气体探测器与中子探测

合集下载

中子探测的基本方法及13.5常用中子探测器

中子探测的基本方法及13.5常用中子探测器

13.6 中子注量率测量的主要指标
中子灵敏度
13.7 堆用探测器
13.6 中子注量率测量的主要指标 中子灵敏度
R 中子灵敏度定义:
0
反应的发生率 中子注量率
R N t ( E ) ( E )dE
Nt 为探测器灵敏体积 中辐射体的靶核数。
对能量低于30keV的中子: 30 keV v 0 0 R Nt ( E )dE 0 v 由 ( E ) n( E ) v n(E)为能量E处单位能量 间隔的中子密度。 v为中子速度。
反应截面与中子能量的关系:

100000
0 v0
v
1 1 v Tn
B-10 Li-6 He-3
capture cross section(barn)
10000
1000
100
10
1
0.1 1E-111E-10 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0.01
可选用微型裂变室,且电极涂235U+239Pu(可增殖, 总积分通量由1.7×1021提高到4.8×1021中子); 也可以用自给能探测器。
3) 功率量程:大于1010/cm2s;足够大,本底相 对较小;用电流型裂变室或硼电离室。
2. 堆芯探测器——堆芯内中子注量率的空 间分布。
要求体积小,寿命长; 典型工作条件:
~ 5 10 / cm s
8 2
8

本底 ~ 10 R / h
工作温度 ~ 300 C 2 ~ 2500 N / cm 工作压力
v0 为热中子的最可 其中 v 为中子的平均速度, 几速度。
对热中子,在T=20C时,v / v0

粒子物理学中的基本粒子探测技术

粒子物理学中的基本粒子探测技术

粒子物理学中的基本粒子探测技术粒子物理学是物理学的重要分支之一,它主要研究各种基本粒子之间的相互作用、性质及其规律。

探测技术是粒子物理学中不可或缺的一个重要部分。

粒子物理学需要借助探测技术收集、测量基本粒子的性质与行为,从而推进粒子物理学的发展和进步。

本文将介绍粒子物理学中的基本粒子探测技术,包括探测器的分类、探测器的组成结构、探测原理及其应用。

一、探测器的分类探测器是粒子物理学中进行探测的主要工具。

探测器按照其原理,可以分为以下几类。

1. 材料探测器材料探测器是利用基本粒子在材料中沉积能量,经过电离过程产生载流子的原理。

最常见的材料探测器就是测量辐射的GM计数器。

同时,用于探测粒子径迹经过的凝胶、液体或气体也属于材料探测器,比如伽马射线探测器、电离室等。

2. 半导体探测器半导体探测器是利用基本粒子在半导体中放电,将芯片内的电子引入电路的原理。

半导体探测器具有极高的分辨率和精度,用于探测高能粒子的径迹和电荷。

一些常见的半导体探测器有硅器件和锗器件。

3. 闪烁体探测器闪烁体探测器是利用反应后产生的光子发出强烈的闪烁光,通过探测器探测光子的原理。

闪烁体探测器广泛用于探测中子、伽马射线、X射线、带电粒子等,如闪烁计数器、正电子探测器等。

4. 气体探测器气体探测器利用基本粒子在气体中产生电离,在电场作用下引起电流变化,从而进行探测的原理。

气体探测器通常用于探测高能粒子,如闪烁室、多丝电晕计数器等。

二、探测器的组成结构探测器是粒子物理学中进行探测的主要工具,其基本组成结构包括探测器外壳、前端电子学、计算机控制系统等。

1. 探测器外壳探测器外壳是指保护探测器内部的外部结构,具有良好的密封、隔绝和抗辐射能力。

不同的探测器具有不同的外壳材料和结构。

2. 前端电子学前端电子学是指探测器信号的处理和放大电路,包括前置放大器、信号形成器、可编程逻辑数组(FPGA)等,用于将探测器探测到的信号进行放大和处理,并输出数字信号。

中子通量的物理含义-概述说明以及解释

中子通量的物理含义-概述说明以及解释

中子通量的物理含义-概述说明以及解释1.引言1.1 概述中子通量是指在特定区域内通过单位表面积的中子数量,是描述中子在空间中传播和传递能量的重要物理量。

中子通量的大小与中子在介质中传输的速度和能量有着密切的关系,对于核反应堆、中子源以及其他核物理和辐射应用设备都具有重要的意义。

中子通量的研究涉及到核反应、辐射传输、中子激发等多个方面,对于了解核反应堆内部的中子分布、优化反应堆的设计以及辐射防护等具有重要作用。

此外,中子通量在医学领域中也有广泛应用,如中子治疗肿瘤、中子成像等技术都需要对中子通量进行准确测量和控制。

本文将从中子通量的定义、测量方法以及在核反应堆中的重要性等方面进行探讨,以期更加深入地了解中子通量的物理含义和在科研和工程领域中的应用。

1.2文章结构1.2 文章结构本文主要分为引言、正文和结论三个部分。

在引言部分中,我们将概述中子通量的物理含义,说明撰写本文的目的,并介绍文章的结构安排。

正文部分将分为三个小节,首先介绍中子通量的定义,然后讨论中子通量的测量方法,最后探讨中子通量在核反应堆中的重要性。

在结论部分,将总结中子通量的物理含义,探讨中子通量在科学研究和工程中的应用,并展望未来中子通量研究的发展方向。

通过这样的结构安排,读者将能够全面了解中子通量在物理学和工程领域中的重要性及应用前景。

1.3 目的本文旨在探讨中子通量的物理含义,以帮助读者更深入理解中子通量在物理学和工程领域中的重要性。

通过对中子通量的定义、测量方法和在核反应堆中的重要性进行详细介绍,我们可以理解中子通量对于核反应、辐射治疗、辐射测量等方面的影响。

同时,我们也将探讨中子通量在科学研究和工程中的应用,展望未来中子通量研究的发展方向,以期为相关领域的研究人员提供参考和启发。

通过本文的探讨,读者可以更好地理解中子通量在各个领域中的作用,从而更好地应用和发展相关技术,推动相关领域的发展。

2.正文2.1 中子通量的定义中子通量是指在单位面积上通过单位时间内通过的中子数目,通常用单位面积上的中子数目每秒来表示,单位为n/cm²·s。

中子探测技术

中子探测技术

(2)6Li(n,α)反应,放出能量大,易区分信号和本底。但 是缺少气体化合物,并且天然6Li丰度低,浓缩后价格贵。 (3)3He(n,p)反应,优点是反应截面大,缺点是放出能量 低,不易除本底。并且3He含量低,制备困难。
核反冲法
入射能量为E的中子和原子核发生弹性散射时,中子 的运动方向改变,能量也有所减少。中子减少的能量传递 给原子核,使原子核以一定速度运动。这个原子核就称为 “反冲核”,反冲核具有一定电荷,可以作为带电粒子来 记录。记录了反冲核,就是探测到中子。它是探测快中子的 主要方法。 由动量.能量守恒定律可以推出,反冲核的质量愈小, 获得的能量就愈大。所以,在反冲法中通常都选用氢核做 辐射体。这时,反冲核就是质子,有时就称反冲质子法。
中子具有波动性,当它的波长与物质原子之间的距离数
量级相同时就会发生衍射,利用这一原理制成了中子晶体衍
射仪,既可用来研究中子能量分布,也可分解出单色中子。
第四节 中子通量密度及中子源强度的测 量
研究一束中子与物质的相互作用时,我们主要关心的是
每秒钟射到物体上的中子数。当距离较远时,中子束可近似
看成平行束。令中子束里单位体积内的中子数为n,称为中 子密度。如果中子的速度为v(cm/s),则单位时间内在垂直于 中子束方向单位面积上将有nv个中子通过。中子密度n和速 度的乘积nv,称为中子通量密度,用符号ϕ表示。
它放出的β或γ放射性,根据衰变纲图可算出此材料中形成的
放射性核的活度,从而求得中子通量密度。优点是测量容易、 体积小、无本底、灵敏度变化范围大、可以测量不同材料等, 缺点是不能连续指示通量密度随时间的变化。
锰浴法测量中子源强度
所谓“锰浴法”是将待测中子源放置在体积很大的含锰
元素的水溶液中,中子在水中充分慢化后被溶液中的55Mn俘 获,变成放射性核素56Mn,通过测量56Mn的放射性核素,就 可得出中子源强度,这一方法专门用来标定各种携带式中子 源强度。

