立体几何专题(教师版)

合集下载

2020年高考数学解答题核心:立体几何综合问题(专项训练)(教师版)

2020年高考数学解答题核心:立体几何综合问题(专项训练)(教师版)

专题08 立体几何综合问题(专项训练)1.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =AE =2. (1)求证:BD ⊥平面ACFE ;(2)当直线FO 与平面BED 所成的角为45°时,求异面直线OF 与BE 所成的角的余弦值大小.【答案】见解析【解析】(1)因为四边形ABCD 是菱形,所以BD ⊥AC .因为AE ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥AE .因为AC ∩AE =A ,所以BD ⊥平面ACFE .(2)以O 为原点,OA →,OB →的方向为x ,y 轴正方向,过O 且平行于CF 的直线为z 轴(向上为正方向),建立空间直角坐标系,则B (0,3,0),D (0,-3,0),E (1,0,2),F (-1,0,a )(a >0),OF →=(-1,0,a ).设平面EBD 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·OB →=0,n ·OE →=0,即⎩⎨⎧3y =0,x +2z =0,令z =1,则n =(-2,0,1),由题意得sin 45°=|cos 〈OF →,n 〉|=|OF →·n ||OF →||n |=|2+a |a 2+1·5=22.因为a >0,所以解得a =3.所以OF →=(-1,0,3),BE →=(1,-3,2),所以cos 〈OF →,BE →〉=OF →·BE →|OF →|·|BE →|=-1+610·8=54.故异面直线OF 与BE 所成的角的余弦值为54.2.(2019·河南郑州模拟)如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平面ABC ,2DA =2AO =PO ,且DA ∥PO .(1)求证:平面PBAD ⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.【答案】见解析【解析】(1)证明:因为OB =OC ,又因为∠ABC =π4,所以∠OCB =π4,所以∠BOC =π2,即CO ⊥AB .又PO ⊥平面ABC ,OC ⊂平面ABC ,所以PO ⊥OC .又因为PO ,AB ⊂平面PAB ,PO ∩AB =O ,所以CO ⊥平面PAB ,即CO ⊥平面PBAD .又CO ⊂平面COD ,所以平面PBAD ⊥平面COD .(2)以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设|OA |=1,则|PO |=|OB |=|OC |=2,|DA |=1.则C (2,0,0),B (0,2,0),P (0,0,2),D (0,-1,1),所以PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).设平面BDC 的法向量为n =(x ,y ,z ),所以⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,所以⎩⎪⎨⎪⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,所以n =(1,1,3).设PD 与平面BDC 所成的角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n |=⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211.即直线PD 与平面BDC 所成角的正弦值为22211. 3.(2019·湖北武汉调考)如图, 四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成角的正弦值.【答案】见解析【解析】方法一 (1)证明:建立如图所示的空间直角坐标系Cxyz ,则D (1,0,0),A (2,2,0),B (0,2,0),设S (x ,y ,z ),则x >0,y >0,z >0,且AS →=(x -2,y -2,z ,),BS →=(x ,y -2,z ).DS→=(x -1,y ,z ).由|AS →|=|BS →|,得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2,得x =1,由|DS →|=1得y 2+z 2=1,①由|BS →|=2得y 2+z 2-4y +1=0,②由①②解得y =12,z =32,所以S ⎝ ⎛⎭⎪⎫1,12,32,AS →=⎝⎛⎭⎪⎫-1,-32,32,BS →=⎝ ⎛⎭⎪⎫1,-32,32,DS →=⎝ ⎛⎭⎪⎫0,12,32,所以DS →·AS →=0,DS →·BS →=0,所以DS ⊥AS ,DS ⊥BS ,又AS ∩DS =S ,所以SD ⊥平面SAB .(2)设平面SBC 的一个法向量为m =(a ,b ,c ),BS →=⎝ ⎛⎭⎪⎫1,-32,32,CB →=(0,2,0),AB →=(-2,0,0),由⎩⎪⎨⎪⎧m ·BS →=0,m ·CB →=0得⎩⎪⎨⎪⎧a -32b +32c =0,2b =0,所以可取m =(-3,0,2),故AB 与平面SBC 所成的角的正弦值为cos 〈m ,AB →〉=m ·AB →|m |·|AB →|=-2×(-3)7×2=217. 方法二 (1)证明:如下图,取AB 的中点E ,连接DE ,SE ,则四边形BCDE 为矩形,所以DE =CB =2,所以AD =DE 2+AE 2= 5.因为侧面SAB 为等边三角形,AB =2,所以SA =SB =AB =2,且SE =3,又SD =1,所以SA 2+SD 2=AD 2,SE 2+SD 2=ED 2,所以SD ⊥SA ,SD ⊥SB ,又AS ∩DS =S ,所以SD ⊥平面SAB .(2)作S 在DE 上的射影G ,因为AB ⊥SE ,AB ⊥DE ,AB ⊥平面SDE ,所以平面SDE ⊥平面ABCD ,两平面的交线为DE ,所以SG ⊥平面ABCD ,在Rt △DSE 中,由SD ·SE =DE ·SG 得1×3=2×SG ,所以SG =32,作A 在平面SBC 上的射影H ,则∠ABH 为AB 与平面SBC 所成的角,因为CD ∥AB ,AB ⊥平面SDE ,所以CD ⊥平面SDE ,所以CD ⊥SD ,在Rt △CDS 中,由CD =SD =1,求得SC = 2.在△SBC 中,SB =BC =1,SC =2,所以S △SBC =12×2×22-12=72,由V A -SBC =V S -ABC 得13·S △SBC ·AH =13·S △ABC ·SG ,即13×72×AH =13×12×2×2×2,得AH =2217,所以sin ∠ABH =AHAB =217,故AB 与平面SBC 所成的角的正弦值为217. 4.(2019·安徽江南名校联考)如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC=10,∠PAD =45°,E 为PA 的中点. (1)求证:DE ∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF ⊥DB ?若存在,试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.【答案】见解析【解析】(1)证明:取PB 的中点M ,连接EM 和CM ,过点C 作CN ⊥AB ,垂足为点N .因为CN ⊥AB ,DA ⊥AB ,所以CN ∥DA ,又AB ∥CD ,所以四边形CDAN 为平行四边形,所以CN =AD =8,DC =AN =6,在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,所以AB =12,而E ,M 分别为PA ,PB 的中点,所以EM ∥AB 且EM =6,又DC ∥AB ,所以EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形,所以DE ∥CM .因为CM ⊂平面PBC ,DE ⊄平面PBC ,所以DE ∥平面BPC .(2)由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系Dxyz ,则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8).假设AB 上存在一点F 使CF ⊥BD ,设点F 坐标为(8,t,0),则CF →=(8,t -6,0),DB →=(8,12,0),由CF →·DB →=0得t =23.又平面DPC 的法向量为m =(1,0,0),设平面FPC 的法向量为n =(x ,y ,z ).又PC →=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0.由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y ,不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n ·m |n ||m |=81×82+122+92=817.又由图可知,该二面角为锐二面角,故二面角F -PC -D 的余弦值为817.5.(2017·山东卷)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是DF的中点.(1)设P是CE上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.【答案】见解析【解析】(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°,因此∠CBP=30°.(2)方法一取EC的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC=32+22=13.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM=13-1=2 3.在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos120°=12,所以EC=23,因此△EMC为等边三角形,故所求的角为60°.方法二 以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE →=(2,0,-3),AG →=(1,3,0),CG →=(2,0,3),设m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由⎩⎪⎨⎪⎧m ·AE →=0,m ·AG →=0可得⎩⎨⎧2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2). 设n =(x 2,y 2,z 2)是平面ACG 的法向量. 由⎩⎪⎨⎪⎧n ·AG →=0,n ·CG →=0可得⎩⎨⎧x 2+3y 2=0,2x 2+3z 2=0.取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).所以cos 〈m ,n 〉=m ·n |m |·|n |=12.由图可得此二面角为锐二面角,故所求的角为60°.6.(2017·全国卷Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD . (1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.【答案】见解析【解析】(1)证明:由题设可得△ABD ≌△CBD ,从而AD =CD . 又△ACD 是直角三角形,所以∠ADC =90°. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又因为△ABC 是正三角形,故BO ⊥AC , 所以∠DOB 为二面角D -AC -B 的平面角. 在Rt △AOB 中,BO 2+AO 2=AB 2,又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠BOD =90°.所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA →的方向为x 轴正方向,|OA →|为单位长度,建立如图所示的空间直角坐标系Oxyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝ ⎛⎭⎪⎫0,32,12,故AD →=(-1,0,1),AC →=(-2,0,0),AE →=⎝⎛⎭⎪⎫-1,32,12.设n =(x ,y ,z )是平面DAE 的法向量,则⎩⎪⎨⎪⎧ n ·AD →=0,n ·AE →=0,即⎩⎪⎨⎪⎧-x +z =0,-x +32y +12z =0,可取n =⎝ ⎛⎭⎪⎫1,33,1.设m 是平面AEC 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AE →=0,同理可取m =(0,-1,3),则cos 〈n ,m 〉=n·m |n||m|=77.所以二面角D -AE -C 的余弦值为77.。

高中数学第八章立体几何初步之立体图形的直观图(精练)(必修第二册)(教师版含解析)

高中数学第八章立体几何初步之立体图形的直观图(精练)(必修第二册)(教师版含解析)

8.2 立体图形的直观图(精练)【题组一平面图形的直观图】1.(2020·全国高一课时练习)用斜二测画法画出下列水平放置的等腰直角三角形的直观图;(1)直角边横向;(2)斜边横向.【答案】见解析.【解析】(1)直角边横向如图①②.(2)斜边横向如图③2.(2020·全国高一课时练习)用斜二测画法画出下列水平放置的平面图形的直观图(尺寸自定).(1)矩形;(2)平行四边形;(3)正三角形;(4)正五边形【答案】见解析【解析】(1)根据斜二测画法的规则,可得:(2)根据斜二测画法的规则,可得:(3)根据斜二测画法的规则,可得:(4)根据斜二测画法的规则,可得:3.(2020·全国高一课时练习)用斜二测画法画水平放置的正六边形的直观图.【答案】见解析【解析】画法:(1)如图(1),在正六边形ABCDEF中,取AD所在直线为x轴,AD的垂直平分线MN为y轴,两轴相交于点O.在图(2)中,画相应的x'轴与y'轴,两轴相交于点'O,使'45x O y''︒∠=.(2)在图(2)中,以O'为中点,在x轴上取A D AD''=,在'y轴上取12M N MN''=以点'N为中点,画B C''平行于x'轴,并且等于BC;再以'M为中点,画F E''平行于x'轴,并且等于FE.(3)连接',,,A B C D D E F A''''''',并擦去辅助线'x轴和'y轴,便获得正六边形ABCDEF水平放置的直观图'A B C D E F'''''图(3).4.(2020·全国高一课时练习)如图所示是由正方形ABCD和正三角形CDE所构成的平面图形,请画出其水平放置的直观图.【答案】作图见解析【解析】(1)以AB所在直线为轴,AB的中垂线为y轴建立直角坐标系(如图①所示),再建立坐标系x O y''',使两坐标轴的夹角为45︒(如图②所示).(2)以O'为中点,在x'轴上截取A B AB''=;分别过A',B'作y'轴的平行线,截取12A E AE='',12B C BC=''.在y'轴上截取12O D OD=''.(3)连接E D'',E C'',C D'',得到平面图形A B C D E'''''.(4)去掉辅助线,就得到所求的直观图(如图③所示)5.(2020·全国高三专题练习(文))用斜二测画法画出图中水平放置的四边形OABC的直观图.【答案】见解析【解析】画法:(1)画x'轴,y'轴,使45x o y'''∠=︒;(2)在o x''轴上取D B''、,使3,O D O B OB''''==,在o y''轴上取C',使12O C OC''=;在o x''轴下方过D作D A''平行于o y'',使1D A''=;(3) 连线,连接O A A B B C''''''、、,所得四边形即为水平放置的四边形OABC的直观图.如图【题组二空间几何体的直观图】1.画出底面是正方形,侧棱均相等的四棱锥的直观图并说明画法.【答案】答案见解析.【解析】(1)画轴:画Ox轴、Oy轴、Oz轴,45xOy∠=(或135),90xOz∠=,如左图;(2)画底面:以O为中心,在xOy平面内,画出正方形水平放置的直观图ABCD;(3)画顶点:在Oz轴上截取OP,使OP的长度是原四棱锥的高;(4)成图:顺次连接PA、PB、PC、PD,并擦去辅助线,将被遮挡的部分改为虚线,得四棱锥的直观图,如下图.2.若给定长,宽,高分别为4cm,3cm,2cm的长方体ABCD A B C D''''-,如何用斜二测画法画出该长方体的直观图?【答案】见解析【解析】(1)画轴.如图(1),画x轴、y轴、z轴,三轴相交于点O,使45xOy∠=︒,90xOz∠=︒.(2)画底面.以点O为中点,在x轴上取线段MN,使4cmMN=;以点O为中点,在y轴上取线段PQ,使 1.5cmPQ=.分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,设它们的交点分别为A,B,C,D,则平面ABCD就是长方体的底面,如图(1).(3)画侧棱.过A,B,C,D各点分别作z轴的平行线,并在这些平行线上分别截取2cm长的线段AA',BB',CC', DD',如图(1).(4)成图.顺次连接A',B',C',D',并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到了长方体的直观图,如图(2).3.(2020·全国高一课时练习)已知一棱柱的底面是边长为3cm的正方形,各侧面都是矩形,且侧棱长为4 cm,试用斜二测画法画出此棱柱的直观图.【答案】见解析【解析】(1)画轴.画出x轴、y轴z轴,三轴相交于点O,使45xOy∠=︒,90xOz∠=︒.(2)画底面.以点O为中点,在x轴上画3MN cm=,在y轴上画32PQ cm=,分别过点M,N作y轴的平行线,过点P,Q作x轴的平行线,设它们的交点分别为A,B,C,D,则四边形ABCD就是该棱柱的底面.(3)画侧棱.过点A,B,C,D分别作z轴的平行线,并在这些平行线上分别截取4cm长的线段AA',BB',CC',DD',如图①所示.(4)成图.连接A B'',B C'',C D'',D A'',并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到该棱柱的直观图,如图②所示.4.(2020·全国高一课时练习)画出一个上、下底面边长分别为1,2,高为2的正三棱台的直观图.【答案】见解析【解析】①建立空间直角坐标系,画x轴、y轴、z轴相交于点O.使x轴与y轴的夹角为45°,y轴与z轴的夹角为90°,②底面在y轴上取线段OD取36OD=,且以D为中点,作平行于x轴的线段AB,使2AB=,在y轴上取线段OC,使33OC=.连接,BC CA,则ABC为正三棱台的下底面的直观图.③画上底面在z轴上取OO',使2OO'=,过点O'作//O x Ox'',//O y Oy'',建立坐标系x O y'''.在x O y'''中,类似步骤②的画法得上底面的直观图A B C'''.④连线成图连接AA',BB',CC',去掉辅助线,将被遮住的部分画成虚线,则三棱台ABC A B C'''-即为要求画的正三棱台的直观图.5.(2020·全国高一课时练习)画出底面是正方形,高与底面边长相等且侧棱均相等的四棱锥的直观图.【答案】见解析【解析】(1)建系:先画x 轴、y 轴、z 轴,其交点为O ,使45xOy ∠=︒,90xOz ∠=︒. (2)画底面.以O 为中心,在xOy 平面内,画出正方形水平放置的直观图ABCD ,如图.(3)画顶点.在Oz 上截取OP ,使OP AB =.(4)成图.连接PA ,PB ,PC ,PD ,并擦去辅助线,将被遮挡的部分改为虚线,得四棱锥的直观图,如图.6.(2020·全国高一课时练习)已知一个圆锥由等腰直角三角形旋转形成,画出这个圆锥的直观图.【答案】见解析.【解析】圆锥直观图如下:⇒7.(2020·全国高一课时练习)一个简单组合体由上下两部分组成,下部是一个圆柱,上部是一个半球,并且半球的球心就是圆柱的上底面圆心,画出这个组合体的直观图. 【答案】见解析【解析】如图所示,先画出圆柱的上下底面,再在圆柱和球共同的轴线上确定球的半径,最后画出圆柱和半球,并标注相关字母,就得到组合体的直观图.8.(2020·全国高三专题练习)如图为一几何体的平面展开图,按图中虚线将它折叠起来,画出它的直观图.【答案】见解析【解析】由题设中所给的展开图可以得出,此几何体是一个四棱锥,其底面是一个边长为2的正方形,垂直于底面的侧棱长为2,其直观图如图所示.【题组三直观图的面积周长】1.如图,ABC的斜二测直观图为等腰'''Rt A B C,其中''2A B=,则ABC∆的面积为( )A.2 B.4 C.22D.42【答案】D【解析】由题意,ABC的斜二测直观图为等腰Rt A B C''',45C A B︒'''∠=//C O yA''''∴,2A B''=222A C ABC B''''''∴=+22A C''∴=由已知直观图根据斜二测化法规则画出原平面图形,则2AB=,42AC=,且AC AB⊥112424222ABCS AB AC∆∴=⋅⋅=⨯⨯=∴原平面图形的面积是42故选:D.2.用斜二测画法画水平放置的ABC的直观图,得到如图所示的等腰直角三角形A B C'''.已知点O'是斜边B C''的中点,且1A O,则ABC的边BC边上的高为( )A.1 B.2 C.2D.22【答案】D【解析】∵直观图是等腰直角三角形A B C ''',90,1B A C A O,∴2A C,根据直观图中平行于y 轴的长度变为原来的一半, ∴△ABC 的边BC 上的高222ACA C .故选D.3.如图,正方形O A B C ''''的边长为2cm ,它是水平放置的一个平面图形用斜二测画法得到的直观图,则原图形的周长是( )A .16cmB .12cmC .10cmD .18cm【答案】A【解析】将直观图还原为平面图形,如图所示.2OB O B ''==42,2OA O A ''==,所以222(42)6AB =+=,所以原图形的周长为16cm , 故选:A.4.已知用斜二测画法得到的某水平放置的平面图形的直观图是如图所示的等腰直角O B C ''',其中1O B ''=,则原平面图形中最大边长为( )A .2B .22C .3D .23【答案】D【解析】由斜坐标系中作A C B C''''⊥交x'轴于A'点,由1O B''=,O B C'''等腰直角三角形,2A C由斜二测法的纵半横不变,可将直观图在直角坐标系中还原成原平面图形如下:∴222AC A C,1OA=,∴最长边2223BC AC AB=+=,故选:D5.如图,平行四边形O A B C''''是水平放置的一个平面图形的直观图,其中4O A''=,2O C''=,30A O C'''∠=︒,则下列叙述正确的是( )A.原图形是正方形B.原图形是非正方形的菱形C.原图形的面积是82D.原图形的面积是83【答案】C【解析】过C'作C'D//y'轴,交x'轴于D,将DC'绕D逆时针旋转45°,并伸长到原来的两倍,得到实际图中的点C,将C沿O'A'方向和长度平移得到B,得到水平放置时直观图还原为实际的平面图形,如下图所示:30A O C''∠=︒,∴90,4AOC OC∠≠≠,故原图并不是正方形,也不是菱形,故A,B均错误,又直观图的面积11242sin3042S=⋅⋅⋅⋅=,所以原图的面积12282S S==,故选:C.6.把四边形ABCD 按斜二测画法得到平行四边形''''A B C D (如图所示),其中''''2B O O C ==,''3O D =,则四边形ABCD 一定是一个( )A .菱形B .矩形C .正方形D .梯形【答案】A【解析】把平行四边形''''A B C D 还原回原图形,过程如下: 在平面直角坐标系中,在x 轴上截取4BC =,且使O 为BC 的中点, 在y 轴上截取23OD =,过D 向左左x 轴的平行线段DA ,使4DA =, 连接AB ,CD ,可得平行四边形ABCD . ∵2OC =,23OD =,∴()222234CD =+=.∴平行四边形ABCD 为菱形. 故选:A .7.如图所示,一个水平放置的平面图形的直观图是一个底角为45°的等腰梯形,已知直观图OA B C '''的面积为4,则该平面图形的面积为( )A .2B .42C .82D .22【答案】C【解析】已知直观图OA B C'''的面积为4,所以原图的面积为22482⨯=,故选:C8.如图所示,正方形''''O A B C的边长为1cm,它是水平放置的一个平面图形的直观图,则原图形的周长是( )A.6cm B.8cm C.232cm+D.223cm+【答案】B【解析】先把水平放置的平面图形的直观图还原成原来的实际图形,如图:由斜二测画法得:'=1OA OA=,''=2=22OB O B,''=1BC BC=,2=1(22)3AB OC=+=,所以原图形周长为8.故选:B.9.如图,一个平面图形的斜二测画法的直观图是一个边长为a的正方形O A B C'''',则原平面图形的周长和面积分别为( )A.2a,224a B.8a,222aC.a,2a D.2a,22a【答案】B【解析】由直观图可得原图形,∴OA BC a==,22OB a=,90BOA∠=,∴3AB OC a==,原图形的周长为8a,∴22222S a a a=⋅=,故选:B9.如图所示,正方形O A B C''''的边长为1cm,它是水平放置的一个平面图形的直观图,则原图形的面积是( )A.21 cm B.22 2 cmC .23 2 cmD .22cm 4【答案】B【解析】如图所示,由斜二测画法的规则知与x '轴平行的线段其长度不变, 正方形的对角线在y '轴上,可求得其长度为2,故在原平面图中其在y 轴上, 且其长度变为原来的2倍,长度为22, 所以原来的图形是平行四边形, 其在横轴上的边长为1,高为22, 所以它的面积是21222 2 (cm )⨯=. 故选:B .10.一个水平放置的平面图形的直观图是一个底角为45︒,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( ). A .12+ B .22+C .1222+D .212+【答案】B【解析】如图,恢复后的原图形为一直角梯形,所以1(121)2222S=++⨯=+.故选:B.11.如图,边长为1的正方形''''O A B C是一个水平放置的平面图形OABC的直观图,则图形OABC的面积是( )A.24B.22C.2D.22【答案】D【解析】由直观图''''O A B C画出原图OABC,如图,因为''2O B=,所以22OB=,1OA=,则图形OABC的面积是22.故选:D12.已知边长为1的菱形ABCD中,3Aπ∠=,则用斜二测画法画出这个菱形的直观图的面积为( ) A.32B.34C.66D.68【答案】D【解析】菱形ABCD中,1AB=,3Aπ∠=,则菱形的面积为132211sin232ABDABCDS Sπ∆==⨯⨯⨯⨯=菱形;所以用斜二测画法画出这个菱形的直观图面积为36282222ABCDSS===菱形.故选D.13.已知正三角形ABC的边长为2,那么ΔABC的直观图△A1B1C1的面积为( )A.32B.12C.64D.34【答案】C【解析】如图所示,直观图△A1B1C1的高为11116sin45sin452sin60sin45224h C D CD===⨯⨯=,底边长为112A B AB==;所以△A1B1C1的面积为:1116622244S A B h=⋅=⨯⨯=.故选:C.14.如图是水平放置的平面图形的斜二测直观图,则其原平面图形的面积为__________.【答案】4【解析】由斜二测画法可知原平面图形为两直角边分别为2,4的直角三角形.故面积为12442⨯⨯=.故答案为:4【题组四斜二测画法】1.(2020·全国高一单元测试)下列命题中正确的是( )A.正方形的直观图是正方形B.平行四边形的直观图是平行四边形C.有两个面平行,其余各面都是平行四边形的几何体叫棱柱D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台【答案】B【解析】选项A,正方形的直观图是平行四边形,故A错误;选项B,由斜二测画法规则知平行性不变,即平行四边形的直观图是平行四边形,故②正确;选项C,有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,要注意棱柱的每相邻两个四边形的公共边互相平行,故C错误;选项D,用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,故D错误.故选:B.2.(2020·全国高三专题练习)用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法不正确的是( )A.原来相交的仍相交B.原来垂直的仍垂直C.原来平行的仍平行D.原来共点的仍共点【答案】B【解析】根据斜二测画法作水平放置的平面图形的直观图的规则,与x轴平行的线段长度不变,与y轴平行的线段长度变为原来的一半,且倾斜45︒,故原来垂直线段不一定垂直了;故选:B.3.(2020·包头市第九中学高一期末)用斜二测画法画水平放置的平面图形直观图时,下列结论中正确的个数是( )①平行的线段在直观图中仍然平行;②相等的线段在直观图中仍然相等;③相等的角在直观图中仍然相等;④正方形在直观图中仍然是正方形A.1 B.2 C.3 D.4【答案】A【解析】对于①,平行的线段在直观图中仍然是平行线段,所以①正确;对于②,相等的线段在直观图中不一定相等,如平行于x轴的线段,长度不变,平行于y轴的线段,变为原来的12,所以②错误;对于③,相等的角在直观图中不一定相等,如直角坐标系内两个相邻的直角,在斜二测画法内是45︒和135︒,所以③错误;对于④,正方形在直观图中不是正方形,是平行四边形,所以④错误;综上,正确的命题序号是①,共1个.故选:A .4.(2019·安徽合肥市·合肥一中高二月考(理))下列说法正确的是( )A .用一个平面去截棱锥,底面与截面之间的部分称为棱台B .空间中如果两个角的两边分别对应平行,那么这两个角相等C .通过圆台侧面上一点,有且只有一条母线D .相等的角在直观图中对应的角仍相等【答案】C【解析】对A , 用一个平行于底面的平面去截棱锥,底面与截面之间的部分称为棱台,所以A 错误; 对B , 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补,所以B 错误;对C ,根据母线的定义可知,正确;对D ,如等腰直角三角形,画出直观图后,不是等腰三角形,所以D 错误.故选:C . 5.(2020·全国高一课时练习)在用斜二测画法画水平放置的ABC 的直观图时,若在直角坐标系中A ∠的两边分别平行于x 轴、y 轴,则在直观图中A '∠等于( )A .45︒B .135︒C .90︒D .45︒或135︒【答案】D【解析】因为A ∠的两边分别平行于x 轴、y 轴,所以90A ︒∠=在直观图中,由斜二测画法知45x O y '''︒∠=或135x O y ︒''∠=',即45A ︒'∠=或135A ︒'∠=.故选:D6.(2020·全国高一课时练习)利用斜二测画法画直观图时,下列说法中正确的是( )①两条相交直线的直观图是平行直线;②两条垂直直线的直观图仍然是垂直直线;③正方形的直观图是平行四边形;④梯形的直观图是梯形.A .①②B .③④C .①③D .②③ 【答案】B【解析】两条相交直线的直观图仍然是相交直线,故①错;两条垂直直线的直观图是两条相交但不垂直的直线,故②错;③④正确.故选:B。

