根据matlab的三相桥式PWM逆变电路的仿真实验报告
基于MATLAB的三相桥式PWM逆变电路的状态空间分析与仿真_本科课程设计论文
在电力电子中把直流电变为交流电称为逆变。逆变电路的应用非常广泛,如在直流电源向负载供电时需要交流电动机调速用变频器、不间断电源、感应加热电源等电力电子装置的核心部分也是逆变电路。本文重点根据三相电压型PWM整流器的原理和特点,对PWM控制电路进行了相应的分析,在此基础上对PWM电路后面所接的L-C滤波电路和R-L负载电路运用状态空间法建立了模型。最后采用MATLAB7.1软件搭建了相应的仿真平台,取得了较好的仿真结果。
1.2
由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N等分。然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。这样,由N个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。同样,正弦波的负半周也可用相同的方法来等效。这一系列脉冲波形就是所期望的逆变器输出SPWM波形。由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,也就是说,这种交一直一交变频器中的整流器采用不可控的二极管整流器就可以了。逆变器输出脉冲的幅值就是整流器的输出电压。当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为与形状相似的一系列脉冲波形,这是很容易推断出来的。从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。但较为实用的办法是引用通信技术中的“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波(Modulation Wave ),而受它调制的信号称为载波(Carrier Wave )。在SPWM中常用等腰三角波作为载波,因为等腰三角波是上下宽线性对称变化的波形,当它与任何一个光滑的曲线相交时,在交点的时刻控制开关器件的通断,即可得到一组等幅而脉冲宽度正比于该曲线函数值的矩形脉冲,这正是SPWM所需要的结果。从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。
三相桥式全控整流电路matlab仿真总结
三相桥式全控整流电路matlab仿真总结三相桥式全控整流电路是一种常用于工业领域的电力电子装置,它可实现对高压交流电进行整流,将其转化为直流电供给负载。
在本文中,我们将使用MATLAB 软件进行仿真分析,并一步一步解答相关问题。
【第一步:建立电路模型】首先,我们需要建立三相桥式全控整流电路的模型。
在MATLAB中,我们可以使用Simulink来进行电路建模。
打开Simulink界面,选择建立一个新的模型文件。
然后,选择信号源模块,设置输入电压的参数,例如频率、幅值等。
接下来,选择桥式全控整流电路模块,设置电路的参数,如电阻、电感、电容等。
最后,建立一个输出信号的示波器,以便观察电路中各节点的电压和电流波形。
【第二步:参数设置】在进行仿真前,我们需要设置电路的参数。
在三相桥式全控整流电路中,常见的参数有:输入电压的频率和幅值、电压和电流传感器的增益、电阻和电容的数值等。
根据实际需求,选择合适的数值进行设置。
【第三步:电路仿真】设置好电路的参数后,我们可以开始进行仿真分析了。
在Simulink界面,点击“运行”按钮,MATLAB将根据设置的参数自动进行仿真计算,得到电路中各节点的电压和电流波形。
同时,仿真过程中,Simulink还会显示实时的仿真结果,以便我们观察电路的动态特性。
【第四步:结果分析】得到仿真结果后,我们可以进行结果分析。
首先,观察电路中各节点的电压波形,了解电路的工作状态和稳定性。
然后,计算电路中的电流波形,分析电路的功率损耗和能效等指标。
最后,将仿真结果与实际应用需求进行对比,评估电路的性能和可靠性。
【第五步:参数优化】在分析结果的基础上,我们可以对电路的参数进行优化。
通过调节电路的电阻、电容等参数,以达到更好的性能指标。
在MATLAB中,我们可以使用优化算法进行参数优化,例如粒子群算法、遗传算法等。
经过优化后,再次进行仿真验证,评估优化效果。
综上所述,通过MATLAB软件进行仿真分析,可以快速、准确地评估三相桥式全控整流电路的性能指标。
大作业-matlab三相桥式有源逆变电路的仿真