密闭GEM中子探测器研究

密闭GEM中子探测器研究

密闭GEM中子探测器研究密闭GEM中子探测器研究近年来,随着核能的快速发展,对中子探测器的需求也越来越迫切。

中子是无电荷的粒子,对于一般的粒子探测器来说是很难直接测量的。

因此,研究人员一直致力于开发新型的中子探测器。

在这篇文章中,我们将介绍一种新型的中子探测器——密闭气体电子增强器(GEM)中子探测器,并探讨其研究进展和应用前景。

密闭GEM中子探测器是基于气体电子增强技术的一种新型中子探测器。

它采用气体放大器(GEM)作为敏感元件,并将其封装在密闭的探测器中。

通过与气体中的中子相互作用,中子会产生散射效应,激发气体中的原子或分子,进而产生电子。

这些电子经过GEM的放大作用,被进一步探测和测量,从而实现对中子的探测和测量。

密闭GEM中子探测器具有许多优势。

首先,由于采用了气体放大器技术,该探测器具有很高的增益和很低的噪音。

这使得它能够检测到非常微弱的中子信号,并保证了良好的探测灵敏度。

其次,由于是密闭的设计,该探测器可以在高真空或恶劣环境下使用,不受外界干扰的影响。

此外,密闭设计还可以防止探测器中气体的泄漏,保证了探测器的长时间稳定运行。

在密闭GEM中子探测器的研究中,关键问题之一是选择合适的气体。

气体的种类和浓度对探测器的性能有着直接的影响。

目前常用的气体包括氦、氩、氢等。

这些气体的选择取决于中子的能量范围和探测器的实际应用场景。

研究人员会通过实验和模拟方法,选择最合适的气体组合,以达到最佳的探测效果。

除了气体的选择,密闭GEM中子探测器的几何结构和工艺也是研究的重点。

探测器的几何结构应该使得中子与气体之间的相互作用最大化,从而提高探测效率。

同时,探测器的制备工艺要求高精度和高稳定性,以确保探测器的性能和可靠性。

密闭GEM中子探测器在核能领域有着广泛的应用前景。

它可以用于中子源的研究和监测,以提高核反应堆的安全性和效率。

此外,它还可以用于核物理实验中的中子测量和探测,帮助科学家更好地理解核子结构和核反应的本质。

中子探测

中子探测

方法分类
核反冲法 核反应法
核裂变法 活化法
反冲法探测中子是测量中子与原子核弹性散射后的反冲核在探测介质中引起的电离来反推原始中子的性质, 这种方法只适用于探测快中子。在使用于空间的中子探测器中,利用反冲核法的有反冲正比计数器(充甲烷)、液 体闪烁体探测器和塑料闪烁体探测器,特别是后两种探测器因具有面积大、探测效率高等特点而得到广泛的应用。 因为我们拟研制的碳化硅中子探测器的探测目标是空间辐射中的快中子部分,探测原理是基于中子与 Si C或聚 乙烯的弹性散射作用。
中子探测
对中子的数目和能量的测量
01 方法分类
03 探测器
ቤተ መጻሕፍቲ ባይዱ
目录
02 特点
中子探测即对中子的数目和能量的测量。在核能的利用、放射性同位素的产生和应用核物理研究中都需要进 行中子的探测,然而中子本身不带电,不会引起电离等作用,不产生直接的可观察效果,因此中子的探测是通过 中子同原子核的相互作用,对反应的产物进行探测。
通过测量中子核反应产生的带电粒子来探测中子的方法称为核反应法。核反应法主要用于探测慢中子的强度, 也可用来测定快中子的能谱。
中子轰击重核时会引起核裂变,通过探测裂变碎片来探测中子的方法称为核裂变法。常用235U,233U和 239Pu作为裂变材料,裂变过程中释放的能量约为200Me V,两个碎片带走的能量约为 165Me V,远远大于入射 中子和 γ射线的能量。因此,该方法主要用于热中子和慢中子的通量测量,强 γ射线本底对测量也不会造成响。
谢谢观看
中子探测器的工作原理是:中子与某种核产生反应时放出带电粒子,带电粒子在气体中运动时产生气体电离, 通过测量气体电离量来确定中子注量率水平。例如,中子与B的 (n,α)反应,放出α粒子;或中子与U反应生成 裂变碎片。

《气体探测器》课件

《气体探测器》课件

科研实验
总结词
气体探测器在科研实验领域的应用主要 是为了监测实验过程中的气体成分和浓 度,保证实验结果的准确性和可靠性。
VS
详细描述
在化学、生物、医学等科研实验中,气体 成分和浓度的监测对于实验结果的影响至 关重要。气体探测器能够实时监测实验过 程中的气体成分和浓度,保证实验结果的 准确性和可靠性。同时,对于一些高风险 的实验,气体探测器还能够提供安全预警 ,避免实验过程中发生意外事故。
02
气体探测器的应用领域
工业安全
总结词
气体探测器在工业安全领域的应用主要是为了检测工厂内的有毒有害气体,保障工人的人身安全和生产线的稳定 运行。
详细描述
在化工厂、制药厂、石油化工等行业中,气体探测器被广泛用于监测生产过程中产生的有毒有害气体,如硫化氢 、一氧化碳等。当气体浓度超标时,探测器会立即发出警报,提醒工作人员采取相应措施,保障工人的人身安全 和生产线的稳定运行。
工业安全
气体探测器在工业生产过程中用于监 测有毒有害气体,保障工人安全和生 产顺利进行。
环境保护
气体探测器用于监测空气质量、污染 物排放等环境指标,为环境保护提供 科学依据。
医疗健康
气体探测器在医疗领域用于监测患者 呼吸、气体排放等,为诊断和治疗提 供帮助。
行业标准与规范的发展
总结词
随着气体探测器的广泛应用,行业标准和规范也在不断完善和发展, 以保障产品的质量和安全性能。
《气体探测器》 ppt课件
目录
• 气体探测器概述 • 气体探测器的应用领域 • 气体探测器的技术参数 • 气体探测器的选购与使用 • 气体探测器的发展趋势与未来展望01气体探测器概述
定义与用途
定义
气体探测器是一种用于检测空气 中特定气体的装置。

