★性质5及其推论★例1★性质6★例2★例3★性质7★例4★函数的平均值★例5★内容⼩结★课堂练习★习题5-2★返回2、讲解注意:例1⽐较积分值dx e x ?-2和dx x ?-2的⼤⼩.讲解注意:例2估计积分dx xπ+03sin 31的值.讲解注意:例3估计积分dx xxππ/2/4sin 的值.讲解注意:例4设)(x f 可导1)(lim =+∞→x f x 求且,,dt t f tt x x x ?++∞→2)(3sin lim .讲解注意:例5计算纯电阻电路中正弦交流电t I i m ωsin =在⼀个周期上的()功率的平均值简称平均功率.讲解注意:第三节微积分基本公式1、内容分布图⽰★引例★积分上限函数★积分上限函数的导数★例1-2★例3★例4★例5★例6★例7-8 ★例9★例10★例11★例12★例13★例14★内容⼩结★课堂练习★习题5-3★返回2、讲解注意:3、重点难点:4、例题选讲:例1?x tdt dxd 02cos 求[].讲解注意:例2dt e dxdx t ?321求[].讲解注意:例3.)()((3);)()((2);)((1).,)(00sin cos )(?-===x x x x t f dt t x f x F dt t xf x F dt e x F x f 试求以下各函数的导数是连续函数设讲解注意:例4求.1cos 02x dte x t x ?-→讲解注意:设)(x f 在),(+∞-∞内连续0)(>x f .证明函数且,??=xxdtt f dtt t x F 00)()()(在),0(+∞内为单调增加函数.f 例5讲解注意:例6],1[)ln 21()(1上的最⼤值与最⼩在求函数e dt t t x I x ?+=.值讲解注意:例7求.dx x ?12讲解注意:例8求.1dxx ?--12讲解注意:例9设求??≤<≤≤=215102)(x x x x f ?2讲解注意:例10.|12|10-dx x 计算讲解注意:.cos 1/3/22?--ππdx x 计算例11讲解注意:例12求.},max{222?-dx x x讲解注意:例13计算由曲线x y sin =在,0π之间及x .轴所围成的图形的⾯积x =x =A讲解注意:例14?,./5.,362了多少距离问从开始刹车到停车刹车汽车以等加速度到某处需要减速停车速度⾏驶汽车以每⼩时s m a km -=汽车驶过设讲解注意:第四节换元法积分法和分部积分法1、内容分布图⽰★定积分换元积分法★例1★例2★例3★例4★定积分的分部积分法★内容⼩结★课堂练习★习题5-4★返回★例5★例6★例7★例16★例17★例182、讲解注意:3、重点难点:4、例题选讲:例1计算.sin cos /25?πxdx x讲解注意:例2?a0dx 计算.0a >)(-2x 2a讲解注意:例3计算.sin sin 053?π-dx x x讲解注意:例4计算定积分dx x x ++412.2?讲解注意:例5当)(x f 在],[a a -上连续,,,)(x f 为偶函数当当有(1)(2)则 ??-=aaadx x f dx x f 0)(2)()(x f 为奇函数有?-=aa dx x f 0)(.;讲解注意:例6.--+dx e x x x 计算讲解注意:例7计算.11cos 21122?--++dx x xx x讲解注意:例8若)(x f 在]1,0[上连续证明,(1)?=00)(cos )(sin dx x f dx x f ;(2)πππ=)(sin 2)(sin dx x f dx x xf ,由此计算?π+02cos 1sin dx x x x ./2π/2π讲解注意:例9计算.arcsin 0?xdx 1/2讲解注意:例10计算.2cos 10+x xdx/4π讲解注意:例11计算.sin 0?xdx /2π2x讲解注意:例12.1dx e x 计算1/2讲解注意:例13.1)1ln(102++dx x x 求定积分讲解注意:例14-22ln e e dx x x求.讲解注意:例15.,612ln 2x e dt xt 求已知?=-π讲解注意:例16).(,)(13)()(1022x f dx x f x x x f x f 求满⾜⽅程已知? --=讲解注意:例17证明定积分公式xdx I n n n 0--?-??--?-=n n n n n n n n n n ,3254231,22143231π为正偶数.为⼤于1的正奇数./2π/2π??讲解注意:例18?π05.2cos dx x 求讲解注意:第五节定积分的⼏何应⽤1、内容分布图⽰★平⾯图形的⾯积A ★例1 ★例2 ★平⾯图形的⾯积B ★例3 ★例4 ★平⾯图形的⾯积C ★例5 ★平⾯图形的⾯积D★例6 ★例7 ★例8 旋转体★圆锥★圆柱★旋转体★旋转体的体积★例9 ★例 10 ★例 11 ★平⾏截⾯⾯积为已知的⽴体的体积★例 12 ★例 13 ★内容⼩结★课堂练习★习题5-5 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1]1,1[]1,0[2之间的⾯积.和轴上⽅在下⽅与分别求曲线-∈∈=x x x x y讲解注意:例2],1[ln 之间的⾯积.轴上⽅在下⽅与求e x x y =讲解注意:例3.1,1,03所围图形⾯积与直线求=-===x x y x y讲解注意:例44,0,042所围图形⾯积.和直线求由曲线===-=x x y x y讲解注意:例5.2所围成平⾯图形的⾯积与求由抛物线x y x y ==讲解注意:例642,2,所围成图形的⾯积.求由三条直线=-=+=y x y x x y422围成图形的⾯积与求+-==x y x y讲解注意:例8.0cos sin 之间所围图与在和求由曲线π====x x x y x y 形的⾯积讲解注意:例9r 圆锥体的直线、h x =及x 轴围直线连接坐标原点O 及点),(r h P 成⼀个直⾓三⾓形.x 轴旋转构成⼀个底半径为计算圆锥体的体积.h ,将它绕⾼为,的讲解注意:例10.12222y x V V y x by a x 和积轴旋转所得的旋转体体轴和分别绕求椭圆=+讲解注意:例112,22轴旋转⽽成的旋转体的体积.