深圳大学实验报告课程名称:电力电子技术实验名称:三相桥式有源逆变电路得仿真学院:机电与控制工程学院组号:指导教师:报告人:学号:实验地点机电楼机房实验时间:2013 年 6 月13 日星期四实验报告提交时间:2013/6/18二、实验原理:所谓逆变,就就是要求把负载(电机)吸收得直流电能转变为交流电能反馈回电网。
三相桥式有源逆变电路实质上就是三相桥式可控整流电路工作得一个特定状态,三相桥式逆变电路原理图如图1所示。
要使整流电路工作于逆变状态,必须有两个条件:(1)变流器得输出Ud能够改变极性。
因为晶闸管得单向导电性,电流Id不能改变方向,为了实现有源逆变,必须去改变Ud 得电极性。
只要使变流器得控制角α>90°即可。
(2)必须要有外接得直流电源E,并且直流电源E也要可以改变极性,并且|E|>|Ud|。
上述条件必须同时满足,才能实现有源逆变。
图(1)三相桥式有源逆变电路原理图三、实验仪器:电脑四、实验内容与步骤:、(1)建立一个新得模型窗口,命名为san。
(2)打开电源模块组,复制一个Three-Phase Source。
打开参数设置对话框,按三相对称正弦交流电源要求设置参数(Um=50V、f=50Hz、初相位依次为0°、-120°、-240°);打开电力电子模块组,复制一个通用变流器桥到YYNB窗口中,选择Thyristor类型,桥得结构选择三相。
(3)打开附加模块组中得控制模块,复制一个同步六脉冲发生器Synchronized 6-Pulse Generator到窗口中。
从输入源模块组中复制两个常数模块constant到窗口中,一个常数设置为0,一个设置为30、从数学运算模块组中复制一个Gain模块,参数设置为10,即将六路脉冲放大了10倍,使触发脉冲得功率满足晶闸管触发要求;再复制三个电压表模块,将三相线电压同步。
(4)打开电源模块组,复制一个直流电源san窗口中,设置参数为50V。
基于SVPWM三相逆变器在MATLAB下的仿真研究
基于SVPWM 三相逆变器在MATLAB 下的仿真研究 摘要:介绍了电压空间矢量脉宽调制控制算法的基本概念; 并简要介绍了利用多种实际矢量合成所需电压矢量的方法及具体的实现算法; 最后,利用 Matlab 的 Simulink 工具箱,建立了SVPWM 逆变器的仿真模型,通过仿真波形可知,该算法是正确的,并分析了逆变器输出的交流电压和电流的谐波。
关键词:SVPWM 、Simulink 、三相逆变器0 引 言电压空间矢量脉宽调制( Space Vector PWM ,SVPWM) 控制技术,也称作磁链跟踪控制技术,它是从控制交流电动机的角度出发,最终目的是在电动机气隙空间形成旋转磁场,从而产生恒定的电磁转矩。
空间矢量脉宽调制方法凭借其优越的性能指标、易于数字化实现等优点,自提出以来就成为研究的热点,不仅可以应用在各种交流电气传动系统中,而且在电力系统功率因数的调节以及各种利用清洁能源发电的分布式发电系统中都有很好的应用前景。
1 SVPWM 逆变器的原理1.1 电压空间矢量电压空间矢量是研究交流电动机三相电压与电动机旋转磁场关系而提出的虚构物理量。
在空间按 120°对称分布的三相电机定子绕组上施加三相对称电压()1)32sin()32sin(sin ⎪⎪⎪⎭⎪⎪⎪⎬⎫+=-==πωπωωt U u t U u t U u m c m b m a在定子绕组中即产生定子电流和磁通。
对单个绕组而言,产生的磁通是脉振的,它仅在固定的绕组轴线位置上有大小和方向的变化,但是在三相绕组的共同作用下,在电机的气隙中就产生了合成的旋转磁场。
电压和电流是时间变量,并没有空间的概念,但是电动机三相绕组产生的旋转磁场是空间和时间的变量,它的大小和空间位置随时间变化,一般以矢量表示。
时空变化的旋转磁场由三相电压产生,为了描述三相电压与电动机旋转磁场的关系,提出了电压空间矢量的概念。
电压空间矢量反映了三相电压综合作用的效果,三相电压与电压空间矢量的关系由 Park 变换来表示:)2()(322401200 j C j B j S e u e u e u u A ++=式中,u s 为电压空间矢量,u A 、u B 、u C 为三相相电压,2/3为变换系数,指数项表示了三相绕组的空间位置。
基于matlab的三相桥式PWM逆变电路的仿真实验报告
基于matlab 的三相桥式PWM 逆变电路的仿真实验报告一、小组成员指导教师二、实验目的1. 深入理解三相桥式 PWM 逆变电路的工作原理。
2. 使用 simulink 和 simpowersystem 工具箱搭建三相桥式 PWM 逆变电路的仿真框图.3. 观察在 PWM 控制方式下电路输出线电压和负载相电压的波形。
4. 分别改变三角波的频率和正弦波的幅值, 观察电路的频谱图并进行谐波分析。