粒子物理学中的探测器技术解析

粒子物理学中的探测器技术解析

粒子物理学中的探测器技术解析粒子物理学是研究物质最基本组成和相互作用的学科,它帮助我们更深入地了解宇宙的起源和本质。

而探测器技术在粒子物理实验中扮演着至关重要的角色。

本文将探讨一些常见的粒子物理探测器技术,并解析其原理和应用。

一、放射性探测器放射性探测器是粒子物理实验中最基本的探测器之一。

它利用放射性物质通过放射性衰变释放的粒子来检测粒子的性质和能量。

常见的放射性探测器有闪烁体探测器和气体探测器。

闪烁体探测器通过闪烁效应来检测粒子。

当粒子经过闪烁体时,其能量会被转化为光子。

闪烁体中的荧光物质会发光,光信号被光电倍增管放大并测量。

闪烁体探测器常用于测量低能量的粒子,如电子和光子等。

气体探测器则利用粒子通过气体介质时引起的电离和电子乘以倍增仪器中的放大器放大。

常见的气体探测器有电离室和比例计数器等。

气体探测器适用于高能量粒子的测量,如带电粒子和中子。

二、追踪探测器追踪探测器用于测量粒子的轨迹,可以帮助研究人员了解粒子的运动规律和相互作用过程。

常见的追踪探测器有闪烁纤维探测器和硅微条探测器。

闪烁纤维探测器是一种利用闪烁纤维管道来探测粒子轨迹的仪器。

当粒子通过闪烁纤维时,闪烁纤维中的荧光物质会被激发产生光信号。

光信号经过光电倍增管增强和测量,可以得到粒子的轨迹信息。

硅微条探测器则是一种利用硅微条来探测粒子轨迹的探测器。

硅微条探测器由许多狭窄而长的硅微条组成。

当粒子经过硅微条时,会在其中产生电荷。

通过测量不同微条上的电荷,可以重建出粒子的运动轨迹。

三、量能探测器量能探测器用于测量粒子的能量。

粒子的能量是粒子物理实验中一项重要的特征之一,它帮助研究人员了解粒子的性质和相互作用。

常见的量能探测器有电离室和色散计数器等。

电离室是一种利用粒子在气体介质中电离引起的电荷来测量粒子能量的仪器。

粒子穿过电离室时,会带走部分气体中的电荷。

通过测量粒子带走的电荷,可以计算出粒子的能量。

色散计数器则是一种利用粒子在介质中的色散效应来测量粒子能量的探测器。

2012.10.18中子的测量方法和探测器1

2012.10.18中子的测量方法和探测器1

的中子灵敏度可达 :
2.3×10-14 A/(n.cm2.s) 电离室高压电极(负极) 的内壁 及收集极外壁涂硼,室内充1%的氦 和6%的氮,93%的氩气。 由于中子产生的电流较大,γ的影 响较小。
9
(2)正比计数器
10B
(n, α) 7Li
输出脉冲幅度为:
A是正比计数器的气体放大倍数通常可达到103 ~105 ,En是中子的动能;Q是反应能;e是电子电荷量;W 是 平均电离能;C是计数器的等效输出电容。 主要用于热中子的测量。
16
几种发射体特性数据表
中子截面 ( b ) 150 5.1 37 响应时间 T 1/2 42s 3.7 min 瞬时 反应 (n,γ)β ̄ (n,γ)β ̄ (n,γ)γ
发射体
铑(Rh) 钒(V) 钴(Co)
密度
g/cm3
相对灵敏 度 铑=100
100 17.5 1.5
1014通量 燃耗 %每年
32 1.6 11
能量为E n 的中子微观截面σ= σ0(1/υ)
2
2、核反冲法 中子与物质原子核发生弹性碰撞,原子核被反冲,且带一定正电荷,选用反冲核 弹性碰撞截面大的材料作为探测器灵敏物质,就可以简接测量中子的注量率。通常是 利用含氢物质作为灵敏体。 反冲核的反冲能表示为:
EA
4A 2 E cos n 2 (1 A)
各种闪烁体测量中子的性能对比
名 称 型 号 规 格 Φ32,50
Φ50×20 Φ50×1.5 Φ50×1.5 Φ40×10 Φ10~50 探测中子 效 率%
光衰时间 0.2μS 0.2μS 0.2μS 0.2μS 0.1μS 30 ns
光谱峰(1010m) 4500 4500 4500 4500 3950 4470

中子探测器的设计与应用研究

中子探测器的设计与应用研究

中子探测器的设计与应用研究在现代科学技术的众多领域中,中子探测器扮演着至关重要的角色。

从基础科学研究到工业应用,从医疗诊断到国家安全,中子探测器的身影无处不在。

本文将深入探讨中子探测器的设计原理以及其广泛的应用领域。

中子是一种不带电的粒子,具有很强的穿透能力,这使得对其进行探测具有一定的挑战性。

为了有效地探测中子,科学家们设计了多种类型的探测器,每种都有其独特的工作原理和特点。

一种常见的中子探测器是基于气体的探测器,例如正比计数器和盖革计数器。

在正比计数器中,当中子与探测器内的气体原子发生碰撞时,会产生电离。

这些电离产生的电子在电场的作用下加速运动,引发进一步的电离,从而形成一个可测量的电脉冲信号。

盖革计数器的工作原理类似,但它产生的脉冲信号幅度较大,无法区分入射粒子的能量。

另一种重要的中子探测器是基于闪烁体的探测器。

闪烁体材料在吸收中子后会发出闪光,这些闪光通过光电倍增管等设备转换为电信号。

常见的闪烁体材料有有机晶体(如蒽)和无机晶体(如碘化钠)。

还有基于半导体材料的中子探测器,如硅和锗探测器。

半导体探测器具有高分辨率和良好的能量响应特性,但对制造工艺要求较高。

在中子探测器的设计中,需要考虑多个关键因素。

首先是探测器的灵敏度,即能够探测到的最小中子通量。

这取决于探测器的材料、尺寸和结构等因素。

其次是能量分辨率,它决定了探测器区分不同能量中子的能力。

探测器的时间响应特性也非常重要,对于需要快速测量的应用,如脉冲中子源实验,短的时间响应是必不可少的。

此外,探测器的稳定性和可靠性也是设计中需要重点关注的问题。

中子探测器在众多领域都有着广泛的应用。

在核科学研究中,它们被用于研究原子核的结构和反应机制。

通过测量中子与原子核相互作用产生的信号,可以深入了解原子核的性质和核反应的过程。

在工业领域,中子探测器可用于材料的无损检测。

例如,在航空航天和汽车工业中,检测金属部件内部的缺陷和结构变化,确保产品的质量和安全性。

核辐射探测复习知识点

核辐射探测复习知识点

第一章辐射与物质的相互作用与物质相互作用:1.带电粒子与靶原子核的核外电子非弹性碰撞(电离,激发)2.带电粒子与靶原子核的非弹性碰撞(辐射损失)3.带电粒子与靶原子核弹性碰撞(核阻止)4.带电粒子与核外电子弹性碰撞电离损失能量:入射带电粒子与核外电子发生非弹性碰撞使靶物质原子电离或激发而损失的能量(电离:核外层电子客服束缚成为自由电子,原子成为正离子激发:使核外电子由低能级跃迁到高能级而使原子处于激发状态)辐射损失能量:入射带电粒子与原子核发生非弹性碰撞以辐射光子损失能量轫致辐射:入射带电粒子与原子核之间的库仑力作用使带电粒子的速度和方向改变,并伴随发射电磁辐射阻止本领:单位路径上的能量损失S=-dE/dx=S ion+S rad重:S=S ion=(1/4πε0)2(4πz2e4/m0v)2NBBethe公式结论:1.电离能了损失率和入射带电粒子速度有关,质量无关2.和电荷数平方z2正比3.S ion随粒子E/n变化曲线:a段:入射粒子能量E较低时, S ion与z2成正比,曲线上升b段(0.03MeV-3000MeV):相对论项作用不显著, S ion与E成反比,曲线下降c段:能量较高时,相对论修正项起作用, S ion与B成正比,曲线上升4.高Z 和ρ物质阻止本领高布拉格曲线:随穿透距离增大而上升,接近径迹末端,由于拾取电荷而下降。

