基于单片机的水温自动控制系统设计

合集下载

基于at89c51单片机的水温控制系统的设计文献综述

基于at89c51单片机的水温控制系统的设计文献综述

基于at89c51单片机的水温控制系统的设计文献综述基于AT89C51单片机的水温控制系统的设计文献综述一、引言水温控制系统在工业、家电、农业等领域有着广泛的应用。

随着科技的发展,单片机作为微控制器在控制系统中的应用越来越广泛。

AT89C51单片机作为一种常用的单片机,具有性能稳定、价格低廉等优点,被广泛应用于水温控制系统的设计中。

本文将对基于AT89C51单片机的水温控制系统的设计进行文献综述。

二、AT89C51单片机简介AT89C51是一种常用的8位单片机,由美国ATMEL公司生产。

它具有4K字节的Flash 存储器、128字节的RAM、32位I/O端口、两个16位定时器/计数器、一个5向量两级中断结构、一个全双工串行通信口等功能。

AT89C51单片机适用于各种控制领域,如温度、湿度、压力等。

三、水温控制系统设计水温控制系统主要由温度传感器、单片机控制器、执行器等组成。

传感器负责采集水温信息,并将信息传递给单片机控制器。

单片机控制器根据设定的温度值与实际水温的差值,通过执行器调节加热元件的工作状态,从而实现水温的自动控制。

在基于AT89C51单片机的水温控制系统中,常用的温度传感器有热敏电阻、热电偶等。

执行器则可以选择继电器、可控硅等设备,用于控制加热元件的工作状态。

为了实现精确的温度控制,可以采用模糊控制、PID控制等控制算法。

四、AT89C51单片机在水温控制系统中的应用AT89C51单片机在水温控制系统中主要负责温度信号的采集、处理和控制输出。

通过编程实现温度信号的采集和转换,并根据设定值与实际水温的差值,通过执行器调节加热元件的工作状态,从而实现水温的自动控制。

此外,AT89C51单片机还可以实现报警、显示等功能,提高系统的智能化程度。

五、总结与展望基于AT89C51单片机的水温控制系统具有结构简单、成本低廉、易于实现等优点,被广泛应用于各个领域的温度控制中。

随着科技的发展,人们对水温控制系统的精度和智能化程度的要求越来越高。

基于单片机的水温水位控制系统设计

基于单片机的水温水位控制系统设计

四、结论
基于单片机的智能水箱水位和水温控制系统具有结构简单、成本低、可靠性 高等优点。通过实时监测和控制水箱的水位和水温,可以满足不同用户的需求。 此外,通过优化系统的硬件设计和软件设计,可以进一步提高系统的性能和可靠 性。这种系统不仅可以应用于家庭用水领域,也可以应用于工业生产中的液体控 制,具有广泛的应用前景。
1、抗干扰设计
由于环境因素和设备本身的影响,系统可能会受到干扰。因此,需要在硬件 设计和软件设计中加入抗干扰措施,如滤波电路、软件去抖动等。
2、节能设计
为了降低系统的功耗,可以在软件设计中加入休眠模式和唤醒模式。当系统 不需要工作时,可以进入休眠模式,降低功耗。当有数据需要处理时,系统被唤 醒,进入工作状态。
2、软件设计
系统的软件设计主要实现以下功能:数据的采集、处理、显示和控制。首先, 单片机通过水位传感器和水温传感器采集当前的水位和水温数据。然后,单片机 对采集到的数据进行处理,判断水位和水温是否正常。如果异常,则启动相应的 执行机构进行调节。最后,单片机将处理后的数据通过显示模块进行显示。
三、系统优化
六、结论
本次演示设计了一种基于单片机的水温水位控制系统,实现了温度和水位的 自动检测、调节和控制。该系统具有成本低、可靠性高、易于实现等优点,同时 支持远程控制和节能模式等功能。在家庭、工业和科学研究中具有广泛的应用前 景。
参考自动化技术的普及,智能化设备在日常生活和工业生产中 的应用越来越广泛。其中,基于单片机的智能水箱水位和水温控制系统具有重要 应用价值。这种系统可以实现对水箱水位和水温的实时监测和控制,以适应不同 的应用需求。
系统软件采用C语言编写,主要包括以下几个部分:数据采集、数据处理、 控制输出和远程通信。
1、数据采集:通过I/O端口读取DS18B20和超声波水位传感器的数据。

基于单片机的水温控制系统设计

基于单片机的水温控制系统设计

基于单片机的水温控制系统设计引言在能源日益紧张的今天,电热水器,饮水机,电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费浪费。