轴和所围成的图形分别绕求由曲线y x x y x y -==讲解注意:例12⼀平⾯经过半径为R 的圆柱体的底圆中⼼计算这平⾯截圆柱体所得⽴体的体积.并与底⾯交成,,⾓讲解注意:例13.的正劈锥体的体积的圆为底、求以半径为h R ⾼位平⾏且等于底圆直径的线段为顶、讲解注意:第六节积分在经济分析中的应⽤1、内容分布图⽰★由边际函数求原经济函数★需求函数★例1★总成本函数★例2★总收⼊函数★例3★利润函数★例4由边际函数求最优问题★例5★例6其它经济应⽤★例7⼴告策略★消费者剩余★例8★国民收⼊分配★例9★返回2、讲解注意:3、重点难点:4、例题选讲:例1),80,(80,4) (,==-='q pp qp格的函数关系.时即该商品的最⼤需求量为且边际需求的函数已知对某商品的需求量是价格求需求量与价讲解注意:例2, 90,2)(0.2 ==ceqCq 求总成本函数.固定成本的函数若⼀企业⽣产某产品的边际成本是产量讲解注意:例310,40),/(2100)(个单位时单位时的总收⼊及平均收⼊求⽣产单位元单位时的边际收⼊为已知⽣产某产品-='q q R q 并求再增加⽣产所增加的总收⼊.讲解注意:例45,10,413)(,225)(0==-='-='q c q q C q q R 时的⽑利和纯利.求当固定成本为边际成本已知某产品的边际收⼊讲解注意:例5吨产品时的边际成本为某企业⽣产q )/30501)(吨元q q C +='(?,900试求产量为多少时平均成本最低元且固定成本为讲解注意:例6q q q C q q R ,1(3)?(2);54(1)),/(/44)(),/(9)(+='-='求总成本函数和利润函数.万元已知固定成本为当产量为多少时利润最⼤万台时利润的变化量万台增加到试求当产量由其中产量万台万元成本函数为万台万元假设某产品的边际收⼊函数为以万台为单位.边际讲解注意:例70.02,10%,,100000,130000)(,.10%,1000000t e t 则决如果新增销售额产⽣的利润超过⼴告投资的美元的⼴告活动对于超过按惯例⾏⼀次类似的总成本为以⽉为单位下式的增长曲线⼴告宣传期间⽉销售额的变化率近似服从如根据公司以往的经验平均利润是销售额的美元某出⼝公司每⽉销售额是美元的⼴告活动.试问该公司按惯例是否应该做此⼴告.1000000公司现在需要决定是否举定做⼴告讲解注意:8例.2,318)(-=CS q q D 并已知需求量为如果需求曲线为个单位试求消费者剩余,表⽰某国某年国民收⼊在国民之间分配的劳伦茨曲线可近似地由讲解注意:第七节⼴义积分1、内容分布图⽰★⽆穷限的⼴义积分★⽆穷限的⼴义积分⼏何解释★例1★例2★例3★例4★例5★例6★⽆界函数的⼴义积分例7★例8★例9★例10★例11★例12★例13★内容⼩结★课堂练习★习题5-7★返回★2、讲解注意:3、重点难点:4、例题选讲:例1?∞+-0.dx e x 计算⽆穷积分讲解注意:例2.sin 0的收敛性判断⽆穷积分∞+xdx讲解注意:例312?∞+∞-+x dx计算⼴义积分讲解注意:例4计算⼴义积分.1sin 12∞+dx x x 2/π讲解注意:例5计算⼴义积分∞+-pt dt e 且0>p 时收敛p 是常数,(). t 0讲解注意:例6证明⼴义积分∞+11dxx p当1>p 时收敛当1≤p 时发散.,讲解注意:例7计算⼴义积分).0(022>-?a x a dxa讲解注意:例8证明⼴义积分11dx x q当1""讲解注意:例9计算⼴义积分.ln 21x dx讲解注意:例10计算⼴义积分.30dx1=x 瑕点)1(2/3-x .讲解注意:例11计算⼴义积分?∞+03+x x dx1().讲解注意:例12.)1(arcsin 10-dx x x x计算⼴义积分讲解注意:例13.11105?∞+++x x x dx 计算⼴义积分讲解注意:。
考研数学定积分的应用
考研数学定积分的应用一、引言数学定积分是高等数学中的重要概念之一,它在实际生活中有着广泛的应用。
本文将从几个具体的应用案例入手,探讨考研数学定积分的应用。
二、面积计算数学定积分最基本的应用之一就是计算曲线与坐标轴所围成的面积。
例如,在工程测量中,我们经常需要计算某个区域的面积,如果该区域的边界曲线可以用函数表示,那么可以通过定积分来求解。
通过将曲线分割成无穷多个微小的矩形,计算每个矩形的面积并进行累加,最终得到所需的面积。
三、物体体积计算除了计算面积,数学定积分还可以用于计算物体的体积。
在工程设计中,经常需要计算复杂形状物体的体积,例如水库的容量、建筑物的体积等。
如果物体的截面可以用函数表示,那么可以通过定积分来求解。
同样地,将截面分割成无穷多个微小的面元,计算每个面元的体积并进行累加,最终得到所需的体积。
四、质心计算质心是物体在空间中的重心,对于复杂形状的物体,质心的计算可以通过数学定积分来实现。
首先,将物体分割成无穷多个微小的体积元,计算每个体积元的质量并与其质心坐标乘积,然后进行累加,最后将总质量除以总体积,即可得到质心的坐标。
五、弯曲杆件的弯矩计算在工程力学中,常常需要计算弯曲杆件的弯矩分布,以确定结构的稳定性和安全性。
通过数学定积分,可以将杆件分割成无穷多个微小的弯曲段,计算每个弯曲段的弯矩,并进行累加,最终得到整个杆件的弯矩分布。
六、概率密度函数计算概率密度函数是概率论与数理统计中的重要概念,用于描述随机变量的概率分布。
数学定积分可以用于计算概率密度函数的各种性质,例如求解期望值、方差以及其他统计指标。
通过对概率密度函数进行定积分,可以得到具体的数值,从而进行概率分析和决策。
七、总结本文简要介绍了考研数学定积分的几个应用,包括面积计算、物体体积计算、质心计算、弯曲杆件的弯矩计算以及概率密度函数的计算。
这些应用充分展示了数学定积分在实际生活和工程领域中的重要性和广泛应用。
通过学习和掌握数学定积分的应用技巧,可以更好地理解和应用数学知识,提高问题解决能力。
高等数学第六章《定积分的应用》
第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。