三、实验平台Matlab / simulink / simpowersystem五、实验模块介绍BSi∏* WIVt正弦波, 电路常用到的正弦信号模 块,双击图标,在弹出的窗 口中调整相关参数。
其信号 生成方式有两种:Time based 和SamPle based .OKCancelHelPI,J3. E E 示波器,其模块可以接受多个输入信号,每个端口的输入信号都将在 一个坐标轴中显示。
2.锯齿波发RePeat ing j t able (mask)OIItPUt 炷 repeating SeQUeTlCe Of niunbers SPeCified Ln a IabIe Of I IJH 亡-ValiL 亡 pairs. VaItLeS □f tiinft ShOUIti be JilorL OtoniCalIy IrLCrea≤in⅛ ・生器,产生一个时基和高度 可调的锯齿波序列。
⅞⅛ SOUrCe BlCCk Parameter^r RePtating SeqUtnCeS-ErqU-⅞-π茜ParaJiieterETinIe ValUftEiFUnCtiOn BloCk P ⅛ramet 亡rm : RelatianaI OPeratOr 屋Relational OperatorAPPl ie≡ the selected re IatLOIlaI OlPerator to t h.E inpu Ieft ) input 79xreΞpQΓL^ j ζ□ the it st Qp ⅞Eand ・Main Si SnaI Attr ibu ,t e S Kelatianal OPeratclr :∖-∣ 。
基于MATLAB的三相桥式PWM逆变电路
电力电子技术课程设计报告题目:三相桥式PWM逆变电路设计学院:姓名:学号:专业班级:指导老师:时间:目录课题背景********************************************2 三相桥式SPWM逆变器的设计内容及要求*****************3 SPWM逆变器的工作原理******************************3 MATlAB仿真设计************************************12硬件实验************************************************19实验总结********************************************23附录一 Matab简介********************************24 附录二Protel简介***************************************25参考文献*******************************************26三相桥式PWM逆变电路设计一、课题背景正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS (Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( Emergence Power Supply) ;针对船舶工业用电的岸电电源SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种PWM 型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制.电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。
三相桥式全控整流及逆变电路matlab仿真
三相桥式全控整流及逆变电路matlab仿真电⼒电⼦技术课程设计系别:⾃动化系专业:⾃动化班级:1120393⼩组成员:费学智(25)薛阳(43)指导⽼师:周敏⽇期:2013年12⽉13⽇⽬录1.简要背景概述 (3)2.⼯作原理介绍 (3)3.主电路设计 (4)4. simulink仿真系统设计 (5)5.仿真结果分析 (7)6.总结(收获与体会) (17)7参考⽂献 (17)⼀简要背景概述随着社会⽣产和科学技术的发展,整流电路在⾃动控制系统、测量系统和发电机励磁系统等领域的应⽤⽇益⼴泛。
常⽤的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路。
三相全控整流电路的整流负载容量较⼤,输出直流电压脉动较⼩,是⽬前应⽤最为⼴泛的整流电路。
它是由半波整流电路发展⽽来的。
由⼀组共阴极的三相半波可控整流电路和⼀组共阳极接法的晶闸管串联⽽成。
六个晶闸管分别由按⼀定规律的脉冲触发导通,来实现对三相交流电的整流,当改变晶闸管的触发⾓时,相应的输出电压平均值也会改变,从⽽得到不同的输出。