同样能量的入射带电粒子经过一定距离后,各个粒子损失的能量不会完全相同,是随机性的,发生了能量离散,即能量歧离. 射程歧离:单能离子的射程也是涨落的为何峰值上升?因为部分粒子已经停止运动,相当于通道变窄,剩余粒子能量集中,导致峰值上升.沿x方向,能量降低,离散程度变大,峰值降低.射程R带电粒子沿入射方向所行径的最大距离路程:实际轨迹长度解释各种粒子的轨迹:重带电粒子质量大,其与物质原子的轨道电子相互作用基本不会导致运动方向有偏差,径迹几乎是直线:由于次级电离,曲线会有分叉:质子和α粒子粗细差别:能量提高,径迹变细.电子的径迹不是直线,散射大. 射程R正比于m/z21.v同两种粒子同物质R1/R2=m1/m2*(z2/z1)22.v同一种粒子两物质R a/R b=√A a/√A b *(ρb/ρa)α粒子空气射程R0=0.318Eα1.5R=3.2*10-4√A/ρ*R air比电离:带电粒子在穿透单位距离介质时产生的离子对的平均数δ射线:带电粒子在穿透介质时产生的电子-离子对中的具有足够能量可以进一步电离的电子电子S rad/S ion=EZ/800快电子S rad正比于z2E/m2*NZ2屏蔽电子材料:当要吸收、屏蔽β射线时,不宜选用重材料:当要获得强的X射线时,选用重材料做靶.电子反散射及效应:电子由原入射方向的反方向反射回来,从入射表面射出.对于放射源,反散射可以提高产额:对于探测器,会产生测量偏差. When反散射严重:对于同种材料,入射电子能量越低反散射越严重:对同样能量的入射电子,原子序数越高的材料,反散射越严重光电效应:光子把全部能量转移给某个束缚电子,使其发射出去而光子本身消失的过程.是光子和整个原子的作用结果,主要集中在内层电子,还会有俄歇电子或特征X射线.(为何不与自由电子-因为入射光子有部分能量传递给原子,使其发生反冲,否则能量不守恒)采用高Z材料可提高探测效率,有效阻挡γ射线:γ光子能量越高,光电效应截面σph 越小. 入射光子能量低时,光电子趋于垂直方向发射:入射光子能量高时,光电子趋于向前发射.康普顿效应:γ射线和核外电子非弹性碰撞,入射光子一部分能量传递给电子,使之脱离原子成为反冲电子,光子受到散射,运动方向和速度改变,成为散射光子. 散射角θ=180时即入射光子和电子对心碰撞,散射光子沿入射光子反方向射出,反冲电子沿入射方向射出-反散射.能量高的入射光子有强烈的向前散射趋势,低的向前向后散射概率相当.康普顿坪:单能入射光子所产生反冲电子的能量为连续分布,在能量较低处反冲电子数随能量变化小,呈平台状:康普顿边缘:在最大能量处,电子数目最多,呈尖锐的边界.峰值Ee=hν-200keV电子对效应:当入射光子能量较高,从原子核旁边经过时,在库伦场作用下转换成一个正电子和一个负电子.电子对效应出现条件:hν>2m0c2=1.022MeV 电子和正电子沿入射光子方向的前向角度发射,能力越高,角度越前倾. 湮没辐射:正电子湮没放出光子的过程.实验上观测到511kev的湮没辐射为正电子的产生标志单双逃逸峰:发生电子对效应后,正电子湮没放出的两个511keV的γ光子可能会射出探测器,使得γ射线在探测器中沉积的能量减小.低能高Z光电,中能低Z康普顿,高能高Z电子对.线形衰减系数μ=σγN 质量衰减系数μm=μ/ρ质量厚度x m=ρx平均自由程: 表示光子每经过一次相互作用之前,在物质中所穿行的平均厚度λ=1/μ 宽束N=N0Be-μd窄束I(x)=I0e-μx半减弱厚度:射线在物质中强度减弱一半时的厚度D1/2= λ ln2第二章气体探测器信息载流子:气体(电子离子对w=30eV,F=0.2-0.5)闪烁体(第一打拿极收集到的光电子w=300ev,F=1)半导体(电子空穴对w=3ev,F=0.1 )平均电离能:带电粒子在气体中产生一对离子对所平均消耗的能量电子和离子相对运动速度:电子漂移速度为离子1000倍,约106cm/s雪崩:电子在气体中碰撞电离的过程. 条件:足够强的电场和电离产生的自由电子非自持放电:雪崩只发生一次自持放电:通过光子作用和二次电子发射,雪崩持续发展R0C0<<1/n脉冲(电子T-<<R0C0n<<T+、离子R0C0n>>T+)、R0C0>>1/n累计(电流、脉冲束)1.仅当正离子漂移时外回路才有离子电流i+(t)2.正离子从初始位置漂移到负极过程,流过外回路电荷量不是离子自身的电荷量e,而是在正极感应电荷量q1 电子电流i-(t)同理本征电流i(t)=i+(t)+i-(t) q1+q2=e电离室构成:高压极,收集极,保护极和负载电阻工作气体:充满电离室内部的工作介质,应选用电子吸附系数小的气体.圆柱型电子脉冲原理:利用圆柱形电场的特点来减少Q-对入射粒子位置的依赖关系,达到利用”电子脉冲”来测量能量的目的.能量分辨率η=ΔE/E*100%=Δh/h*100%=2.36ΔE能谱半高宽FWHM=ηE=2.36=2.36σ探测效率:入射到脉冲探测器灵敏体积内辐射粒子被记录下的百分比总输出电荷量Q=N*e=E/W*e脉冲电离室饱和特性曲线:饱和区斜率成因:灵敏体积增加,对复合的抑制,对扩散的抑制饱和电压V1-对应90%饱和区的脉冲幅度放电电压V2工作电压V=V1+(V2-V1)/3 坪特性曲线:描绘电离室计数率和工作电压关系成因:甄别阈不同电压小于V1时在符合区,但不是每个粒子都能形成一个电子离子对.仅少数可达到计数阈值h,V0上升至饱和电压后电子离子对N基本不变分辨时间(死时间):能分辨开两个相继入射粒子间的最小时间间隔时滞:入射粒子的入射时刻和输出脉冲产生的时间差累计电离室工作状态要求输出信号的相对均方涨落V I2≈1/nT<<1 V V2≈1/2R0C0n<<1 饱和特性曲线斜率:灵敏体积增大,复合的抑制,漏电流灵敏度η=输出电流或电压值/射粒子流强度(采用多级平行电极系统可提高) why曲线后部分离:部分电子离子对复合,未达到饱和电压,引起输出电流信号偏小正比计数器是一种非自持放电的气体探测器,利用碰撞电荷讲入射粒子直接产生的电离效应进行放大,使得正比计数器的输出信号幅度比脉冲电离室显著增大输出电荷信号主要由正离子漂移贡献r处场强E(r)=V0/rlnb/a V T=ET*alnb/a 只有V0>V T才工作于正比工作区,否则电离室区气体放大倍数A=n(a)/n(r0)A仅于V0V T有关,与入射粒子位置无关气体放大过程(电子雪崩)当电子到打距极丝一定距离r0后,通过碰撞电离过程电子数目不断增加电子与气体分子碰撞过程中碰撞电离,碰撞激发(气体退激发射子外光子,阴极打出次级电子,次级电子碰撞电离) 光子反馈:次级电子在电场加速下发生碰撞电离A t=A/1-γA 光子反馈很快;加入少量多原子分子气体M可以强烈吸收气体分子退激发出的紫外光子变成M*,后来又分解为小分子(超前离解) 气体放大过程中正离子作用:1.停止电子倍增2.再次触发电子倍增(离子反馈)输出信号:1.电流脉冲形状一定,与入射粒子位置无关,电压脉冲为定前沿脉冲2.响应时间快3.R0C0>>T+时,获得最大输出脉冲幅度ANe/C0分辨时间/死时间τD与脉冲宽度正比,τD内产生的脉冲不会被记录造成计数损失,死时间可扩展. m=n/1-nτD m真实n测量时滞:初始电子由产生处漂移到阳极时间时间分辨本领:正比计数器对时间测量的精度正比计数器坪特性曲线斜率:由于负电性气体、末端与管壁效应等,有部分幅度较小的脉冲随工作电压升高而越来越多地被记录下来GM放电过程:1.初始电离和碰撞电离:电子加速发生碰撞电离形成电子潮-雪崩 2.放电传播(光子反馈):Ar*放出紫外光子打到阴极上打出次级电子 3.正离子鞘向阴极漂移,形成离子电流4.离子反馈:正离子在阴极表面电荷中和缺点GM死时间长,仅计数A t=A/1-γA自持放电:阴极新产生电子向阳极漂移引起新的雪崩,从而在外回路形成第二个脉冲,周而复始.-实现自熄:改变工作高压,增加猝熄气体-有机(阻断光子,离子反馈;工作机制:1.电子加速发生碰撞电离形成电子潮-雪崩过程 2.Ar*放出紫外光子被有机气体分子吸收3. 正离子鞘向阴极漂移实现电荷交换4.有机气体离子在阴极电荷中和),卤素(工作机制:1.电离过程靠Ne的亚稳态原子的中介作用形成电子潮2.Ne*退激发出光子在阴极打出电子,或被Br2吸收打出新点子3.