高等数学定积分的应用常见曲线及公式
标题:高等数学定积分的应用 - 常见曲线及公式序在高等数学中,定积分是一个非常重要的概念,它不仅可以用于计算曲线与坐标轴之间的面积,还可以应用于求解各种问题。
在实际应用中,定积分广泛地用于表示曲线与坐标轴之间的面积、求解物体的质量、求解物体的质心、求解曲线的长度以及求解曲线的平均值等问题。
在本文中,我们将会介绍定积分的应用中的常见曲线及公式。
一、常见曲线及其定积分公式1. 直线若有一条直线,其方程为y = kx + b,其中k和b为常数,那么直线与x轴及y轴所围成的面积可以用定积分来表示。
其定积分公式为:\[S = \int_{a}^{b} |kx + b| dx\]其中a和b为直线与x轴的交点的横坐标。
2. 抛物线若有一个抛物线,其方程为y = ax^2 + bx + c,其中a、b和c为常数且a不等于零,那么抛物线与x轴及y轴所围成的面积可以用定积分来表示。
其定积分公式为:\[S = \int_{x_1}^{x_2} |ax^2 + bx + c| dx\]其中x1和x2为抛物线与x轴的交点的横坐标。
3. 圆若有一个圆,其半径为R,圆心在原点,那么圆与x轴及y轴所围成的面积可以用定积分来表示。
其定积分公式为:\[S = \int_{-R}^{R} \sqrt{R^2 - x^2} dx = \frac{\pi R^2}{2}\]其中R为圆的半径。
4. 椭圆若有一个椭圆,其方程为\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中a和b分别为椭圆在x轴和y轴上的半轴长,那么椭圆与x轴及y轴所围成的面积可以用定积分来表示。
其定积分公式为:\[S = 4 \int_{0}^{a} \sqrt{b^2 - \frac{b^2x^2}{a^2}} dx\]其中a和b分别为椭圆在x轴和y轴上的半轴长。
5. 双曲线若有一个双曲线,其方程为\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\),其中a和b分别为双曲线在x轴和y轴上的半轴长,那么双曲线与x轴及y轴所围成的面积可以用定积分来表示。
高等数学(第三版)课件:定积分的应用
线 y f ( x,) 直线 x a, x b (a b) 与
• x 轴围成的面积是在x 轴上方和下方曲边梯形
面积的差.
• • 同样可由微元法分析
•⒉ 一般地,根据微元法由曲线 y f ( x), y g( x),
• ( f ( x) g( x)) 及直线x a, x b 所围的图形
• 面积.(右图所示)
• 解: 取 为积分变量,
•
面积微元为
d
A
1 2
(a )2
d
• 于是
A 2 1 (a )2d a 2 2
02
23
2 4 a 2 3
03
• 例5 计算双纽线 r 2 a2 cos2 (a 0)
•
所围成的平面图形的面积(下图所示)
• 解 因 r 2 0,故 的变化范围是 [ 3 , 5 ,]
• ⑴分割区间[a,b],将所求量(曲边梯形面积 A )
分为部分量(小曲边梯形面积 Ai)之和;
• ⑵确定各部分量的近似值(小矩形面积);
Ai f (i )xi
• ⑶求和得所求量的近似值(各小矩形面积之和);
n
A f (i )xi
i 1
• ⑷对和式取极限得所求量的精确值(曲边梯形面积).
n
A lim 0
• 它表示高为f ( x) 、底为 dx 的一个矩形面积.
• ⑵由定积分几何意义可知,当 f (x) 0 时,由曲
线 y f (x),直线 x a, x b (a b) 与 x 轴所围成
的曲边梯形的面积A为
A
b
f (x)dx
.
a
• ⑶当 f ( x)在区间 [a, b]上的值有正有负时,则曲
•
高等数学中定积分在物理学领域中的应用
在物理学中,定积分是一种非常重要的数学工具,它被广泛应用于各种物理问题的建模与求解。
通过对定积分的运用,我们可以更好地理解物理现象,解释实验结果,并推导出物理定律。
本文将就高等数学中定积分在物理学领域中的应用展开探讨。
一、定积分在质心、转动惯量和力矩的计算中的应用在物理学中,质心、转动惯量和力矩是常见的物理量,它们的计算与定积分有着密切的联系。
1. 质心的计算质心是一个物体或系统的平均位置,其坐标可以通过下式进行计算:在这个公式中,x 表示物体上各个微小质量元的横坐标,f(x) 表示单位质量元在相应位置的质量密度。
通过对质心的计算,我们可以更好地理解物体的分布特性,分析物体的运动规律。
2. 转动惯量的计算转动惯量描述了物体对旋转的惯性大小,它可以通过下式进行计算:在这个公式中,r 表示物体上各个微小质量元到旋转轴的距离,f(r) 表示单位质量元在相应位置的质量密度。
转动惯量的计算在研究物体的旋转运动、平衡问题以及惯性驱动等方面具有重要意义。
3. 力矩的计算力矩是描述物体受到旋转影响的力的大小,它可以通过下式进行计算:在这个公式中,r 表示物体上各个微小质量元到旋转轴的距离,f(r) 表示单位质量元在相应位置的质量密度,F 表示施加在物体上的力。
力矩的计算在分析物体的平衡条件、弹性形变以及稳定性等方面有着重要的应用。
通过以上介绍,我们可以看到定积分在质心、转动惯量和力矩的计算中具有重要的应用价值,它为我们理解物体的运动特性提供了重要的数学工具。
二、定积分在牛顿第二定律、万有引力定律和电磁学中的应用牛顿第二定律、万有引力定律和电磁学中的一些重要公式也与定积分有着密切的联系。
1. 牛顿第二定律的应用牛顿第二定律描述了物体受到外力作用时的加速度大小与所受合外力成正比的关系,可以通过下式进行表达:在这个公式中,F 表示物体所受的合外力,m 表示物体的质量,a 表示物体的加速度。
通过定积分,我们可以更好地理解力的作用及其引起的加速度变化。
高等数学- 定积分的应用
x
0 L(x)dx c0
L(x) x2 L(x)dx x1
例1 设固定成本为50万元,R(Q) 100 - 2Q, C(Q) 14Q 20,试确定厂商的最大利润
四、小结
求在直角坐标系下、参数方程形式 下、极坐标系下平面图形的面积.