由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采⽤常规电路分析⽅法显得相当繁琐,⾼压情况下实验也难顺利进⾏。
Matlab提供的可视化仿真⼯具Simulink可直接建⽴电路仿真模型,随意改变仿真参数,并且⽴即可得到任意的仿真结果,直观性强,进⼀步省去了编程的步骤。
本⽂利⽤Simulink对三相桥式全控整流电路进⾏建模,对不同控制⾓、桥故障情况下进⾏了仿真分析,既进⼀步加深了三相桥式全控整流电路的理论,同时也为现代电⼒电⼦实验教学奠定良好的实验基础。
三相桥式全控整流电路以及三相桥式全控逆变电路在现代电⼒电⼦技术中具有很重要的作⽤和很⼴泛的应⽤。
这⾥结合全控整流电路以及全控逆变电路理论基础,采⽤Matlab 的仿真⼯具Simulink对三相桥式全控整流电路和三相桥式全控逆变电路进⾏仿真,对输出参数进⾏仿真及验证,进⼀步了解三相桥式全控整流电路和三相桥式全控逆变电路的⼯作原理。
基于Matlab/SIMULINK的桥式直流PWM变换电路实验仿真分析
基于Matlab/SIMULINK的桥式直流PWM变换电路实验仿真分析本文以MATLAB软件的SIMULINK仿真软件包为平台,对桥式直流PWM 变换电路进行仿真分析文章对每个电路首先进行原理分析,进而建立相应的仿真模型,经过详细计算确定并设置仿真参数进行仿真,对于每次仿真结果均采用可视化波形图的方式直接输出。
在对仿真结果分析的基础上,不断优化仿真参数,使其最大化再现实际物理过程,并根据各个电路的性能进行参数改变从而观察结果的异同。
标签:SIMULINK;PWM;电路仿真1 桥式直流PWM变换电路简介桥式直流PWM变流器仿真实验是对全控型器件的应用。
实验电路中,前端为不可控整流、后端为开关型逆变器,此结构形式应用最为广泛。
逆变器的控制采用PWM方式。
对这个实验有所掌握的话,对后续课程设计直流调速系统也会有很大启发。
因为直流PWM-M调速系统近年来发展很快,直流PWM-M调速系统采用全控型电力电子器件,调制频率高,与晶闸管直流调速系统相比动态响应速度快,电动机转矩平稳脉动小,有很大优越性,因此在小功率调速系统和伺服系统中的应用越来越广泛。
2 桥式直流PWM变换电路的工作原理本实验系统的主电路采用双极性PWM控制方式,其中主电路由四个MOSFET(VT1~VT4)构成H桥。
Ub1~Ub4分别由PWM调制电路产生后经过驱动电路放大,再送到MOSFET相应的栅极,用以控制MOSFET的通断。
在双极性的控制方式中,VT1和VT4的栅极由一路信号驱动,VT2和VT3的栅极由另一路信号驱动,它们成对导通。
控制开关器件的通断时间可以调节输出电压的大小,若VT1和VT4的导通时间大于VT2和VT3的导通时问,输出电压的平均值为正,VT2和VT3的导通时间大于VT1和VT4的导通时间,则输出电压的平均值为负,所以可以用于直流电动机的可逆运行。
3 计算机仿真实验(1)桥式直流PWM变换电路仿真模型的建立。
根据所要仿真的电路,在SIMULINK窗口的仿真平台上构建仿真模型。
基于matlab下的spwm三相桥式逆变电路
基于MATLAB 下的SPWM 三相桥式逆变电路理论补充:逆变器工作原理:整个实验在三相桥式逆变电路下进行,如下图1,电感电阻性负载,A 、B 、C 相的上下桥臂轮流导通。
当1VT 导通,4VT 截止时,a 点电位位Ud/2;当4VT 导通,1VT 截止时,a 点电位位-Ud/2。
同理可得b 、c 点的电位。
通过控制六个管子的导通时间,达到逆变效果。
图1 实验主电路PWM 是六个VT 管子的触发信号,此信号是通过调制信号(即正弦波)和载波(三角波)的比较得到的,分析1VT 管的通断情况:当正弦波r u 比三角载波c u 大的时候比较器输出1,1VT 导通,否则,比较器输出0,1VT 关断。
同理4VT 导通情况只要与1VT 反相即可。
图2 PWM 波生成原理简图仿真:1.主电路模块搭建:如图3,输入直流电压源大小V U d 250=,输入部分为三相对称电感、电阻性负载,作星形连接,电阻取值大小为Ω=2R ,电感取值mH L 01.0=。
图3 SPWM 三相桥式逆变仿真电路Universal Bridge 元器件说明图4 Universal Bridge 模块和通用桥展开图Universal Bridge 模块的中文名是通用桥模块,它有1个桥臂、2个桥臂和3个桥臂的选择。
它的三个桥臂的展开图如下图4所示,当六列PWM 信号输入通用桥的g 端口时,通用桥会自动分配每一列的信号给每一个管子,控制该管子的开闭。