正离子鞘Br+向阴极漂移4.Br+在阴极表面与电子中和超前解离)GM管和正比计数器区别:GM输出信号幅度和能量无关,只能计数,死时间非扩展型死时间校正:m=n(mτD+1)GM坪特性曲线坪斜成因:随工作电压增高,正离子鞘电荷量增加,负电性气体电子释放增加,灵敏体积增大,尖端放电增加死时间t d:电子再次在阳极附近雪崩的时间复原时间t e:从死时间到正离子被阴极收集,输出脉冲恢复正常的时间分辨时间t f:从0到第二个脉冲超过甄别阈的时间GM计数管离子对收集数N与工作电压关系图:1.复合区(电压上升,复合减少,曲线上升)2.饱和区(电荷全被收集)3.正比区N=N0M(碰撞电离产生气体放大,总电荷量正比于原电荷量)4.有限正比区N>>N0(M过大,过渡区)5.盖格区(随电压升高形成自持放电,总电离电荷与原电离无关,几条曲线重合)第三章闪烁体探测器优点:1.探测效率高,可测量不带电粒子,对于中子和γ光子可测得能谱2.时间特性好,可实现ns的时间分辨工作过程:射线沉积能量,电离产生荧光,荧光转换为光电子,光电子倍增,信号流经外回路闪烁体探测器组成:闪烁体,光电倍增管,高压电源,低压电源,分压器和前置放大器分类:无机闪烁体(无机盐晶体,玻璃体,纯晶体),有机闪烁体(有机晶体,有机液体闪烁体,塑料闪烁体)气体闪烁体(氩、氙)无机闪烁体发光机制:入射带电粒子可以产生电子空穴对,也可以产生激子(相互转化) 有机闪烁体发光机制:由分子自身激发和跃迁产生激发和发光气体闪烁体发光机制:入射粒子径迹周围部分气体被激发,返回基态时发射出光子产生电子空穴对需要三倍禁带宽度能量光能产额Y ph=n ph/E=4.3*104/MeV 闪烁效率C ph=E ph/E=13%闪烁光子传输和收集通道:反射层,光学耦合剂,光导反射层:把光子反射到窗:镜面反射和漫反射耦合剂(折射系数较大的透明介质,周围介质折射系数n1,闪烁体n0,全反射的临界角θc=sin-1n1/n0):排除空气,减少由全反射造成的闪烁光子损失光导:具有一定形状的光学透明固体材料,连接闪烁体和光电倍增管,有效地把光传输到光电转换器件上:具有较高折射系数,与闪烁体和光电转换器光学接触好. 光电倍增管PMT:把光信号转换为电信号并放大;由入射窗,光阴极,聚焦电极,电子倍增极(打拿极,次级电子产额δ=发射的次级电子数/入射的初级电子数),阳极和密封玻璃外壳组成.光谱效应:光阴极受到光照射后发射光电子的几率为波长的函数量子效率Q k(λ)=发射电子数/入射光子数光阴极的光照灵敏度S k=i k/F S a=i a/F S a=g c*M*S k第一打拿极的电子收集系数g c=第一打拿极收集到的光电子数/光阴极发出的光电子数PMT的电流放大倍数M=阳极收集到的电子数/第一打拿极收集到的电子数飞行时间(渡越时间)te:一个光电子从光阴极到达阳极的平均时间渡越时间离散Δte为te的分布函数的半宽度闪光照射到光阴极时,阳极输出信号可能不同-原因:1.光阴极的灵敏度在不同位置不同2.光阴极不同位置产生的光电子被第一打拿极收集的效率不同解决:1.改进光阴极均匀性 2.改进光电子收集均匀性 3.利用光导把光电子分散在整个光阴极输出信号:闪烁体发出闪烁光子数n ph=Y ph E 第一打拿极收集到光电子数n e=n ph T 阳极收集到电子数n A=n e M 输出电荷量Q=n A e=Y ph TMe电压脉冲型工作状态R0C0>>τ优:脉冲幅度大缺:脉冲前沿后沿慢电流脉冲型工作状态R0C0<<τ优: 脉冲前沿后沿快缺:脉冲幅度小小尺寸闪烁体:仅吸收次级电子的能量,大尺寸闪烁体:吸收全部次级电子、次级电磁辐射能量中尺寸闪烁体:吸收次级电子能量,可能吸收次级电磁辐射能量;康普顿边沿与全能峰之间连续部分-多次康普顿散射造成-康普顿效应产生的散射光子又发生康普顿效应;单逃逸峰-正电子湮没辐射时产生的两个511keV的湮没光子一个逃逸而另一个被吸收,双逃逸峰-两个光子都逃逸;全能峰-对应γ射线能量的单一能峰第四章半导体探测器本征半导体:理想的纯净半导体,价带填满电子,导带无电子禁带宽度硅300K-1.115ev 0K-1.165ev锗300K-0.665ev 0K-0.746ev 电子空穴密度硅n=p=2*1010/cm3锗n=p=2.4*1013/cm3半导体探测器分类:均匀型,PN结型,PIN结型,高纯锗HPG,化合物半导体,雪崩半导体,位置灵敏半导体半导体探测器的优点:1.非常好的位置分辨率 2.很高的能量分辨率3.很宽的线形范围4.非常快的响应时间Si:适合带电粒子测量,射程短Ge:纯度高,可以做成较大的探测器:可用于γ能谱测量掺有施主杂质的半导体中多数载流子是电子,叫做N型半导体:掺有受主杂质的半导体中多数载流子是空穴,叫P型半导体补偿效应:当p>n,N型转换为P型半导体p=n时完全补偿平均电离能特点:1.近似与入射粒子种类和能量无关,根据电子空穴对可推入射粒子能量 2.入射粒子电离产生的电子与空穴数目相等 3.半导体平均电离能约3eV,远小于气体平均电离能30eV 陷落和复合使载流子减少半导体探测器材料特性:长载流子寿命(保证载流子可被收集),高电阻率(漏电流小,结电容小)PN型半导体:适合测量α粒子这类短射程粒子,不适合测量穿透力强的射线势垒高度V0=eN d W2/2ε宽度W=(2εV0/eN d)1/2=(2εV0ρnμn)1/2PIN半导体:温度升高,Li+漂移变快;Li+形成PN结,Li+与受主杂质中和,实现自动补偿形成I区(完全补偿区,耗尽层,灵敏体积),形成PIN结why半导体PN结可作为灵敏区?1.在PN结区可移动的载流子基本被耗尽,只留下电离了的正负电中心,具有高电阻率 2.PN结上加一定负偏压,耗尽区扩展,可达全耗尽,死层极薄,外加电压几乎全部加到PN结上,形成高电场 3.漏电流小,具有高信噪比高纯锗:一面通过蒸发扩散或加速器离子注入施主杂质形成N区,并形成PN结,另一面蒸金属形成P+作为入射窗,两端引出电极第五章辐射探测中的统计学f(t)=me-mt t=1/m σt2=1/m2第六章核辐射测量方法符合事件:两个或以上在时间上相关的事件真符合:用符合电路选择同时事件反符合:用反符合电路来消除同时事件,当一个测量道没有输入信号时,另一道的信号才能从符合装置输出符合道计数率nc=Aεβεγ偶然符合:在偶然情况下同时达到符合电路的非关联事件引起的符合(偶然计数n rc=2τs n1n2) 电子学分辨时间τe=FWHM/2符合计数n c=n co+n rc 真偶符合比R=n co/n rc=1/2τs A电压工作状态脉冲幅度⎺h=Ne/C0 E=Κ1⎺h+K2=Gx+E0 G0增益E0零截α能量分辨率FWHMs=2.36√FEαW0探测器选择α:金硅面垒半导体探测器、屏栅电离室、带窗正比计数器β:半导体探测器、磁谱仪γ:单晶γ谱仪全能峰E f=Eγ单Es= Eγ-511keV双E d= Eγ-1022keVy(i)=y(I p)exp[-(i-I p)2/2σ2] η=FWHM/I p FWHM=2.36σ峰康比p=全能峰的峰值/康普顿平台的峰值半导体峰总比f p/T=特征峰面积/谱总面积第七章中子探测反应堆周期T:反应堆内中子密度变化e倍所需时间平均每代时间τ:上一代中子的产生到被吸收后又产生新一代中子的平均时间K=堆内一代裂变中子总数/堆内上一代裂变中子总数T=τ/K-1反应堆功率测量系统功能:为反应堆提供工况控制信息(控制方面),为反应堆的安全保护系统提供安全保护信号(安全方面)中子测量方法:核反冲法,核反应法,核裂变法,活化法中子能谱测量方法:核反应法,核反冲法,飞行时间法中子探测器原理:通过中子与核相互作用产生可被探测的次级粒子并记录这些刺激粒子探测过程:1.中子和辐射体发生相互作用产生带电粒子或感生放射性2.在某种探测仪表记录这些带电粒子或放射性中子探测器种类:1.气体探测器(BF3正比计数管,涂硼正比计数管,长计数管,平行板电离室,圆柱形电离室,γ补偿电离室,长中子电离室)2.固体探测器(硫化锌快中子屏,硫化锌慢中子屏,含锂闪烁体,有机闪烁体)堆芯外仪表:核仪表系统(2个源量程测量通道2个中间量程测量通道4个功率量程测量通道),提供信号,提供控制信号,监测功能堆芯内仪表:堆芯裂变电离室,涂硼室,γ温度计.自给能探测器堆芯中子注量率测量系统:驱动装置,组选择器,路选择器,中子探头。