高中数学第八章立体几何初步之基本立体图形(精讲)(必修第二册)(教师版含解析)

高中数学第八章立体几何初步之基本立体图形(精讲)(必修第二册)(教师版含解析)

8.1 基本立体图形(精讲)思维导图常见考法考法一多面体【例1】(2020·全国课时练习)下列说法正确的是( )A.有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥B.有两个面平行且相似,其余各面都是梯形的多面体是棱台C.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥D.如果一个棱柱的所有面都是长方形,那么这个棱柱是长方体【答案】D【解析】选项A,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面围成的多面体是棱锥,即其余各面的三角形必须有公共的顶点,故选项A错误;选项B,棱台是由棱锥被平行于棱锥底面的平面所截而得的,而有两个面平行且相似,其余各面都是梯形的多面体不一定是棱台,因为它的侧棱延长后不一定交于一点,故选项B错误;选项C,当棱锥的各个侧面的共顶点的角之和是360 时,各侧面构成平面图形,构不成棱锥,由此推导出这个棱锥不可能为六棱锥,即选项C错误;选项D,若每个侧面都是长方形,则说明侧棱与底面垂直,又底面也是长方形,符合长方体的定义,即选项D正确.故选:D.【举一反三】1.(多选)(2020·全国专题练习)下列说法正确的是( )A.如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等B.五棱锥只有五条棱C.一个棱柱至少有五个面D.棱台的各侧棱延长后交于一点【答案】CD【解析】四棱锥的底面是正方形,它的侧棱可以相等,也可以不相等,A错误;五棱锥除了五条侧棱外,底面上还有五条棱,故共10条棱,B错误;一个棱柱最少有三个侧面,两个底面,故至少有五个面,C正确;棱台是由平行于棱锥底面的截面截得,故棱台的各侧棱延长后交于一点,D正确.故选:CD.2.(2021·安徽蚌埠市)下列命题正确的是( )A.棱柱的每个面都是平行四边形B.一个棱柱至少有五个面C.棱柱有且只有两个面互相平行D.棱柱的侧面都是矩形【答案】B【解析】对于A,棱柱的上下底面可以是三角形或者是梯形,故A不正确;对于B,面最少的就是三棱柱,共有五个面,B正确;对于C,长方体是棱柱,但是上下、左右、前后都是互相平行的,C不正确;对于D,斜棱柱的侧面可以不是矩形,D错误.3.(2020·利川市第五中学)下列命题中,正确的是( )A.有两个侧面是矩形的棱柱是直棱柱B.底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱C.侧面都是矩形的四棱柱是长方体D.侧面都是等腰三角形的棱锥是正棱锥【答案】B【解析】对于A,根据直棱柱的概念,侧棱垂直于底面的棱柱是直棱柱,有两个侧面是矩形的棱柱可能是斜棱柱,只有相邻的两个侧面是矩形时,才是直棱柱,故A不正确;对于B,有相邻两个侧面与底面垂直的棱柱,可知侧棱垂直于底面,又底面为正多边形,故B正确;对于C,侧面都是矩形的直棱柱,底面不是矩形,不是长方体,故C不正确;对于D,侧面都是等腰三角形,但底面不是正多边形的棱锥不是正棱锥,故D不正确.故选:B考法二旋转体【例2】(2020·山东济宁市)给出下列命题:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是( )A.①②B.②③C.①③D.②④【答案】D【解析】由圆柱的母线无论旋转到什么位置都与轴平行,故①错误;圆锥是以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的,故②正确;③中连接的线可能存在与轴异面的情况,而圆台的母线与轴共面,故③错误;④由于圆柱中任意母线均与轴平行,故其中任意两条母线相互平行,故④正确;综上可知②④正确,①③错误.故选:D.【举一反三】1.(2020·全国课时练习)下列说法正确的是( )A.以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥B.以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆面D.一个平面截圆锥,得到一个圆锥和一个圆台【答案】C【解析】以直角三角形的直角边所在直线为轴旋转一周所得的旋转体是圆锥,以斜边为轴旋转一周所得的旋转体是是两个同底圆锥的组合体,A错;以直角梯形的直角腰所在直线为轴旋转一周所得的旋转体才是圆台,B错;圆柱、圆锥、圆台的底面都是圆面,正确;平行于圆锥底面平面截圆锥,得到一个圆锥和一个圆台,如果截面不平行于底面,则截得的不是圆锥和圆台,D错.故选:C.2.(2021·湖南衡阳市)下列结论中正确的是( )A.半圆弧以其直径为轴旋转一周所形成的曲面叫做球B.直角三角形绕一直角边为轴旋转一周得到的旋转体是圆锥C.夹在圆柱的两个平行截面间的几何体还是一个旋转体D.用一个平面截圆锥底面与截面组成的部分是圆台【答案】B【解析】因为半圆弧以其直径为轴旋转一周所形成的曲面叫做球面,球面围成的几何体叫做球,故A错误;当以直角三角形的直角边所在直线为轴旋转时,其余各边旋转形成的面所围成的几何体是圆锥,故B正确;当两个平行截面不平行于上、下两个底面时,两个平行截面间的几何体不是旋转体,故C错误;圆锥的截面不与底面平行时,圆锥底面与截面组成的部分不是圆台,故D错误.故选:B.3.(2020·全国课时练习)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台的上、下底面的圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的;⑤圆台所有母线的延长线交于一点其中正确的命题是( )A.①②④B.②③④C.①③⑤D.②④⑤【答案】D【解析】由于圆柱母线所在的直线互相平行且与旋转轴平行,而在圆柱的上、下底面的圆周上各取一点,这两点的连线与旋转轴不一定平行,故①错误,④正确;由圆锥母线的定义知②正确;在圆台的上、下底面的圆周上各取一点,这两点的连线不一定是母线,且圆台所有母线的延长线交于一点,故③错误,⑤正确.故选:D.考法三组合体【例3】(2020·浙江省东阳中学)如图所示的组合体,其结构特征是( )A.由两个圆锥组合成的B.由两个圆柱组合成的C.由一个棱锥和一个棱柱组合成的D.由一个圆锥和一个圆柱组合成的【答案】D【解析】由图知:该组合体是由一个圆锥和一个圆柱组合成的,故选:D【举一反三】1.(2020·台州市三梅中学)如图的组合体是由( )组合而成.A.两个棱柱B.棱柱和圆柱C.圆柱和棱台D.圆锥和棱柱【答案】B【解析】由图可知该组合体由圆柱和六棱柱组合而成,故选:B2.(2021·全国课时练习)将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体是由( )A.一个圆台、两个圆锥构成B.两个圆台、一个圆锥构成C.两个圆柱、一个圆锥构成D.一个圆柱、两个圆锥构成【答案】D【解析】旋转体如图,中间是一个圆柱,两端是相同的圆锥构成,故选D.3.(2021·江苏课时练习)观察下列四个几何体,其中可看作是由两个棱柱拼接而成的是________(填序号).【答案】①④【解析】①可看作由一个四棱柱和一个三棱柱组合而成,④可看作由两个四棱柱组合而成.②③显然不是棱柱拼接而成.故答案为:①④考法四截面问题【例4】(多选)(2021·凯里市第三中学)用一个平面截一个正方体,截面图形可以是( ) A.三角形B.等腰梯形C.五边形D.正六边形【答案】ABCD【解析】如图所示:三角形等腰梯形五边形正六边形故用一个平面去截一个正方体,截面可能是三角形、等腰梯形、五边形、正六边形,故选:ABCD.【举一反三】1.(多选)(2021·福建三明市)用一个平面去截正方体,关于截面的形状,下列可能的是( ) A.正三角形B.正四边形C.正五边形D.正六边形【答案】ABD【解析】如图(1),截面为三角形1BDC,故A正确.如图(2),截面为正方形PQRS,其中,,,P Q R S为所在棱的中点,故B正确.如图(3),截面为正六边形EFGHIJ,其中,,,,,E F G H I J为所在棱的中点,故D正确.如图(4),因为平面11//ADD A 平面11BCC B ,平面KLMNO ⋂平面11=BCC B MN , 平面KLMNO ⋂平面11=ADD A KO ,故//KO MN ,若截面为正五边形,则KO MN =,故四边形OKMN 为平行四边形, 但正五边形中不可能存在过4个顶点的平行四边形,故C 错误.故选:ABD.2.(2021·安徽芜湖市)已知正方体1111ABCD A B C D -的棱长为2,AB ,AD 中点分别为E ,F ,若过EF 的平面截该正方体所得的截面是一个五边形,则该五边形周长的最大值为( )A .2213+B .213+C .3225+D .325+【答案】A【解析】将面11BCC B 展开与面11ABB A 处于同一平面要使1l E QC C Q FH H +++最大,则沿面1C QEFH 切才能保证五点共面, 在1Rt ECC △中,112,12CC BC BE AB ====,此时()22122113EQ QC +=++=,又113FH HC EQ QC +=+=. ∴周长()122213EF EQ QC =++=+ 故选:A。

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)第一章:空间几何体的结构特征1.1 教学目标了解柱体、锥体、球体的定义及性质。

掌握空间几何体的结构特征,如表面积、体积等。

1.2 教学内容柱体、锥体、球体的定义及性质。

空间几何体的结构特征的计算方法。

1.3 教学步骤1. 引入新课,讲解柱体、锥体、球体的定义及性质。

3. 讲解空间几何体的结构特征的计算方法,如表面积、体积等。

1.4 课堂练习完成课本练习题,巩固所学知识。

1.5 课后作业完成课后作业,加深对空间几何体的结构特征的理解。

第二章:点、线、面的位置关系2.1 教学目标了解点、线、面的位置关系,如平行、垂直等。

掌握点、线、面的位置关系的判定方法。

2.2 教学内容点、线、面的位置关系的定义及判定方法。

2.3 教学步骤1. 引入新课,讲解点、线、面的位置关系的定义及判定方法。

2.4 课堂练习完成课本练习题,巩固所学知识。

2.5 课后作业完成课后作业,加深对点、线、面的位置关系的理解。

第三章:空间角的计算3.1 教学目标了解空间角的定义及性质。

掌握空间角的计算方法。

3.2 教学内容空间角的定义及性质。

空间角的计算方法。

3.3 教学步骤1. 引入新课,讲解空间角的定义及性质。

3.4 课堂练习完成课本练习题,巩固所学知识。

3.5 课后作业完成课后作业,加深对空间角的计算的理解。

第四章:空间向量的应用4.1 教学目标了解空间向量的定义及性质。

掌握空间向量的应用方法。

空间向量的定义及性质。

空间向量的应用方法。

4.3 教学步骤1. 引入新课,讲解空间向量的定义及性质。

4.4 课堂练习完成课本练习题,巩固所学知识。

4.5 课后作业完成课后作业,加深对空间向量的应用的理解。

第五章:立体几何中的综合问题5.1 教学目标培养学生解决立体几何综合问题的能力。

5.2 教学内容立体几何中的综合问题的解题策略。

5.3 教学步骤1. 引入新课,讲解立体几何中的综合问题的解题策略。

专题4 第1讲 空间几何体(教师版)

专题4   第1讲 空间几何体(教师版)

第1讲 空间几何体【要点提炼】考点一 表面积与体积1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr(r +l)(r 为底面半径,l 为母线长).(2)S 圆锥侧=πrl ,S 圆锥表=πr(r +l)(r 为底面半径,l 为母线长).(3)S 球表=4πR 2(R 为球的半径).2.空间几何体的体积公式V 柱=Sh(S 为底面面积,h 为高);V 锥=13Sh(S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径). 【热点突破】【典例】1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.【答案】 402π【解析】 因为母线SA 与圆锥底面所成的角为45°,所以圆锥的轴截面为等腰直角三角形.设底面圆的半径为r ,则母线长l =2r.在△SAB 中,cos ∠ASB =78,所以sin ∠ASB =158. 因为△SAB 的面积为515,即12SA ·SBsin ∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.【答案】 233 【解析】 如图,取BC 的中点O ,连接AO.∵正三棱柱ABC -A 1B 1C 1的各棱长均为2,∴AC =2,OC =1,则AO = 3.∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3.又11BB C S =12×2×2=2, ∴11D BB C V =13×2×3=233. 易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算).(2)一些不规则几何体的体积不会采用分割法或补形思想转化求解.(3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.【拓展训练】1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π【答案】 B【解析】 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt △ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.【答案】 327 【解析】 设CD =DE =x(0<x<1),则四边形ABDE 的面积S =12(1+x)(1-x)=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝ ⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 【要点提炼】考点二 多面体与球解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.【典例】2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________.【答案】 64π【解析】 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上,即球心就是△PAB 的外心,根据正弦定理AB sin ∠APB=2R ,解得R =4, 所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.【答案】 23π 【解析】 圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π. 规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心.(3)多面体的内切球可利用等积法求半径.【拓展训练】2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【答案】 C【解析】 如图所示,设球O 的半径为R ,因为∠AOB =90°,所以S △AOB =12R 2,因为V O -ABC =V C -AOB ,而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大,此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36, 故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.【答案】 20π【解析】 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3,∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2, 设鳖臑P -ADE 的外接球的半径为R 1,则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21, 可得PA 2=R 21-r 21=102,∴PA =10. 正方形ABCD 的外接圆直径为2r 2=AC =2AD =10,∴r 2=102,∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题训练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形【答案】 A【解析】 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt △AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12 【答案】 C【解析】 设正四棱锥的底面正方形的边长为a ,高为h ,侧面三角形底边上的高(斜高)为h ′,则由已知得h 2=12ah ′. 如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22, ∴h ′2=12ah ′+14a 2, ∴⎝ ⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( ) A.12 B.13 C.14 D.18【答案】 C【解析】 如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r ,l 为底面圆周长,R 为母线长, 则12lR =2πr 2, 即12·2π·r ·R =2πr 2, 解得R =2r ,故∠ADC =30°,则△DEF 为等边三角形,设B 为△DEF 的重心,过B 作BC ⊥DF ,则DB 为圆锥的外接球半径,BC 为圆锥的内切球半径,则BC BD =12,∴r 内r 外=12,故S 1S 2=14. 4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1 000元,则气体的费用最少为( )A .4 500元B .4 000元C .2 880元D .2 380元【答案】 B【解析】 因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V =1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1 000元,所以气体的费用最少为4×1 000=4 000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关【答案】 B【解析】 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h(h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3 B.4π3 C.5π3 D .2π 【答案】 C【解析】 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3. 7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( )A .64πB .48πC .36πD .32π【答案】 A【解析】 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a.由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3 B .3π C.4π3 D .8π【答案】 A【解析】 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3, ∴2r =AB sin ∠ACB =112=2, 即O 1A =1,O 1O =12AA 1=3, ∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A. 9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2 000π9B.4 000π27 C .81πD .128π【答案】 B 【解析】 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h(0<h<5),底面半径为r(0<r<5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h<5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h<53时,V ′>0,V 单调递增;当53<h<5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝ ⎛⎭⎪⎫53+5=4 000π27,故选B. 10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( )A.36B.12C.13D.32【答案】 C【解析】 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O ,∵球O 的半径为1, ∴正方体的边长为233,即PA =PB =PC =233, 球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13 S △PAB ×PC =13× 12×⎝ ⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形, S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13. 二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值【答案】 AD【解析】 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFG AB ,即AE ·AH 是定值,故D 正确. 12. (2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π【答案】 AD【解析】 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE.由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE 2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________.【答案】 1【解析】 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π,即r ·l =2.由于侧面展开图为半圆,可知12πl 2=2π, 可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S =________cm 2.【答案】 2 600π【解析】 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2 600π(cm 2). 15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________.【答案】 823π 【解析】 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π. 16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2π2【解析】 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q ,连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形,则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2.又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ. 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1,同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点,∴∠PEQ =π2, 知PQ 的长为π2×2=2π2,即交线长为2π2.。

高中数学必修二立体几何角的问题-教师版(含几何法和向量法)

高中数学必修二立体几何角的问题-教师版(含几何法和向量法)

立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。

过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。

平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。

一条直线垂直于平面,我们就说它们所成的角是直角。

一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。

二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。

常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010 解析:建立空间直角坐标系如图.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010.答案:B例 2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥ ∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥又PA AE A ⋂=,∴DE ⊥平面PAE (2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,PD =Rt DCE ∆中,DE =在Rt DEP ∆中,2PD DE =,∴030DPE ∠=例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥ 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥ 且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥ 又BG AD ⊥,AD ∥BC ,∴BG BC ⊥∴PBG ∠为二面角A BC P --的平面角在Rt PBG ∆中,PG BG =,∴045PBG ∠=例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( D ) A.3 B.22C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。