利用 AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成,软件选用汇编语言编程。

单片机可将温度传感器检测到的水温模拟量转换成数字量,显示于LED 显示器上。

该系统灵活性强,易于操作,可靠性高,将会有更广阔的开发前景。

本设计任务和主要内容设计并制作一个水温自动控制系统,控制对象为1升净水,容器为搪瓷器皿。

水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。

本设计主要内容如下:(1)温度设定范围为40~90℃,最小区分度为1℃,标定温度≤1℃。

(2)环境温度降低时温度控制的静态误差≤1℃。

(3)用十进制数码管显示水的实际温度。

(4)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。

(5)温度控制的静态误差≤0.2℃。

系统主要硬件电路设计单片机控制系统原理框图温度采样电路选用传感器AD590。

其测量范围在-50℃--+150℃,满刻度范围误差为±0.3℃,当电源电压在5—10V之间,稳定度为1﹪时,误差只有±0.01℃。

此器件具有体积小、质量轻、线形度好、性能稳定等优点。

系统的信号采集电路主要由温度传感器(AD590)、基准电压(7812)及A/D转换电路(ADC0804)三部分组成。

信号采集电路温度控制电路此部分电路主要由光电耦合器MOC3041和双向可控硅BTA12组成。

MOC3041光电耦合器的耐压值为400v,它的输出级由过零触发的双向可控硅构成,它控制着主电路双向可控硅的导通和关闭。

100Ω电阻与0.01uF 电容组成双向可控硅保护电路。

部分控制电路系统主程序设计主程序流程图。

基于单片机的水温控制器设计

基于单片机的水温控制器设计

基于单片机的水温控制器设计引言水温控制在很多领域中都具有重要的应用价值,例如温室、鱼缸、热水器等。

基于单片机的水温控制器能够自动调控水温,提高水温的稳定性和准确性。

本文将介绍如何设计一个基于单片机的水温控制器,以实现对水温的精确控制。

一、硬件设计1.单片机选择选择一个合适的单片机对于设计一个稳定可靠的水温控制器至关重要。

常用的单片机有STC89C52、AT89C52等。

在选择时应考虑单片机的性能、功耗、接口等因素。

2.温度传感器温度传感器用于检测水温,常用的有NTC热敏电阻和DS18B20数字温度传感器。

NTC热敏电阻价格便宜,但精度较低,DS18B20精度高,但价格相对较贵。

3.加热装置加热装置用于根据温度控制器的输出信号进行加热或制冷。

可以选择加热丝、加热管或半导体制冷片等。

4.驱动电路驱动电路用于将单片机的输出信号转换为合适的电流或电压,驱动加热装置。

可以选择晶体管或继电器等。

5.显示模块可以选择液晶显示屏或LED数码管等显示水温的数值。

二、软件设计1.初始化设置首先,对单片机进行初始化设置,包括引脚配置、定时器设置等。

然后,设置温度传感器和加热装置的引脚。

最后,设置温度范围,以便根据实际需求进行调整。

2.温度检测使用温度传感器检测水温,并将读取到的温度值转换为数字形式,以便进行比较和控制。

可以使用ADC(模拟-数字转换)模块转换模拟信号为数字信号。

3.控制算法本设计中可以采用PID控制算法进行水温控制。

PID(Proportional-Integral-Derivative)控制算法根据设定值和反馈值之间的差异来计算控制信号。

可以根据需求进行参数调整,以获得更好的控制效果。

4.显示和报警使用显示模块显示当前水温的数值,并在温度超出设定值时触发报警功能。

报警可以采用声音、灯光等形式。

5.控制输出根据PID算法计算出的控制信号,控制驱动电路,驱动加热装置或制冷装置,以实现水温的调节。

总结基于单片机的水温控制器能够实现对水温的精确控制。

基于单片机的水温控制系统设计毕设答辩

基于单片机的水温控制系统设计毕设答辩

2 研 究 内 容 RESEARCH CONTENTS
该系统主要包括传感器温度采集、A/D模数转换、按钮操 作、单片机控制、数码管数字显示等。采用PID算法实现温度 控制功能,通过串行通信完成两片单片机信息的交互,实现 温度的设定、控制和显示。本设计还可以通过串口与上位机 连接,实现计算机控制。为了实现高精度的水温控制,这种 单片机系统采用PID算法控制和PWM脉宽调制相结合的技术, 通过控制双向晶闸管改变电炉和电源的通断来改变水温的加 热时间。该系统由两个模块组成:键盘显示和温度控制。通过 模块之间的通信,完成温度设定、实时温度显示、水温波动 等功能。
基于单片机的水温控制系统设计
答 辩 人: 学 号:C来自NTENTS1 研究意义 2 研究内容 3 调试分析 4 课题总结
1 研 究 意 义 RESEARCH SIGNIFICANCE
现代的发展,就控制器本身而言,控制电路可以采用应 急经典控制理论和常规模拟控制系统,实现水温的自动统一。 然而,随着计算机和超大规模集成电路的迅速发展,以现代 控制理论和计算机为基础,由数字控制、显示、A/D和D/A转 换、后配额执行机构和控制阀组成的计算机控制系统在过程 控制中得到了越来越广泛的应用。此外,单片机的使用也使 水温的智能控制成为可能,并提供完善的人机交互界面和多 机通信接口,这些在常规的数字逻辑道路上往往难以或不可 能实现。
硬件电路的调试要依次调试单片机的基本系统、前向通 道和后向通道。调试时,可利用仿真器读写各接口地址,静 态测试电路各部分连接是否正确;对于动态过程,可以编写 一个简短的调试程序来配合硬件电路的调试。
3 调 试 分 析 DEBUG ANALYSIS
软件的调试需要在仿真器提供的单步、断点、跟踪等功 能的支持下对各子程序分别进行调试.将调试完的工程序连 接起来再调试.逐步扩大调试范围。 调试的过程一般是: A)测试程序输入条件或设定程序输入条件; B)以单步、断点或跟踪方式运行程序; C)检查程序运行结果; D)运行结果不正确时查找原因。修改程序,重复上述过程。