(注意恰当的选择积分变量有助于简化 积分运算)
绕 x轴旋转一周
Vx
b (f 2 (x) g2 (x))dx
a
(3) x (y),y c,y d围成图形绕 y轴旋转而成的体积为
Vy
d 2 (y)dy
c
y
d
x ( y) c
o
x
例1 求 x2 y 2 1 (1)绕x轴,(2)绕y轴旋转产 a2 b2
生的旋转体体积
解 : (1)绕x轴
y b a2 x2 a
Vx
a y 2dx
a
2
a b2 0 a2
(a2
x2 )dx
2b 2 a2
(a2x
1 3
x
3
)
|a0
4 ab2 3
(2)绕y轴
Vy
2 2
a x | f (x) | dx
0
4
a b2 0 a2
x
a2 x2dx 4 a2b 3
例2 求y x2 ,x y2围成平面图形绕x轴旋转
而成的旋转体体积.
练习题答案
一、1、1;
2、32 ; 3
4、 y ;
5、e 1 2 ; e
二、1、3 ln 2; 2
2、7 ; 6
4、3a2 ;
5、5 ; 4
三、9 . 4
四、e . 2
3、2;
6、1 . 2
高等数学-第七章--定积分的应用
第七章 定积分的应用一、本章提要1. 基本概念微元法,面积微元,体积微元,弧微元,功微元,转动惯量微元,总量函数. 2. 基本公式 平面曲线弧微元分式. 3. 基本方法(1) 用定积分的微元法求平面图形的面积, (2) 求平行截面面积已知的立体的体积, (3) 求曲线的弧长, (4) 求变力所作的功, (5) 求液体的侧压力, (6) 求转动惯量,(7) 求连续函数f (x )在[]b a ,区间上的平均值, (8) 求平面薄片的质心,也称重心.二、要点解析问题1 什么样的量可以考虑用定积分求解?应用微元法解决这些问题的具体步骤如何?解析 具有可加性的几何量或物理量可以考虑用定分求解,即所求量Q 必须满足条件:〔1〕Q 与变量x 和x 的变化区间[]b a ,以及定义在该区间上某一函数f (x )有关;〔2〕Q 在[]b a ,上具有可加性,微元法是“从分割取近似,求和取极限”的定积分基本思想方法中概括出来的,具体步骤如下:〔1〕选变量定区间:根据实际问题的具体情况先作草图,然后选取适当的坐标系及适当的变量〔如x 〕,并确定积分变量的变化区间[]b a ,;〔2〕取近似找微分:在[]b a ,内任取一代表性区间[]x x x d ,+,当x d 很小时运用“以 直代曲,以不变代变”的辩证思想,获取微元表达式d =()d Q f x x ≈Q ∆〔Q ∆为量Q 在小区间[]x x x d ,+上所分布的部分量的近似值〕;〔3〕对微元进行积分得 =d ()d b baaQ Q f x x =⎰⎰.下面举例说明.例1 用定积分求半径为R 的圆的面积.解一 选取如下列图的坐标系,取x 为积分变量,其变化区间为[]R R ,-,分割区间[]R R ,-成假设干个小区间,其代表性小区间[]x x x d ,+所对应的面积微元x x R x x R x R A d 2d ))((d 222222-=----=,于是⎰⎰---==RRR Rx x R A A d 2d 22=2πR .解二 选取如下列图的坐标系,取θ 为积分变量,其变化区间为[]π2,0.分割区间[]π2,0成假设干个小区间,其代表性小区间[]θθθd ,+所对应的面积微元θd 21d 2R A =,于是22π202π20ππ221d 21d R R R A A =⋅===⎰⎰θ.解三 选取r 为积分变量, 其变化区间为[]R ,0,如图,分割[]R ,0成假设干个小区间,其代表性小区间[]r r r d ,+所对应的面积微元r r A d π2d =,于是202π2π2d π2R r r r A RR =⋅==⎰.问题2 如何理解连续函数f (x ) 在闭区间[]b a ,上的平均值⎰-=b a x x f ab u d )(1是有限个数的算术平均值的推广.解析 首先,我们知道几个数 y y y n 12,,,⋅⋅⋅的算术平均值为y y y y n n y n k k n=++⋅⋅⋅+==∑()/1211,对于函数)(x f ,我们把区间[]b a , n 等分,设分点为a =x x x b n 01<<⋅⋅⋅<=.区间的长度(1,2,,)i b ax i n n-∆==⋅⋅⋅,各分点i x 所对应的函数值为12(),(),f x f x ,⋅⋅⋅()n f x ,其算术平均值 ∑=ni i x f n 1)(1可近似地表达函数)(x f 在[]b a ,上取得一切值的平均值.显然,n 越大,分点越多,这个平均值就越接近函数)(x f 在[]b a ,上取得一切值的平均值. 因此,称极限lim n →∞11n f x i i n()=∑为函数)(x f 在闭区间[]b a ,上的平均值,记为[]b a y ,.下面用定积分表示函数)(x f 在[]b a ,上的平均值[]b a y ,.在定积分定义中,假设取ξi i x =,∆x b ani =-,则∑∑⎰=∞→=→-=∆=ni i n n i i i b anab x f x f x x f 11)(lim )(lim d )(ξλ, 这里{}12max ,,,n b ax x x nλ-=∆∆∆=. 因此n ab x f a b x f n ni i n n i i n --=∑∑=∞→=∞→11)(lim 1)(1lim11lim ()ni i n i f x x b a →∞==∆-∑ ⎰-=b a x x f ab d )(1, 即 ⎰-=b a b a x x f ab y d )(1],[. 在生产实践和科学研究中,有许多连续量的平均值需要计算,如平均电流强度、平均电压、平均功率等等.例2 求从0到T 这段时间内自由落体运动的平均速度. 解 因为自由落体运动的速度gt v =,所以2001111d 022TT v gt t gt gT T T ⎛⎫===⎪-⎝⎭⎰. 三、例题精解例3 求纯电阻电路中正弦电流 t I t i m ωsin )(=在一个周期上的平均功率〔其中mI 及ω均为常数〕.解 设电阻为R 〔R 为常数〕,则电路中的电压t RI iR u m ωsin ==,而功率 2)sin (t I R iu p m ω==,因此p 在2π0,ω⎡⎤⎢⎥⎣⎦上的平均功率〔功率的平均值〕2π2π2222π0011cos 2sin d d 02π2m m RI tp R t t t I ωωωωωω-==-⎰⎰2π22011(1cos )d()()4π22m mm m m m I R t t I R I U U I R ωωω=-===⎰,这说明纯电阻电路中正弦电流的平均功率等于电流、电压的峰值之积的一半.