专题(5)立体几何教师版

专题(5)立体几何教师版

成都市2016级高中毕业班摸底测试复习专题(五)立体几何一、空间几何体例1、某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( ).A .1 BCD .2 答案:C.变式:若正三棱柱的所有棱长均为a ,且其体积为316,则 a . 答案:4.例2、某空间几何体的正视图是三角形,则该几何体不可能是( )..A 圆柱 .B 圆锥 .C 四面体 .D 三棱柱答案:A.3、空间几何体的表面积与体积 (1)基本多面体的侧面展开图棱柱的侧面展开图是由平行四边形构成的平面图形; 棱锥的侧面展开图是由三角形构成的平面图形; 棱台的侧面展开图是由梯形构成的平面图形. (2)多面体的侧面积公式=(,)S ch c h 直棱柱侧是底面周长是高;''1=(,)2S ch c h 正棱锥侧是底面周长是斜高;''''1=()(,,)2S c c h c c h +正棱台侧是下底面周长是上底面周长是斜高.(3)多面体的表面积公式=+2=+2(,)S S S ch S c h 直棱柱表直棱柱侧底面积底面积是底面周长是高;''1=+=+(,)2S S S ch S c h 正棱锥表正棱锥侧底面积底面积是底面周长是斜高;'''1=++=()++(,,2S S S S c c h S S c c +正棱台表正棱台侧上底下底上底下底是下底面周长是上底面周长')h 是斜高.(4)旋转体的侧面展开图圆柱的侧面展开图是矩形; 圆锥的侧面展开图是扇形;圆台的侧面展开图是由一个大扇形截去一个小扇形得到的一个扇环. (5)圆柱、圆锥、圆台的侧面积设圆柱的底面半径为r ,母线长为l ,则它的侧面积是2S rl π=圆柱侧面积.设圆锥的底面半径为r ,母线长为l ,则它的侧面积是S rl π=圆锥侧面积.设圆台的上、下底面半径分别为',r r ,母线长为l ,则它的侧面的面积(扇环)是'()S r r l π=+圆台侧面积.(6)圆柱、圆锥、圆台的表面积 设圆柱的底面半径为r ,母线长为l ,则它的表面积等于圆柱的侧面积(矩形)加上底面积(两个圆),即22+=222()S S S r rl r r l πππ=+=+圆柱表面积圆柱底面积圆柱侧面积.设圆锥的底面半径为r ,母线长为l ,则它的表面积等于圆锥的侧面积(扇形)加上底面积(圆形),即2+=()S S S r rl r r l πππ=+=+圆锥表面积圆锥底面积圆锥侧面积.设圆台的上、下底面半径分别为',r r ,母线长为l ,则它的表面积等上、下底面的面积(大、小圆)加上侧面的面积(扇环),即2'2'++=()S S S S r r r l rl πππ=+++圆台表面积圆台上底圆台下底圆台侧面积2'2'()r r rl r l π=+++.例3、一个几何体的三视图如图所示,则该几何体的表面积为( ).A .3πB .4πC .24π+D .34π+答案:D .变式:圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( ).A.1B.2C.4D.8答案:B.(7)柱体、锥体、台体的体积公式①柱体体积公式为:V Sh =,(S 为底面积,h 为高); 底面半径为r ,高为h 的圆柱体的体积公式2V r h π=;②锥体体积公式为:13V Sh =,(S 为底面积,h 为高);底面半径为r ,高为h 的圆锥体的体积公式213V r h π=;③台体体积公式为:1()3V S S h '=+,(S ',S 分别为上、下底面面积,h 为高);上底半径为'r ,下底半径为r ,高为h 的圆台体的体积公式2''21()3V r rr r h π=++. 例4、如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ).A.20πB.24πC.28πD.32π答案:C.变式:如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( ).A.B.答案:B.例5、如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ).A.90πB.63πC.42πD.36π 答案:B.变式:已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ).A .πB .3π4C .π2D .π4答案:B.(8)球的表面积与体积球的表面积:24S r π=; 球的体积:343V r π=. 例6、已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为__________. 答案:92π. 18+54+变式:已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SAC ⊥平面SBC ,,,S A A CS B B C ==,三棱锥S ABC -的体积为9,则球O 的表面积为________.答案:36π.4、三视图(1)三视图记忆方法:长对正:正视图和俯视图长度相同; 高平齐:正视图和侧视图高度相同; 宽相等:侧视图和俯视图宽度相同; (2)三视图的画法规则:①正视图、侧视图齐高,正视图、俯视图长对正,俯视图、侧视图宽相等; ②正、侧、俯三个视图之间必须互相对齐,不能错位.例7、某三棱锥的三视图如图所示,则该三棱锥的体积为( ).A.60B.30C.20D.10 答案:D.变式1:由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为 .答案:π22+.变式2:一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( ). A. B.C.D.5、水平放置的平面图形的直观图画法:上面的直观图就是用斜二测画法画出来的,斜二测画法的规则及步骤如下:(1)在已知水平放置的平面图形中取互相垂直的x 轴和y 轴,建立直角坐标系,两轴相交于O .画直观图时,把它们画成对应的'x 轴与'y 轴,两轴相交于点O ',且使''45(135)x oy ∠=或,它们确定的平面表示水平面;(2) 已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于'x 轴或'y 轴的线段;(3)已知图形中平行于x 轴的线段,在直观图中保持原长度不变,平行于y 轴的线段,长度为原来的一半;(4)图画好后,要擦去x 轴、y 轴及为画图添加的辅助线(虚线).二、点、直线、平面之间的位置关系 1、几个公理:公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线平行.定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 例1、在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( ).A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥答案:C.12+π33131+π361+π6变式1:如图,在正方体1111ABCD A B C D -中,,E F 分别为1,BC BB 的中点,则下列直线中与直线EF 相交的是( ).A.直线1AAB.直线11A BC.直线11A DD.直线11B C答案:D.变式2、若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( ).A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 答案:A.2、线线、线面、面面位置关系: 线线位置关系:平行、相交、异面.线面位置关系:直线在平面内、直线和平面平行、直线和平面相交. 面面位置关系:平行、相交.例2、已知互相垂直的平面交于直线l .若直线,m n 满足//,m n αβ⊥,则( ).A.//m lB.//m nC.n l ⊥D.m n ⊥答案:C.变式1:设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂,( ). A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβ D .若//αβ,则//l m 答案:A.变式2:若空间中四条直线两两不同的直线1l 、2l 、3l 、4l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( ).A.14l l ⊥B.14//l lC.1l 、4l 既不平行也不垂直D.1l 、4l 的位置关系不确定 答案:D.αβ,3、线面平行:(1)判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简称线线平行,则线面平行).(2)性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简称线面平行,则线线平行).M N Q为所在棱的中点,则在这四个正例3、如图,在下列四个正方体中,,A B为正方体的两个顶点,,,方体中,直接AB与平面MNQ不平行的是().A. B.C. D.答案:A.4、面面平行:(1)判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简称线面平行,则面面平行).(2)性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称面面平行,则线线平行)。

2021年高考数学(理)一轮复习题型归纳与训练 专题8.6 立体几何中的向量方法(教师版含解析)

2021年高考数学(理)一轮复习题型归纳与训练 专题8.6 立体几何中的向量方法(教师版含解析)

2021年高考理科数学一轮复习:题型全归纳与高效训练突破专题8.6 立体几何中的向量方法目录一、考点全归纳1.两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,a与n的夹角为β,则sin θ=|cos β|=|a·n||a||n|.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图①①,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【常用结论】 利用空间向量求距离 (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. (2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |.二 题型全归纳题型一 异面直线所成的角【题型要点】用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系.(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量. (3)利用向量的夹角公式求出向量夹角的余弦值.(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.【易错提醒】注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.【例1】如图,在四棱锥P ­ABCD 中,P A ①平面ABCD ,底面ABCD 是菱形,AB =2,①BAD =60°.(1)求证:BD ①平面P AC ;(2)若P A =AB ,求PB 与AC 所成角的余弦值. 【解析】(1)证明:因为四边形ABCD 是菱形, 所以AC ①BD .因为P A ①平面ABCD ,所以P A ①BD . 又因为AC ∩P A =A ,所以BD ①平面P AC . (2)设AC ∩BD =O .因为①BAD =60°,P A =AB =2,所以BO =1,AO =CO = 3.如图,以O 为坐标原点,建立空间直角坐标系Oxyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0). 所以PB →=(1,3,-2),AC →=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪PB →·AC →|PB →||AC →|=622×23=64.即PB 与AC 所成角的余弦值为64. 【例2】.如图,在三棱锥P ­ABC 中,P A ①底面ABC ,①BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ①平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【解析】:如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE →=(0,2,0),DB →=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨设z =1,可取n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0. 因为MN ①平面BDE , 所以MN ①平面BDE .(2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH →=(-1,-2,h ),BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721,整理得10h 2-21h +8=0,解得h =85或h =12.所以,线段AH 的长为85或12.题型二 直线与平面所成的角【题型要点】(1)利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);①通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2)若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2. 【易错提醒】求解直线和平面所成角,要注意直线的方向向量与平面法向量的夹角和所求角之间的关系,线面角的正弦值等于两向量夹角的余弦值的绝对值.【例1】(2020·深圳模拟)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PD =PB ,H 为PC 上的点,过AH 的平面分别交PB ,PD 于点M ,N ,且BD ①平面AMHN .(1)证明:MN ①PC ;(2)设H 为PC 的中点,P A =PC =3AB ,P A 与平面ABCD 所成的角为60°,求AD 与平面AMHN 所成角的正弦值.【解析】:(1)证明:如图①,连接AC 交BD 于点O ,连接PO .因为四边形ABCD 为菱形,所以BD ①AC ,且O 为BD 的中点. 因为PD =PB ,所以PO ①BD ,因为AC ∩PO =O ,且AC ,PO ①平面P AC ,所以BD ①平面P AC . 因为PC ①平面P AC ,所以BD ①PC .因为BD ①平面AMHN ,且平面AMHN ∩平面PBD =MN ,所以BD ①MN , 所以MN ①PC .(2)由(1)知BD ①AC 且PO ①BD , 因为P A =PC ,且O 为AC 的中点, 所以PO ①AC ,所以PO ①平面ABCD ,因为P A 与平面ABCD 所成的角为①P AO ,所以①P AO =60°,所以AO =12P A ,PO =32P A .因为P A =3AB ,所以BO =36P A .以O 为坐标原点,OA →,OD →,OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立如图①所示的空间直角坐标系,记P A =2,则O (0,0,0),A (1,0,0),B ⎝⎛⎭⎫0,-33,0,C (-1,0,0),D ⎝⎛⎭⎫0,33,0,P (0,0,3),H ⎝⎛⎭⎫-12,0,32, 所以BD →=⎝⎛⎭⎫0,233,0,AH →=⎝⎛⎭⎫-32,0,32,AD →=⎝⎛⎭⎫-1,33,0. 设平面AMHN 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0,令x =2,解得y =0,z =23,所以n =(2,0,23)是平面AMHN 的一个法向量. 记AD 与平面AMHN 所成角为θ,则sin θ=|cos 〈n ,AD →〉|=⎪⎪⎪⎪⎪⎪n ·AD →|n ||AD →|=34.所以AD 与平面AMHN 所成角的正弦值为34. 【例2】如图,在几何体ACD -A 1B 1C 1D 1中,四边形ADD 1A 1与四边形CDD 1C 1均为矩形,平面ADD 1A 1①平面CDD 1C 1,B 1A 1①平面ADD 1A 1,AD =CD =1,AA 1=A 1B 1=2,E 为棱AA 1的中点.(1)证明:B 1C 1①平面CC 1E ;(2)求直线B 1C 1与平面B 1CE 所成角的正弦值.【解析】(1)证明:因为B 1A 1①平面ADD 1A 1,所以B 1A 1①DD 1, 又DD 1①D 1A 1,B 1A 1∩D 1A 1=A 1,所以DD 1①平面A 1B 1C 1D 1, 又DD 1①CC 1,所以CC 1①平面A 1B 1C 1D 1. 因为B 1C 1①平面A 1B 1C 1D 1,所以CC 1①B 1C 1.因为平面ADD 1A 1①平面CDD 1C 1,平面ADD 1A 1∩平面CDD 1C 1=DD 1,C 1D 1①DD 1, 所以C 1D 1①平面ADD 1A 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E 2=B 1C 21+EC 21,所以在①B 1EC 1中,B 1C 1①C 1E .又CC 1,C 1E ①平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1①平面CC 1E . (2)如图,以点A 为坐标原点,建立空间直角坐标系,依题意得A (0,0,0),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0),则CE →=(-1,1,-1),B 1C →=(1,-2,-1).设平面B 1CE 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0,消去x 得y +2z =0, 不妨设z =1,可得m =(-3,-2,1)为平面B 1CE 的一个法向量, 易得B 1C 1→=(1,0,-1),设直线B 1C 1与平面B 1CE 所成角为θ,则sin θ=|cos 〈m ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪m ·B 1C 1→|m |·|B 1C 1→|=⎪⎪⎪⎪⎪⎪-414×2=277, 故直线B 1C 1与平面B 1CE 所成角的正弦值为277.题型三 二面角【题型要点】利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【易错提醒】:判断二面角的平面角是锐角还是钝角,可结合图形进行.【例1】(2020·深圳模拟)已知四棱锥P­ABCD,底面ABCD为菱形,PD=PB,H为PC上的点,过AH的平面分别交PB,PD于点M,N,且BD①平面AMHN.(1)证明:MN①PC;(2)当H为PC的中点,P A=PC=3AB,P A与平面ABCD所成的角为60°,求AD与平面AMHN所成角的正弦值.【解析】(1)证明:连接AC、BD且AC∩BD=O,连接PO.因为ABCD为菱形,所以BD①AC,因为PD=PB,所以PO①BD,因为AC∩PO=O且AC、PO①平面P AC,所以BD①平面P AC,因为PC①平面P AC,所以BD①PC,因为BD①平面AMHN,且平面AMHN∩平面PBD=MN,所以BD①MN,MN①平面P AC,所以MN ①P C.(2)由(1)知BD ①AC 且PO ①BD , 因为P A =PC ,且O 为AC 的中点, 所以PO ①AC ,所以PO ①平面ABCD , 所以P A 与平面ABCD 所成的角为①P AO , 所以①P AO =60°,所以AO =12P A ,PO =32P A ,因为P A =3AB ,所以BO =36P A . 以OA →,OD →,OP →分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设P A =2,所以O (0,0,0),A (1,0,0),B (0,-33,0),C (-1,0,0),D (0,33,0),P (0,0,3),H (-12,0,32),所以BD →=(0,233,0),AH →=(-32,0,32),AD →=(-1,33,0).设平面AMHN 的法向量为n =(x ,y ,z ), 所以⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0,令x =2,则y =0,z =23,所以n =(2,0,23),设AD 与平面AMHN 所成角为θ,所以sin θ=|cos 〈n ,AD →〉|=|n ·AD →|n ||AD →||=34. 所以AD 与平面AMHN 所成角的正弦值为34. 【例2】图1是由矩形ADEB ,Rt①ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,①FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ①平面BCGE ;(2)求图2中的二面角B -CG -A 的大小.【解析】:(1)证明:由已知得AD ①BE ,CG ①BE ,所以AD ①CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ①BE ,AB ①BC ,故AB ①平面BCGE .又因为AB ①平面ABC ,所以平面ABC ①平面BCGE .(2)作EH ①BC ,垂足为H .因为EH ①平面BCGE ,平面BCGE ①平面ABC ,所以EH ①平面ABC .由已知,菱形BCGE 的边长为2,①EBC =60°,可求得BH =1,EH = 3. 以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H ­xyz , 则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0),所以cos n ,m =n ·m |n ||m |=32. 因此二面角B ­CG ­A 的大小为30°.题型四 利用空间向量求距离【题型要点】求解点到平面的距离可直接转化为求向量在平面的法向量上的射影的长.如图,设点P 在平面α外,n 为平面α的法向量,在平面α内任取一点Q ,则点P 到平面α的距离d =|PQ →·n ||n |.【易错提醒】该题中的第(2)问求解点到平面的距离时,利用了两种不同的方法——等体积法与向量法,显然向量法直接简单,不必经过过多的逻辑推理,只需代入坐标准确求解即可.【例1】(2020·云南师范大学附属中学3月月考)如图,在直三棱柱ABC ­A 1B 1C 1中,①ABC 是边长为2的正三角形,AA 1=26,D 是CC 1的中点,E 是A 1B 1的中点.(1)证明:DE ①平面A 1BC;(2)求点A 到平面A 1BC 的距离.【解析】 (1)证明:如图取A 1B 的中点F ,连接FC ,FE .因为E ,F 分别是A 1B 1,A 1B 的中点,所以EF ①BB 1,且EF =12BB 1. 又在平行四边形BB 1C 1C 中,D 是CC 1的中点,所以CD ①BB 1,且CD =12BB 1,所以CD ①EF ,且CD =EF . 所以四边形CFED 是平行四边形,所以DE ①CF .因为DE ①/平面A 1BC ,CF ①平面A 1BC ,所以DE ①平面A 1BC .(2)法一:(等体积法)因为BC =AC =AB =2,AA 1=26,三棱柱ABC ­A 1B 1C 1为直三棱柱,所以V 三棱锥A 1-ABC =13S ①ABC ×AA 1=13×34×22×26=2 2. 又在①A 1BC 中,A 1B =A 1C =27,BC =2,BC 边上的高h = A 1B 2-⎝⎛⎭⎫12BC 2=33,所以S ①A 1BC =12BC ·h =3 3. 设点A 到平面A 1BC 的距离为d ,则V 三棱锥A -A 1BC =13S ①A 1BC ×d =13×33×d =3d . 因为V 三棱锥A 1-ABC =V 三棱锥A -A 1BC ,所以22=3d ,解得d =263, 所以点A 到平面A 1BC 的距离为263. 法二:(向量法)由题意知,三棱柱ABC ­A 1B 1C 1是正三棱柱.取AB 的中点O ,连接OC ,OE .因为AC =BC ,所以CO ①AB .又平面ABC ①平面ABB 1A 1,平面ABC ∩平面ABB 1A 1=AB ,所以CO ①平面ABB 1A 1.因为O 为AB 的中点,E 为A 1B 1的中点,所以OE ①AB ,所以OC ,OA ,OE 两两垂直.如图,以O 为坐标原点,以OA ,OE ,OC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,3),A (1,0,0),A 1(1,26,0),B (-1,0,0).则BA 1→=(2,26,0),BC →=(1,0,3).设平面A 1BC 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ①BA 1→,n ①BC →,可得⎩⎪⎨⎪⎧n ·BA 1→=2x +26y =0,n ·BC →=x +3z =0, 整理得⎩⎨⎧x +6y =0,x +3z =0,令x =6,则y =-1,z =- 2. 所以n =(6,-1,-2)为平面A 1BC 的一个法向量.而BA →=(2,0,0),所以点A 到平面A 1BC 的距离d =|BA →·n ||n |=6×26+1+2=263. 【例2】如图,①BCD 与①MCD 都是边长为2的正三角形,平面MCD ①平面BCD ,AB ①平面BCD ,AB =23,求点A 到平面MBC 的距离.【答案】见解析【解析】:如图,取CD 的中点O ,连接OB ,OM ,因为①BCD 与①MCD 均为正三角形,所以OB ①CD ,OM ①CD ,又平面MCD ①平面BCD ,平面MCD ∩平面BCD =CD ,OM ①平面MCD ,所以MO ①平面BCD .以O 为坐标原点,直线OC ,BO ,OM 分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz .因为①BCD 与①MCD 都是边长为2的正三角形,所以OB =OM =3,则O (0,0,0),C (1,0,0),M (0,0,3),B (0,-3,0),A (0,-3,23),所以BC →=(1,3,0).BM →=(0,3,3).设平面MBC 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ①BC →,n ①BM →得⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎨⎧x +3y =0,3y +3z =0, 取x =3,可得平面MBC 的一个法向量为n =(3,-1,1).又BA →=(0,0,23),所以所求距离为d =|BA →·n ||n |=2155.三、高效训练突破一、选择题1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( )A .120°B .60°C .30°D .60°或30°【答案】C【解析】设直线l 与平面α所成的角为β,直线l 与平面α的法向量的夹角为γ.则sin β=|cos γ|=|cos 120°|=12. 又0°≤β≤90°,①β=30°.2.在正方体A 1B 1C 1D 1­ABCD 中,AC 与B 1D 所成角大小为( )A.π6B.π4C.π3D.π2 【答案】D【解析】建立如图所示的空间直角坐标系设正方体边长为1,则A (0,0,0), C (1,1,0),B 1(1,0,1),D (0,1,0). ①AC →=(1,1,0),B 1D →=(-1,1,-1),①AC →·B 1D →=1×(-1)+1×1+0×(-1)=0,①AC →①B 1D →,①AC 与B 1D 所成的角为π2. 3.如图,在空间直角坐标系中有直三棱柱ABC ­A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35【答案】A 【解析】设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=-2×0+2×2+1×(-1)0+4+1·4+4+1=15=55. 4.将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC ︵长为2π3,A 1B 1︵长为π3,其中B 1与C 在平面AA 1O 1O 的同侧.则异面直线B 1C 与AA 1所成的角的大小为( )A.π6 B .π4C.π3D .π2【答案】B 【解析】:.以O 为坐标原点建系如图则A (0,1,0),A 1(0,1,1),B 1⎝⎛⎭⎫32,12,1,C ⎝⎛⎭⎫32,-12,0. 所以AA 1→=(0,0,1),B 1C →=(0,-1,-1),所以cos 〈AA 1→,B 1C →〉=AA 1→·B 1C →|AA 1→||B 1C →|=0×0+0×(-1)+1×(-1)1×02+(-1)2+(-1)2=-22, 所以〈AA 1→,B 1C →〉=3π4,所以异面直线B 1C 与AA 1所成的角为π4.故选B. 5.如图,已知长方体ABCD ­A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成的角的正弦值为( )A.33535B .277 C.33 D .24 【答案】A.【解析】:如图以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),所以DC 1→=(0,3,1),D 1E →=(1,1,-1),D 1C →=(0,3,-1).设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E →=0,n ·D 1C →=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,即⎩⎪⎨⎪⎧x =2y ,z =3y ,取y =1,得n =(2,1,3). 因为cos 〈DC 1→,n 〉=DC 1→·n |DC 1→|·|n |=(0,3,1)·(2,1,3)10×14=33535,所以DC 1与平面D 1EC 所成的角的正弦值为33535,故选A. 6.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217.则该二面角的大小为( )A .150°B .45°C .60°D .120°【答案】C.【解析】:如图所示二面角的大小就是〈AC →,BD →〉.因为CD →=CA →+AB →+BD →,所以CD →2=CA →2+AB →2+BD →2+2(CA →·AB →+CA →·BD →+AB →·BD →)=CA →2+AB →2+BD →2+2CA →·BD →,所以CA →·BD →=12[(217)2-62-42-82]=-24.因此AC →·BD →=24,cos 〈AC →,BD →〉=AC →·BD →|AC →||BD →|=12, 又〈AC →,BD →〉①[0°,180°],所以〈AC →,BD →〉=60°,故二面角为60°.7.已知斜四棱柱ABCD ­A 1B 1C 1D 1的各棱长均为2,①A 1AD =60°,①BAD =90°,平面A 1ADD 1①平面ABCD ,则直线BD 1与平面ABCD 所成的角的正切值为( ) A.34B.134C.3913D.393 【答案】C【解析】取AD 中点O ,连接OA 1,易证A 1O ①平面ABCD .建立如图所示的空间直角坐标系得B (2,-1,0),D 1(0,2,3),BD 1→=(-2,3,3),平面ABCD 的一个法向量为n =(0,0,1),设BD 1与平面ABCD 所成的角为θ,①sin θ=|BD 1→·n ||BD 1→||n |=34,①tan θ=3913. 8.如图,在四棱锥P ­ABCD 中,四边形ABCD 为平行四边形,且BC ①平面P AB ,P A ①AB ,M 为PB 的中点,P A =AD =2.若AB =1,则二面角B ­AC ­M 的余弦值为( )A.66B.36C.26D.16【答案】A【解析】因为BC ①平面P AB ,P A ①平面P AB ,所以P A ①BC ,又P A ①AB ,且BC ∩AB =B ,所以P A ①平面ABCD .以点A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系A ­xyz .则A (0,0,0),C (1,2,0),P (0,0,2),B (1,0,0),M ⎝⎛⎭⎫12,0,1,所以AC →=(1,2,0),AM →=⎝⎛⎭⎫12,0,1,求得平面AMC 的一个法向量为n =(-2,1,1),又平面ABC 的一个法向量AP →=(0,0,2),所以cos 〈n ,AP →〉=n ·AP →|n ||AP →|=24+1+1×2=16=66. 所以二面角B ­AC ­M 的余弦值为66. 9.设正方体ABCD ­A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( )A.32B.22 C.223 D.233【答案】D【解析】如图建立坐标系则D 1(0,0,2),A 1(2,0,2),B (2,2,0),D 1A 1→=(2,0,0),DB →=(2,2,0),DA 1→=(2,0,2).设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=0,n ·DB →=0,①⎩⎪⎨⎪⎧2x +2z =0,2x +2y =0,令z =1,得n =(-1,1,1). ①D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233. 二、填空题1.如图,正三棱柱ABC ­A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为________.【答案】:35【解析】:设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1(0,3,2),F (1,0,1),E ⎝⎛⎭⎫12,32,0,G (0,0,2),B 1F →=(1,-3,-1),EF →=⎝⎛⎭⎫12,-32,1,GF →=(1,0,-1). 设平面GEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧EF →·n =0,GF →·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =(1,3,1)为平面GEF 的一个法向量,所以|cos 〈n ,B 1F →〉|=|1-3-1|5×5=35, 所以B 1F 与平面GEF 所成角的正弦值为35. 2.如图,平面ABCD ①平面ABEF ,四边形ABCD 是正方形,四边形ABEF 是矩形,且AF =12AD =a ,G 是EF 的中点,则GB 与平面AGC 所成角的正弦值为________.【答案】63【解析】如图以A 为原点建立空间直角坐标系,则A (0,0,0),B (0,2a ,0),C (0,2a ,2a ),G (a ,a ,0),AG →=(a ,a ,0),AC →=(0,2a ,2a ),BG →=(a ,-a ,0),设平面AGC 的法向量为n 1=(x 1,y 1,1),由⎩⎪⎨⎪⎧AG →·n 1=0AC →·n 1=0①⎩⎪⎨⎪⎧ax 1+ay 1=02ay 1+2a =0①⎩⎪⎨⎪⎧x 1=1y 1=-1①n 1=(1,-1,1).sin θ=|BG →·n 1||BG →||n 1|=2a 2a ×3=63. 3.已知正四棱锥S ­ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 与SD 所成角的余弦值为________.【答案】33 【解析】以两对角线AC 与BD 的交点O 作为原点,以OA ,OB ,OS 所在直线分别为x ,y ,z 轴建立空间直角坐标系设边长为2,则有O (0,0,0),A (2,0,0),B (0,2,0),S (0,0,2),D (0,-2,0),E ⎝⎛⎭⎫0,22,22, AE →=⎝⎛⎭⎫-2,22,22,SD →=(0,-2,-2), |cos AE →,SD →|=|AE →·SD →||AE →||SD →|=22×3=33, 故AE 与SD 所成角的余弦值为33. 4.在正四棱柱ABCD ­A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于________.【答案】23【解析】以D 为坐标原点,建立空间直角坐标系,如图设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB →=0,n ·DC 1→=0,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0, 令y =-2,得平面BDC 1的一个法向量n =(2,-2,1).设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23. 5.(2020·汕头模拟)在底面是直角梯形的四棱锥S ­ABCD 中,①ABC =90°,AD ①BC ,SA ①平面ABCD ,SA=AB =BC =1,AD =12,则平面SCD 与平面SAB 所成锐二面角的余弦值是________. 【答案】63 【解析】如图所示建立空间直角坐标系,则依题意可知,D ⎝⎛⎭⎫12,0,0,C (1,1,0),S (0,0,1),可知AD →=⎝⎛⎭⎫12,0,0是平面SAB 的一个法向量.设平面SCD 的一个法向量n =(x ,y ,z ),因为SD →=⎝⎛⎭⎫12,0,-1,DC →=⎝⎛⎭⎫12,1,0,所以⎩⎪⎨⎪⎧n ·SD →=0,n ·DC →=0,即⎩⎨⎧x 2-z =0,x 2+y =0.令x =2,则有y =-1,z =1,所以n =(2,-1,1).设平面SCD 与平面SAB 所成的锐二面角为θ,则cos θ=|AD →·n ||AD →||n |=12×2+0×(-1)+0×1⎝⎛⎭⎫122×22+(-1)2+12=63. 6.(2020·北京模拟)如图所示,四棱锥P ­ABCD 中,PD ①底面ABCD ,底面ABCD 是边长为2的正方形,PD =2,E 是棱PB 的中点,M 是棱PC 上的动点,当直线P A 与直线EM 所成的角为60°时,那么线段PM 的长度是________.【答案】542 【解析】如图建立空间直角坐标系,则A (2,0,0),P (0,0,2),B (2,2,0),①AP →=()-2,0,2,①E 是棱PB 的中点,①E (1,1,1),设M (0,2-m ,m ),则EM →=()-1,1-m ,m -1,①||cos 〈AP →,EM →〉=⎪⎪⎪⎪⎪⎪⎪⎪AP →·EM →|AP →||EM →|=||2+2()m -1221+2(m -1)2=12, 解得m =34,①M ⎝⎛⎭⎫0,54,34, ①PM =2516+2516=54 2. 三 解答题1.如图所示,菱形ABCD 中,①ABC =60°,AC 与BD 相交于点O ,AE ①平面ABCD ,CF ①AE ,AB =AE =2.(1)求证:BD ①平面ACFE ;(2)当直线FO 与平面BED 所成的角为45°时,求异面直线OF 与BE 所成角的余弦值的大小.【答案】见解析【解析】:(1)证明:因为四边形ABCD 是菱形,所以BD ①AC .因为AE ①平面ABCD ,BD ①平面ABCD ,所以BD ①AE .又因为AC ∩AE =A ,AC ,AE ①平面ACFE .所以BD ①平面ACFE .(2)以O 为原点,OA ,OB 所在直线分别为x 轴,y 轴,过点O 且平行于CF 的直线为z 轴(向上为正方向),建立空间直角坐标系,则B (0,3,0),D (0,-3,0),E (1,0,2),F (-1,0,a )(a >0),OF →=(-1,0,a ).设平面EBD 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·OB →=0,n ·OE →=0,即⎩⎨⎧3y =0,x +2z =0, 令z =1,则n =(-2,0,1),由题意得sin 45°=|cos 〈OF →,n 〉|=|OF →·n ||OF →||n |=|2+a |a 2+1·5=22, 解得a =3或a =-13(舍去). 所以OF →=(-1,0,3),BE →=(1,-3,2),cos 〈OF →,BE →〉=-1+610×8=54, 故异面直线OF 与BE 所成角的余弦值为54. 2.(2020·湖北十堰4月调研)如图,在三棱锥P -ABC 中,M 为AC 的中点,P A ①PC ,AB ①BC ,AB =BC ,PB =2,AC =2,①P AC =30°.(1)证明:BM ①平面P AC ;(2)求二面角B -P A -C 的余弦值.【答案】:见解析(1)证明:因为P A ①PC ,AB ①BC ,所以MP =MB =12AC =1, 又MP 2+MB 2=BP 2,所以MP ①MB .因为AB =BC ,M 为AC 的中点,所以BM ①AC ,又AC ∩MP =M ,所以BM ①平面P AC .(2)法一:取MC 的中点O ,连接PO ,取BC 的中点E ,连接EO ,则OE ①BM ,从而OE ①AC .因为P A ①PC ,①P AC =30°,所以MP =MC =PC =1.又O 为MC 的中点,所以PO ①AC .由(1)知BM ①平面P AC ,OP ①平面P AC ,所以BM ①PO .又BM ∩AC =M ,所以PO ①平面ABC .以O 为坐标原点,OA ,OE ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示,由题意知A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫12,1,0,P ⎝⎛⎭⎫0,0,32,BP →=⎝⎛⎭⎫-12,-1,32,BA →=(1,-1,0), 设平面APB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BP →=-12x -y +32z =0,n ·BA →=x -y =0,令x =1,得n =(1,1,3)为平面APB 的一个法向量,易得平面P AC 的一个法向量为π=(0,1,0),cos 〈n ,π〉=55, 由图知二面角B -P A -C 为锐角,所以二面角B -P A -C 的余弦值为55. 法二:取P A 的中点H ,连接HM ,HB ,因为M 为AC 的中点,所以HM ①PC ,又P A ①PC ,所以HM ①P A .由(1)知BM ①平面P AC ,则BH ①P A ,所以①BHM 为二面角B -P A -C 的平面角.因为AC =2,P A ①PC ,①P AC =30°,所以HM =12PC =12. 又BM =1,则BH =BM 2+HM 2=52, 所以cos①BHM =HM BH =55,即二面角B -P A -C 的余弦值为55. 3.(2020·合肥模拟)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ①平面ABCD ,DE ①平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ①平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值.【答案】:见解析(1)证明:连接AC ,交BD 于点N ,连接MN ,则N 为AC 的中点,又M 为AE 的中点,所以MN ①EC .因为MN ①平面EFC ,EC ①平面EFC ,所以MN ①平面EFC .因为BF ,DE 都垂直底面ABCD ,所以BF ①DE .因为BF =DE ,所以四边形BDEF 为平行四边形,所以BD ①EF .因为BD ①平面EFC ,EF ①平面EFC ,所以BD ①平面EFC .又MN ∩BD =N ,所以平面BDM ①平面EFC .(2)因为DE ①平面ABCD ,四边形ABCD 是正方形,所以DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D ­xyz .设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4),所以DB →=(2,2,0),DM →=(1,0,2),设平面BDM 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB →=0,n ·DM →=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0. 令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量.因为AE →=(-2,0,4),设直线AE 与平面BDM 所成的角为θ,则sin θ=|cos 〈n ·AE →〉|=⎪⎪⎪⎪⎪⎪n ·AE →|n |·|AE →|=4515, 所以直线AE 与平面BDM 所成角的正弦值为4515.。