基于单片机的温度控制系统设计与应用

基于单片机的温度控制系统设计与应用

基于单片机的温度控制系统设计与应用温度控制系统是一种常见的自动控制系统,用于维持设定温度范围内的温度稳定。

本文将介绍基于单片机的温度控制系统的设计与应用。

一、系统设计1.功能需求:(1)温度检测:获取环境温度数据。

(2)温度显示:将检测到的温度数据以数字方式显示。

(3)温度控制:通过控制输出信号,自动调节温度以维持设定温度范围内的稳定温度。

2.硬件设计:(1)单片机:选择适合的单片机,如51系列、AVR系列等,具有较强的计算和控制能力。

(2)温度传感器:选择适当的温度传感器,如DS18B20、LM35等,能够准确检测环境温度。

(3)显示屏:选择适当的数字显示屏,如LCD显示屏、数码管等,用于显示温度数据。

(4)执行机构:根据具体需求选择合适的执行机构,如继电器、风扇等,用于控制温度。

3.软件设计:(1)温度检测:通过单片机采集温度传感器的模拟信号,并通过数字转换获得温度数据。

(2)温度显示:将获取到的温度数据进行处理,通过数字显示屏显示。

(3)温度控制:通过控制执行机构,如继电器等,根据温度数据的变化进行调节,将温度维持在设定范围内。

二、系统应用1.家居温控系统:家庭中的空调、暖气等设备可以通过单片机温度控制系统实现智能控制。

通过温度传感器检测室内温度,并将温度数据显示在数字显示屏上。

通过设定温度阈值,当室内温度超出设定范围时,系统控制空调或暖气进行启停,从而实现室内温度的调节和稳定。

这不仅提高了居住舒适度,还能节约能源。

2.工业过程控制:在工业生产过程中,一些特定的应用需要严格控制温度,以确保产品质量或生产过程的稳定。

通过单片机温度控制系统,可以实时检测并控制生产环境的温度。

当温度超过或低于设定的阈值时,系统可以自动调整控制设备,如加热器、冷却器等,以实现温度的控制和稳定。

3.温室农业:温室农业需要确定性的环境温度来保证作物的生长。

通过单片机温度控制系统,可以监测温室内的温度,并根据预设的温度范围,自动启停加热或降温设备,以维持温室内的稳定温度。

基于单片机的水温恒温模糊控制系统设计

基于单片机的水温恒温模糊控制系统设计

基于单片机的水温恒温模糊控制系统设计水温恒温在很多工业领域中都是非常重要的,比如在制造过程中需要严格控制水温以确保产品质量,或者在实验室中需要保持水温恒定以保证实验结果的准确性。

为了实现水温恒温,可以采用单片机控制系统进行模糊控制,以更好地调节水温并确保其恒定性。

一、系统设计1.系统组成该水温恒温模糊控制系统包括以下几个部分:1)传感器:用于实时监测水温,通常采用温度传感器来获取水温数据。

2)单片机:作为系统的核心控制部分,负责根据传感器采集的水温数据进行控制算法处理,并输出控制信号给执行器。

3)执行器:负责控制水温调节设备,比如加热器或制冷器,以使水温保持在设定的恒温值附近。

4)人机界面:用于设定水温的目标值、显示当前水温以及系统的工作状态等信息,通常采用液晶显示屏或LED灯来实现。

2.系统工作原理系统工作流程如下:1)单片机通过传感器获取实时水温数据,并与设定的恒温值进行比较。

2)根据实时水温和设定值之间的差异,单片机通过模糊控制算法计算出调节水温的控制信号。

3)控制信号送往执行器,执行器根据信号控制加热器或制冷器对水温进行调节。

4)单片机不断循环执行上述步骤,使水温保持在设定的恒温值附近。

二、模糊控制算法设计模糊控制算法是一种基于模糊逻辑进行推理和决策的控制方法,适用于非线性、不确定性系统的控制。

在水温恒温控制系统中,可以设计如下的模糊控制算法:1.模糊化:将实时水温和设定水温映射到模糊集合,通常包括“冷”、“适中”和“热”等。

2.模糊规则库:根据实际情况,设定一系列的模糊规则,描述实时水温和设定水温之间的关系。

3.模糊推理:通过模糊规则库,进行模糊推理,得到相应的控制信号。

4.解模糊化:将模糊推理的结果映射到实际的控制信号范围内,作为执行器的输入。

通过模糊控制算法设计,可以更加灵活地调节水温,适应各种复杂环境下的恒温控制需求。

三、系统实现在实际系统的实现中,首先需要选择合适的传感器,并设计好传感器的接口电路来获取水温数据。

基于单片机的水温控制系统课程设计

基于单片机的水温控制系统课程设计

基于单片机的水温控制系统第1节引言水温控制在工业及日常生活中应用广泛,分类较多,不同水温控制系统的控制方法也不尽相同,其中以PID控制法最为常见。

单片机控制部分采用AT89C51单片机为核心,采用软件编程,实现用PID算法来控制PWM波的产生,进而控制电炉的加热来实现温度控制。

然而,单纯的PID算法无法适应不同的温度环境,在某个特定场合运行性能非常良好的温度控制器,到了新环境往往无法很好胜任,甚至使系统变得不稳定,需要重新改变 PID 调节参数值以取得佳性能。

本文首先用PID算法来控制PWM波的产生,进而控制电炉的加热来实现温度控制。

然后在模型参考自适应算法 MRAC基础上,用单片机实现了自适应控制,弥补了传统 PID控制结构在特定场合下性能下降的不足,设计了一套实用的温度测控系统,使它在不同时间常数下均可以达到技术指标。

此外还有效减少了输出继电器的开关次数,适用于环境参数经常变化的小型水温控制系统。

1.1水温控制系统概述温度控制是无论是在工业生产过程中,还是在日常生活中都起着非常重要的作用,过低的温度或过高的温度都会使水资源失去应有的作用,从而造成水资源的巨大浪费。

特别是在当前全球水资源极度缺乏的情况下,我们更应该掌握好对水温的控制,把身边的水资源好好地利用起来。

在现代冶金、石油、化工及电力生产过程中,温度是极为重要而又普遍的热工参数之一。

在环境恶劣或温度较高等场合下,为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度、节约能源,要求对加热炉炉温进行测、显示、控制,使之达到工艺标准,以单片机为核心设计的炉温控制系统,可以同时采集多个数据,并将数据通过通讯口送至上位机进行显示和控制。

那么无论是哪种控制,我们都希望水温控制系统能够有很高的精确度(起码是在满足我们要求的范围内),帮助我们实现我们想要的控制,解决身边的问题。

在计算机没有发明之前,这些控制都是我们难以想象的。

而当今,随着电子行业的迅猛发展,计算机技术和传感器技术的不断改进,而且计算机和传感器的价格也日益降低,可靠性逐步提高,用信息技术来实现水温控制并提高控制的精确度不仅是可以达到的而且是容易实现的。