对一般的周期为T 的交变电流)(t i ,它在R 上消耗的功率为R t i t i t u p )()()(2==,在[]T ,0上的平均功率为Tt R t i p T ⎰=2d )(.通常交流电器上标明的功率就是平均功率.例4 当交变电流)(t i 在其一个周期内在负载电阻R 上消耗的平均功率等于取固定值电流I 的直流电在R 上消耗的功率时,称I 为)(t i 的有效值,即电流)(t i 的有效值为I ,试求)(t i 的有效值.解 固定值为I 的电流在电阻R 上消耗的功率为2I R .对于交变电流)(t i 在其一个周期内在负载电阻R 上消耗的平均功率为 ⎰⎰==T T t t i T R t R t i T p 0202d )(d )(1, 于是 ⎰=T t t i TR R I 022d )(, 得 ⎰=T t t i TI 02d )(1为交变电流)(t i 的有效值.通常在交流电的电器上所标明的电流即为交变电流的有效值.一般地,把⎰-b a t t f ab d )(12称为连续函数)(x f 在[]b a ,上的均方根.因此,周期性电流)(t i 的有效值就是它的一个周期上的均方根.例5 由力学知道,位于平面上点),(i i y x 处的质量为),,2,1(n i m i ⋅⋅⋅=的几个质点所构成的质点系的质心〔也叫质点系的重心〕坐标),(y x 计算公式为mM x y =,mM y x=, 其中∑==ni imm 1(质点系中全部质点的质量之和),∑==ni ii y x m M 1〔质点系中,各质点关于y轴的静力矩m i x i 之和m xiii n=∑1,称其为质点系对y 轴的静力矩〕,∑==ni i i x y m M 1〔质点系对x 轴的静力矩〕.由此可见,质点系m i 〔 i n =⋅⋅⋅12,,,〕的质心坐标〔x y ,〕满足:质量为m mii n==∑1,坐标为〔x y ,〕的质点M 关于y 轴和x 轴的静力矩分别与质点系关于y 轴和x 轴的静力矩相等.按上述关于质点系之质心的概念,用定积分的微元法讨论均匀薄片的质心. 解 设均匀薄片由曲线)()((x f x f y =≥)0,直线x =a ,x =b 及x 轴所围成,其面密度μ为常数,其质心坐标〔x y ,〕.为研究该薄片的质心,首先要将该薄片分成假设干个小部分,每一小部分近似看成一个质点,于是该薄片就可近似看成质点系.具体做法如下:将[]b a ,区间分成假设干个小区间,代表性小区间[]x x x d ,+所对应的窄长条薄片的质量微元 x x f x y m d )(d d μμ==,由于d x 很小,这小窄条的质量可近似看作均匀分布在窄条的左面一条边上,由于质量是均匀分布的,故该窄条薄片又可看作质量集中在点⎪⎭⎫⎝⎛)(21,x f x 处且质量为d m 的质点,所以这窄条薄片关于x 轴及y 轴的静力矩微元x M d 与y M d 分别为x x f x x f x f M x d )(21d )()(21d 2μμ==, x x f x M y d )(d μ=,把它们分别在[]b a ,上作定积分,便得到静力矩 x x f M b ax d )(22⎰=μ,⎰=bay x x xf M d )(μ,又因为均匀薄片的总质量 ⎰⎰==bab ax x f m m d )(d μ,所以该薄片的质心坐标为⎰⎰==b aba y xx f x x xf mM x d )(d )(, 21()d 2()d b a x baf x x M y mf x x==⎰⎰. 上面关于质心〔y x ,〕的计算公式适用于求均匀薄片的质心,有关非均匀薄片质心的计算将在二重积分应用中予以介绍.例6 求密度均匀,半径为R 的半圆形薄片的质心. 解 如下列图建立坐标系,上半圆周方程22x R y -=,由对称性知,质心在y 轴上,即0=x ,利用例5中的质心计算公式得32202112()d 423,13ππ2R R R x R x x R y R -⨯-===故所求质心为4(0,)3πR. 四. 练习题判断正误(1) 由x 轴,y 轴及2)1(-=x y 所围平面图形的面积为定积分x x d )1(12⎰-;〔√ 〕解析 x 轴、y 轴及2)1(-=x y 所围成的曲边三角形位于x 轴的上方,由定积分的几何意义可知,其面积正是x x d )1(12⎰-.〔2〕闭区间[]b a ,上的连续函数)(x f 在该区间上的平均值为f x b a()- ; 〔 × 〕解析 由定积分中值定理可知,闭区间],[b a 上的连续函数)(x f 在该区间上的平均值为1()d b af x x b a -⎰.〔3〕由曲边梯形D :a ≤x ≤b ,0≤y ≤)(x f 绕x 轴旋转一周所产生的旋转体的体积 2π()d b aV f x x =⎰; 〔 √ 〕解析 如图,对任意的],[b a x ∈,旋转体的截面积)(x A =2π()f x .由平行截面物体的2)1体积得 V =()d b aA x x ⎰=2π()d b af x x ⎰.〔4〕假设变量y 关于x 的变化率为23x ,则 3x y =. 〔 × 〕解析 y 关于x 的变化率为23x ,则2d 3d yx x=,积分得 y =23d x x ⎰=3x C +.2.填空题(1) 设一平面曲线方程为)(x f y =,其中)(x f 在[]b a ,上具有一阶连续导数,则此曲线对应于a x =到b x =的弧长L=ax ⎰;假设曲线的参数方程为{(),(),x x t y y t ==〔a ≤t ≤β〕,)(),(t y t x 在[]αβ,上有连续导数,则此曲线弧长L=t βα⎰ ;(2) 设一平面图形由b x a x x g y x f y ====,),(),(所围成))()((x f x g >,其中)(x f ,)(x g 在[]b a ,上连续,则该平面图形的面积S =[()()]d b ag x f x x -⎰;解 如图,因为)()(x f x g >, 取x 为积分变量,于是得 d [()()]d A g x f x x =-,故平面图形的面积 A =[()()]d b ag x f x x -⎰.(3) 周期为T 的矩形脉冲电流 {,0(),(0)0,a t c i t a c t T≤≤=><≤的有效值为 Tca; 解)(x f 在],[b a 上的均方根.