新课标2023版高考数学一轮总复习第6章立体几何第1节空间几何体教师用书

新课标2023版高考数学一轮总复习第6章立体几何第1节空间几何体教师用书

第一节 空间几何体考试要求:1.认识柱、锥、台及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能用斜二测画法画出简单空间图形(长方体、球、圆锥、棱柱及其简易组合)的直观图.3.知道棱柱、棱锥、棱台的表面积和体积的计算公式,能用公式解决简单的实际问题.一、教材概念·结论·性质重现1.多面体的结构特征互相平行且全等多边形互相平行平行且相等相交于一点但不一定相等延长线交于一点平行四边形三角形梯形相互平行且相等并垂直于底相交于一点延长线交于一圆空间几何体的直观图常用斜二测画法来画,其规则是:(1)“斜”:在直观图中,x′轴、y′轴的夹角为45°或135°.(2)“二测”:图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线,在直观图中长度为原来的一半.画直观图要注意平行,还要注意长度及角度两个要素.4.圆柱、圆锥、圆台的侧面展开图及侧面积公式S圆柱侧=2πrl S圆锥侧=πrl圆台侧=π(r1+.空间几何体的表面积与体积公式名称表面积体积几何体柱体(棱柱和圆柱)S表面积=S侧+2S底V=S 底·h锥体(棱锥和圆锥)S表面积=S侧+S底V=S底·h台体(棱台和圆台)S表面积=S侧+S上+S下V=(S上+S下+)h球S=4πR2V=πR3(1)求棱柱、棱锥、棱台与球的表面积时,要结合它们的结构特点与平面几何知识来解6.常用结论几个与球有关的切、接常用结论:(1)正方体的棱长为a,球的半径为R.①若球为正方体的外接球,则2R=a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=.(3)正四面体的外接球与内切球的半径之比为3∶1.解决与球“外接”问题的关键:二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)棱台是由平行于底面的平面截棱锥所得的平面与底面之间的部分.( √ )(4)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( × ) 2.如图,长方体ABCD A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是( )A.棱台 B.四棱柱C.五棱柱 D.简单组合体C 解析:由几何体的结构特征知,剩下的几何体为五棱柱.3.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )A.1 cm B.2 cmC.3 cm D. cmB 解析:S表=πr2+πrl=πr2+πr·2r=3πr2=12π,所以r2=4,所以r=2 cm.4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12π B.C.8π D.4πA 解析:由题意可知正方体的棱长为2,其体对角线为2即为球的直径,所以球的表面积为4πR2=(2R)2π=12π.故选A.5.在直观图(如图所示)中,四边形O′A′B′C′为菱形且边长为2 cm,则在平面直角坐标系xOy中,四边形ABCO为__________,面积为________cm2.矩形 8 解析:由斜二测画法的规则可知,在平面直角坐标系xOy中,四边形ABCO是一个长为4 cm,宽为2 cm的矩形,所以四边形ABCO的面积为8 cm2.考点1 空间几何体的结构特征与直观图——基础性1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A.圆柱B.圆锥C.球D.圆柱、圆锥、球体的组合体C 解析:截面是任意的,且都是圆面,则该几何体为球体.2.下列命题正确的是( )A.以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥B.以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆面D.一个平面截圆锥,得到一个圆锥和一个圆台C 解析:由圆锥、圆台、圆柱的定义可知A,B错误,C正确.对于D,只有用平行于圆锥底面的平面去截圆锥,才能得到一个圆锥和一个圆台,D不正确.3.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,C ′D′=2 cm,则原图形是( )A.正方形 B.矩形C.菱形 D.一般的平行四边形C 解析:如图,在原图形OABC中,应有OD=2O′D′=2×2=4(cm),CD=C′D′=2 cm.所以OC===6(cm),所以OA=OC,所以四边形OABC是菱形.4.(多选题)下列命题中正确的是( )A.棱柱的侧棱都相等,侧面都是全等的平行四边形B.在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱C.存在每个面都是直角三角形的四面体D.棱台的上、下底面可以不相似,但侧棱长一定相等BC 解析:A不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;B正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;C正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1 ABC,四个面都是直角三角形;D不正确棱台的上、下底面相似且是对应边平行的多边形,各侧棱的延长线交于一点,但是侧棱长不一定相等.1.解决空间几何体的结构特征的判断问题主要方法是定义法,即紧考点2 空间几何体的表面积与体积——综合性考向1 空间几何体的表面积问题(1)(2021·新高考全国Ⅰ卷)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2 B.2 C.4 D.4B 解析:由题意知圆锥的底面周长为2π.设圆锥的母线长为l,则πl=2π,即l=2.故选B.(2)如图,在三棱柱ABCA1B1C1中,AA1⊥底面ABC,AB⊥BC,AA1=AC=2,直线A 1C 与侧面AA 1B 1B 所成的角为30°,则该三棱柱的侧面积为()A .4+4B .4+4C .12D .8+4A 解析:连接A 1B .因为AA 1⊥底面ABC ,则AA 1⊥BC ,又AB ⊥BC ,AA 1∩AB =A ,所以BC ⊥平面AA 1B 1B ,所以直线A 1C 与侧面AA 1B 1B 所成的角为∠CA 1B =30°.又AA 1=AC =2,所以A 1C =2,所以BC =.又AB ⊥BC ,则AB =,则该三棱柱的侧面积为2×2+2×2=4+4.(3)在如图所示的斜截圆柱中,已知圆柱底面的直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S = cm 2.2 600π 解析:将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =×(50+80)×(π×40)=2 600π(cm 2).求解几何体表面积的类型及求法求多面体的表面积只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积求旋转体的表面积可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系求不规则几何体的表面积通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积1.一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为_________.12 解析:设正六棱锥的高为h,侧面的斜高为h′.由题意,得×6××2××h=2,所以h=1,所以斜高h′==2,所以S侧=6××2×2=12.2.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,书中将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.已知一个堑堵的底面积为6,体积为的球与其各面均相切,则该堑堵的表面积为________.36 解析:设球的半径为r,底面三角形的周长为l,由已知得r=1,所以堑堵的高为2.则lr=6,l=12,所以表面积S=12×2+6×2=36.考向2 空间几何体的体积问题(1)如图所示,已知三棱柱ABCA1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1ABC1的体积为( )A. B.C. D.A 解析:易知三棱锥B1ABC1的体积等于三棱锥AB1BC1的体积,又三棱锥AB1BC1的高为,底面积为,故其体积为××=.(2)(2021·八省联考)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为________.61π 解析:圆台的下底面半径为5,故下底面在外接球的大圆上,如图,设球的球心为O,圆台上底面的圆心为O′,则圆台的高OO′===3.据此可得圆台的体积V=π×3×(52+5×4+42)=61π.求空间几何体的体积的常用方法公式法对于规则几何体的体积问题,可以直接利用公式进行求解割补法把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算其体积等体积法一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.通过选择合适的底面来求几何体体积,主要用来解决有关锥体的体积,特别是三棱锥的体积1.(2021·全国甲卷)已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为________.39π 解析:设圆锥的高为h ,母线长为l ,则圆锥的体积V =×π×62×h =30π,解得h =.所以l ===,故圆锥的侧面积S =πrl =π×6×=39π.2.如图,已知体积为V 的三棱柱ABCA 1B 1C 1,P 是棱B 1B 上除B 1,B 以外的任意一点,则四棱锥PAA 1C 1C 的体积_________. 解析:如图,把三棱柱ABCA 1B 1C 1补成平行六面体A 1D 1B 1C 1ADBC .设点P 到平面AA 1C 1C 的距离为h ,则V =S ·h =V =·2V=.考点3 与球有关的切、接问题——综合性考向1 “相切”问题已知正四面体PABC 的表面积为S 1,此四面体的内切球的表面积为S 2,则=________. 解析:设正四面体的棱长为a,则正四面体的表面积为S1=4××a2=a2,其内切球半径r为正四面体高的,即r=×a=a,因此内切球表面积为S2=4πr2=,则==.考向2 “相接”问题已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( )A. B. 2C. D.3C 解析:如图所示,由球心作平面ABC的垂线,则垂足为BC的中点M.又AM=BC=,OM=AA1=6,所以球O的半径R=OA==.1.已知三棱锥PABC中,△ABC为等边三角形,PA=PB=PC=3,PA⊥PB,则三棱锥PABC的外接球的体积为( )A.π B.π C.27π D.27πB 解析:因为三棱锥PABC中,△ABC为等边三角形,PA=PB=PC=3,所以△PAB≌△PBC≌△PAC.因为PA⊥PB,所以PA⊥PC,PC⊥PB.以PA,PB,PC为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥PABC的外接球.因为正方体的体对角线长为=3,所以其外接球半径R=.因此三棱锥PABC的外接球的体积V=×=π.2.(2020·全国Ⅲ卷)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.π 解析:方法一:如图,在圆锥的轴截面ABC中,CD⊥AB,BD=1,BC=3,圆O内切于△ABC,E为切点,连接OE,则OE⊥BC.在Rt△BCD中,CD==2.易知BE =BD=1,则CE=2.设圆锥的内切球半径为R,则OC=2-R,在Rt△COE中,OC2-OE2=CE2,即(2-R)2-R2=4,所以R=,圆锥内半径最大的球的体积为πR3=π.方法二:如图,记圆锥的轴截面为△ABC,其中AC=BC=3,AB=2,CD⊥AB,在Rt△BCD中,CD==2,则S△ABC=2.设△ABC的内切圆O的半径为R,则R==,所以圆锥内半径最大的球的体积为πR3=π.。

《立体几何》知识点填空(教师版)

《立体几何》知识点填空(教师版)

《立体几何》知识点填空(教师版)一、两个元素之间的关系(以下公理、定理、结论,均分别用“文字、图形、符号”这三种语言描述)(一)“点与直线”之间有 2 种关系?(1)过空间中一点作已知直线的平行线,共有1条?作平行面,共有无数个?(2)过空间中一点作已知直线的垂线,共有无数条?作垂面,共有1个?(二)“点与平面”之间有2种关系?【公理1】如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

【应用】①检验桌面是否平;②判断直线是否在平面内。

【公理2】经过不在同一条直线上的三点,有且只有一个平面。

推论1:一直线和直线外一点确定唯一平面。

推论2:两相交直线确定唯一平面。

推论3:两平行直线确定唯一平面。

【应用】①它是空间内确定平面的依据;②它是证明平面重合的依据。

(1)过空间中一点作已知平面的平行线,共有无数条?作平行面,共有1个?(2)过空间中一点作已知平面的垂线,共有1条?作垂面,共有无数个?(三)“直线与直线”之间有3种关系?【等角定理】如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