基于单片机的温控系统设计与实现

基于单片机的温控系统设计与实现

基于单片机的温控系统设计与实现温控系统是一种可以根据环境温度自动调节设备工作状态的系统。

基于单片机的温控系统是一种利用单片机计算能力、输入输出功能及控制能力,通过传感器获取环境温度信息并实现温度控制的系统。

下面将对基于单片机的温控系统的设计与实现进行详细介绍。

一、系统设计和功能需求:基于单片机的温控系统主要由以下组成部分构成:1.温度传感器:用于获取当前环境温度值。

2.控制器:使用单片机作为中央控制单元,负责接收温度传感器的数据并进行温度控制算法的计算。

3.执行器:负责根据控制器的指令控制设备工作状态,如电风扇、加热器等。

4.显示器:用于显示当前环境温度和控制状态等信息。

系统的功能需求主要包括:1.温度监测:通过温度传感器实时获取环境温度数据。

2.温度控制算法:根据温度数据进行算法计算,判断是否需要调节设备工作状态。

3.设备控制:根据控制算法的结果控制设备的工作状态,如打开或关闭电风扇、加热器等。

4.信息显示:将当前环境温度及控制状态等信息显示在显示器上。

二、系统实现的具体步骤:1.硬件设计:(1)选择适合的单片机:根据系统功能需求选择合适的单片机,通常选择具有较多输入输出引脚、计算能力较强的单片机。

(2)温度传感器的选择:选择合适的温度传感器,常见的有热敏电阻、热电偶、数字温度传感器等。

(3)执行器的选择:根据实际需求选择合适的执行器,如电风扇、加热器等。

(4)显示器的选择:选择适合的显示器以显示当前温度和控制状态等信息,如液晶显示屏等。

2.软件设计:(1)编写驱动程序:编写单片机与传感器、执行器、显示器等硬件的驱动程序,完成数据的读取和输出功能。

(2)设计温度控制算法:根据监测到的温度数据编写温度控制算法,根据不同的温度范围判断是否需要调节设备工作状态。

(3)控制设备的逻辑设计:根据温度控制算法的结果设计控制设备的逻辑,确定何时打开或关闭设备。

(4)设计用户界面:设计用户界面以显示当前温度和控制状态等信息,提示用户工作状态。

基于单片机的智能鱼缸温控系统设计

基于单片机的智能鱼缸温控系统设计

基于单片机的智能鱼缸温控系统设计智能鱼缸温控系统是一种基于单片机技术的创新设计,旨在为鱼缸提供稳定的温度环境,以促进鱼类的生长和健康。

本文将详细介绍智能鱼缸温控系统的设计原理、硬件组成和软件实现,并对其在实际应用中的效果进行评估和分析。

一、引言随着人们对休闲娱乐生活的需求不断增加,养殖观赏鱼成为了一种越来越流行的养殖方式。

然而,不同种类的观赏鱼对水温要求不同,过高或过低的水温都会对其健康产生负面影响。

因此,设计一个能够自动调节水温的智能鱼缸温控系统势在必行。

二、设计原理智能鱼缸温控系统主要由传感器、单片机、执行器以及人机交互界面组成。

传感器用于实时监测水温,并将监测结果传输给单片机进行处理;单片机根据预设设定值与实际监测值之间的差异来判断是否需要调节水温;执行器负责控制加热器或制冷器的开关状态,以实现水温的调节;人机交互界面则提供了对系统参数进行设置和监测的功能。

三、硬件组成智能鱼缸温控系统的硬件组成主要包括传感器、单片机、执行器和人机交互界面。

传感器:系统采用高精度的水温传感器,能够准确测量鱼缸内水温,并将测量结果以数字信号的形式传输给单片机。

单片机:系统采用高性能的单片机作为控制核心,具有强大的处理能力和丰富的外设接口。

通过与传感器和执行器进行连接,实现对水温进行监测和调节。

执行器:系统根据单片机处理结果控制加热器或制冷器。

加热器通过加热元件将电能转化为热能,提高鱼缸内水温;制冷器则通过压缩循环原理将热量从鱼缸中排出,降低水温。

人机交互界面:为了方便用户对系统参数进行设置和监测,智能鱼缸温控系统还配备了一个直观友好的人机交互界面。

用户可以通过触摸屏或按钮等方式与系统进行交互,实现对温度设定值、工作模式等参数进行调整。

四、软件实现智能鱼缸温控系统的软件实现主要包括传感器数据采集、数据处理与控制策略、执行器控制以及人机交互界面。

传感器数据采集:单片机通过与传感器进行通信,实时获取鱼缸内的水温数据。

基于单片机的温度控制系统课设报告

基于单片机的温度控制系统课设报告

基于单片机的温度控制系统摘要:该实验设计基于飞思卡尔MC9S12DG128开发板平台,根据实验任务要求,完成了水温自动控制系统的设计,该系统的温度给定值可由人工通过键盘进行设定,测量温度经过A/D转换由数码管显示,通过PID控制算法对温度进行调节,使温度输出值在给定值上下波动,控制该系统的静态误差为1℃,用LED灯模拟加热强度,并用串口将输出的水温随时间的变化数值发到PC机上。

关键字:飞思卡尔单片机水温控制MC9S12DG1281、设计题目与设计任务σ≤;3.温度误要求:1温度连续可调范围是30-150摄氏度;2 超调量20%<±;4尝试使用能预估大滞后的方法,如史密斯预估,或大林算法;也可差0.5用PID及改进算法。

内容:1.根据题目的技术要求,画出系统组成的原理框图;2. 给出系统硬件电路图;3.确定温度控制方案;4. 给出控制方法及控制程序;5.整理设计数据资料,课程设计总结,撰写设计计算说明书。

2、前言:随着电子技术和计算机的迅速发展,计算机测量控制技术拥有操作简单、控制灵活、使用便捷以及性价比较高的优点,从而得到了广泛的应用。

单片机是一种集CPU、RAM、ROM、I/O接口和中断系统等部分于一体的器件,只需要外加电源和晶振就可以实现对数字信息的处理和控制,因此,单片机广泛应用于现代工业控制中。

