最新初三九年级数学上册上册数学压轴题(提升篇)(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初三九年级数学上册上册数学压轴题(提升篇)(Word 版 含解析)

一、压轴题

1.阅读理解:

如图,在纸面上画出了直线l 与⊙O ,直线l 与⊙O 相离,P 为直线l 上一动点,过点P 作⊙O 的切线PM ,切点为M ,连接OM 、OP ,当△OPM 的面积最小时,称△OPM 为直线l 与⊙O 的“最美三角形”.

解决问题:

(1)如图1,⊙A 的半径为1,A(0,2) ,分别过x 轴上B 、O 、C 三点作⊙A 的切线BM 、OP 、CQ ,切点分别是M 、P 、Q ,下列三角形中,是x 轴与⊙A 的“最美三角形”的是 .(填序号)

①ABM ;②AOP ;③ACQ

(2)如图2,⊙A 的半径为1,A(0,2),直线y=kx (k≠0)与⊙A 的“最美三角形”的面积为

1

2

,求k 的值. (3)点B 在x 轴上,以B 为圆心,3为半径画⊙B ,若直线y=3x+3与⊙B 的“最美三角形”的面积小于

3

,请直接写出圆心B 的横坐标B x 的取值范围.

2.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2

y x

=

在第一象限内的图象记作,H 则

()1,min D H l = .

(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,

T 的半径为3,点C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范

围,

(3)已知直线21211k k y x k k --=

+--恒过定点1111,8484P a b c a b c ⎛⎫

⎪⎝+-+⎭

+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围. 3.如图,等边ABC 内接于

O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接

AP 、BP ,过点C 作CM BP 交PA 的延长线于点M .

(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;

(3)若1PA =,2PB =,求四边形PBCM 的面积; (4)在(3)的条件下,求AB 的长度. 4.数学概念

若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是

ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”.

理解概念

(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足

180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的

边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)

①如图①,DB DC = ②如图②,BC BD =

深入思考

(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点

Q .(不写作法,保留作图痕迹)

(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;

④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;

⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)

5.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB . (1)若△ABC ∽△APQ ,求BQ 的长;

(2)在整个运动过程中,点O 的运动路径长_____;

(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.

6.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x . (1)求证:四边形AGDH 为菱形; (2)若EF =y ,求y 关于x 的函数关系式; (3)连结OF ,CG .

①若△AOF 为等腰三角形,求⊙O 的面积;

②若BC =330=______.(直接写出答案).

7.如图,⊙M 与菱形ABCD 在平面直角坐标系中,点M 的坐标为(﹣3,1),点A 的坐标为(2,0),点B 的坐标为(1,﹣3),点D 在x 轴上,且点D 在点A 的右侧. (1)求菱形ABCD 的周长;

(2)若⊙M 沿x 轴向右以每秒2个单位长度的速度平移,菱形ABCD 沿x 轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t (秒),当⊙M 与AD 相切,且切点为AD 的中点时,连接AC ,求t 的值及∠MAC 的度数;

(3)在(2)的条件下,当点M 与AC 所在的直线的距离为1时,求t 的值.

8.如图,函数y=-x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2-2x -3=0的两个实数根,且m <n .

(1)求m ,n 的值以及函数的解析式;

(2)设抛物线y=-x 2+bx +c 与x 轴的另一交点为点C ,顶点为点D ,连结BD 、BC 、CD ,求△BDC 面积;

(3)对于(1)中所求的函数y=-x 2+bx +c , ①当0≤x ≤3时,求函数y 的最大值和最小值;

②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值.

9.抛物线G :2

y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .

(1)直接写出抛物线G 的解析式: ;

(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;

相关文档
最新文档