【异面直线判定定理】过平面外一点与平面内一点的直线与平面内不过该点的直线是异面直线。

(四)“直线与平面”之间有3种关系?(五)“平面与平面”之间有2种关系?【公理1】夹在两平行平面间的平行线段相等。

【公理2】如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

【应用】①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

(六)空间中的平行问题定理1(线面平行的判定):平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

定理2(面面平行的判定):如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。

定理4(面面平行的性质1):如果两个平面平行,那么某一个平面内的直线与另一个平面平行。

专题6 立体几何(文科)解答题30题 教师版--高考数学专题训练

专题6 立体几何(文科)解答题30题 教师版--高考数学专题训练

专题6立体几何(文科)解答题30题1.(贵州省贵阳市2023届高三上学期8月摸底考试数学(文)试题)如图,在直三棱柱111ABC A B C -中,1CA CB ==,90BCA ∠=︒,12AA =,M ,N 分别是11A B ,1A A 的中点.(1)求证:1BN C M ⊥;(2)求三棱锥1B BCN -的体积.2.(广西普通高中2023届高三摸底考试数学(文)试题)如图,多面体ABCDEF中,∠=︒,FA⊥平面ABCD,//ED FA,且22 ABCD是菱形,60ABC===.AB FA ED(1)求证:平面BDE⊥平面FAC;(2)求多面体ABCDEF的体积.))如图所示,取中点G ,连接3.(江西省五市九校协作体2023届高三第一次联考数学(文)试题)如图多面体ABCDEF 中,四边形ABCD 是菱形,60ABC ∠=︒,EA ⊥平面ABCD ,//EA BF ,22AB AE BF ===.(1)证明:平面EAC ⊥平面EFC ;(2)求点B 到平面CEF 的距离.(2)设B 到平面CEF 的距离为因为EA ⊥平面ABCD ,AC 因为//EA BF ,EA ⊥平面ABCD 且BC ⊂平面ABCD ,所以BF 因为60ABC ∠=︒,2AB =4.(新疆乌鲁木齐地区2023届高三第一次质量监测数学(文)试题)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD CD ⊥,AD BC ∥,且2PA AD CD ===,3BC =,E 是PD 的中点,点F 在PC 上,且2PF FC =.(1)证明:DF ∥平面PAB ;(2)求三棱锥P AEF -的体积.(2)作FG PD ⊥交PD 于点G 因为PA ⊥面ABCD ,所以PA 又AD CD ⊥,PA 与AD 交于点所以CD ⊥面PAD ,CD PD ⊥又FG PD ⊥,所以//FG CD ,所以所以PF FG PC CD =,得43FG =,因为E 为PD 中点,所以P AEF D AEF F ADE V V V ---===5.(新疆阿克苏地区柯坪湖州国庆中学2021-2022学年高二上学期期末数学试题)如图所示,已知AB ⊥平面BCD ,M ,N 分别是AC ,AD 的中点,BC CD ⊥.(1)求证://MN 平面BCD ;(2)求证:CD BM ⊥;【答案】(1)证明见解析;(2)证明见解析.【分析】1)根据中位线定理,可得//MN CD ,即可由线面平行的判定定理证明//MN 平面BCD ;(2)由已知推导出AB CD ⊥,再由CD BC ⊥,得CD ⊥平面ABC ,由此能证明CD BM ⊥;【详解】(1)M ,N 分别是AC ,AD 的中点,//MN CD ∴,MN ⊂/ 平面BCD ,且CD ⊂平面BCD ,//MN ∴平面BCD ;(2)AB ⊥Q 平面BCD ,M ,N 分别是AC ,AD 的中点,AB CD ∴⊥,BC CD ⊥ ,,AB BC B AB BC =⊂ ,平面ABC ,CD \^平面ABC ,BM ⊂ 平面ABC ,CD BM ∴⊥.6.(内蒙古乌兰浩特第一中学2022届高三全真模拟文科数学试题)如图在梯形中,//BC AD ,22AB AD BC ===,23ABC π∠=,E 为AD 中点,以BE 为折痕将ABE 折起,使点A 到达点P 的位置,连接,PD PC ,(1)证明:平面PED ⊥平面BCDE ;(2)当2PC =时,求点D 到平面PEB 的距离.因为PE PD =,F 为ED 因为平面PED ⊥平面BCDE 因为21122PF ⎛⎫=-= ⎪⎝⎭设D 到平面PEB 的距离为7.(山西省运城市2022届高三5月考前适应性测试数学(文)试题(A 卷))如图,四棱柱1111ABCD A B C D -中,底面ABCD 为平行四边形,侧面11ADD A 为矩形,22AB AD ==,160D DB ∠=︒,1BD AA =(1)证明:平面ABCD ⊥平面11BDD B ;(2)求三棱锥11D BCB -的体积.8.(黑龙江省八校2021-2022学年高三上学期期末联合考试数学(文)试题)已知直三棱柱111ABC A B C -中,AC BC =,点D 是AB 的中点.(1)求证:1BC ∥平面1C AD ;(2)若底面ABC 边长为2的正三角形,1BB =11B A DC -的体积.【答案】(1)证明见解析(2)1【分析】(1)连接1AC 交1AC 于点E ,连接DE ,由三角形中位线定理,得1DE BC ∥,进而由线面平行的判定定理即可证得结论;(2)利用等体积转化1111B A DC C A B D V V --=,依题意,高为CD ,再求底面11A B D 的面积,进而求三棱锥的体积.【详解】(1)连接1AC 交1AC 于点E ,连接DE∵四边形11AAC C 是矩形,∴E 为1AC 的中点,又∵D 是AB 的中点,∴1DE BC ∥,又∵DE ⊂平面1C AD ,1BC ⊄平面1C AD ,∴1BC ∥面1C AD .(2)∵AC BC =,D 是AB 的中点,∴AB CD ⊥,9.(青海省西宁市2022届高三二模数学(文)试题)如图,V是圆锥的顶点,O是底面圆心,AB是底面圆的一条直径,且点C是弧AB的中点,点D是AC的中点,2AB=,VA=.2(1)求圆锥的表面积;又D 是AC 的中点,所以OD AC ⊥,又VO OD O ⋂=,VO ⊂平面VOD ,OD ⊂平面VOD所以AC ⊥平面VOD ,又AC ⊂平面VAC ,所以平面VAC ⊥平面VOD .10.(河南省郑州市2023届高三第一次质量预测文科数学试题)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD ⊥AB ,AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.(1)证明:平面PBC ⊥平面PCD ;(2)求四棱锥E ABCD -的体积;又点E 为棱PC 的中点,BE 由勾股定理得2AC AD =+∵△PAC 为直角三角形,E 111.(江西省部分学校2023届高三上学期1月联考数学(文)试题)如图,在正三棱柱111ABC A B C -中,12AA AB ==,D ,E 分别是棱BC ,1BB 的中点.(1)证明:平面1AC D ⊥平面1ACE .(2)求点1C 到平面1ACE 的距离.(2)连接1EC .因为1AA 由正三棱柱的性质可知因为ABC 是边长为2的等边三角形,所以故三棱锥11A CC E -的体积以15A E CE ==,1A E 则1ACE △的面积212S =12.(广西玉林、贵港、贺州市2023届高三联合调研考试(一模)数学(文)试题)在三棱锥-P ABC 中,底面ABC 是边长为2的等边三角形,点P 在底面ABC 上的射影为棱BC 的中点O ,且PB 与底面ABC 所成角为π3,点M 为线段PO 上一动点.(1)证明:BC AM ⊥;(2)若12PM MO =,求点M 到平面PAB 的距离.AO BC ∴⊥,点P 在底面ABC 上的投影为点PO ∴⊥平面ABC , PO BC ∴⊥,13.(广西南宁市第二中学2023届高三上学期第一次综合质检数学(文)试题)如图,D ,O 是圆柱底面的圆心,ABC 是底面圆的内接正三角形,AE 为圆柱的一条母线,P 为DO 的中点,Q 为AE 的中点,(1)若90APC ∠=︒,证明:DQ ⊥平面PBC ;(2)设2DO =,圆柱的侧面积为8π,求点B 到平面PAC 的距离.∴//,AQ PD AQ PD =,∴四边形AQDP 为平行四边形,∴//DQ PA .又∵P 在DO 上,而OD ∴O 为P 在ABC 内的投影,且ABC 是圆内接正三角形∴三棱锥-P ABC 为正三棱锥∴PAB PAC PBC △≌△≌△∴APB APC BPC ∠=∠=∠即,PA PC PA PB ⊥⊥.∵PC PB P = ,,PB PC14.(江西省吉安市2023届高三上学期1月期末质量检测数学(文)试题)如图,在四棱锥P -ABCD 中,AB CD ,12AD CD BC PA PC AB =====,BC PA ⊥.(1)证明:平面PBC ⊥平面PAC ;(2)若PB =D 到平面PBC 的距离.又BC PA ⊥,PA AC A = 所以BC ⊥平面PAC ,又BC (2)因为BC ⊥平面PAC ,由22PB =,BC PC =,得15.(江西省部分学校2023届高三下学期一轮复习验收考试(2月联考)数学(文)试题)如图,在长方体1111ABCD A B C D -中,1AB AD ==,1AA =E 在棱1DD 上,且1AE A D ⊥.(1)证明:1AE A C ⊥;(2)求三棱锥1E ACD -的体积.【答案】(1)证明见解析;)在平面11ADD A 中,由AE ⊥1AD DE AA AD =,所以12112A DE S DE AD =⋅= 16.(新疆兵团地州学校2023届高三一轮期中调研考试数学(文)试题)如图1,在等腰梯形ABCD 中,M ,N ,F 分别是AD ,AE ,BE 的中点,4AE BE BC CD ====,将ADE V 沿着DE 折起,使得点A 与点P 重合,平面PDE ⊥平面BCDE ,如图2.(1)证明:PC∥平面MNF.(2)求点C到平面MNF的距离.17.(宁夏银川市第一中学2023届高三上学期第四次月考数学(文)试题)如图1,在直角梯形ABCD 中,,90,5,2,3AB DC BAD AB AD DC ∠==== ∥,点E 在CD 上,且2DE =,将ADE V 沿AE 折起,使得平面ADE ⊥平面ABCE (如图2).(1)求点B 到平面ADE 的距离;(2)在线段BD 上是否存在点P ,使得CP 平面ADE ?若存在,求三棱锥-P ABC 的体积;若不存在,请说明理由..18.(陕西省汉中市2023届高三上学期教学质量第一次检测文科数学试题)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥ 平面,ABCD FA ED ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求点A 到平面FBD 的距离.19.(内蒙古赤峰市2022届高三下学期5月模拟考试数学(文科)试题)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60PAB PAD BAD ∠=∠=∠= .(1)证明:BD ⊥平面PAC ;(2)若23AB PA ==,,求四棱锥P ABCD -的体积.解:如图,记AC 与BD 的交点为因为底面ABCD 为菱形,故又60PAB PAD BAD ∠=∠=∠=又PO AC O = ,故BD ⊥平面(2)解:因为2,3,AB PA ==∠20.(内蒙古2023届高三仿真模拟考试文科数学试题)如图,在四棱锥P ABCD -中,四边形ABCD 是直角梯形,AD AB ⊥,//AB CD ,22PB CD AB AD ===,PD =,PC DE ⊥,E 是棱PB 的中点.(1)证明:PD ⊥平面ABCD ;(2)若F 是棱AB 的中点,2AB =,求点C 到平面DEF 的距离.,AB AD=AB AD⊥,2BD∴=为棱PB中点,DE PBE∴⊥,又∴⊥平面PBC,又BC⊂平面DE在直角梯形ABCD中,取CD中点 ,DM AB=2CD AB∴=,又DM ∴四边形ABMD为正方形,BM∴∴===,又BC BM AD AB222BD DE⊂平面PBD ,,=BD DE D21.(山西省晋中市2022届高三下学期5月模拟数学(文)试题)如图,在三棱锥-P ABC中,PAB 为等腰直角三角形,112PA PB AC ===,PC ,平面PAB ⊥平面ABC .(1)求证:PA BC ⊥;(2)求三棱锥-P ABC 的体积.∴OP AB ⊥,22OP =,AB =又∵平面PAB ⊥平面ABC ,平面∴OP ⊥平面ABC .22.(山西省太原市2022届高三下学期三模文科数学试题)已知三角形PAD 是边长为2的正三角形,现将菱形ABCD 沿AD 折叠,所成二面角P AD B --的大小为120°,此时恰有PC AD ⊥.(1)求BD 的长;(2)求三棱锥-P ABC 的体积.∵PAD 是正三角形,∴PM AD ⊥,又∴,PC AD PC PM P⊥=I ∴AD ⊥平面PMC ,∴AD MC ⊥,故ACD 为等腰三角形23.(陕西省联盟学校2023届高三下学期第一次大联考文科数学试题)如图,在四棱锥P ABCD -中,底面ABCD 是长方形,22AD CD PD ===,PA 二面角P AD C--为120︒,点E 为线段PC 的中点,点F 在线段AB 上,且12AF =.(1)平面PCD ⊥平面ABCD ;(2)求棱锥C DEF -的高.824.(陕西省榆林市2023届高三上学期一模文科数学试题)如图,在四棱锥P ABCD -中,平面PAD ⊥底面,,60,ABCD AB CD DAB PA PD ∠=⊥ ∥,且2,22PA PD AB CD ====.(1)证明:AD PB ⊥;(2)求点A 到平面PBC 的距离.(2)因为AB CD ,所以∠2222BC BD CD BD CD =+-⋅由222BD BC CD =+,得BC 25.(陕西省宝鸡教育联盟2022-2023学年高三下学期教学质量检测(五)文科数学试题)如图,在三棱柱111ABC A B C -中,平面11ABB A ⊥平面ABC ,四边形11ABB A 是边长为2的菱形,ABC 为等边三角形,160A AB ∠=︒,E 为BC 的中点,D 为1CC 的中点,P为线段AC上的动点.AB平面PDE,请确定点P在线段AC上的位置;(1)若1//-的体积.(2)若点P为AC的中点,求三棱锥C PDE(2)解:如图,取AB 的中点∵四边形11ABB A 为边长为2∴12A B =,1AA B 为等边三角形,26.(山西省运城市2022届高三上学期期末数学(文)试题)如图,在四棱锥P -ABCD中,底面ABCD 是平行四边形,2APB π∠=,3ABC π∠=,PB =,24PA AD PC ===,点M 是AB 的中点,点N 是线段BC 上的动点.(1)证明:CM⊥平面PAB;(2)若点N到平面PCM BNBC的值.27.(2020届河南省许昌济源平顶山高三第二次质量检测文科数学试题)如图,四棱锥P ABCD -中,//AB CD ,33AB CD ==,2PA PD BC ===,90ABC ∠=︒,且PB PC =.(1)求证:平面PAD ⊥平面ABCD ;(2)求点D 到平面PBC 的距离.因为//AB CD ,33AB CD ==,所以四边形ABCD 为梯形,又M 、E 为AD 、BC 的中点,所以ME 为梯形的中位线,28.(青海省海东市2022-2023学年高三上学期12月第一次模拟数学(文)试题)如图,在直三棱柱111ABC A B C -中,ABC 是等边三角形,14AB AA ==,D 是棱AB 的中点.(1)证明:平面1ACD ⊥平面11ABB A .(2)求点1B 到平面1A CD 的距离.由题意可得11A B D △的面积因为ABC 是边长为4的等边三角形,且29.(河南省十所名校2022-2023学年高三阶段性测试(四)文科数学试题)如图,在四棱锥P —ABCD 中,PC BC ⊥,PA PB =,APC BPC ∠=∠.(1)证明:PC AD ⊥;(2)若AB CD,PD AD ⊥,PC =,且点C 到平面PAB AD 的长.∵PA PB =,APC BPC ∠=∠∴90PCA PCB ∠=∠=︒,即∵PC BC ⊥,AC BC = ∴PC ⊥平面ABCD ,又∵PA PB =,E 为AB 中点∴PE AB ⊥,由(1)知AC BC =,E 为∵PE CE E = ,,PE CE 30.(河南省部分重点中学2022-2023学年高三下学期2月开学联考文科数学试题)如图,在直三棱柱111ABC A B C -中,5AB AC ==,16BB BC ==,D ,E 分别是1AA 和1B C 的中点.(1)求证:平面BED ⊥平面11BCC B ;(2)求三棱锥E BCD -的体积.。

2022学年高三上(编号1-25)立体几何大题汇编(教师版)

2022学年高三上(编号1-25)立体几何大题汇编(教师版)
这也就是我们要回答问题:为什么蜂房正面采用正六边形面,底端是封闭的六角棱锥体的底,由三个相同的菱形组成(菱形的锐角为 ,钝角为 )?因为蜜蜂建造蜂房时需要使用材料(蜂腊)最少,在空间(体积)一定的情况下,这种形状容积最大.用正六边形才能蜂腊的用料最小.菱形的大小不影响蜂房的容积,只影响蜂房的表面积,但会影响到制造蜂房所用的材料;蜂房的底能够无间隙地粘合在一起.
,即
令 ,则
面 法向量为
平面 与平面 夹角的余弦值为
,即
, (舍)
4:(2023届广东梅州中学高三上阶段性考试解析第20题)
4:如图,在四棱锥 中,四边形 为直角梯形, , ,平面 平面 , , , .
(1)证明: ;
(2)若四棱锥 的体积为 ,
求平面 与平面 所成的锐二面角的余弦值.
方法提供与解析:(浙江绍兴+谢柏军)
方法提供与解析:(浙江绍兴+谢柏军)
(1)解析: 是正方形

直三棱柱
, , 、 面 ,


面 面
(2)解析: 面
、 分别为 、 中点
以 为原点, 为 轴, 为 轴, 为 轴建立坐标系
, , ,
设面 的法向量为
,即
令 ,则 ,

面 的法向量为
平面 与平面 夹角的余弦值为
10:(2023届重庆市巴蜀中学月考卷(一)解析第19题)
方法提供与解析:(衢州张小臣)
解析:(1)证明:取 的中点 ,连接 .
因为 是等边 的中线,所以 .
因为 是棱 的中点, 为 的中点,
所以 ,且 .
因为 ,所以 ,且 ,
所以四边形 是平行四边形,所以 .
因为 , 为 的中点,所以 ,从而 .

2019年大学自主招生数学精品讲义第十二讲 立体几何 (教师版)

2019年大学自主招生数学精品讲义第十二讲 立体几何 (教师版)

竞赛与自主招生专题第十二讲立体几何从2015年开始自主招生考试时间推后到高考后,政策刚出时,很多人认为,是不是要在高考出分后再考自主招生,是否高考考完了,自主招生并不是失去其意义。

自主招生考察了这么多年,使用的题目的难度其实已经很稳定,这个题目只有出到高考以上,竞赛以下,才能在这么多省份间拉开差距.所以,笔试难度基本稳定,维持原自主招生难度,原来自主招生的真题竞赛真题等,具有参考价值。

在近年自主招生试题中,立体几何是高中数学中具有联结和支撑作用的主干知识,它既是中学数学的重要内容,又是学习高等数学的必要基础,因而是高考数学与高校自主招生命题的主要板块之一。

立体几何问题大致可以分为两大类:一是空间几何的结构特征、简单几何体的表面积和体积的计算方法,如旋转体的体积和表面积,割补定理等;二是从构成空间几何体的基本元素——点、线、面人手研究它们的性质以及相互之间的位置关系等,如线、面之间的垂直于平行的位置判断与证明等。

一、知识精讲一.证明直线与直线的垂直的思考途径(1)转化为相交垂直; (2)转化为线面垂直;(3)转化为该线与另一线的射影垂直; (4)转化为该线与形成射影的斜线垂直.二.证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直.三.空间的线线平行或垂直:设111(,,)a x y z =,222(,,)b x y z =,则:1.平行:a b ⇔(0)a b b λ=≠⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;2.垂直:a b ⊥⇔0a b ⋅=⇔1212120x x y y z z ++=.四.夹角公式:设a =123(,,)a a a ,b =123(,,)b b b ,则112233222222123123cos ,a b a b a b a b a a ab b b++<>=++++.推论 222222*********3123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式. 五.异面直线所成角:cos |cos ,|a b θ=<>=121212222222111222||||||||x x y y z z a b a b x y z x y z ++⋅=⋅++⋅++(其中θ(090θ<≤)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量)六.直线AB 与平面所成角:sin||||AB m arc AB m β⋅=(m 为平面α的法向量).七.二面角l αβ--的平面角:cos ||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量)八.空间两点间的距离公式 :若111(,,)A x y z ,222(,,)B x y z ,则 ,A B d =||AB AB AB =⋅222212121()()()x x y y z z =-+-+-. 九.点B 到平面α的距离 :||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 十.柱体、锥体的体积:1.柱体:V Sh =柱体(S 是柱体的底面积、h 是柱体的高)2.椎体:13V Sh =锥体(S 是锥体的底面积、h 是锥体的高)十一.长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.十二.球的表面积和体积公式:1.球的表面积公式:24S R π=球(R 为球的半径)2.球的体积公式:343V R π=球(R 为球的半径)一.空间余弦定理如图,平面M 、N 相交于直线l 。

立体几何证明题专题(教师版)

立体几何证明题专题(教师版)