利用单片机对温度测量控制会大大提高系统的可靠性和准确性。

该设计实验是在实验室完成,实验任务是设计制作一个水温自动控制系统,控制对象为1L净水,容器为搪瓷器皿。

水温由人工通过4*4的键盘设定,并能在环境温度改变时实现对水温的自动控制,采用PWM技术控制电阻丝的加热,加热强度由8个LED小灯模拟,以保持设定的温度基本不变,测量温度经过A/D 转换在4位数码管上显示(保留一位小数),并将温度每秒钟向计算机发送一次。

一、系统设计的功能该系统的闭环控制系统框图如图所示。

图水温控制系统结构框图单片机对温度的测量控制是基于传感器、A/D转换器以及扩展接口和执行机构来进行的。

基于单片机的水温控制系统设计答辩ppt

基于单片机的水温控制系统设计答辩ppt

姓 名:
导师:
专 业 :电气工程及其自动化
CONTENTS
01 选题背景与意义
background and significance of Topic selection
02 研究过程及方法
Research process and methods
03 研究成果
Research results
04 论文归纳与小结
Summary of Papers and Acknowledgements
论文概述
本文主要是设计一种水龙头水温控制系统,该 系统主要由水温设置模块、水阀控制模块、温度采 集模块等组成,利用温度设置模块输入温度,用单 片机对温度进行数据采集与设定的温度数据进行对 比判断,再用四相步进电机实现对冷、热水进水量 的控制,重复进行以上步骤,使温度不断逼近输入 温度。
3. 温控步进电机: 根据温度差值的正负来 控制步进电机的转向, 从而控制冷水和热水的 流量。

4. 液晶显示:将部分 数据显示在LCD屏上, 包括温度数据和输入的 温度设定值。
5. 键盘输入:通过 键盘输入模块获取用 户输入的温度设定值。
总结来说,该水龙头水温控制系统的硬件部分包括温度 采集模块、键盘输入模块、水阀控制模块和液晶显示模块, 核心为单片机芯片。软件部分包括主模块程序、温度数据采 集、温控步进电机、液晶显示和键盘输入等模块。然而,该 系统目前还存在一些问题,需要进一步完善和调试。
01
background and significance of Topic selection
水龙头在人们生活中起到调节水流大小的作用,但现代人们对水龙 头的需求已不仅限于调节水流,更多关注外观、耐用性和水温控制等方 面。随着科技的发展,信息技术、计算机技术和电子技术的应用也进一 步改善了水温控制的需求。水温的控制在工业、农业生产中具有重要作 用,过高或过低的水温会造成资源浪费和损失。此外,水温的变化也会 影响人们的心情和生活体验。因此,将水龙头与科技技术相结合,实现 水温控制系统,能够提高生活质量和有效利用水资源。在设计水温控制 系统时,安全性是重要考虑因素之一。温度传感器需要与水接触,因此 必须具备防水功能,以确保水温数据的准确性和使用安全。温度控制和 流量控制是构成水温控制系统的关键,温度控制调节水温,流量控制控 制冷热水的进水量,以实现最终从水龙头流出的水温符合需求。

基于单片机的温度控制系统设计

基于单片机的温度控制系统设计

基于51单片机的水温自动控制系统沈统摘要:在现代化的工业生产中,温度是常用的测量机被控参数。

本水温控制系统采用AT89C51为核心控制器件,实现对水温在30℃到96℃的自动控制。

由精密摄氏温度传感器LM35D构成前置信号采集和调理电路,过零检测双向可控硅输出光电耦合器MOC3041构成后向控制电路,由74LS164和LED数码管构成两位静态显示用于显示实时温度值。

关键词:89C51单片机;LM35D温度传感器;ADC0809;MOC3041光电藕耦合器;水温自动控制0 引言在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。

而智能化的控制系统成为一种发展的趋势。

本文所阐述的就是一种基于89C51单片机的温度控制系统。

本温控系统可应用于温度范围30℃到96℃。

1 设计任务、要求和技术指标1.1任务设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。

1.2要求(1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。

(2)当液位低于某一值时,停止加热。

(3)用AD转换器把采集到的模拟温度值送入单片机。

(4)无竞争-冒险,无抖动。

1.3技术指标(1)温度显示误差不超过1℃。

(2)温度显示范围为0℃—99℃。

(3)程序部分用PID算法实现温度自动控制。

(4)检测信号为电压信号。

2 方案分析与论证2.1主控系统分析与论证根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。

AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。

其引脚图如图1所示。

2.2显示系统分析与论证显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。

在显示驱动电路中拟订了两种设计方案:方案一:采用静态显示的方案采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。

基于51单片机温度控制系统设计毕业答辩ppt课件

基于51单片机温度控制系统设计毕业答辩ppt课件
系统的硬件设计
系统的结构框图:
AD590 温度采集
ADC0809 A/D转换
控制电路
AT89C51
光电耦合 器可控硅SC源自 电热丝显示电路温度控制系统设计
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
系统的硬件设计
系统工作原理:
在温控部分,选用AT89C51单片机为中央处 理器,通过AD590温度传感器进行温度采集, 将采集到的温度信号通过A/D转换再传输给单 片机,再由单片机控制显示器和执行单元。
执行单元是由单片机发出一个触发信号,
通过光电耦合器和双向可控硅来控制电热 丝的加热与停止。
温度控制系统设计
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
A/D转换器 (ADC0809)
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
系统控制方案的选择: 这个方案是采用AT89C51单片机系统来实现的,
单片机软件编程灵活、自由度大,可用软件编程实现 各种控制算法和逻辑控制。单片机系统可以用数码管 来显示水温的实际值,能用键盘输入设定值。本方案 选用的AT89C51芯片,不需要外扩展存储器,使系统 整体结构更为简单
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