其输入的顺序是,第一列信号输入到1VT ,第二列信号输入到4VT ,第三列信号输入到3VT ,第四列信号输入到6VT ,第五列信号输入到5VT ,第六列信号输入到2VT 。
2.SPWM 生成模块由图2可知,当调制信号的正弦波r u 大于三角载波c u 时,逆变器输出高电平,否则,输出低电平,可设计如图5触发电路,以A 相电路上下桥臂为例。
图5SPWM中A相的上下桥臂的输入信号图5中用了两个逻辑比较器Relational Operator来比较两列输入波形的大小,Relational Operator的工作原理是,符合图中逻辑关系时,输出1;反之,输出0。
基于SVPWM三相逆变器在MATLAB下的仿真研究.doc
基于SVPWM 三相逆变器在MATLAB 下的仿真研究摘要:介绍了电压空间矢量脉宽调制控制算法的基本概念; 并简要介绍了利用多种实际矢量合成所需电压矢量的方法及具体的实现算法; 最后,利用 Matlab 的 Simulink 工具箱,建立了SVPWM 逆变器的仿真模型,通过仿真波形可知,该算法是正确的,并分析了逆变器输出的交流电压和电流的谐波。
关键词:SVPWM 、Simulink 、三相逆变器0 引 言电压空间矢量脉宽调制( Space Vector PWM,SVPWM) 控制技术,也称作磁链跟踪控制技术,它是从控制交流电动机的角度出发,最终目的是在电动机气隙空间形成旋转磁场,从而产生恒定的电磁转矩。
空间矢量脉宽调制方法依附其优越的性能指标、易于数字化实现等优点,自提出以来就成为研究的热点,不仅可以应用在各种交流电气传动系统中,而且在电力系统功率因数的调节以及各种利用清洁能源发电的分布式发电系统中都有很好的应用前景。
1 SVPWM 逆变器的原理1.1 电压空间矢量电压空间矢量是研究交流电动机三相电压与电动机旋转磁场关系而提出的虚构物理量。
在空间按 120°对称分布的三相电机定子绕组上施加三相对称电压()1)32sin()32sin(sin ⎪⎪⎪⎭⎪⎪⎪⎬⎫+=-==πωπωωt U u t U u t U u m c m b m a在定子绕组中即产生定子电流和磁通。
对单个绕组而言,产生的磁通是脉振的,它仅在固定的绕组轴线位置上有大小和方向的变化,但是在三相绕组的配合作用下,在电机的气隙中就产生了合成的旋转磁场。
电压和电流是时间变量,并没有空间的概念,但是电动机三相绕组产生的旋转磁场是空间和时间的变量,它的大小和空间位置随时间变化,一般以矢量表示。
时空变化的旋转磁场由三相电压产生,为了描述三相电压与电动机旋转磁场的关系,提出了电压空间矢量的概念。
电压空间矢量反映了三相电压综合作用的效果,三相电压与电压空间矢量的关系由 Park 变换来表示:)2()(322401200 j C j B j S e u e u e u u A ++=式中,u s 为电压空间矢量,u A 、u B 、u C 为三相相电压,2/3为变换系数,指数项表示了三相绕组的空间位置。
基于MATLAB的三相桥式PWM逆变电路.doc
基于MATLAB的三相桥式PWM逆变电路交流调速系统课程设计题目:三相桥式SPWM逆变器的仿真设计班级:0 姓名:学号:指导老师:目录摘要………………………………………………………………2关键词……………………………………………………………2绪论………………………………………………………………2三相桥式SPWM逆变器的设计内容及要求………………………3SPWM逆变器的工作原理………………………………………3 1 工作原理…………………………………………………5 2 控制方式…………………………………………………6 3 正弦脉宽调制的算法……………………………………9MATlAB仿真设计………………………………………………12硬件实验…………………………………………………………19实验总结…………………………………………………………23附录Matab 简介………………………………………………24参考文献…………………………………………………………24三相桥式SPWM逆变电路设计摘要:随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。
对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。
因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。
在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。
该调制方法的最大缺点是它的6个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。