周期性电流)(t i 的有效值就是它的一个周期上的均方根, 则2()d T i t t ⎰=20d c a t ⎰+0d Tct ⎰=c a 2,所以此脉冲电流的有效值 ITca 2=T c a .(4) 假设某产品的总产量的变化率为210)(t t t f -=,那么t 从40=t 到81=t 这段时间内的总产量为3272. 解 设总产量为)(t Q , 则 )()(t f t Q ='=210t t -,积分得 Q =824(10)d t t t -⎰=8432)35(t t -=3272.3. 解答题〔1〕抛物线x y 22=把图形822=+y x 分成两部分,求这两部分面积之比; 解 曲线围成的区域如图中阴影部分.y联立方程 2222,8,y x x y ⎧=⎨+=⎩ ⇒ {2,2,x y ==或 {2,2,x y ==-得到两条曲线相交的交点为 〔2,2〕,〔2,2-〕.从而2S =222)d 2y y -⎰=2(2200d 2y y y -⎰⎰), 其中y⎰y t=π404)t t ⋅⎰=π2408cos d t t ⎰=π404(1cos 2)d t t +⎰=π40π2sin 2t +=2+π,220d 2y y ⎰=20361y =34, 所以 2S =2〔2+4π3-〕=2π+34, 而1S +2S =2π=8π,于是 =1S 48π(2π)3-+=46π3-, 所以,两部分面积比为 1S :2S =〔9π-2〕:〔3π+2〕.〔2〕计算e xy -=与直线0=y 之间位于第一象限内的平面图形绕x 轴旋转一周所得的旋转体的体积;解 如图,当+∞→x 时,y =e0x-→,我们可以把未封闭的区域看作当+∞→x 时的闭区域,则其绕 x 轴旋转一周的体积V =2π()d f x x +∞⎰=20πe d x x +∞-⎰=20πe 2x-+∞-=π2, 所以,所得旋转体体积为π2. 〔3〕一密度均匀的薄片,其边界由抛物线ax y =2与直线a x =围成,求此薄片的质心坐标;解 如图,由对称性知,质心在x 轴上,即y =0,利用质心计算公式,有x =222()d d a a a a y ya y ya --⎰⎰=3252352a a a a ⋅⋅=a 53, 所以,薄片的质心坐标为(a 53,0).〔4〕半径为r m 的半球形水池灌满了水,要把池内的水全部抽出需作多少功; 解 如图,设水池的上边缘为y 轴,原点在半球形水池的圆心位置,x 轴竖直向下.球面方程为y =22x r -±,则水深x 处所对应的截面半径为22x r -,截面面积22()π()S x r x =-.将x 到d x x +这层水抽出需克服的重力为d G =d g V ρ=g ρ()d S x x =22π()d g r x x ρ-,因为 W =22π()d r g r x x ρ-⎰=222201π()d()2r g r x r x ρ---⎰=2221π()40r g r x ρ--=41π4g r ρ(J ),所以,把水全部抽出需做功41π4g r ρ(J ). 〔5〕一直径为6m 的半圆形闸门,铅直地浸入水内,其直径恰位于水外表〔水的密度为 103 kg/m 3 〕,求闸门一侧受到水的压力;解 如图,设水面为y 轴,原点在圆心位置,x 轴竖直向下.半圆形闸门的方程为922=+y x ,则x 到d x x +这层闸门的截面面积d ()S x =2x ,所受到的压强P =gx ρ,压力d F =d ()P S x =gxx ρ,闸门所受到的压力F =302x ρ⎰=20)g x ρ--⎰=30232)9(32x g --ρ=41.810g ⨯ (N ),所以,闸门的一侧受到水的压力为41.810g ⨯ (N ).〔6〕某石油公司经营的一块油田的边际收入和边际成本分别为 )/(31)(,)/()(3131年百万元年百万元tt C tq t R +='-=',求该油田的最正确经营时间,以及在经营终止时获得的总利润〔已知固定成本为4百万元,q 为实数〕; 解 由最大利润原理,令 )()(t C t R '=',则 313131t t q +=-,得 t =64)1(3-q ,总利润 L =3(1)640[()()]d 4q R t C t t -''--⎰=311(1)33640(13)d 4q q t t t -----⎰=31(1)3640(14)d 4q q t t ----⎰=[34(1)3640(1)3]4q q t t ----=4256)1(4--q 〔百万元〕, 所以,油田的最正确经营时间为 64)1(3-q 年,经营终止时获得的总利润为4256)1(4--q 百万元.〔7〕有一弹簧,用5N 的力可以把它拉长0. 01m ,求把它拉长0. 1m ,力所作的功; 解 已知 kx F =, 5)01.0(=F , 所以 k 01.05=, 即 500=k , x F 500=, 所以 W =0.10500d x x ⎰=2501.002x =2.5(J )所以,力所做的功为2.5(J ).〔8〕求心形线)cos 1(θ+=a r 〔a 为常数〕的全长. 解一 将极坐标转换为直角坐标,有{cos (1cos )cos ,sin (1cos )sin ,x r a y r a θθθθθθ==+==+于是 d [(sin )cos (1cos )(sin )]d x a a θθθθθ=-++-=[(sin sin 2)]d a θθθ-+,d [(sin )sin (1cos )cos ]d y a a θθθθθ=-++=[(cos cos 2)]d a θθθ+,弧长微元 d sθθθθ=2cosd 2a θ,所以,心形线的全长 s=θ=π08cos d 22a θθ⎰=π8sin2a θ=8a .解二 将极坐标转换为直角坐标,有{cos (1cos )cos ,sin (1cos )sin ,x r a y r a θθθθθθ==+==+ 则 d d d cos d sin d ,d d d sin d cos d ,x x x r r r r y y y r r r r θθθθθθθθθθ∂∂⎧=+=-⎪∂∂⎨∂∂⎪=+=+∂∂⎩弧长微元d sθ, 心形线的全长s=02⎰θ =2π02cos d 2a θθ⎰=π08sin2a θ=8a ,所以,心形线的全长为8a .。
高等数学定积分在物理中的应用
2010.12
D6_all
21
二、典型例题
例1
y
1.已知星形线
x y
a cos3 t (a
a sin 3 t
0)
求 10 它所围成的面积 ;
a
o
ax
20 它的弧长;
30 它绕轴旋转而成的旋转 体体积.