基于单片机的热水器智能控制系统设计

基于单片机的热水器智能控制系统设计

参考内容
标题:共享经济视域下社区团购 运作模式研究以兴盛为例
随着共享经济的兴起,社区团购作为一种新型的商业模式,逐渐成为了人们 的焦点。兴盛作为社区团购的代表企业之一,其成功的运作模式为业界所瞩目。 本次演示将从共享经济的角度出发,以兴盛为例,探讨社区团购的运作模式。
一、共享经济与社区团购
共享经济是一种新型的商业模式,它通过互联网平台将闲置的物品、资源进 行优化配置,从而提高资源的使用效率。社区团购则是在共享经济的背景下应运 而生的一种新型的电商模式,它将社交和团购结合起来,通过群等社交工具聚集 用户,以低价购买高品质商品。
总之,在共享经济的视域下,社区团购作为一种新型的电商模式具有巨大的 发展潜力。通过借鉴兴盛的成功经验,其他企业可以更好地了解社区团购的运作 模式并实现自身的快速发展。
参考内容二
随着科技的发展和人们生活水平的提高,家用热水器的使用越来越普遍。然 而,传统的热水器控制系统往往存在着能源浪费、温度波动大、加热时间长等问 题。为了解决这些问题,本次演示提出了一种基于单片机的智能家用热水器控制 系统设计。
该系统以单片机为核心,通过温度传感器实时监测热水温度,并根据用户设 定的温度进行自动调节。具体来说,单片机通过温度传感器读取热水温度,然后 根据设定的温度阈值进行比较,如果实际温度低于设定温度阈值,则控制加热器 进行加热;如果实际温度高于设定温度阈值,则控制加热器停止加热。此外,该 系统还具有时间设定功能,用户可以根据需要设定加热时间,从而更好地满足家 庭用水需求。
2、电路连接方式:设计热水器的电路连接方式,包括加热装置、温度传感 器、水位传感器等与单片机的连接方式。此外,还需要考虑电源、求,程序设计应包括温度检测、水位检测、 加热控制等模块。同时,为确保系统的安全性,还需加入防干烧、防电击等保护 模块。在程序流程设计中,应充分考虑各个模块之间的相互关系,确保程序能够 协调运行。

基于单片机的智能温度控制系统设计

基于单片机的智能温度控制系统设计

基于单片机的智能温度控制系统设计智能温度控制系统设计是一种基于单片机的物联网应用,旨在实现对温度的自动感知和调控。

本文将对这一任务进行详细的内容描述和设计实现思路。

一、任务概述智能温度控制系统是一种自动化控制系统,通过感知环境温度并与用户设定的温度阈值进行比较,实现对温度的自动调节。

它经常应用于室内温度调控、温室环境控制、电子设备散热等场景。

本系统基于单片机进行设计,具有实时监测、精确定时和高效控制的特点。

二、设计方案1. 单片机选择为了实现智能温度控制系统,我们选择一款适合高性能、低功耗的单片机作为核心控制器。

例如,我们可以选择常见的STM32系列或者Arduino等开源硬件平台。

2. 温度感知系统需要具备温度感知的能力,以实时获取环境温度数据。

可选用温度传感器(如DS18B20)通过单片机的GPIO接口进行连线,并通过相应的驱动程序获取温度数据。

3. 温度控制算法智能温度控制系统的关键在于控制算法的设计。

可以采用PID(Proportional-Integral-Derivative)控制算法,根据温度的实际情况和设定值进行比较,通过调整控制器输出控制执行器(如加热器或制冷器)的工作状态。

4. 控制执行器根据温度控制算法的输出,系统需要实现对执行器(如加热器或制冷器)的控制。

通过合适的驱动电路和接口实现对执行器的实时控制,以实现温度的精确调节。

5. 用户界面为了用户方便地设定温度阈值和实时查看环境温度,系统需要设计一个用户界面。

可以通过液晶显示屏或者OLED屏幕来展示温度信息,并提供物理按键或者触摸界面进行温度设定。

6. 数据存储与远程访问系统还可以考虑将温度数据通过网络传输至云端服务器进行存储和分析,以实现温度数据的长期保存和远程监控。

可以选择WiFi或者蓝牙等无线通信方式来实现数据传输。

7. 辅助功能除了基本的温度控制外,系统还可以增加一些辅助功能,如温度数据的图表绘制、报警功能、定时开关机功能等。

基于单片机的水温水位控制系统设计

基于单片机的水温水位控制系统设计
如今自动控制技术发展迅猛,各种智能控制设备不胜枚举.在早期水位和温度控制集中应用于大型工厂中,而在现代社会,不仅是工业设计、工程建设这些大项目中,而且人们的日常生活也需要实现水位与温度的有效合理控制。例如在大量集中需要锅炉用水的地方,掌握锅炉内的水位和温度,是确保系统的正常运行的必要条件。因此,水温水位控制在人们生活中有着极其重要的意义。如今技术发展成熟,各种电器种类繁杂,虽各有千秋,但其主要的智能化技术还是体现在水位和温度的控制上。
本次设计的控制系统是以单片机作为其主控芯片,因此是一种数字化的控制方式,通过传感器配合以模数转换器将水位水温信号转换为数字信号并通过单片机处理从而完成对水位水温的自动控制,利用数字式的温度传感器大幅度的提高了温度测量的精度,并且由于以单片机为控制芯片,可以通过编程方便地扩展其功能,能够满足不同的需求,因而具有巨大的现实意义。
1、单片机的选择
方案一:采用AT89C51单片机,它具4k的Flash闪存,128字节内部RAM,32个I/O口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路.具有低功耗模式,在空闲模式下CPU停止工作,但允许其他系统的正常工作。
方案二:采用AT89C2051单片机,它具有15个I/O口,2KB可重复编程的Flash并具有128byte的RAM,,两个16位定时器,一个五向量两级中断结构,一个全双工串行口,2.7V—6V的供电范围,全静态工作频率范围为0Hz-24MHz,并配备有2级程序存储器,精度较高的电压比较器。由于其I/O资源较少,不能满足系统的需求。
早期通过模拟电路实现的水位和温度参数控制上存在很多弊端,如电路复杂,成本较高,可靠性低,易受环境影响、扩展功能差等缺点。相比之下,如今数字控制对这一现状有了明显的改善,特别是传感器的发展与应用,使得这一技术的准确度也明显提高。