中子探测技术在核物理研究中的应用

中子探测技术在核物理研究中的应用

中子探测技术在核物理研究中的应用中子是核物理研究中非常重要的一种粒子,它具有不带电的特性,能够穿透物质,不易与物质发生相互作用。

因此,中子探测技术是核物理研究中重要的手段之一。

本文将介绍中子探测技术在核物理研究中的应用,主要包括中子探测器的种类及其原理、中子反应的测量方法、中子在核物理研究中的应用和未来发展趋势。

一、中子探测器的种类及其原理中子探测器的种类有很多,主要包括闪烁体探测器、气体探测器、半导体探测器等。

每种探测器都有其特点和优缺点,适用于不同的应用场合。

其中,气体探测器是中子探测器中应用最为广泛的一种。

气体探测器主要包括闪烁室、比较计数器、多丝离子计等。

气体探测器的工作原理是中子与气体分子碰撞后,产生大量的次级带电粒子,如电子、离子等,这些次级带电粒子在电场或引线电压的作用下,在气体中产生电离,通过电极、电线等方式,将信号传递到电路中,最终进行信号处理和分析。

半导体探测器是一种新型的中子探测器,与传统的气体探测器相比,具有响应速度快、探测效率高、能量分辨率好等优点。

半导体探测器的工作原理是中子与探测器材料发生核反应后,产生带电粒子,这些带电粒子在探测器中产生电离,导致探测器材料内部的电场发生变化,产生电信号。

二、中子反应的测量方法中子反应的测量方法主要包括慢中子实验和快中子实验两种。

慢中子实验指的是用热源或中子独立发射源产生中等能量的中子,通过吸收剂将其变成慢速中子,然后进行反应测量。

慢中子实验常用的装置主要有中子时间飞行法、中子后向散射法、中子互作用法等。

快中子实验指的是用加速器产生高速中子,然后与靶核发生碰撞,测量反应过程中释放的能量和粒子的轨迹。

快中子实验常用的实验器材有线性加速器、环形加速器、靶中子源、中子时飞行法等。

三、中子在核物理研究中的应用中子在核物理研究中有着重要的应用,主要包括中子衰变、核反应、中子散裂等领域。

中子衰变是指中子自由衰变成质子和电子中,放出带有能量的反应产物。

三氟化硼中子探测原理

三氟化硼中子探测原理

三氟化硼中子探测原理主要基于中子与硼-10的反应。

当中子与硼-10原子碰撞时,会产生一个快中子,这个快中子与氢-1原子碰撞后,又会形成两个热中子。

热中子可以被探测到,而快中子则不能。

探测到的热中子可以用于判断中子的存在。

探测原理包括热中子探测和快中子探测两种。

热中子探测通常使用含硼探测器,利用硼-10与热中子的反应来探测中子。

而快中子探测则通常使用含氢探测器,利用氢-1与快中子的反应来探测中子。

在实际应用中,为了提高探测效率,常常将这两种探测方式结合起来使用。

例如,在三氟化硼气体探测器中,可以利用三氟化硼气体中的硼-10原子与中子的反应来探测中子。

由于三氟化硼气体中的硼-10原子较多,因此这种探测器的探测效率较高。

此外,还可以使用质子反应堆、加速器等设备来产生快中子或热中子,并通过测量它们与物质的反应来判断中子的存在。

例如,在质子反应堆中,可以利用质子与重核的反应来产生中子,然后通过测量这些中子与物质的反应来判断中子的存在。

总之,三氟化硼中子探测原理是基于中子与硼-10的反应,通过测量热中子的存在来判断中子的存在。

在实际应用中,需要根据具体情况选择合适的探测方式。

中子探测器 标准

中子探测器 标准

中子探测器标准中子探测器是一种用于检测和测量中子粒子的仪器。

中子是构成原子核的基本粒子,具有无电荷和质量较大的特点。

在许多领域,如核科学、核能工程、辐射监测和材料研究等,对中子的探测和测量非常重要。

本文将介绍中子探测器的工作原理、分类以及常见的应用领域。

一、中子探测器的工作原理中子探测器的工作原理是基于中子与物质相互作用的特性。

中子在物质中的相互作用主要包括散射、吸收和俘获等过程。

根据这些相互作用,中子探测器可以通过测量中子与物质发生相互作用后所产生的信号来检测和测量中子的能量、角分布和强度等信息。

常见的中子探测器包括以下几种:1. 闪烁体探测器:闪烁体探测器是一种利用闪烁材料中发光现象来检测中子的探测器。

当中子与闪烁体相互作用时,会产生光子,通过光电倍增管或光电二极管等光电转换器件将光信号转换为电信号进行测量。

2. 电离室探测器:电离室探测器利用中子在气体中电离产生的电荷来检测中子。

当中子与气体分子相互作用时,会产生离子对,通过电极系统将离子对收集并测量电荷信号的大小,从而确定中子的能量和强度。

3. 核反应探测器:核反应探测器利用中子与特定核反应产生的粒子或辐射来检测中子。

例如,中子与核反应产生的γ射线、α粒子或β粒子等,可以通过相应的探测器来测量,从而间接检测中子的存在和能量。

4. 导电探测器:导电探测器是一种利用中子与导电材料发生相互作用后引起电阻变化的探测器。

中子的散射或吸收作用会导致导电材料的电阻发生变化,通过测量电阻的变化可以间接检测中子。

二、中子探测器的分类根据中子探测器的工作原理和结构特点,可以将中子探测器分为以下几类:1. 依据探测原理分类:- 散射探测器:通过测量中子在物质中的散射过程来检测中子。

- 吸收探测器:通过测量中子在物质中的吸收过程来检测中子。

- 核反应探测器:通过测量中子与物质发生核反应后产生的粒子或辐射来检测中子。

2. 依据探测介质分类:- 固体探测器:利用固体材料作为探测介质的中子探测器。

中子探测器的原理与应用

中子探测器的原理与应用

中子探测器的原理与应用中子是一种无电荷、质量相对较大、存在时间较短的基本粒子,是物质世界中的重要组成部分。

中子的产生、传输和相互作用过程,对于理解物质的本质和探索自然世界有着重要的意义。

因此,开发高效、灵敏的中子探测器,对于研究基础物理、核能利用、医学诊断和工程测量等领域具有不可替代的作用。

一、中子探测器的分类常见的中子探测器可分为以下几类:1.闪烁体探测器闪烁体探测器是一种利用闪烁效应测定射入物质中中子数的探测器。

它将入射中子转化成有效光子信号,通过光电倍增管增强后传递到后端电子学系统进行信号处理。

闪烁体探测器具有灵敏度高、时间分辨率快、能量分辨率良好等特点,被广泛应用于核物理研究和核工程领域。

常用的闪烁体探测器包括氢化锂闪烁体、BC501A闪烁体、BC537闪烁体等。

2.电离室探测器电离室探测器是利用受入射粒子电离气体产生的电荷量测定射入物质中中子数的探测器。

电离室探测器具有较高的灵敏度和能量分辨率,因此被广泛应用于中子照相、测量中子散射截面等领域。

常见的电离室探测器包括比利叶计数器、带电粒子计数器等。

3.半导体探测器半导体探测器是一种利用半导体材料测量射入物质中中子数的探测器。

半导体探测器具有快速响应、高连接效率、低噪声等特点,因此被广泛应用于核工程、材料研究、医学放射性测量等领域。

常见的半导体探测器包括硅探测器、钙钛矿探测器、锗探测器等。

二、中子探测器的工作原理中子探测器的工作原理基于中子与物质的相互作用。

当中子入射到物质中时,会发生主要的三种相互作用:弹性散射、非弹性散射和吸收。

其中,弹性散射是指中子以高速度撞击物质原子核而被散射,非弹性散射是指中子与物质原子核结合,形成中间态核和激发态核等状态,最后发射出γ射线或质子等粒子,吸收是指中子被物质原子核捕获而被消耗掉。

针对不同的相互作用方式,中子探测器的测量原理也各有不同。

例如,闪烁体探测器通过探测闪烁体中发射出的光子计算中子数,其原理是基于中子与闪烁物质中氢、碳等原子发生非弹性散射或吸收过程而释放出的光子。

中子探测器的物理与应用

中子探测器的物理与应用

中子探测器的物理与应用中子是一种无电荷、质量较小的粒子,同时还具有波粒二象性以及一定的穿透力等特性。

近年来,中子探测器在核物理、物理学、材料科学等领域中的应用越来越广泛。

本文将介绍中子探测器的物理原理和一些常见的应用。

一、中子探测器的物理原理中子探测器是一种利用中子与物质相互作用所产生的电离、致动或散射等现象来检测中子的装置。

中子与物质的相互作用方式有碰撞、俘获、轰击等多种形式,因此中子探测器的工作原理也因此而有所差别。

1. 气体中子探测器气体中子探测器常用于强辐射区域的中子探测,其原理是利用中子与气体分子发生碰撞,使气体分子电离或致动,从而探测出中子。

常用的气体有氦气、氖气等。

气体中子探测器的优点是探测精度高、响应速度快,但灵敏度较低。

2. 闪烁体中子探测器闪烁体中子探测器是利用中子的轰击产生闪烁光子,在光电倍增管的作用下加以放大来检测中子。

闪烁体通常是有机、无机结晶体,如氧化铝、聚苯乙烯等。

闪烁体中子探测器的灵敏度高、响应速度快,但成本相对较高。

3. 半导体中子探测器半导体中子探测器是利用中子与半导体材料发生俘获反应,从而形成电子-空穴对,利用电子学技术来检测中子。

常用的半导体材料有锗、硅等。

半导体中子探测器的响应速度快,分辨率高,但成本相对较高。

4. 闪烁核探测器闪烁核探测器是在闪烁体中加入少量的放射性核素,当中子进入其中时,核素与中子发生俘获反应,产生闪烁光子,从而检测中子的装置。

常用的核素有卡钙、硼、银等。

闪烁核探测器具有较高的灵敏度和可靠性,但核素的辐射性需要加以掌握。

二、中子探测器的应用1. 核物理研究中子在核物理中具有重要的作用。

中子探测器可以用于中子的测量和探测,以便深入了解核反应、核衰变等物理过程。

中子探测器还可以用于中子源的辐射实验、核物理反应研究等。

2. 物理学研究中子在物理学中的应用也非常广泛。

中子探测器可以用于中子散射实验、中子衍射实验、中子反弹实验等,以便深入了解材料的结构、性质等。

中子在核物理实验中如何产生和探测

中子在核物理实验中如何产生和探测

中子在核物理实验中如何产生和探测关键信息项:1、中子产生的方法核反应堆加速器放射性同位素源2、中子探测的原理弹性散射核反应电离作用3、常用的中子探测器类型气体探测器闪烁探测器半导体探测器11 中子产生的方法111 核反应堆核反应堆是一种常见的中子产生源。