立体几何证明题考点1:点线面的位置关系及平面的性质例1.下列命题:①空间不同三点确定一个平面;②有三个公共点的两个平面必重合;③空间两两相交的三条直线确定一个平面;④三角形是平面图形;⑤平行四边形、梯形、四边形都是平面图形;⑥垂直于同一直线的两直线平行;⑦一条直线和两平行线中的一条相交,也必和另一条相交;⑧两组对边相等的四边形是平行四边形.其中正确的命题是________.【解析】由公理3知,不共线的三点才能确定一个平面,所以知命题①错,②中有可能出现两平面只有一条公共线(当这三个公共点共线时),②错.③空间两两相交的三条直线有三个交点或一个交点,若为三个交点,则这三线共面,若只有一个交点,则可能确定一个平面或三个平面.⑤中平行四边形及梯形由公理2可得必为平面图形,而四边形有可能是空间四边形,如图(1)所示.在正方体ABCD—A′B′C′D′中,直线BB′⊥AB,BB′⊥CB,但AB与CB不平行,∴⑥错.AB∥CD,BB′∩AB=B,但BB′与CD不相交,∴⑦错.如图(2)所示,AB=CD,BC=AD,四边形ABCD不是平行四边形,故⑧也错.【答案】④2.若P是两条异面直线l、m外的任意一点,则()A.过点P有且仅有一条直线与l、m都平行B.过点P有且仅有一条直线与l、m都垂直C.过点P有且仅有一条直线与l、m都相交D.过点P有且仅有一条直线与l、m都异面答案B解析对于选项A,若过点P有直线n与l,m都平行,则l∥m,这与l,m异面矛盾.对于选项B,过点P与l、m都垂直的直线,即过P且与l、m的公垂线段平行的那一条直线.对于选项C,过点P与l、m都相交的直线有一条或零条.对于选项D,过点P与l、m都异面的直线可能有无数条.3.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行答案C解析若c与a,b都不相交,则c与a,b都平行,根据公理4,则a∥b,与a,b异面矛盾.考点2:共点、共线、共面问题例1.下列各图是正方体和正四面体,P、Q、R、S分别是所在棱的中点,这四个点不共面的图形是【解析】①在A中易证PS∥QR,∴P、Q、R、S四点共面.②在C中易证PQ∥SR,∴P、Q、R、S四点共面.③在D中,∵QR⊂平面ABC,PS∩面ABC=P且P∉QR,∴直线PS与QR为异面直线.∴P、Q、R、S四点不共面.④在B中P、Q、R、S四点共面,证明如下:取BC中点N,可证PS、NR交于直线B1C1上一点,∴P、N、R、S四点共面,设为α.可证PS∥QN,∴P、Q、N、S四点共面,设为β.∵α、β都经过P、N、S三点,∴α与β重合,∴P、Q、R、S四点共面.【答案】D2.空间四点中,三点共线是这四点共面的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案A3.下面三条直线一定共面的是()A .a 、b 、c 两两平行B .a 、b 、c 两两相交C .a ∥b ,c 与a 、b 均相交D .a 、b 、c 两两垂直 答案 C4.已知三个平面两两相交且有三条交线,试证三条交线互相平行或者相交于一点. 【解析】 设α∩β=a ,β∩γ=b ,γ∩α=c ,由a ⊂β,b ⊂β,则a ∩b =O ,如图(1), 或a ∥b ,如图(2),若a ∩b =O ,O ∈a ,a ⊂α,则O ∈α,O ∈b ,b ⊂γ,则O ∈γ, 又γ∩α=c ,因此O ∈c ;若a ∥b ,a ⊄γ,b ⊂γ,则a ∥γ,又a ⊂α,α∩γ=c ,则a ∥c . 因此三条交线相交于一点或互相平行.5.如图所示,已知空间四边形ABCD 中,E 、H 分别是边AB ,AD 的中点,F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23.(1)求证:三条直线EF ,GH ,AC 交于一点.(2)若在本题中,AE EB =CF FB =2,AH HD =CGGD =3,其他条件不变.求证:EH 、FG 、BD 三线共点.【解析】 (1)∵E ,H 分别是AB ,AD 的中点, ∴由中位线定理可知,EH 綊12BD . 又∵CF CB =CG CD =23,∴在△CBD 中,FG ∥BD ,且FG =23BD . ∴由公理4知,EH ∥FG ,且EH <FG .∴四边形EFGH 是梯形,EH 、FG 为上、下两底. ∴两腰EF 、GH 所在直线必相交于一点P . ∵P ∈直线EF ,EF ⊂平面ABC , ∴P ∈平面ABC .同理可得P ∈平面ADC . ∴P 在平面ABC 和平面ADC 的交线上.又∵面ABC ∩面ADC =AC , ∴P ∈直线AC .故EF 、GH 、AC 三直线交于一点. (2)∵AE EB =CFFB =2, ∴EF ∥AC .又AH HD =CGGD =3,∴HG ∥AC ,∴EF ∥HG ,且EF >HG . ∴四边形EFGH 为梯形. 设EH 与FG 交于点P , 则P ∈平面ABD ,P ∈平面BCD . ∴P 在两平面的交线BD 上. ∴EH 、FG 、BD 三线共点.考点3:异面直线的夹角1.在正方体ABCD -A 1B 1C 1D 1中,E 为AB 的中点.求BD 1与CE 所成角的余弦值.【解析】 连接AD 1,A 1D 交点为M ,连接ME ,MC ,则∠MEC (或其补角)即为异面直线BD 1与CE 所成的角,设AB =1,CE =52,ME =12BD 1=32,CM 2=CD 2+DM 2=32.在△MEC 中,cos ∠MEC=CE 2+ME 2-CM 22CE ·ME=1515,因此异面直线BD 1与CE 所成角的余弦值为1515.2.如图,若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为2,高为4,则异面直线BD 1与AD 所成角的正切值是______.答案 53.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1中点,则异面直线BE 与CD 1所成角的余弦值为()答案C解析连接BA1,则CD1∥BA1,于是∠A1BE就是异面直线BE与CD1所成的角(或补角),设AB=1,则BE=2,BA1=5,A1E=1,在△A1BE中,cos∠A1BE=5+2-125·2=31010,选C.4.已知正方体ABCD-A1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成角的余弦值为________.【解析】取A1B1的中点F,连接EF,FA,则有EF∥B1C1∥BC,∠AEF即是直线AE与BC所成的角或其补角.设正方体ABCD—A1B1C1D1的棱长为2a,则有EF=2a,AF=2a2+a2=5a,AE=2a2+2a2+a2=3a.在△AEF中,cos∠AEF=AE2+EF2-AF22AE·EF=9a2+4a2-5a22×3a×2a=23.因此,异面直线AE与BC所成的角的余弦值是23.【答案】2 3考点4:直线与平面平行的判定与性质1.下列命题中正确的是________.①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行;⑤若l与平面α平行,则l与α内任何一条直线都没有公共点;⑥平行于同一平面的两直线可以相交.答案⑤⑥解析a∩α=A时,a不在α内,∴①错;直线l与α相交时,l上有无数个点不在α内,故②错;l ∥α时,α内的直线与l平行或异面,故③错;a∥b,b∥α时,a∥α或a⊂α,故④错;l∥α,则l与α无公共点,∴l与α内任何一条直线都无公共点,⑤正确;如图,长方体中,A1C1与B1D1都与平面ABCD 平行,∴⑥正确.2.给出下列四个命题:①若一条直线与一个平面内的一条直线平行,则这条直线与这个平面平行;②若一条直线与一个平面内的两条直线平行,则这条直线与这个平面平行;③若平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行;④若两条平行直线中的一条与一个平面平行,则另一条也与这个平面平行. 其中正确命题的个数是________个. 答案 1解析 命题①错,需说明这条直线在平面外. 命题②错,需说明这条直线在平面外. 命题③正确,由线面平行的判定定理可知. 命题④错,需说明另一条直线在平面外. 3.已知不重合的直线a ,b 和平面α, ①若a ∥α,b ⊂α,则a ∥b ; ②若a ∥α,b ∥α,则a ∥b ; ③若a ∥b ,b ⊂α,则a ∥α; ④若a ∥b ,a ⊂α,则b ∥α或b ⊂α, 上面命题中正确的是________(填序号). 答案 ④解析 ①若a ∥α,b ⊂α,则a ,b 平行或异面;②若a ∥α,b ∥α,则a ,b平行、相交、异面都有可能;③若a ∥b ,b ⊂α,a ∥α或a ⊂α.4.正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP =DQ .求证:PQ ∥平面BCE .【证明】 方法一 如图所示. 作PM ∥AB 交BE 于M , 作QN ∥AB 交BC 于N , 连接MN .∵正方形ABCD 和正方形ABEF 有公共边AB ,∴AE =BD . 又AP =DQ ,∴PE =QB .又PM ∥AB ∥QN ,∴PM AB =PE AE =QB BD ,QN DC =BQ BD . ∴PM AB =QN DC .∴PM 綊QN ,即四边形PMNQ 为平行四边形. ∴PQ ∥MN .又MN ⊂平面BCE ,PQ ⊄平面BCE , ∴PQ ∥平面BCE .方法二 如图,连接AQ ,并延长交BC 延长线于K ,连接EK . ∵AE =BD ,AP =DQ , ∴PE =BQ ,∴AP PE =DQBQ .又AD ∥BK ,∴DQ BQ =AQ QK ,∴AP PE =AQQK ,∴PQ ∥EK . 又PQ ⊄平面BCE ,EK ⊂平面BCE , ∴PQ ∥平面BCE .方法三 如图,在平面ABEF 内,过点P 作PM ∥BE ,交AB 于点M ,连接QM .∴PM ∥平面BCE .又∵平面ABEF ∩平面BCE =BE , ∴PM ∥BE ,∴AP PE =AMMB .又AE =BD ,AP =DQ ,∴PE =BQ . ∴AP PE =DQ BQ ,∴AM MB =DQ QB . ∴MQ ∥AD .又AD ∥BC ,∴MQ ∥BC ,∴MQ ∥平面BCE .又PM ∩MQ =M , ∴平面PMQ ∥平面BCE .又PQ ⊂平面PMQ , ∴PQ ∥平面BCE .5.一个多面体的直观图和三视图如图所示(其中M ,N 分别是AF ,BC 中点).<1>求证:MN ∥平面CDEF ; <2>求多面体A —CDEF 的体积.解析 (1)证明 由三视图知,该多面体是底面为直角三角形的直三棱柱,且AB =BC =BF =2, DE =CF =22,∴∠CBF =90°.取BF 中点G ,连接MG ,NG ,由M ,N 分别是AF ,BC 中点,可知:NG ∥CF ,MG ∥EF .又MG ∩NG =G ,CF ∩EF =F ,∴平面MNG ∥平面CDEF ,∴MN ∥平面CDEF .(2)作AH ⊥DE 于H ,由于三棱柱ADE —BCF 为直三棱柱,∴AH ⊥平面CDEF ,且AH =2.∴V A -CDEF =13S 四边形CDEF ·AH =13×2×22×2=83.6.若P 为异面直线a ,b 外一点,则过P 且与a ,b 均平行的平面A.不存在B.有且只有一个C.可以有两个D.有无数多个答案B7.如图,在正方体ABCD—A1B1C1D1中,点N在BD上,点M在B1C上,且CM=DN,求证:MN∥平面AA1B1B.【证明】方法一如右图,作ME∥BC,交BB1于E;作NF∥AD,交AB于F,连接EF,则EF⊂平面AA1B1B.∵BD=B1C,DN=CM,∴B1M=BN.∵MEBC=B1MB1C,NFAD=BNBD,∴MEBC=BNBD=NFAD,∴ME=NF.又ME∥BC∥AD∥NF,∴MEFN为平行四边形.∴NM∥EF.又∵MN⊄面AA1B1B,∴MN∥平面AA1B1B.方法二如图,连接CN并延长交BA的延长线于点P,连接B1P,则B1P⊂平面AA1B1B.∵△NDC∽△NBP,∴DNNB=CNNP.又CM=DN,B1C=BD,CMMB1=DNNB=CNNP,∴MN∥B1P.∵B1P⊂平面AA1B1B,∴MN∥平面AA1B1B.方法三如右图,作MP∥BB1,交BC于点P,连接NP.∵MP∥BB1,∴CMMB1=CPPB.∵BD=B1C,DN=CM,∴B1M=BN.∵CMMB1=DNNB,∴CPPB=DNNB,∴NP∥DC∥AB.∴平面MNP∥平面AA1B1B.∴MN∥平面AA1B1B.8.如图所示,四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.(1)求证:PA∥平面EFG;(2)求三棱锥P—EFG的体积.解析(1)证明如图,取AD的中点H,连接GH,FH.∵E,F分别为PC,PD的中点,∴EF∥CD.∵G,H分别是BC,AD的中点,∴GH∥CD.∴EF∥GH,∴E,F,H,G四点共面.∵F,H分别为DP,DA的中点,∴PA∥FH.∵PA⊄平面EFG,FH⊂平面EFG,∴PA∥平面EFG.(2)∵PD⊥平面ABCD,CG⊂平面ABCD,∴PD⊥CG.又∵CG⊥CD,CD∩PD=D,∴GC⊥平面PCD.∵PF =12PD =1,EF =12CD =1,∴S △PEF =12EF ·PF =12. 又GC =12BC =1,∴V P —EFG =V G —PEF =13×12×1=16.9.如图所示,a ,b 是异面直线,A 、C 与B 、D 分别是a ,b 上的两点,直线a ∥平面α,直线b ∥平面α,AB ∩α=M ,CD ∩α=N ,求证:若AM =BM ,则CN =DN .【证明】 连接AD 交平面α于E 点,并连接ME ,NE . ∵b ∥α,ME ⊂平面ABD ,平面α∩面ABD =ME , ∴ME ∥BD .又在△ABD 中AM =MB , ∴AE =ED .即E 是AD 的中点.又a ∥α,EN ⊂平面ACD ,平面α∩面ADC =EN , ∴EN ∥AC ,而E 是AD 的中点. ∴N 必是CD 的中点,∴CN =DN .10.如图,在三棱柱ABC -A 1B 1C 1中,E 为AC 上一点,若AB 1∥平面C 1EB ,求:AE ∶EC .【解析】 连接B 1C 交BC 1于点F , 则F 为B 1C 中点. ∵AB 1∥平面C 1EB ,AB 1⊂平面AB 1C ,且平面C 1EB ∩平面AB 1C =EF . ∴AB 1∥EF ,∴E 为AC 中点. ∴AE ∶EC =1∶1. 【答案】 1∶1考点5:面面平行的判定及性质1.设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A .m ∥β且l 1∥αB .m ∥l 1且n ∥l 2C .m ∥β且n ∥β 答案 B解析 因m ⊂α,l 1⊂β,若α∥β,则有m ∥β且l 1∥α,故α∥β的一个必要条件是m ∥β且l 1∥α,排除A.因m ,n ⊂α,l 1,l 2⊂β且l 1与l 2相交,若m ∥l 1且n ∥l 2,因l 1与l 2相交,故m 与n 也相交,∴α∥β;若α∥β,则直线m 与直线l 1可能为异面直线,故α∥β的一个充分而不必要条件是m ∥l 1且n ∥l 2,应选B.2.棱长为1的正方体ABCD —A 1B 1C 1D 1中,点P ,Q ,R 分别是面A 1B 1C 1D 1,BCC 1B 1,ABB 1A 1的中心,给出下列结论:①PR 与BQ 是异面直线;②RQ ⊥平面BCC 1B 1;③平面PQR ∥平面D 1AC ;④过P ,Q ,R 的平面截该正方体所得截面是边长为2的等边三角形. 以上结论正确的是________.(写出所有正确结论的序号)答案 ③④解析 由于PR 是△A 1BC 1的中位线,所以PR ∥BQ ,故①不正确;由于RQ ∥A 1C 1,而A 1C 1不垂直于面BCC 1B 1,所以②不正确;由于PR ∥BC 1∥D 1A ,PQ ∥A 1B ∥D 1C ,所以③正确;由于△A 1BC 1是边长为2的正三角形,所以④正确.故填③④.3.已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC的重心.<1>求证:平面G 1G 2G 3∥平面ABC ;<2>求S △G 1G 2G 3∶S △ABC .【解析】 (1)如图,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F .连接DE 、EF 、FD .则有PG 1∶PD =2∶3,PG 2∶PE =2∶3.∴G 1G 2∥DE .又G 1G 2不在平面ABC 内,∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC .又因为G 1G 2∩G 2G 3=G 2,∴平面G 1G 2G 3∥平面ABC .(2)由(1)知PG 1PD =PG 2PE =23,∴G 1G 2=23DE .又DE =12AC ,∴G 1G 2=13AC .同理G 2G 3=13AB ,G 1G 3=13BC .∴△G 1G 2G 3∽△CAB ,其相似比为1∶3.∴S △G 1G 2G 3∶S △ABC =1∶9.4.给出下列关于互不相同的直线l 、m 、n 和平面α、β、γ的三个命题:①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β;②若α∥β,l ⊂α,m ⊂β,则l ∥m ;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题为________.答案 ③解析 ①中当α与β不平行时,也能存在符合题意的l 、m .②中l 与m 也可能异面.③中⎭⎪⎬⎪⎫l ∥γl ⊂ββ∩γ=m ⇒l ∥m , 同理l ∥n ,则m ∥n ,正确.5.如图所示,正方体ABCD —A 1B 1C 1D 1中,M 、N 、E 、F 分别是棱A 1B 1,A 1D 1,B 1C 1,C 1D 1的中点.求证:平面AMN ∥平面EFDB .【证明】 连接MF ,∵M 、F 是A 1B 1、C 1D 1的中点,四边形A 1B 1C 1D 1为正方形,∴MF A 1D 1.又A 1D 1 AD ,∴MF AD .∴四边形AMFD 是平行四边形.∴AM ∥DF .∵DF ⊂平面EFDB ,AM ⊄平面EFDB ,∴AM ∥平面EFDB ,同理AN ∥平面EFDB .又AM 、AN ⊂平面ANM ,AM ∩AN =A ,∴平面AMN ∥平面EFDB .6.在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1C ,B 1C 1,C 1D 1的中点,求证:平面MNP ∥平面A 1BD . 证明 方法一如图(1)所示,连接B 1D 1.∵P ,N 分别是D 1C 1,B 1C 1的中点,∴PN ∥B 1D 1.又B1D1∥BD,∴PN∥BD.又PN⊄平面A1BD,∴PN∥平面A1BD.同理:MN∥平面A1BD.又PN∩MN=N,∴平面PMN∥平面A1BD.方法二如图(2)所示,连接AC1,AC,∵ABCD-A1B1C1D1为正方体,∴AC⊥BD.又CC1⊥平面ABCD,∴AC为AC1在平面ABCD上的射影,∴AC1⊥BD.同理可证AC1⊥A1B,∴AC1⊥平面A1BD.同理可证AC1⊥平面PMN.∴平面PMN∥平面A1BD.7.如图所示,平面α∥平面β,点A∈α,C∈α,点B∈β,D∈β,点E、F分别在线段AB,CD上,且AE∶EB=CF∶FD.求证:EF∥β.【证明】①当AB,CD在同一平面内时,由α∥β,α∩平面ABDC=AC,β∩平面ABDC=BD,∴AC∥BD.∵AE∶EB=CF∶FD,∴EF∥BD.又EF⊄β,BD⊂β,∴EF∥β.②当AB与CD异面时,设平面ACD∩β=DH,且DH=AC,∵α∥β,α∩平面ACDH=AC,∴AC∥DH.∴四边形ACDH是平行四边形.在AH上取一点G,使AG∶GH=CF∶FD,又∵AE∶EB=CF∶FD,∴GF∥HD,EG∥BH.又EG ∩GF =G ,∴平面EFG ∥平面β.∵EF ⊂平面EFG ,∴EF ∥β.综上,EF ∥β.8.已知:如图,斜三棱柱ABC —A 1B 1C 1中,点D 、D 1分别为AC 、A 1C 1上的点.(1)当A 1D 1D 1C 1的值等于何值时,BC 1∥平面AB 1D 1; (2)若平面BC 1D ∥平面AB 1D 1,求AD DC 的值.【解析】 (1)如图,取D 1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1,连接A 1B 交AB 1于点O ,连接OD 1.由棱柱的性质,知四边形A 1ABB 1为平行四边形,所以点O 为A 1B的中点.在△A 1BC 1中,点O 、D 1分别为A 1B 、A 1C 1的中点,∴OD 1∥BC 1.又∵OD 1⊂平面AB 1D 1,BC 1⊄平面AB 1D 1,∴BC 1∥平面AB 1D 1.∴A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1. (2)由已知,平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BDC 1=BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O ,因此BC 1∥D 1O ,同理AD 1∥DC 1.∴A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DC AD . 又∵A 1O OB =1,∴DC AD =1,即AD DC =1.考点6:线线、线面垂直1.设α、β是两个不同的平面,a 、b 是两条不同的直线,给出下列四个命题,其中真命题是A .若a ∥α,b ∥α,则a ∥bB .若a ∥α,b ∥β,a ∥b ,则α∥βC .若a ⊥α,b ⊥β,a ⊥b ,则α⊥βD .若a 、b 在平面α内的射影互相垂直,则a ⊥b答案 C解析 与同一平面平行的两条直线不一定平行,所以A 错误;与两条平行直线分别平行的两个平面未必平行,所以B 错误;如图(1),设OA ∥a ,OB ∥b ,直线OA 、OB 确定的平面分别交α、β于AC 、BC ,则OA ⊥AC ,OB ⊥BC ,所以四边形OACB 为矩形,∠ACB 为二面角α-l -β的平面角,所以α⊥β,C 正确;如图(2),直线a 、b 在平面α内的射影分别为m 、n ,显然m ⊥n ,但a 、b 不垂直,所以D 错误,故选C.2.“直线l 垂直于平面α内的无数条直线”是“l ⊥α”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 B3.若m ,n 表示直线,α表示平面,则下列命题中,正确命题的个数为① ⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α ② ⎭⎪⎬⎪⎫n ⊥αm ⊥α⇒m ∥n③ ⎭⎪⎬⎪⎫m ⊥αn ∥α⇒m ⊥n ④ ⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥αA .1B .2C .3D .4答案 C解析 ①②③正确,④错误.4.如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC=60°,PA =AB =BC ,E 是PC 的中点.求证:(1)CD ⊥AE ;(2)PD ⊥平面ABE .【证明】 (1)∵PA ⊥底面ABCD ,∴CD ⊥PA .又CD ⊥AC ,PA ∩AC =A ,故CD ⊥平面PAC ,AE ⊂平面PAC .故CD ⊥AE .(2)∵PA =AB =BC ,∠ABC =60°,故PA =AC .∵E 是PC 的中点,故AE ⊥PC .由(1)知CD ⊥AE ,从而AE ⊥平面PCD ,故AE ⊥PD .易知BA ⊥PD ,故PD ⊥平面ABE .5.设l 是直线,α,β是两个不同的平面( )A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若l⊥α,α⊥β,则l⊥βD.若α⊥β,l∥α,则l⊥β答案B解析A项中由l∥α,l∥β不能确定α与β的位置关系,C项中由α⊥β,l⊥α可推出l∥β或l⊂β,D项由α⊥β,l∥α不能确定l与β的位置关系.6.设b,c表示两条直线,α,β表示两个平面,下列命题中真命题是A.若b⊂α,c∥α,则b∥cB.若b⊂α,b∥c,则c∥αC.若c∥α,c⊥β,则α⊥βD.若c∥α,α⊥β,则c⊥β答案C解析如果一条直线平行于一个平面,它不是与平面内的所有直线平行,只有部分平行,故A错;若一条直线与平面内的直线平行,该直线不一定与该平面平行,该直线可能是该平面内的直线,故B 错;如果一个平面与另一个平面的一条垂线平行,那么这两个平面垂直,这是一个真命题,故C对;对D来讲若c∥α,α⊥β,则c与β的位置关系不定,故选C.7. 在三棱柱ABC—A1B1C1中,AA1⊥平面ABC,AC=BC=AA1=2,∠ACB=90°,E为BB1的中点,∠A1DE=90°,求证:CD⊥平面A1ABB1.证明连接A1E,EC,∵AC=BC=2,∠ACB=90°,∴AB=2 2.设AD=x,则BD=22-x.∴A1D2=4+x2,DE2=1+(22-x)2,A1E2=(22)2+1.∵∠A1DE=90°,∴A1D2+DE2=A1E2.∴x= 2.∴D为AB的中点.∴CD⊥AB.又AA1⊥CD,且AA1∩AB=A,∴CD⊥平面A1ABB1.8.如图,长方体ABCD—A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点.<1>证明:BD⊥EC1;<2>如果AB=2,AE=2,OE⊥EC1,求AA1的长.【解析】 (1)如图,连接AC ,A 1C 1,AC 与BD 相交于点O .由底面是正方形知,BD ⊥AC .因为AA 1⊥平面ABCD ,BD ⊂平面ABCD ,所以AA 1⊥BD .又由AA 1∩AC =A ,所以BD ⊥平面AA 1C 1C .再由EC 1⊂平面AA 1C 1C 知,BD ⊥EC 1.(2)设AA 1的长为h ,连接OC 1.在Rt △OAE 中,AE =2,AO =2, 故OE 2=(2)2+(2)2=4.在Rt △EA 1C 1中,A 1E =h -2,A 1C 1=2 2.故EC 21=(h -2)2+(22)2.在Rt △OCC 1中,OC =2,CC 1=h ,OC 21=h 2+(2)2.因为OE ⊥EC 1,所以OE 2+EC 21=OC 21.即4+(h -2)2+(22)2=h 2+(2)2,解得h =3 2.所以AA 1的长为3 2.考点7:面面垂直1.△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD ,M 是EA 的中点,求证: ①DE =DA ;②平面BDM ⊥平面ECA ;③平面DEA ⊥平面ECA .【证明】 ①取EC 的中点F ,连接DF .∵BD ∥CE ,∴DB ⊥BA .又EC ⊥BC ,在Rt △EFD 和Rt △DBA 中,∵EF =12EC =BD ,FD =BC =AB ,∴Rt △EFD ≌Rt △DBA ,∴DE =DA .②取CA 的中点N ,连接MN 、BN ,则MN 綊12EC .∴MN ∥BD ,∴N 点在平面BDM 内.∵EC ⊥平面ABC ,∴EC ⊥BN .又CA ⊥BN ,∴BN ⊥平面ECA .∵BN ⊂平面BDM ,∴平面BDM ⊥平面ECA .③∵DM ∥BN ,BN ⊥平面ECA ,∴DM ⊥平面ECA ,又DM ⊂平面DEA ,∴平面DEA ⊥平面ECA .2.已知平面PAB ⊥平面ABC ,平面PAC ⊥平面⊥平面PBC ,E 为垂足.①求证:PA ⊥平面ABC ;②当E 为△PBC 的垂心时,求证:△ABC 是直角三角形.【证明】 ①在平面ABC 内取一点D ,作DF ⊥AC 于F .平面PAC ⊥平面ABC ,且交线为AC ,∴DF ⊥平面PAC .又PA ⊂平面PAC ,∴DF ⊥PA .作DG ⊥AB 于G ,同理可证:DG ⊥PA .DG 、DF 都在平面ABC 内,∴PA ⊥平面ABC .②连接BE 并延长交PC 于H ,∵E 是△PBC 的垂心,∴PC ⊥BH .又已知AE 是平面PBC 的垂线,PC ⊂平面PBC ,∴PC ⊥AE .又BH ∩AE =E ,∴PC ⊥平面ABE .又AB ⊂平面ABE ,∴PC ⊥AB .∵PA ⊥平面ABC ,∴PA ⊥AB .又PC ∩PA =P ,∴AB ⊥平面PAC .又AC ⊂平面PAC ,∴AB ⊥AC .即△ABC 是直角三角形.3.如图所示,在斜三棱柱A 1B 1C 1-ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC .(1)若D 是BC 的中点,求证:AD ⊥CC 1;(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1,求证:截面MBC 1⊥侧面BB 1C 1C ;(3)AM =MA 1是截面MBC 1⊥侧面BB 1C 1C 的充要条件吗请你叙述判断理由.【证明】 (1)∵AB =AC ,D 是BC 的中点,∴AD ⊥BC .∵底面ABC ⊥侧面BB 1C 1C ,且交线为BC ,∴由面面垂直的性质定理可知AD ⊥侧面BB 1C 1C .又∵CC 1⊂侧面BB 1C 1C ,∴AD ⊥CC 1.(2)方法一 取BC 1的中点E ,连接DE 、ME .在△BCC 1中,D 、E 分别是BC 、BC 1的中点.∴DE 綊12CC 1.又AA 1綊CC 1,∴DE 綊12AA 1.∵M 是AA 1的中点(由AM =MA 1知),∴DE 綊AM .∴AMED 是平行四边形,∴AD 綊ME .由(1)知AD ⊥面BB 1C 1C ,∴ME ⊥侧面BB 1C 1C .又∵ME ⊂面BMC 1,∴面BMC 1⊥侧面BB 1C 1C .方法二 延长B 1A 1与BM 交于N (在侧面AA 1B 1B 中),连接C 1N .∵AM =MA 1,∴NA 1=A 1B 1.又∵AB =AC ,由棱柱定义知△ABC ≌△A 1B 1C 1.∴AB =A 1B 1,AC =A 1C 1.∴A 1C 1=A 1N =A 1B 1.在△B 1C 1N 中,由平面几何定理知:∠NC 1B 1=90°,即C 1N ⊥B 1C 1.又∵侧面BB 1C 1C ⊥底面A 1B 1C 1,交线为B 1C 1,∴NC 1⊥侧面BB 1C 1C .又∵NC 1⊂面BNC 1,∴截面C 1NB ⊥侧面BB 1C 1C ,即截面MBC 1⊥侧面BB 1C 1C .(3)结论是肯定的,充分性已由(2)证明.下面仅证明必要性(即由截面BMC 1⊥侧面BB 1C 1C 推出AM =MA 1,实质是证明M 是AA 1的中点), 过M 作ME 1⊥BC 1于E 1.∵截面MBC 1⊥侧面BB 1C 1C ,交线为BC 1.∴ME 1⊥面BB 1C 1C .又由(1)知AD ⊥侧面BB 1C 1C ,∵垂直于同一个平面的两条直线平行,∴AD ∥ME 1,∴M 、E 1、D 、A 四点共面.又∵AM ∥侧面BB 1C 1C ,面AME 1D ∩面BB 1C 1C =DE 1,∴由线面平行的性质定理可知AM ∥DE 1.又AD ∥ME 1,∴四边形AME 1D 是平行四边形.∴AD =ME 1,DE 1綊AM .又∵AM ∥CC 1,∴DE 1∥CC 1.又∵D 是BC 的中点,∴E 1是BC 1的中点.∴DE 1=12CC 1=12AA 1.∴AM =12AA 1,∴MA =MA 1.∴AM =MA 1是截面MBC 1⊥侧面BB 1CC 1的充要条件.考点8:平行与垂直的综合问题1.如图所示,在直角梯形ABEF 中,将DCEF 沿CD 折起使∠FDA =60°,得到一个空间几何体.(1)求证:BE ∥平面ADF ;(2)求证:AF ⊥平面ABCD ;(3)求三棱锥E —BCD 的体积.【解析】 (1)由已知条件,可知BC ∥AD ,CE ∥DF ,折叠之后平行关系不变.又因为BC ⊄平面ADF ,AD ⊂平面ADF ,所以BC ∥平面ADF .同理CE ∥平面ADF .又因为BC ∩CE =C ,BC ,CE ⊂平面BCE ,所以平面BCE ∥平面ADF .所以BE ∥平面ADF .(2)由于∠FDA =60°,FD =2,AD =1,所以AF 2=FD 2+AD 2-2×FD ×AD ×cos FDA =4+1-2×2×1×12=3.即AF = 3.所以AF 2+AD 2=FD 2.所以AF ⊥AD .又因为DC ⊥FD ,DC ⊥AD ,AD ∩FD =D ,所以DC ⊥平面ADF .又因为AF ⊂平面ADF ,所以DC ⊥AF .因为AD ∩DC =D ,AD ,DC ⊂平面ABCD ,所以AF ⊥平面ABCD .(3)因为DC ⊥EC ,DC ⊥BC ,EC ,BC ⊂平面EBC ,EC ∩BC =C ,所以DC ⊥平面EBC .又因为DF ∥EC ,AD ∥BC ,∠FDA =60°,所以∠ECB =60°.又因为EC =1,BC =1,所以S △ECB =12×1×1×32=34.所以V E -BCD =V D -EBC =13×DC ×S △ECB =13×1×34=312.2.如图1,在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图2.<1>求证:DE ∥平面A 1CB ;<2>求证:A 1F ⊥BE ;<3>线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ 说明理由.【解析】 (1)因为D ,E 分别为AC ,AB 的中点,所以DE ∥BC .又因为DE ⊄平面A 1CB ,所以DE ∥平面A 1CB .(2)由已知得AC ⊥BC 且DE ∥BC ,所以DE ⊥AC .所以DE ⊥A 1D ,DE ⊥CD ,所以DE ⊥平面A 1DC .而A 1F ⊂平面A 1DC ,所以DE ⊥A 1F .又因为A 1F ⊥CD ,所以A 1F ⊥平面BCDE .所以A 1F ⊥BE .(3)线段A 1B 上存在点Q ,使A 1C ⊥平面DEQ .理由如下:如图,分别取A 1C ,A 1B 的中点P ,Q ,连接PQ ,QE ,PD ,则PQ ∥BC .因为DE ∥BC ,所以DE ∥PQ .所以平面DEQ 即为平面DEP .由(2)知,DE ⊥平面A 1DC ,所以DE ⊥A 1C .又因为P 是等腰三角形DA 1C 底边A 1C 的中点,所以A 1C ⊥DP .所以A 1C ⊥平面DEP .从而A 1C ⊥平面DEQ .故线段A 1B 上存在点Q ,使得A 1C ⊥平面DEQ .3.如图,四棱锥P -ABCD 中,四边形ABCD 为矩形,△PAD 为等腰三角形,∠APD =90°,平面PAD ⊥平面ABCD ,且AB =1,AD =2,E 、F 分别为PC 、BD 的中点.<1>证明:EF ∥平面PAD ;<2>证明:平面PDC ⊥平面PAD ;<3>求四棱锥P —ABCD 的体积.解析 (1)证明:如图,连接AC .∵四边形ABCD 为矩形且F 是BD 的中点,∴F 也是AC 的中点.又E 是PC 的中点,EF ∥AP ,∵EF ⊄平面PAD ,PA ⊂平面PAD ,∴EF ∥平面PAD .(2)证明:∵面PAD ⊥平面ABCD ,CD ⊥AD ,平面PAD ∩平面ABCD =AD ,∴CD ⊥平面PAD .∵CD ⊂平面PDC ,∴平面PDC ⊥平面PAD .(3)取AD 的中点为O .连接PO .∵平面PAD ⊥平面ABCD ,△PAD 为等腰直角三角形,∴PO ⊥平面ABCD ,即PO 为四棱锥P —ABCD 的高.∵AD =2,∴PO =1.又AB =1,∴四棱锥P —ABCD 的体积V =13PO ·AB ·AD =23.。