基于单片机的水温控制系统设计任务书

基于单片机的水温控制系统设计任务书

主题:基于单片机的水温控制系统设计任务书任务目的:设计并实现一个基于单片机的水温控制系统,该系统能够监测水温并根据设定的温度范围进行自动控制,保持水温稳定在设定范围内。

任务内容:1. 系统硬件设计1.1 选择合适的单片机芯片,考虑其性能和外设接口;1.2 设计温度传感器电路,用于实时监测水温;1.3 设计控制继电器电路,用于控制加热器或冷却器。

2. 系统软件设计2.1 编写单片机的控制程序,包括温度采集、设定温度范围、控制加热器或冷却器等功能;2.2 考虑系统的稳定性和实时性,设计合理的控制算法;2.3 确保系统的安全性,防止温度过高或过低造成损坏。

3. 系统测试与调试3.1 制作系统原型,进行硬件连接及焊接;3.2 调试温度传感器、继电器等模块,确保它们能够正常工作;3.3 测试系统在不同温度下的控制效果,进行调试和优化。

4. 系统性能评估4.1 对系统的控制精度进行测试和评估,确定其控制水温的稳定性;4.2 对系统的实时性和可靠性进行测试,确保系统能够及时响应温度变化;4.3 对系统的功耗和安全性进行评估。

提交要求:1. 提交系统的硬件设计图纸和软件源代码;2. 提交系统原理图和PCB设计文件;3. 提交系统测试和调试记录,包括测试数据和优化过程;4. 提交系统性能评估报告,对系统的各项性能进行详细评估。

任务时间:本任务书下发后,设计团队需在两个月内完成系统设计、测试及评估,并在规定时间内提交相关文件。

任务负责人:XXX(负责人尊称及通联方式)任务审批人:XXX(审批人尊称及通联方式)以上任务书经XXXXXX审核通过,现予以下发。

希望设计团队能够认真执行任务,按时保质地完成任务,期待设计团队为我们带来一个高质量的水温控制系统。

经过反复检查和确认,我们设想出了一个基于单片机的水温控制系统实施计划。

在系统硬件设计方面,我们选择了一款性能稳定、外设接口丰富的单片机芯片。

通过该芯片,我们将设计温度传感器电路,用于实时监测水温。

基于单片机的温度控制系统设计

基于单片机的温度控制系统设计

目录摘要 (1)第一章前言 (3)1.1课题背景与意义 (3)1.2温度控制系统的应用 (3)第二章系统方案 (5)2。

1水温控制系统设计任务和要求 (5)2.2水温控制系统部分 (5)2。

3控制方式 (7)第三章系统硬件设计 (8)3。

1总体设计框图及说明 (8)3.2外部电路设计 (8)3。

3 单片机系统电路设计 (9)第四章结论 (1)参考文献 (21)基于单片机的水温控制系统【摘要】温度是工业控制对象主要被控参数之一,在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能难以提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。

为了实现高精度的水温测量和控制,本文介绍了一种以Atmel公司的低功耗高性能CMOS单片机为核心,以PID算法控制以及PID参数整定相结合的控制方法来实现的水温控制系统,其硬件电路还包括温度采集、温度控制、温度显示、键盘输入以及RS232接口等电路。

该系统可实现对温度的测量,并能根据设定值对温度进行调节,实现控温的目的。

【关键词】单片机AT89C51;温度控制;温度传感器PT1000;PID调节算法第一章前言1.1课题背景与意义在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制.采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。

目前,温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距.现在,我国在这方面总体技术水平处于20世纪80年代中后期水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的水温自动控制系统设计
一、题目要求及分析
要求设计一个水温控制系统,能正常控制和测量温度范围,用AT89C51控制DS18B20,读取数据对DS18B20转换后的数据进行处理,转换成实际温度,使用6位数码管显示DS18B20测出的温度。

二、系统总体方案
1、温度传感器选择
采用DS18B20单线数字温度传感器做温度检测器。

DS18B20能够直接将所采集的
信号进行模|数转换
2、LED显示方案
系统需要采用6位LED数码管显示,LED显示有动态显示和静态显示。

本次采用
动态显示,增加74LS245芯片最为LED数码管的驱动,采用共阴极的LED,其中
单片机的P1口为LED的段码输出口,P3.0~P3.5分别是LED的位码输出口
三、硬件电路组成部分
(1)DS18B20温度采集电路
DS18B20有3个引脚,GND接地信号、DQ数据输入\输出引脚、VDD外接供电电源输入端。

如图示:
DS18B20温度值格式表,如下图所示。

这是12位转换后得到的12位数据,存储在DS18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得温度大于0,这5位为0,只要将测得得数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1测得的数值需要取反加1再乘0.0625即可得到实际温度。