在核反应堆中,通过控制核燃料(通常是铀或钚)的链式裂变反应,大量的中子被释放出来。

这些中子具有不同的能量分布,从热能中子到快中子都有。

核反应堆产生的中子通量通常较高,适用于大规模的核物理实验和应用。

112 加速器利用加速器也可以产生中子。

例如,通过加速质子、氘核等带电粒子,并使其撞击靶物质,引发核反应从而产生中子。

加速器产生的中子能量通常可以通过调节入射粒子的能量和靶物质的种类来控制,具有较好的能量可调性。

113 放射性同位素源某些放射性同位素在衰变过程中会释放出中子。

这些同位素源通常中子产额较低,但具有体积小、便于携带等优点,适用于一些特殊的应用场景。

12 中子探测的原理121 弹性散射当中子与原子核发生弹性散射时,中子的动量和能量会发生改变。

通过测量散射前后中子的能量和方向变化,可以推断出中子的信息。

这种方法常用于气体探测器和液体探测器中。

122 核反应中子与某些原子核可以发生特定的核反应,产生新的粒子和能量。

通过探测这些反应产物,可以确定中子的存在和能量。

例如,常用的氦-3 探测器就是基于中子与氦-3 发生核反应的原理工作的。

123 电离作用当中子与物质相互作用时,可能产生次级带电粒子,这些带电粒子在物质中会引起电离。

通过测量电离产生的电信号,可以探测中子。

这种方法常用于半导体探测器中。

13 常用的中子探测器类型131 气体探测器气体探测器如正比计数器和盖革计数器,利用中子与气体分子的相互作用产生的电离效应来探测中子。

它们结构简单,成本较低,但探测效率和能量分辨率相对有限。

132 闪烁探测器闪烁探测器由闪烁体和光电倍增管组成。

当中子与闪烁体相互作用时,闪烁体发出闪光,通过光电倍增管转换为电信号。

探测器的那些类目及特点

探测器的那些类目及特点

探测器的那些类目及特点探测器是一种能够感知、测量或监测其中一种目标或现象的仪器或装置。

根据不同的应用领域和测量对象,探测器可以分为多个类别。

以下是一些常见的探测器类目及其特点:1.光学探测器光学探测器是利用光学原理进行测量和检测的设备。

常见的光学探测器包括光电探测器、光纤光谱仪、光电倍增管等。

光学探测器具有高精度、响应速度快的特点,在光学领域的应用非常广泛。

2.电子探测器电子探测器是一种使用电子技术进行测量和探测的装置。

电子探测器具有高灵敏度、响应速度快、分辨率高等特点。

常见的电子探测器包括电子显微镜、电子加速器、半导体探测器等。

3.气体探测器气体探测器是一种用于检测和测量气体浓度、成分和压力等参数的装置。

常见的气体探测器有气体传感器、火灾探测器、气体色谱仪等。

气体探测器通常具有高灵敏度、快速响应和稳定性强等特点。

4.粒子探测器粒子探测器是一种用于检测和测量粒子(如电子、质子、中子等)的准确位置、速度、能量和其他属性的装置。

常见的粒子探测器有闪烁体探测器、半导体探测器、离子计数管等。

粒子探测器通常具有高分辨率、高精度和高灵敏度等特点。

5.生物传感器生物传感器是一种利用生物分子与传感器之间的特异性相互作用来检测和测量生物分子(如蛋白质、DNA等)的装置。

生物传感器在医学、生物工程等领域具有重要应用价值。

常见的生物传感器有免疫传感器、酶传感器、DNA传感器等。

6.声学传感器声学传感器是一种用于检测和测量声音、声压、声波等声学信号的装置。

常见的声学传感器包括麦克风、声纳、声波测量仪等。

声学传感器通常具有高灵敏度、广泛频率响应范围和耐高温等特点。

7.环境传感器环境传感器是一种用于检测和测量环境参数(如温度、湿度、压力、气体浓度等)的装置。

常见的环境传感器有温湿度传感器、气体传感器、压力传感器等。

环境传感器通常具有高精度、可靠性强和节能环保等特点。

以上是一些常见的探测器类目及其特点。

随着科学技术的不断发展和创新,探测器将会持续演进和改进,为各个领域的研究和应用提供更先进、更高性能的探测手段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气体探测器与中子探测1.1 气体探测器概述气体探测器是人类历史上应用最悠久的核辐射探测器,在早期核物理发展中起了很大作用,例如宇宙线和中子是在电离室中发现的,迄今已有一百多年的历史。

气体探测器是以气体作为探测介质,利用电极收集入射粒子在气体中产生的电荷来探测粒子,获取入射粒子的能量、时间及位置等相关信息。

1.2 气体探测器测量原理气体探测器是以工作气体(既可以是混合气体,也可以是单一气体)作为探测物质,利用电极收集入射粒子在气体中产生的电离电荷来探测粒子,获取入射粒子的能量、时间及位置等相关信息。

尽管气体探测器的形式和结构各种各样,但几乎都是利用电极来收集电离电荷的,它们通常都是由高压电极和收集电极组成。

入射粒子进入灵敏区后,通过使电极间气体电离,生成的电子和正离子在电场的作用下分别向相反方向漂移,最后被电极收集。

在漂移过程中,由于静电感应,电极上将感生电荷,并且随他们的漂移而变化,于是在输出回路中形成感应电流,收集的电子-离子对数目决定了输出电流的大小。

气体探测器正是利用此特性实现了探测粒子的功能。

1.2.1带电粒子在工作气体中的能量损失与统计规律入射带电粒子通过气体时,由于与气体分子的电离碰撞而逐次损失能量,最后被阻止下来。

碰撞的结果使气体分子电离或激发,并在粒子通过的径迹上生成大量的离子对(电子和正离子)。

上述电离过程包括入射粒子直接与气体分子碰撞引起的电离,以及由碰撞打出的高速电子(δ电子)所引起的电离。

前一过程产生的离子对数称为初电离,后一过程产生的离子对数称为次电离,初电离和次电离的总和称为总电离。

此外,粒子在单位路程上产生的离子对数称为比电离。

带电粒子在气体中产生一对电子-离子所需的平均能量w称为平均电离能,公式2.1所示。

(2.1)式(2.1)中E为带电粒子在探测器中的能量损失,N为电离过程产生的平均电子-离子对数目。

在气体中产生一个电子一离子对所需能量(平均电离能)约为30eV,若一个能量为3keV的带电粒子与气体相互作用,则能产生3000/30=100电子一离子对。

作为测量能量用的探测器,它的输出脉冲幅度一般与探测器对入射粒子所吸收的能量成正比。

但是,即使探测器对粒子所吸收的能量完全相同,所对应的输出脉冲幅度也不完全一样,即有大小不同的涨落,在能谱上形成一个具有一定宽度的峰。

造成这种涨落的原因很多.其中一个重要的因素是由电离的统计涨落引起的。

1.2.2电子与离子在气体中的运动[1]电子和离子在气体中可能发生以下几种物理过程:漂移、扩散、电子吸附和复合。

漂移:微观尺寸上,气体中的电子和离子的漂移是电子和离子与气体分子或原子碰撞后散射,因而它们的运动方向是随机的,即瞬时速度v方向是不一定的。

离子或电子在外电场中被加速,但是它又和气体分子随机碰撞沿着电场方向缓慢运动,损失能量而减速。

不断加速和减速的结果,宏观上就表现为它们具有一定的平均速度,称为漂移速度v,公式为式(2.2)。

假设每次碰撞后电离粒子的动量全部损失,就可以导出下述公式:(2.2)式中为电场强度,是气体压力,是电离粒子的质量,是它在latm下的平均自由路程,是它在电场下混乱运动的平均速度,也称激活速度。