2010.12
D6_all
22
解 10 设面积为 A. 由对称性,有
a
A 4 ydx 0
P y 4x x2 du
1 5
(x2
2x)2
5d x
o dx 2
故所求旋转体体积为
2010.12
V
2 0
15( x 2
2x)2 5d
D6_all
x
16 75
5
du 2dx d x33
a x xdx b x
因此变力F(x) 在区间 上所作的功为
b
W a F (x) dx
2010.12
D6_all
2
例1. 在一个带 +q 电荷所产生的电场作用下, 一个单
位正电荷沿直线从距离点电荷 a 处移动到 b 处 (a < b) ,
求电场力所作的功 . 解: 当单位正电荷距离原点 r 时,由库仑定律电场力为
k m a
x
l 2
a2 a2 x2 0
2k m l 1
l 2
a
4a2 l 2
y a M d Fx d Fay
dF
xdx O x lx
2
利用对称性
棒对质点引力的水平分力 Fx 0 .
故棒对质点的引力大小为
F
2k m
a
《高等数学》(同济六版)教学课件★第6章.定积分的应用
表示为
定积分定义
目录 上页 下页 返回 结束
二 、如何应用定积分解决问题 ?
第一步 利用“化整为零 , 以常代变” 求出局部量
近的似值
微分表达式
dU f (x) dx
第二步 利用“ 积零为整 , 无限累加 ” 求出整体量的
精确值
积分表达式
b
U a f (x) dx
这种分析方法称为元素法 (或微元分析法 )
元素的几何形状常取为: 条, 带, 段, 环, 扇, 片, 壳 等
第二节 目录 上页 下页 返回 结束
第二节
第六章
定积分在几何学上的应用
一、 平面图形的面积
二、 平面曲线的弧长 三、已知平行截面面积函数的
立体体积
目录 上页 下页 返回 结束
例8. 求双纽线
所围图形面积 .
解: 利用对称性 , 则所求面积为
y
1 a2 cos2 d
2
π 4
π
a2 4 cos 2 d (2 ) 0
O
ax
a2sin 2 a2
π 4
思考: 用定积分表示该双纽线与圆 r a 2 sin
所围公共部分的面积 .
答案:
π
A 2 6 a2 sin2 d 0
y Mi1
A M0 O
定理: 任意光滑曲线弧都是可求长的.
(证明略)
Mi
B Mn x
目录 上页 下页 返回 结束
(1) 曲线弧由直角坐标方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
1 y2 dx
因此所求弧长
高等数学第九节 定积分的应用
yzdy
其上的水量 R为 2dy, 功w的微元为
y
y m
dwg(H y)R 2dy
OR
(其中 g9.8,为重力加.)速度
则
wg0 H (Hy)R 2dy
R2H2g(kJ).
2
3.水压力 由物理,学 水知 深 h处 道 为的水的压强为
ph(为水的 ,比 1),重
其方向垂直于物体表面. 如果物体表面强上 p的各 大点 小压 与方,向皆 则物体受的总压力为
y l x i 0 b m 1 a ( y 0 x y 1 x y 2 x y n 1 x )
lxi m0b1ani 01yixb1aabydx, 即yb 1aabydx.
例10 设交流电流 E的 E0s电 i nt.求 动在 势 半个周 ,即 [期 0, ]上 内的平均 (记 电 E 为 )动 . 势
P压 强 面.积
例9 设半R 径(为 m 的)圆形.水 水闸 面门 与闸 , 门
(下)图 求闸门所受 . 的总压力
解 取坐标如右图.
水面 o
x
yx
在 [0,2R]上任取一 [y,子 yd区 y], 间ydy
其上水的压强看成不变, 且用矩形
代替原来的长条, 这样得P压 的力 微元
d Pp2xd yy2xdy
df (aklmdxx)2,
其中 k为引力,积 系分 数得
f
0l(aklm dxx)2
a
km
l
x
l 0
kml
a(a l)
kMm , a(a l)
其M 中 是杆的 (M 质 l)量 .
例6 设半圆 ,半弧 径 R ,质 铁 为 量 丝均 .在匀 圆分 心
有一m 质 的量 质 .求为 点 铁丝 m 之 与 间 质 .的 点 引
高等数学 第六章定积分的应用习题课
A1
1 2d
02
2a2(2 cos )2d
0
a2 (4 4cos cos2 )d 9 a2 0
则所求的几何面积为 A 2 A1 18 a2
【例5】设由曲线
y
sin x (0
x
),y
2
1
及x
0围成
平面图形A绕x 轴,y 轴旋转而成的旋转体的体积。
则绕直线 y
1 2
旋转而成
的旋转体的体积微元dV
就是矩形S1
分别绕直线 y
1 2
旋转而成的旋转体的体积。
解: (1) 确定积分变量和积分区间:
绕直线 y 1 旋转如图 ,
y
2
1
取 x为积分变量,则 x [0, ].
2
(2) 求微元:对 x [0, ],
2
[x, x dx] [0, ],
0
1 dy]
1 y2
[(arcsin1)2 2
1
(arcsin y)d(
1 y2 )]
0
3 [2
4
1 y2 arcsin y 2 y]10
3 2
4
通过例5,同样可求出绕平行于x 轴和平行于 y 轴的直线
旋转而成的旋转体的体积,见例6。
【例6】设由曲线 y sin x (0 x ), x 及 y 0围成
(2)求微元:因为过点 x 的截面为等边三角形(如图),
其边长为 2 4 x2 ,高为 2 4 x2 3 .
2
所以截面积为
A( x) 1 2 4 x2 2 4 x2 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
授课单元12教案
教学内容
课题1用定积分求平面图形的面积 一、微元法
在本章第1节定积分概念的两个实例(曲边梯形的面积和变速直线运动的路程)中,我们是先把所求整体量进行分割,然后在局部范围内“以不变代变”,求出整体量在局部范围内的f (?)?x 的形式;再把这些近似值加起来,得到整体量的近似值;最近似值,即表成乘积
iinb
??????x ?ff ?xdx ?lim (即整体量) 后,当分割无限加密时取和式的极限得定积分.
iia 0??1i ?