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)教案章节一:绪论——立体几何的概念与意义教学目标:1. 理解立体几何的概念,认识立体几何的研究对象。

2. 理解空间点、线、面的位置关系,掌握空间中点、线、面的基本性质。

教学重点:立体几何的概念,空间点、线、面的位置关系。

教学难点:立体几何的概念,空间点、线、面的位置关系的理解与运用。

教学准备:多媒体教学设备,立体几何模型。

教学过程:1. 引入:通过实物展示,让学生感受立体几何的存在,激发学生的学习兴趣。

2. 讲解:讲解立体几何的概念,阐述立体几何的研究对象。

3. 演示:利用多媒体教学设备和立体几何模型,展示空间点、线、面的位置关系。

4. 练习:让学生通过观察模型,判断空间点、线、面的位置关系。

教案章节二:立体图形的性质与分类教学目标:1. 了解立体图形的概念,掌握立体图形的基本性质。

2. 学会立体图形的分类,能够识别常见立体图形。

教学重点:立体图形的基本性质,立体图形的分类。

教学难点:立体图形的基本性质的理解与运用,立体图形的分类的掌握。

教学准备:多媒体教学设备,立体图形模型。

教学过程:1. 引入:通过实物展示,让学生感受立体图形的存在,激发学生的学习兴趣。

2. 讲解:讲解立体图形的基本性质,引导学生理解立体图形的特点。

3. 演示:利用多媒体教学设备和立体图形模型,展示立体图形的分类。

4. 练习:让学生通过观察模型,识别常见立体图形。

教案章节三:空间点、线、面的位置关系教学目标:1. 理解空间点、线、面的位置关系,掌握空间中点、线、面的基本性质。

2. 学会运用空间点、线、面的位置关系解决实际问题。

教学重点:空间点、线、面的位置关系,空间中点、线、面的基本性质。

教学难点:空间点、线、面的位置关系的理解与运用。

教学准备:多媒体教学设备,立体几何模型。

教学过程:1. 引入:通过实物展示,让学生感受空间点、线、面的存在,激发学生的学习兴趣。

2. 讲解:讲解空间点、线、面的位置关系,引导学生理解空间点、线、面的基本性质。

专题 立体几何之所成角-(人教A版2019必修第二册) (教师版)

专题 立体几何之所成角-(人教A版2019必修第二册) (教师版)