是在两次碰撞之间()电离粒子的加速度, ()为走过()路程所需时间。

激活速度可以用平均激活能表示,是电离粒子混乱运动的能量在有电场时比无电场时所增加的倍数,即有关系式:(2.3)电子的随气体种类的不同差别很大,惰性气体的很大,双原子分子气体的比较小。

其原因是:电子会从电场中得到能量和动量,同时它与气体分子碰撞时又会损失能量和动量,而激活能正是依赖于两者的平衡。

多原子分子气体在较低电子能量下就会出现非弹性碰撞,这就阻止了平衡能量值的无限上升。

因此,在惰性气体中加入多原子分子气体会大大降低值,激活速度u减小,进而大大增加电子的漂移速度。

例如,在氮气中混入二氧化碳或甲烷,可以使电子漂移速度提高一个数量级。

实验测得的电子漂移结果如图2.1,电子的漂移速度一般比离子大103倍,约106cm/s,电子的漂移速度对组成气体的成分非常灵敏。

图1.1 电子在气体中的漂移速度1)扩散电子和正离子由于空间密度不均匀,从密度大的区域向密度小的区域扩散。

由于扩散的结果,原初电离形成的离子随时间增加向四周扩散,电离产生的电子和离子并不会完全沿着外电场方向漂移;而是在漂移的同时还要向四周扩散。

利用运动学理论可以得到室温条件下,扩散平均距离与漂移平均距离的关系如下:(2.4)式( 2.4)中,表示平均激活能,, 即电场强度乘漂移距离。

表示电子或离子沿电场漂移一段距离后的横向扩散程度。

若在惰性气体中加入多原子分子气体会大大减小,从而也就大大减小了扩散的影响电子吸附:电子在运动过程中,被中性气体原子或分子俘获,形成负离子。

每一次碰撞,电子的吸附几率称为气体的吸附系数h。

不同气体的h值相差很大,对H2和所有惰性气体,;卤素分子、氧分子、水分子的h值都比较较大。

通常把吸附电子几率h较大的气体称为“负电性气体”。

电子被负电性气体俘获形成负离子后,漂移速度减小,同时,负离子比电子更容易与正离子复合成中性粒子。

从而导致收集到的电离数N减少,这在能量测量中是不希望的。

为了尽量减少电子俘获,探测器应使用h值较小的气体,并使负电性气体杂质的含量减到最低限度。

复合:正离子和电子(或负离子)相遇时,可能会发生电荷中和形成中性粒子。

复合几率与正负离子密度成正比。

即:(2.5)式(2.5)中:是单位体积内的负、正离子数。

比例系数称为复合系数,其与气体本身有关,也与气压、温度以及正负离子之间的相对速度等因素有关。

电子的复合系数比负离子小很多。

因此只要不含负电性气体,在通常工作情况下复合效应是很小的。

复合现象的存在将会破坏原始入射粒子电离效应与输出信号的对应关系,气体探测器应尽量避免这种因素的影响。

1.2.3外加电场对电离粒子运动的影响假设在探测器气体空间形成个电子离子对,在外加电压的作用下,这些电子和正离子分别向正、负电极漂移而被电极收集。

图2.2是外加电压与离子对收集数的关系曲线的实验结果。

可以看到,气体探测器外加电压与离子对收集数的关系曲线可明显地分为五个区段.第区复合区(外加电压小于),外加电压较低,离子漂移速度很小,扩散和复合效应起主要作用。

由于复合,电极上收集到的离子对数小于初总电离数目。

第区饱和区(电压大于,但小于),外加电压达到时,继续增大电压,气体探测器中复合效应基本消失,入射粒子在气体中初始电离数可以被电极全部收集。

在恒定强度放射源照射下,被收集的电荷数基本上保持不变,曲线近似呈水平线形状,电流趋于饱和,因此第II区称为饱和区又称电离区,在此区工作的气体探测器称为电离室。

图2.2中曲线的标记分别对应和粒子,由于粒子在单位长度气体中损失的能量大于电子的,所以粒子初始电离产生的电荷量也大于电子的,所以粒子对应的曲线在粒子对应曲线的上方,可见工作在第II区的电离室既可以探测粒子的能量也可以探测粒子的强度。

第III区正比区(电压大于,但小于),外加电压超过以后,电流又开始上升,这是因为此时气体的电场强度足以使初始电离出的电子获得足够的动能引起气体进一步电离,产生更多的次级电子一离子对,被收集的离子对数大于初总电离数,这种现象就是气体放电理论中的汤生放电(又称电子雪崩),而电子倍增量称为气体放大倍数。

气体放大倍数:。

外加电压越高,M越大。

一般地,汤逊放大可使电子-离子对数倍增至初始电离的10-105倍,但电压固定时,气体放大倍数是恒定的。

因此电极上收集的所有电荷数正比于初始电离的电荷数,所以第III区称为正比区,而将工作在此区的气体探测器称为正比室,可见气体探测器工作在第III区时,仍可用来测量粒子的能量和强度。

对于正比室而言,其气体放大倍数对高压很敏感,因此正比室对电压的稳定度要求较高,应小于0.1%。

正计数器、多丝正比室和漂移室工作于这一区间内。

第IV区有限正比区(电压大于,但小于),电压继续增大时,气体放大倍数过大,漂移速度较慢的正离子会“滞留”在阳极附近形成空间电荷,削弱阳极附近的电场强度,电子雪崩就会受到抑制,反而使气体放大倍数随外加电压的增加也相对地减小,形成所谓的空间电荷效应。

显然,初始电离越强,这种效应越明显。

因第IV区的电子雪崩受到了空间电荷效应的抑制,气体放大倍数不再恒定,而与初始电子-离子对数相关,收集到的电荷数不再与初始电离离子对严格成比例,所以第IV区称为有限正比区。

第V区盖勒-弥勒区(电压大于,但小于),进入第V区段后,此时不仅存在电子雪崩,同时也存在光子和电子,因此电子倍增更加剧烈,电流开始激增而形成自激放电,电极收集的电荷再次达到饱和,电流强度不再与初始电离有关,初始电离只对放电起“点火”作用,因此在第V区段,和的两支曲线出现重合。

在第V区中,如果每次放电都能采用某种方法(如采用脉冲供电或使用猝灭性气体)使放电终止,那么单位时间里的电流强度就可放映粒子的辐射强弱,所以尽管第V区不能再测量粒子的能量,但可用来探测粒子的辐射强度。

由于工作在第V区的气体探测器G-M计数管是由Geiger和Mueller发明的,因此第V区段称为G-M区。

第V区连续放电区(大于),当外加电压继续增高时,电极收集的电离数再次剧烈增长,电子倍增会导致连续放电,同时伴有大量光子,利用此特性,人们也设计出了流光室、火花室及自猝灭流光室。

综上所述,不同工作区域的探测器,电离粒子与气体分子作用机制不同,输出信号的性质也不同,从而,可将它们分为电离室、正比计数器、盖革一弥勒计数器及连续放电型探测器等不同的气体电离探测器。

图2.2外加电压与电离电流的关系曲线1.3 中子探测概述1.3.1中子探测概述由于中子本身不带电,所以要对中子进行探测,必须先把它转化为带电粒子进行探测。

中子是通过与物质的弹性散射、核反应、核裂变、活化等产生的次级带电粒子对其进行探测的。

所有的中子探测器,至少包含了一种可以把中子转化为可探测的带电粒子的材料,而和中子发生相互作用的材料,它们的截面依赖于入射中子的能量,并且不同的探测器专注于探测某一特定能区的中子。

常用的中子探测器分为两大类:热中子探测器和快中子探测器,转化材料通常需要满足以下五点要求:①具有大的中子作用截面,它能够使中子更容易转化为可探测的带电粒子。

②应该是一种自然界同位素丰度较高的核素,或者是一种容易提纯得到并被探测器使用的人造物质。

③参加反应的 Q 值很高,这样就容易区分由gamma 射线引起的脉冲幅度。

④中子产生的次级粒子应该有足够大的能量逃出转化层到达探测器的灵敏区,这样才能产生大量的可探测的有效信号。

⑤对中子成像探测器来说,中子转化出来的次级粒子射程不能太长,因为长射程的粒子可能使读出电路板的像素(pixel)或者盘(pad)点火区域增大导致分辨率下降。

相关文档
最新文档