事实上,对于求几何上和物理上的许多非均匀分布的整体量都可以用这种方法计算.但在实
??b ,aQ 的定积分的方法简化成下面的上的某个量际应用时,为了方便,一般把计算在区间 :
两步:
x [a ,b ] ,求出积分区间确定积分变量1) ([x ,x ?dx ]]a ,b [ ,并在该小区间上找出所求量Q ) 在区间上,任取一小区间的微分元(2素
dQf (x )dx =b
Q 的定积分表达式(3) 写出所求量?dxxQ ?)f (a
用以上两步来解决实际问题的方
法称为元素法或微元法.下面我们就用元素法来讨论定积分在几何、物理和经济学中的一些应用. 二、在直角坐标系下求平面图形的面积
b
?
f (?x )dxA oxba ,x ?x ?)(xy ?f 1、
.由 轴所围成图形面积公式 及,a
d????(y?)dyA y dy,x??(y),y?c1及、轴所围成图形面积公式c3xy?2x??1,x?例求曲线轴所
???xxdxs???dx解
围成的图形面积及x与直线172033
40?1??????????xxxy?yyx?yy?yx?a,x?b(a?b)所围2、和由两条连续曲线与直线
?dxyy?xx?A)的面积成平面图形(如图112a
2211b??????
图1 图2
???????????y?xyyxxx?xyx?y?c,y?d(c?d)2所和与直线、由两条连续曲线
2121d?dy)](x)(xA?[y?y如图(围成平面图形2) 的面积12c 22x?yxy?和(1)计算由两条抛物线所围成图形的面积.例
??xxy?sin x,y?cos0x?如图,及直线(所围成的平面图形的面积2()求由曲线4).
图4 图3
1)第一步画图求交点,解方程组解(2?xy??????110,BO,0,两抛物线的交点为和
?121121213?
?2?x?y???10,x第二步取横坐标为积分变量,则积分区间为3
]?x?[xx?Axdx????2. 第三步(平方单位)0333330xy?sin???x)?(0?x?得,
??(sin x?cos?x)dx?(cos x?sin x)Adx4?0
于是)解方程组(2?x?cos y4???
4???[sin x?cos x]?[?cos x?sin x]?224(平方单位)?402y?2xy?x?4所围成的图形面积.和直线例
计算由抛物线
图5
所示.首先求出所给直线与抛物线交点,为此,解方程组5这个图形如图解.
y?x?4??2y?2x?????4,482,?222,y??;x?8,y??xx为本题选横坐标即所求交点为,得两组
解..2121y为积分变量,所求面积为积分变量时,计算较为复杂.因此,应该选取纵坐标4 ?]y?4y?[dy??yy?4A18?? = =.(平方单位)622??2?2?练习
21y1??432
?3x?3轴所围成的平面图形的面积。
1、求正弦曲线及和直线]x?[0,xy?sin,?x22(答案3)2x?y8?2xy?)(答案和直线362、求曲线所围成的平面图形的面积。
用定积分求平面图形面积的步骤:小结 1)画草图,准确找出所求面积的图形,求曲线交点。
( 2)选择积分变量,确定积分区间,把所求面积表示成定积分。
( 3)计算定积分。
(、平面图形面积公式2三、小结:1、定积分的元素法 10)1)--(p185 1作业上册(
课题2用定积分求体积一、平形截面为已知的立体体积)(xA(x)A b?x?a x,且是,设有一立体,被垂直于x轴的平面所截得到的截面面积为的连续函数,求该立体的体积。
x)b]xA([a,在区间上任取一点,,已知截面面积是,dxS(x)dV?x dx,则在点设厚度是微分的体积微元b?dxxA(A?)立体体积为a?R,并且与底面夹角为例一平面经过半径为求截得的楔形的体积。
的圆柱体的底面圆心,1x]R,R[??积分变量,区间建立如图坐标系,解?(t y?y a x n)A 22111RR23322????tan x?x)R(?v?x)tan?dx?tan R(R R?3322R?
R??y ox R x
二、旋转体的体积??x?fyxxb??xa,x轴旋转一周所、连续曲线轴所围成的曲边梯形,绕以及,直线1 形成的旋转体(图1)的体
积.
2
图图1
)f(x x][x?a,b为半径的圆,其面积x轴的截面是以,过点取积分变量为,x且垂直于
b2??dxf)(?Vx2?)f(x)(Ax?,于是得旋转体的体积为是a?ycyy?d?(y)y?x轴旋转一周轴所围成的曲边梯形绕、直线2、由连续曲线及、d2???dy?V(y)c
而成的旋转体(图2)的体积为2xy?0?y2x?轴旋转所得到旋转体的体积,与直线所围成的图
??dxxV?解:=x502x?y4?y0?x与直线轴旋转所得到旋转形绕x例:求由抛物线?3224
体的体积所围成的图形绕例:求由抛物线x,42???8dy(yV?)?解:y02xy?y0?y2x?轴旋转所得到
旋转体的体积与直线,例求由抛物线所围成的图形绕(如图).
解?4244??8???[y8]?16??V?4(???y)dy?[4?y]0020
22yx1??x例求椭圆轴旋转一周所形成立体体积轴和y所围成的平面图形分别绕
22ba b22xay??xxx轴围成的图形绕轴旋转一周所形成立体可以看作半个椭圆解绕与a.
????aa2222???dxxa?xa?dx?V?22aa0?a32?4b2x
轴旋转而成的旋转体22?b2b
2a2?abx?]??[a(立方单位).0233a22yx1??y类似可求出椭圆绕轴旋转而成的椭
???bdy?V?ab?y??.
球的体积是22ab2a4??b222
(立方单位)b3??b?
练习
21?,xy?x,?0yx y轴旋转一周所形成旋转体的体积所围成的图形分别绕1、求由轴和??,)(答案522y?x,y?xx轴旋转一周所形成旋转体的体积y轴和所围成的图形分别绕求由、2.
??2,)(答案156三、小结
旋转体体积公式
bd22?????dy(x)]Vdx?y[V?)][f(ox oy绕轴旋转:;绕轴旋转:ca作业上册p186 4
授课单元9教案
教学内容详见《高等数学实验手册》。