立体几何之所成角1 异面直线所成的角①范围(0∘ ,90∘];②作异面直线所成的角:平移法.如图,在空间任取一点O,过O作a′ // a ,b′ // b,则a′ ,b′所成的θ角为异面直线a ,b所成的角.特别地,找异面直线所成的角时,经常把一条异面直线平移到另一条异面直线的特殊点(如线段中点,端点等)上,形成异面直线所成的角.2 线面所成的角①定义如下图,平面的一条斜线(直线l)和它在平面上的射影(AO)所成的角,叫做这条直线和这个平面所成的角.一条直线垂直平面,则θ=90°;一条直线和平面平行或在平面内,则θ=0°.②范围[0∘ ,90∘]3 二面角①定义从一条直线出发的两个半平面所组成的图形叫做二面角.在二面角的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB 构成的∠AOB叫做二面角的平面角.②范围[0° ,180°].【题型一】异面直线所成的角【典题1】如图,正方体ABCD—A1B1C1D1中,点E ,F分别是AA1,AD的中点,则CD1与EF所成角为()A.0°B.45°C.60°D.90°【解析】连结A1D、BD、A1B,∵正方体ABCD—A1B1C1D1中,点E ,F分别是AA1,AD的中点,EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD ,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选 C.【点拨】①找异面直线所成的角,主要是把两条异面直线通过平移使得它们共面,可平移一条直线也可以同时平移两条直线;②平移时常利用中位线、平行四边形的性质;【典题2】如图所示,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1 ,AD 的中点,那么异面直线OE和FD1所成角的余弦值等于.【解析】取BC的中点G.连接GC1,则GC1∥FD1,再取GC的中点H,连接HE、OH,则∵E是CC1的中点,∴GC1∥EH,∴∠OEH为异面直线所成的角.在△OEH中,OE=√3,HE=√52,OH=√52.由余弦定理,可得cos∠OEH=OE 2+EH2−OH22OE⋅EH=3⋅√2=√155.故答案为√155【点拨】本题利用平移法找到异面直线所成的角(∠OEH)后,确定含有该角的三角形(△OEH),利用解三角形的方法(正弦定理,余弦定理等)把所求角∠OEH最终求出来.【典题3】如图,已知P是平行四边形ABCD所在平面外一点,M,N分别是AB ,PC的中点.(1)求证:MN∥平面PAD;(2)若MN=BC=4 ,PA=4√3,求异面直线PA与MN所成的角的大小.【解析】(1)证明:取PD中点Q,连AQ、QN,则AM∥QN,且AM=QN,∴四边形AMNQ为平行四边形∴MN∥AQ又∵AQ在平面PAD内,MN不在平面PAD内∴MN∥面PAD;(2)解方法一∵MN∥AQ∴∠PAQ即为异面直线PA与MN所成的角∵MN=BC=4 ,PA=4√3,∴AQ=4,设PQ=x,根据余弦定理可知cos∠AQD+cos∠AQP=0即16+x 2−488x +16+x2−168x=0,解得x=4在三角形AQP中,AQ=PQ=4 ,AP=4√3∴cos∠PAQ=2×4×4√3=√32,即∠PAQ=30°∴异面直线PA与MN所成的角的大小为30°方法二过点A作AH⊥PD交PD于H,如图∵MN=BC=4,∴H是QD的中点设HD=x,则QH=x,PQ=2x,在Rt△AQD和Rt△APH利用勾股定理可得AH2=16−x2=48−9x2,解得x=2∴cos∠PAQ=PHAP =4√3=√32,即∠PAQ=30°∴异面直线PA与MN所成的角的大小为30°【点拨】本题中所成角∠PAQ找到后,无法在一个三角形里求出,此时把问题转化为平面几何问题, 再利用解三角形的方法进行求解.【题型二】线面所成的角【典题1】如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB= 2CD=2BC,EA⊥EB.(1)求证:AB⊥DE;(2)求直线EC与平面ABE所成角的正弦值.【解析】(1)证明:取AB中点O,连接EO,DO.∵EB=EA,∴EO⊥AB.∵四边形ABCD为直角梯形,AB=2CD=2BC,AB⊥BC,∴四边形OBCD为正方形,∴AB⊥OD.又∵EO∩OD=O,∴AB⊥平面EOD.∴AB⊥ED.(2)∵平面ABE⊥平面ABCD,且AB⊥BC,∴BC⊥平面ABE.则∠CEB为直线EC与平面ABE所成的角.设BC=a,则AB=2a,BE=√2a,∴CE=√3a,在直角三角形CBE中,sin∠CEB=CBCE =√3=√33.即直线EC与平面ABE所成角的正弦值为√33.【点拨】本题中的“直线EC与平面ABE所成的角”是根据线面角的定义直接在题目原图上找到的,在含所求角∠CEB的直角三角形CBE中求出角度!【典题2】如图,四边形ABCD为正方形,PA⊥平面ABCD,且AB=4,PA=3,点A在PD上的射影为G点,E点在AB边上,平面PEC⊥平面PDC.(1)求证:AG∥平面PEC;(2)求BE的长;(3)求直线AG与平面PCA所成角的余弦值.【解析】(1)证明:∵CD ⊥AD,CD ⊥PA∴CD ⊥平面PAD ∴CD ⊥AG,又PD ⊥AG∴AG ⊥平面PCD作EF ⊥PC 于F,因面PEC ⊥面PCD∴EF ⊥平面PCD∴EF ∥AG,又AG ⊄面PEC,EF ⊂面PEC,∴AG ∥平面PEC(2)由(1)知A 、E 、F 、G 四点共面,又AE ∥CD ∴AE ∥平面PCD∴AE ∥GF ∴四边形AEFG 为平行四边形,∴AE =GF∵PA =3,AD =AB =4 ∴PD =5,AG =125, 在Rt △PAGP 中,PG 2=PA 2−AG 2=8125 ∴PG =95 又GF CD =PG PD∴GF =3625 ∴AE =3625,故BE =6425(3)∵EF ∥AG,所以AG 与平面PAC 所成角等于EF 与平面PAC 所成的角,过E 作EO ⊥AC 于O 点,易知EO ⊥平面PAC,又EF ⊥PC,∴OF 是EF 在平面PAC 内的射影∴∠EFO 即为EF 与平面PAC 所成的角EO =AEsin45°=3625×√22=18√225,又EF =AG =125,∴sin∠EFO=EOEF =18√225×512=3√210故cos∠EFO=√1−sin2∠EFO=√8210所以AG与平面PAC所成角的余弦值等于√8210.【点拨】①若在题目中不能直接找到所求线面角,则可用“作高法”确定所求角,比如下图中,求直线AP与平面α所成的角,具体步骤如下:(1) 如图,过点P作平面α的高PO,垂足为O,则AO是线段AP在平面α上的投影;(2) 找到所求角θ;(3) 求解三角形APO进而求角θ.(此方法关键在于找到垂足O的位置,证明到PO⊥平面α,如本题中EO⊥平面PAC的证明)②本题若直接求“AG与平面PAC所成角”,过点G做高有些难度,则由EF∥AG,能把“AG与平面PAC所成角”转化为“EF与平面PAC所成的角”,这方法称为“间接法”吧.【典题3】如图,正四棱锥S-ABCD中,SA=AB=2,E,F,G分别为BC,SC,CD的中点.设P为线段FG上任意一点.(Ⅰ)求证:EP⊥AC;(Ⅰ)当P为线段FG的中点时,求直线BP与平面EFG所成角的余弦值.【解析】证明:(Ⅰ)连接AC交BD于O,∵S-ABCD是正四棱锥,∴ SO⊥平面ABCD,∴SO⊥AC,又∵AC⊥BD,SO∩BD=O,∴AC⊥平面SBD,∴AC⊥SD,∵F,G分别为SC,CD的中点,∴SD∥FG,∴AC⊥GF,同理AC⊥EF,∴AC⊥平面GEF,又∵PE⊂平面GEF,∴EP⊥AC.(Ⅰ) 方法一过B作BH⊥GE于点H,连接PH,∵BD⊥AC,BD∥GF,∴BH∥AC,由(Ⅰ)知:AC⊥平面GEF,∴BH⊥平面GEF,∴∠BPH就是直线BP与平面EFG所成的角,∵SA=AB=2,∴在Rt△BHP中,解得BH=√22,PH=√132,PB=√152,(易知△BHE是等腰直角三角形,又由斜边BE=1,∴BH=√22;在三角形PGH中,PG=12,GH=3√22,∠PGH=π4,用余弦定理可得PH=√132)则cos∠BPH=PHPB =√19515,故直线BP与平面EFG所成角的余弦值为√19515.方法二设过点B作平面EFG的垂直,垂直为T,则∠BPT就是直线BP与平面EFG所成的角,BT是点B到平面PGE的距离,由已知条件可求GF=EF=1,GE=√2,则∠GFE=90°,∴S△PEG=12S△GFE=12×12=14,由于P、F是中点,易得点P到平面ABCD的距离ℎ1=14SO=√24,而S△GEB=12S△GCB=12×1=12,对于三棱锥P−GEB,由V B−PEG=V P−GEB⇒13×BT×S△PEG=13×ℎ1×S△GEB⇒112BT=√224⇒BT=√22,在正四棱锥S-ABCD中可求PB=√152,(方法较多,提示过点P作平面ABCD的高PI)∴sin∠BPT=BTBP =√3015∴cos∠BPT=√1−sin∠BPT=√19515,故直线BP与平面EFG所成角的余弦值为√19515.【点拨】①本题第二问中方法一就是用“做高法”,计算量有些大;方法二是觉得垂足H的位置难确定,可设点B到平面EFG的投影为T(即垂足),再用“等积法”求高BT,则sin∠BPT=BTBP,可求所求角∠BPT,这种方法称为“等积法”;②思考:上一题试试用“等积法”!【题型三】二面角【典题1】如图,在棱长为a的正方体ABCD-A1B1C1D1中,AC 与BD相交于点O.求二面角 A1-BD-A 的正切值.【解析】在正方体中BD⊥平面A1ACC1,∴AO⊥BD,A1O⊥BD,∴二面角A1-BD-A的平面角为∠A1OA由题中的条件求出:AO=√22a ,AA1=a∴tan∠A1OA=√22a=√2,所以二面角 A1-BD-A 的正切值为√2.【点拨】本题根据二面角的定义找到二面角二面角A1-BD-A的平面角为∠A1OA,再在三角形AOA1内用解三角形的方法求解角∠A1OA.【典题2】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=√6,点E是棱PB的中点.(1)求直线AD与平面PBC的距离;(2)若AD=√3,求二面角A-EC-D的平面角的余弦值.【解析】(1)在矩形ABCD中,AD∥BC,从而AD∥平面PBC,故直线AD与平面PBC的距离为点A到平面PBC的距离,因PA⊥底面ABCD,故PA⊥AB,可得△PAB为等腰直角三角形,又点E是棱PB的中点,故AE⊥PB,∵BC⊥AB,BC⊥PA,∴BC⊥平面PAB ∴BC⊥AE,从而AE⊥平面PBC,故AE之长即为直线AD与平面PBC的距离,在Rt△PAB中,PA=AB=√6,所以AE=12PB=12√PA2+AB2=√3(2)过点D作DF⊥CE于F,过点F做FG⊥CE,交AC于G,连接DG,则∠DFG为所求的二面角的平面角.由(1)知BC⊥AE,又AD∥BC,得AD⊥AE,从而DE=√AE2+AD2=√6在Rt△CBE中,CE=√BE2+BC2=√6,由CD=√6,所以△CDE为等边三角形,故F为CE的中点,且DF=CD•sinπ3=3√22因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG∥AE.∴G点为AC的中点,FG=12AE=√32,则在Rt△ADC中,DG=12√AD2+CD2=32,所以cos∠DFG=DF 2+FG2−DG22DF⋅FG=√63【点拨】若在题目中不能直接得到所求二面角,就需要构造出二面角,比如本题求二面角A-EC-D,解题具体步骤如下(1) 过点D作DF⊥EC,过点F作FG⊥EC交AC于点D,则二面角∠DFG为所求的二面角的平面角;(2) 确定含角∠DFG的三角形DFG,利用解三角形的方法求出角∠DFG,常见的是求出三角形三边再用余弦定理.【典题3】如图,已知三棱锥P-ABC,PA⊥平面ABC,∠ACB=90°,∠BAC=60°,PA=AC,M为PB的中点.(1)求证:PC⊥BC.(2)求二面角M-AC-B的大小.【解析】(1)证明:由PA⊥平面ABC,∴PA⊥BC,又因为∠ACB=90°,即BC⊥AC.∴BC⊥面PAC,∴PC⊥BC.(2)取AB中点O,连结MO、过O作HO⊥AC于H,连结MH,∵M是PB的中点,∴MO∥PA,又∵PA⊥面ABC,∴MO⊥面ABC.∴∠MHO为二面角M-AC-B的平面角.设AC=2,则BC=2√3,MO=1,OH=√3,在Rt△MHO中,tan∠MHO=MOHO =√3=√33.二面角M-AC-B的大小为30∘.【点拨】求二面角也可以转化为线面角,比如求二面角D-AB-C,解题思路如下过点D作DE⊥AB,则二面角D-AB-C等于直线ED与平面ABC所成的角或其补角,若过点D作DF⊥平面ABC,则二面角D-AB-C是锐角,等于角∠DEF;二面角D-AB-C是钝角,等于角∠DEF的补角.1(★)在正方体ABCD﹣A′B′C′D′中,点P在线段AD′上运动,则异面直线CP与BA′所成的角θ的取值范围是()A.0 <θ <π2B.0 <θ≤π2C.0≤θ≤π3D.0 <θ≤π3【答案】D【解析】∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为π3,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0 <θ≤π3.故选D.2(★★)如图所示的几何体,是将高为2、底面半径为1的圆柱沿过旋转轴的平面切开后,将其中一半沿切面向右水平平移后形成的封闭体.O1,O2,O2′分别为AB ,BC ,DE的中点,F为弧AB的中点,G为弧BC的中点.则异面直线AF与GO2′所成的角的余弦值为.【答案】√1010【解析】如图,连接AF、FB、BG、GC,∵F为半圆弧AFB的中点,G为半圆弧BGC的中点,由圆的性质可知,G、B、F三点共线,且AF=CG,FB=GB,AB=BC,∴△AFB≌△CGB,∴AF∥CG,则∠CGO2′即为所求的角或其补角,又∵半径为1,高为2,且△AFB,△CG B都是等腰Rt△,∴CG=√2,CO2′=GO2′=√1+22=√5,∴在△CGO2′中,cos∠CGO2′=√52√22√522√2⋅√5=√1010,即异面直线AF与GO2′所成的角余弦值√1010.故答案为√1010.3 (★★)如图所示,在正方体ABCD-A1B1C1D1中,M是AB上一点,N是A1C的中点, MN⊥平面A1DC.(1)求证:AD1⊥平面A1DC;(2)求MN与平面ABCD所成的角.【答案】(1) 见解析(2)π4【解析】(1)证明:由ABCD-A1B1C1D1为正方体,得CD⊥平面ADD1A1,AD1⊂平面ADD1A1∴CD⊥AD1,又AD1⊥A1D,且A1D∩CD=D,∴AD1⊥平面A1DC;(2)解:∵MN⊥平面A1DC,又由(1)知AD1⊥平面A1DC,∴MN∥AD1,∴AD1与平面ABCD所成的角,就是MN与平面ABCD所成的角,∵D1D⊥平面ABCD,∴∠D1AD即为AD1与平面ABCD所成的角,,由正方体可知∠D1AD=π4∴MN与平面ABCD所成的角为π.44(★★★) 如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P ,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.【答案】(1) 见解析(2)√55【解析】(1)证明:因为P,Q分别为AE,AB的中点,所以PQ∥EB.又DC∥EB,因此PQ∥DC,又PQ 平面ACD,从而PQ∥平面ACD.(2)如图,连接CQ,DP,因为Q为AB的中点,且AC=BC,所以CQ⊥AB.因为DC⊥平面ABC,EB∥DC,所以EB⊥平面ABC,因此CQ⊥EB. 故CQ⊥平面ABE.EB=DC,所以四边形CQPD为平行四边形,故DP∥CQ,因此DP⊥平面ABE,由(1)有PQ∥DC,又PQ=12∠DAP为AD和平面ABE所成的角,在Rt△DP A中,AD=√5,DP=1,sin∠DAP=√5,即AD与平面ABE5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何专题1.如图,AE ⊥平面ABC ,AE BD ∥,22AB BC CA BD AE =====,F 为CD 中点.(1)求证:EF ⊥平面BCD ;(2)求二面角C DE A --的正弦值; (3)求点A 到平面CDE 的距离.【答案】(1)详见解析;(2) 6arccos ;(3)22【解析】试题分析:(Ⅰ)取BC 中点G 点,连接AG ,FG ,由F ,G 分别为DC ,BC 中点,知//FG BD 且12FG BD = ,又AE ∥BD 且12AE BD =,故AE ∥FG 且AE=FG ,由此能够证明EF ⊥平面BCD .(Ⅱ)取AB 的中点O 和DE 的中点H ,分别以OC 、OB 、OH 所在直线为x 、y 、z 轴建立如图空间直角坐标系,则()300C,,,()012D ,,,()011E -,,,()010A -,,, ()312CD =-,,,()021ED =,,.求出面CDE 的法向量()1312n =-,,,面ABDE 的法向量()2100n =,,,由此能求出二面角C DE A --的大小.(Ⅲ)由面CDE 的法向量()1312n =-,,,()001AE =,,,利用向量法能求出点A 到平面CDE 的距离.试题解析:解:⑴取BC 中点G 点,连接AG 、FG ,∵F 、G 分别为DC 、BC 中点,∴FG BD ∥且12FG BD =,又AE BD ∥且12AE BD =. ∴AE FG ∥且AE FG =,∴四边形EFGA 为平行四边形,则EF AG ∥, ∵AE ⊥平面ABC ,AE BD ∥,∴BD ⊥平面ABC . 又∵DB ⊂平面BCD ,∴平面ABC ⊥平面BCD ,∵G 为BC 中点,且AC AB =,∴AG BC ⊥,∴AG ⊥平面BCD ,∴EF ⊥平面BCD . ⑵取AB 的中点O 和DE 的中点H ,分别以OC 、OB 、OH 所在直线为x 、y 、z 轴建立如图空间直角坐标系, 则()300C,,,()012D ,,,()011E -,,,()010A -,,, ()312CD =-,,,()021ED =,,, 设面CDE 的法向量()1n x y z =,,,则1132020n CD x y z n ED y z ⎧⋅=-++=⎪⎨⋅=+=⎪⎩,取()1312n =-,,,取面ABDE 的法向量()2100n =,,, 由()()12122221236cos 43121n n n n n n ⋅<>===⋅+-+⨯,, 故二面角C DE A --的大小为6arccos 4. ⑶由⑵,面CDE 的法向量()1312n =-,,,()001AE =,,, 则点A 到平面CDE 的距离,12221||||2223()()12AE n d n ===+-+⋅ ..考点:1.用空间向量求平面间的夹角;2.直线与平面垂直的判定;3.与二面角有关的立体几何综合题;4.点、线、面间的距离计算.【方法点睛】利用空间向量法求二面角的一般方法,设二面角的平面角为θ)0(πθ≤≤,设12,n n 分别为平面,αβ的法向量,二面角l αβ--的大小为θ,向量12,n n 的夹角为ω,则有πωθ=+(图1)或 ωθ=(图2)其中||||cos 2121n n n n ⋅⋅=ω.2.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD BC ∥,90ADC ∠=,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,2PA PD AD ===,1BC =,3CD =.(1)求证:平面PQB ⊥平面PAD ;(2)若3PM MC =,求二面角M BQ C --的大小. 【答案】见解析【解析】(1Q 2PA PD AD ===,1BC =,∴PQ AD ⊥,QD BC ∥,∴四边形BCDQ 是平行四边形,∴DC QB ∥,∵底面ABCD 为直角梯形,AD BC ∥,90ADC ∠=,∴BQ AD ⊥.(4分) 又BQPQ Q =,∴AD ⊥平面PQB .∵AD ⊂平面PAD ,∴平面PQB ⊥平面PAD .(5分) (2)∵PQ AD ⊥,平面PAD ⊥底面ABCD ,平面PAD 底面ABCD AD =,∴PQ ⊥底面ABCD ,以Q 为原点,QA 所在直线为x 轴,QB 所在直线为y 轴,QP 所在直线为z 轴建立如图所示的空间直角坐标系,则(0,0,0)Q ,(0,3,0)B ,(1,3,0)C -,(0,0,3)P .(6分)设(,,)M a b c ,则34PM PC =,即333333(,,3)(3,3)(,4444a b c -=-=--,∴34a =-,334b =,34c =,∴333(,444M -,(8分)∴3333(,444QM =-,(0,3,0)QB =, 设平面MQB 的法向量(,,)x y z =r ,则3333044430QM x y z QB y ⎧⋅=-++=⎪⎨⎪⋅==⎩r r ,取1x =,得(1,0,3)=r ,易知平面BQC 的一个法向量(0,0,1)=n . M BQ C --的平面角为θ(显然θ为锐角),则3cos ||||2θ⋅==⋅r n r n ,∴6θπ=,∴二面角M BQ C --的大小为6π.(12分)3.如图,四边形ABCD 与BDEF 均为菱形,60DAB DBF ∠=∠=︒,且FA FC =.(1)求证:AC ⊥平面BDEF ; (2)求证://FC 平面EAD ;(3)求二面角A FC B --的余弦值.【答案】(1)证明见解析;(2)证明见解析;(3)155. 【解析】 试题分析:(1)由线面垂直的判定定理得到结论;(2)通过证明线线平行,得到线面平行;(3)建立空间直角坐标系O xyz -,求出平面BFC 的法向量,易知BD ⊥面ACF ,所以面ACF 的法向量为BD ,再求出它们的夹角的余弦值. 试题解析:(1)证明:设AC 与BD 相交于点O ,连接FO ,因为四边形ABCD 为菱形,所以AC BD ⊥,且O 为AC 中点,又FA PC =,所以AC FO ⊥, 因为FO BD O =,所以AC ⊥平面BDEF .(2)证明:因为四边形ABCD 与BDEF 均为菱形,所以//AD BC ,//DE BF ,所以平面//FBC 平面EAD , 又FC ⊂平面FBC ,所以//FC 平面EAD .(3)解:因为四边形BDEF 为菱形,且60DBF ∠=︒,所以△DBF 为等边三角形, 因为O 为BD 中点,所以FO BD ⊥,故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立如图所示的空间直角坐标系O xyz -.设2AB =,因为四边形ABCD 为菱形,60DAB ∠=︒,则2BD =,所以1OB =,3OA OF ==所以(0,0,0)O ,(3,0,0)A ,(0,1,0)B ,(3,0,0)C -,3)F . 所以(3,0,3)CF =,(3,1,0)CB =.设平面BFC 的法向量(,,)n x y z =,则有0,0,n CF n CB ⎧⋅=⎪⎨⋅=⎪⎩所以330,30x z x y ⎧=⎪⎨+=⎪⎩,取1x =,得(1,3,1)n =--.易知平面AFC 的法向量为(0,1,0)v =. 由二面角A FC B --是锐角,得|,||cos ,|||||u v n v u v <>=15=, 所以二面角A FC B --15.考点:1.线面垂直的判定定理;2.线面平行的判定;3.求二面角.4.如图1,在ABC ∆中,02,90,30,P AC ACB ABC =∠=∠=是AB 边的中点,现把ACP ∆沿CP 折成如图2所示的三棱锥A BCP -,使得10AB =.(1)求证:平面ACP ⊥平面BCP ; (2)求二面角B AC P --的余弦值. 【答案】(1)证明见解析;(2)313. 【解析】试题分析:(1)做辅助线可得AE CP ⊥,AO CP ⊥,且3AO =,再由余弦定理有()22201232123cos307OB =+-⨯⨯=⇒22210AO OB AB +==⇒AO OB ⊥.又,AO CP CPOB O ⊥=⇒AO ⊥平面PCB ⇒平面ACP ⊥平面CPB ;(2)因为AO ⊥平面CPB ,且OC OE ⊥,故可如图建立空间直角坐标系,求得平面ABC 的法向量为()0,1,0n =和平面ABC 的法向()3,3,1m =⇒所求角的余弦值321cos |cos ,|77m n θ=<>==. 试题解析: (1)在图1中,取CP 的中点O ,连接AO 交CB 于E ,则AE CP ⊥,在图2中,取CP 的中点O ,连接AO ,OB ,因为2AC AP CP ===,所以AO CP ⊥,且3AO =,在OCB ∆中,由余弦定理有()22201232123cos307OB =+-⨯⨯=,所以22210AO OB AB +==,所以AO OB ⊥.又,AO CP CP OB O ⊥=,所以AO ⊥平面PCB , 又AO ⊂平面ACP ,所以平面ACP ⊥平面CPB(2)因为AO ⊥平面CPB ,且OC OE ⊥,故可如图建立空间直角坐标系,则()()()()()0,0,0,1,0,0,0,0,3,1,0,0,3,0O C A P B --,()(2,3,3,1,0,3AB AC =--=-,显然平面ABC 的法向量为()0,1,0n =设平面ABC 的法向量为(),,m x y z =,则由00m AB m AC ⎧=⎨=⎩得()3,3,1m =;故所求角的余弦值3313cos |cos ,|1313m n θ=<>==. 考点:1、线面垂直;2、面面垂直;3、二面角.5.如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,PA ⊥底面ABCD ,M 是棱PD 的中点,且2,22PA AB AC BC ====.(1)求证:CD ⊥平面PAC ;(2)如果N 是棱AB 上一点,且直线CN 与平面MAB 所成角的正弦值为105,求ANNB的值. 【答案】(1)证明见解析;(2)1ANNB=. 【解析】试题分析:(1)由2,BC 22AB AC ===⇒222BC AB AC =+⇒所以AB AC ⊥⇒AC CD ⊥.又因为PA ⊥底面ABCD ⇒PA CD ⊥⇒CD ⊥平面PAC ;(2)如图以A 为原点建立空间直角坐标系,求得平面MAB 的法向量()0,1,1n =-和(),2,0NC x =-⇒10sin cos 25n NC n NC παα⎛⎫=-== ⎪⎝⎭⇒1x = ⇒1,NB 1AN ==⇒1ANNB=. 试题解析: (1)连结AC ,因为在ABC ∆中,2,BC 22AB AC ===,所以222BC AB AC =+, 所以AB AC ⊥.因为//AB CD ,所以AC CD ⊥.又因为PA ⊥底面ABCD ,所以PA CD ⊥,因为AC PA A =, 所以CD ⊥平面PAC(2)如图以A 为原点,,,AB AC AP 所在直线分别为,,x y z 轴建立空间直角坐标系,则()()()()()0,0,0,0,0,2,2,0,0,0,2,0,2,2,0A P B C D -.因为M 是棱PD 的中点,所以()1,1,1M -.所以()()1,1,1,2,0,0AM AB =-=,设(),,n x y z =为平面MAB 的法向量,所以00n AM n AB ⎧=⎨=⎩,即020x y z x -++=⎧⎨=⎩,令1y =,则011x y z =⎧⎪=⎨⎪=-⎩,所以平面MAB 的法向量()0,1,1n =-因为N 是在棱AB 上一点,所以设()(),0,0,02,,2,0N x x NC x ≤≤=-. 设直线CN 与平面MAB 所成角为α, 因为平面MAB 的法向量()0,1,1n =-, 所以10sin cos 25n NC n NCπαα⎛⎫=-==⎪⎝⎭. 解得1x =,即1,NB 1AN ==,所以1ANNB= 考点:1、线面垂直;2、线面角.6.在长方体1111ABCD A B C D -中,12AA AD ==,E 是棱CD 上的一点.(1)求证:1AD ⊥平面11A B D ; (2)求证:11B E AD ⊥;(3)若E 是棱CD 的中点,在棱1AA 上是否存在点P ,使得//DP 平面1B AE ?若存在,求出线段AP 的长;若不存在,请说明理由. 【答案】(1)证明见解析;(2)证明见解析;(3)当点P 是棱1AA 的中点时,有//DP 平面1B AE .【解析】 试题分析:(1)由11A B ⊥平面11A D DA ,可得111A B AD ⊥,在矩形11A D DA 中,可证得11AD A D ⊥,根据线面垂直的判定定理即可证得1AD ⊥平面11A B D ;(2)由(1)可知,AD ⊥平面11A B CD ,根据线面垂直的性质可得11B E AD ⊥;(3)假设点P 是棱1AA 的中点时,有//DP 平面1B AE ,在1AB 上取中点M ,连接PM ,ME ,根据线面平行的性质定理可得四边形PMED 是平行四边形,所以//DP ME . 试题解析:(1)证明:在长方体1111ABCD A B C D -中, 因为11A B ⊥平面11A D DA ,1AD ⊂平面11A D DA ,所以111A B AD ⊥. 在矩形11A D DA 中, 因为12AA AD ==, 所以11AD A D ⊥, 因为1111A DA B A =,所以1AD ⊥平面11A B D .(2)证明:因为E CD ∈,所以1B E ⊂平面11A B CD , 由(1)可知,AD ⊥平面11A B CD , 所以11B E AD ⊥.(3)解:当点P 是棱1AA 的中点时,有//DP 平面1B AE . 理由如下:在1AB 上取中点M ,连接PM ,ME , 因为P 是棱1AA 的中点,M 是1AB 的中点, 所以11//PM A B ,且1112PM A B =, 又11//DE A B ,且1112DE A B =, 所以//PM DE ,且PM DE =,所以四边形PMED 是平行四边形,所以//DP ME . 又DP ⊄平面1B AE ,ME ⊂平面1B AE ,所以//DP 平面1B AE , 此时1112AP A A ==. 考点:空间直线与平面的平行、垂直的判定与应用.7.如图,斜三棱柱111ABC A B C -的底面是直角三角形,90ACB ∠=,点1B 在底面内的射影恰好是BC 的中点,且2BC CA ==.(1)求证:平面11ACC A ⊥平面11B C CB ;(2)若二面角11B AB C --的余弦值为57-,求斜三棱柱111ABC A B C -的高.【答案】(1)证明见解析;(23 【解析】 试题分析:(1)取BC 中点M ,连接1B M ,则1B M ⊥平面ACB ,所以1B M AC ⊥,结合AC BC ⊥有AC ⊥平面11B C CB ,从而有平面11ACC A ⊥平面11B C CB ;(2)以CA 为ox 轴,CB 为oy 轴,过点C 与面ABC 垂直方向为oz 轴,建立空间直角坐标系,设1B M t =,利用二面角11B AB C --的余弦值为57-和向量法建立方程,求得3t =3试题解析:(1)取BC 中点M ,连接1B M ,则1B M ⊥平面ACB ∴1B M AC ⊥ 又AC BC ⊥,且1B M BC M AC =∴⊥平面11B C CB因为AC ⊂平面11ACC A ,所以平面11ACC A ⊥平面11B C CB ;(2)以CA 为ox 轴,CB 为oy 轴,过点C 与面ABC 垂直方向为oz 轴,建立空间直角坐标系2CA BC ==,设1B M t =,则11(200),(020),(010),(01,),C (0,1,t)A B M B t -,,,,,,, 即111(21,),(2,2,0),(0,2,0)AB t AB B C =-=-=-,设面1AB B 法向量111(,,)(1,1,)n x y z n t=∴= 面11AB C 法向量21(,,)(,0,1)2t n x y z n =∴=125cos ,37n n t <>=-∴=即斜三棱柱的高为3.考点:空间向量与立体几何.8.如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直,,,22,AB CD AB BC AB CD BC EA EB ⊥==⊥.(1)求直线EC 与平面ABE 所成角的正弦值;(2)线段EA 上是否存在点F ,使EC 平面FBD ?若存在,求出EFEA;若不存在,说明理由. 【答案】(1)33;(2)点F 满足31=EA EF 时,有FBD EC 平面//. 【解析】试题分析:(1)先证明OE OD OB ,,两两垂直,通过建立适当的坐标系,向量法求解;(2)通过线EC 的方向向量和平面BDF 的法向量垂直证明FBD EC 平面//.试题解析:)(1取AB 的中点O ,连DO EO ,,则OB DO ⊥,因为平面平面ABCD ABE ⊥,且AB EO ⊥,平面AB 平面ABCD ABE = ,所以平面ABCD EO ⊥,所以OD EO ⊥,由OE OD OB ,,两两垂直,建立如图所示的空间直角坐标系xyz O -.因为三角形EAB 为等腰直角三角形,所以OE OD OB OA ===,设1=OB ,所以)1,0,0(),0,1,0(),0,1,1(),0,0,1(),0,0,1(),0,0,0(E D C B A O -,所以)1,1,1(-EC ,平面EAB 的一个法向量为)0,1,0(=OD .设直线EC 与平面EAB 所成角为θ,所以33|||||,cos |sin ===OD EC OD EC OD EC θ.即直线EC 与平面EAB 所成角的正弦值为33. )(2存在点F ,且31=EA EF 时, 有FBD EC 平面//.证明如下:假设AE 上存在点F ,使得EC 平面BDF ,连接AC 交BD 于点M ,连接MF ,则MF EC //,所以MA CM EA EF =, 由CD AB //,得21==AB CD MA CM ,其他证明方法:由),31,0,31(31--==EA EF ),32,0,31(-F ,所以),32,0,34(-=FB ,设平面FBD 的一个法向量为),,(c b a v =,则有⎪⎩⎪⎨⎧=⋅=⋅00FB v BD v ,所以⎪⎩⎪⎨⎧=-=+032340a -c a b ,取1=a 得,)2,1,1(=v ,因为0211)2,1,1()1,1,1(=-+=⋅-=⋅v EC ,且FBD EC 平面⊄,所以FBD EC 平面//.即点F 满足31=EA EF 时,有FBD EC 平面//.考点:直线与平面平行,直线与平面所成的角. 9.如图,在四棱锥ABCD P -中,底面ABCD 为矩形,平面⊥PAB 平面ABCD ,3==AP AB ,2==PB AD ,E 为线段AB 上一点,且2:7:=EB AE ,点M G F 、、分别为线段BC PD PA 、、的中点. (1)求证:⊥PE 平面ABCD ;(2)若平面EFG 与直线CD 交于点N ,求二面角A MN P --的余弦值.【答案】(1)证明见解析;(2)35353. 【解析】试题分析:(1)先在APB ∆中用余弦定理求出PE 长,再用勾股定理证明AB PE ⊥,由面面垂直的性质定理可得线面垂直;(2)建立空间直角坐标系,分别求出两个平面的法向量,二面角的大小即为两个法向量所成的角.试题解析:(1)证明:在等腰APB ∆中,3121cos ==∠AB PBABP ,则由余弦定理可得9323123222)32(222=⨯⨯⨯-+=PE ,∴324=PE .∵2224PB BE PE ==+,∴AB PE ⊥.∵平面⊥PAB 平面ABCD ,平面 PAB 平面AB ABCD =,∴⊥PE 平面ABCD . (2)解:由已知可得AD EN //.以E 为坐标原点,EN EB EP 、、分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则)0,0,324(P ,)1,32,0(M ,)2,0,0(N ,从而)1,32,324(-=PM ,)1,32,0(-=. 设平面PMN 的法向量为),,(z y x =,则0=⋅PM ,0=⋅, 即032324=++-z y x ,032=+-z y ,令3=y ,可得平面PMN 的一个法向量为)2,3,23(=n . 由(1)知平面AMN 的一个法向量为)0,0,324(=,353532353244,cos =⨯>=<,由图可知二面角A MN P --的平面角为锐角,故二面角A MN P --的余弦值为35353. 考点:1.线面垂直;2.空间向量的应用.10.在四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,且1111,60AB A A A AB A AD =∠=∠=. (1) 求证: 平面1A BD ⊥平面 1A AC ;(2)若122BD A D ==,求平面1ABD 与平面1B BD 所成角的大小.【答案】(1)详见解析(2)45【解析】试题分析:(1)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直出发给予证明,而线面垂直的证明,往往利用线面垂直判定定理,即从线线垂直出发给予证明,其中线线垂直的寻找与论证,往往需要利用平几知识,如本题利用等腰三角形性质及菱形性质可得线线垂直(2)求二面角,一般可利用空间向量,即先根据条件建立恰当的空间直角坐标系,设立各点坐标,利用方程组解出各面的法向量,根据向量数量积求两法向量夹角,最后根据二面角与法向量夹角之间关系得结果试题解析:(1)因为111,60AA AB AD A AB A AD ==∠=∠=,所以1A AB ∆和1A AD ∆均为正三角形,于是 11A B A D =,设AC 与BD 的交点为O ,则1A O BD ⊥,又ABCD 是菱形,所以AC BD ⊥,而1AO AC O =,所以 BD ⊥ 平面1A AC ,而BD ⊂平面1A BD ,故平面1A BD ⊥平面1A AC .(2)由11A B A D =及12BD D ==知11A B A D ⊥,又由11,,A D AD A B AB BD BD ===得1A BD ABD ∆≅∆,故90BAD ∠=,于是11122AO A O BD AA ===,从而1A O AO ⊥,结合1A O BD ⊥得1A O ⊥底面ABCD .如图,建立空间直角坐标系,则()()()()()()1111,0,0,0,1,0,0,1,0,0,0,1,1,0,1,0,2,0A B D A BB AA DB -==-=,设平面1B BD 的一个法向量为(),,n x y z =,由100n BD n BB ⎧=⎪⎨=⎪⎩得00y x z =⎧⎨-+=⎩,令1x =,得()1,0,1n =,设1A BD 平面的一个法向量为()2,0,0CA =,设平面1A BD 设平与平面1B BD 所成角为θ,则2cos 2n CA n CA θ==,故45θ=.考点:面面垂直判定定理,线面垂直判定定理,利用空间向量求二面角【思路点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.。

相关文档
最新文档