高8为中的高五位是符号位,表示温度是零上还是零下。

高8位中的低三位和低8为中的高4位构成温度的整数部分。

低8位中的低4位为温度的小数部分。

(2)数码管LED
(3)单片机外部时钟电路
(4)单片机复位电路
四、软件设计
1、主程序
2、DS18B20复位子程序
3、DS18B20读温度子程序
4、DS18B20数据处理子程序
五、程序
(一)编写、汇编源程序
;变量定义
DQ BIT P2.4 ;DS18B20数据位FLAG1 BIT 00H
SIGN BIT 01H
MSB EQU 30H
LSB EQU 31H
INTEG EQU 32H
DECIM EQU 33H
SEG-S EQU 34H
SEG-I3 EQU 35H
SEGI2 EQU 36H
SEG-I1 EQU 37H
SEG-D1 EQU 38H
SEG-C EQU 39H
;主程序
ORG 0000H
MAIN LCALL INIT-1820
LCALL GET-TEMPER
LCALL DATA-PPOC
LCALL SEG-GEN
LCALL DISPLAY
SJMP MAIN
;DS18B20复位初始化子程序
INIT-1820: SETB DQ
NOP
CLR DQ
MOV R1,#3
TSR1: MOV R0,#107
DJNZ R0,$
DJNZ R1,TSR1
SETB DQ
NOP
NOP
NOP
MOV R0,#25H
TSR2: JNB DQ,TSR3
DJNZ R0,TSR2
LJMP TSR4
TSR3: SETB FLAG1
LJMP TSR5
TSR4 : CLR FLAG1
LJMP TSR6 TSR5: MOV R0,#117
DJNZ R0,$
TSR6: SETB DQ
RET
;读出转换后的温度值
GET-TEMPER: SETB DQ
LCALL INIT-1820
JB FLAG1,TSS2
RET
TSS2:MOV A,#0CCH
LCALL WRITE-1820
MOV A, #44H
LCALL WRITE-1820
LCALL DELAY
LCALL INIT-1820
MOV A,#0CCH
LCALL WRITE-1820
MOV A,#0BEH
LCALL WRITE-1820
LCALL READ-1820
RET
;写DS18B20的子程序
WRITE-1820:MOV R2,#8
CLR C
WR1:CLR DQ
MOV R3,#6
DJNZ R3,$
RRC A
MOV DQ,C
MOV R3,#23
DJNZ R3,$
SETB DQ
NOP
DJNZ R2,WR1
SETB DQ
RET
;读DS18B20的程序
READ-18200:MOV R4,#2
MOV R1,#31H
RE00:MOV R,#8
RE01:CLR C
SETB DQ
NOP
NOP
CLR DQ
NOP
NOP
NOP
SETB DQ
MOV R3,#9 RE10:DJNZ R3,RE10
MOV C,DQ
MOV R3,#23
DJNZ R3,$
RRC A
DJNZ R2,RE01
MOV @R1,A
DEC R1
DJNZ R4,RE00
RET
;数据处理子程序
DATA-PROC: CLR C
CLR SIGN
MOV A,MSB
RLC A
JC NEG
LJMP PROC NEG: CLR C
SETB SIGN
MOV A,LSB
CPL A
ADD A,#1
MOV LSB,A
MOV A,MSB
CPL A
ADDC A,#0
MOV MSB,A PROC: MOV A,LSB
ANL A,#0FH
MOV DECIM,A
MOV A,MSB
SWAP A
ANL A,#0F0H
MOV INTEG,A
MOV A,LSB
SWAP A
ANL A,#0FH
MOV R0,INTEG
ORL A,R0
MOV INTEG,A
RET
;生成显示码子程序
SEG-GEN:MOV DPTR,#TABLE
JB SIGN,S-NEG
MOV SEG-S,#00H
SJMP S-INT
S-NEG: MOV SEG-S,#40H
S-INT MOV A,INTEG
MOV B,#100
DIV AB
MOVC A,@A+DPTR
MOV SEG-I3,A
MOV A,B
MOV B,#10
DIV AB
MOVC A,@A+DPTR
MOV SEG-I2,A
MOV A,B
MOVC A,@A+DPTR
ORL A,#80H
MOV SEG-I1,A
MOV DPTR,#FLOAT-TAB
MOV A,DECIM
MOVC A,@A+DPTR
MOV DPTR,#TABLE
MOVC A,@A+DPTR
MOV SEG-D1,A
MOV SEG-C,#39H
RET
;显示子程序
DISPLAY: MOV P3,#0FFH
CLR P3.0
MOV P1,SEG-S
LCALL DELAY
SETB P3.0
CLR P3.1
MOV P1,SEG-I3
CALL DELAY
SETB P3.1
CLR P3.2
MOV P1,SEG-I2
LCALL DELAY
SETB P3.2
CLR P3.3
MOV P1,SEG-I1
LCALL DELAY
SETB P3.3
CLE P3.4
MOV P1,SEG-D1
LCALL DELAY
SETB P3.4
CLR P3.5
MOV P1,SEG-C
LCALL DELAY
SETB P3.5
RET
;延时子程序,延时5秒
DELAY: MOV R5,#5
D1:MOV R6,#248
DJNZ R6,$
DJNZ R5,D1
RET
;
TABLE: DB 3FH,06H,5BH,4FH,66H
DB 6DH,7DH,07H,7FH,6FH
FLOAT-TAB DB00,01,01,02,03,03,04,04,05,06,06,07,08,08,
DB09,09
END
(二)程序仿真
1、先在protues仿真软件中搭建硬件电路;
2、根据设计思想和硬件电路在keil2中编写程序代码调试通过并生成.axm文件;
3、双击protues仿真电路中的单片机,将.axm文件添加到单片机中,然后运行观察结
果。

(三)结果分析
能够从温度传感器中获得温度数据,程序能正常执行,测得结果有一定的误差,总之,效果还行。

六、心的体会
本设计以单片机为核心部件的控制系统,利用软件编程,最终实现设计要求。

这次课程设计历时两个星期,从一开始的确定课题,理论学习,到后来的资料查找,再到调试仿真,这一切都使我的理论知识和动手能力进一步提高。

在本次课程设计中,遇到了很多困难,如查找元器件,写程序,调试仿真,但通过
仔细分析以及查找资料后解决了问题,提高了自己解决问题的能力。

在这个过程中我感受颇多,它不仅是一个对我这学期知识学习情况和我的应用动手能力的检验,而且还是我面对困难的心态,做事的毅力和耐心的考验,同时让我深刻感受到了做课程设计意义的所在,在整个过程中受到了同学的帮助,在此表示感谢!。

相关文档
最新文档