本实验针对正弦波输出变压变频电源SPWM调制方式及数字化控制策略进行了研究,以SG3525为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。
关键词:逆变器SPWM逆变器的工作原理正弦脉宽调制的调制算法单极性正弦脉宽调制双极性正弦脉宽调制自然采样法规则采样法双极性正弦波等面积法一、绪论正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS (Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( EmergencePower Supply) ;针对船舶工业用电的岸电电源SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种PWM 型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制.电力电子器件的发展经历了晶闸管(SCR)、可关断- 三相桥式SPWM逆变器的仿真设计班级:0 姓名:学号:指导老师:目录摘要………………………………………………………………2关键词……………………………………………………………2绪论………………………………………………………………2三相桥式SPWM逆变器的设计内容及要求………………………3SPWM逆变器的工作原理………………………………………3 1 工作原理…………………………………………………5 2 控制方式…………………………………………………6 3 正弦脉宽调制的算法……………………………………9MATlAB仿真设计………………………………………………12硬件实验…………………………………………………………19实验总结…………………………………………………………23附录Matab 简介………………………………………………24参考文献…………………………………………………………24三相桥式SPWM逆变电路设计摘要:随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。
基于MATLAB的三相感应电动机调速系统的设计与仿真
基于MATLAB的三相感应电动机调速系统的设计与仿真摘要随着社会经济的发展,在实际的工业应用中各行业电气化生产程度不断提高,由于生产工艺日趋复杂,加工工序更加细致。
这就要求电动机必须能够完成快速、平稳、多频次的调速任务。
笔者通过学校图书馆以及互联网查阅了三项感应电动机的相关文献资料,对于三项感应电动机的数学模型以及矢量控制原理进行了解,为论文研究提供理论基础。
在此基础上对基于MATLAB的三项感应电动机调速系统进行仿真设计,通过介绍仿真软件,以及仿真模型的组成,来进行适量坐标变换的仿真工作,通过SVPWM仿真对三相电动机矢量控制调速系统进行防振设计,最后完成控制系统设计。
关键词:MATLAB;三相感应电动机;调速系统;设计I基于matlab三相感应电动机调速系统的设计与仿真AbstractWith the development of social economy, the degree of electrification production in various industries in practical industrial applications has been continuously improved. Due to the increasingly complex production process, the processing procedures are more detailed. This requires that the motor must be able to complete the fast, stable, multi-frequency speed regulation task. Through the school library and the Internet, the author consulted the relevant literature of the three induction motors, and understood the mathematical model of the three induction motors and the principle of vector control, which provided the theoretical basis for the study of the paper. On this basis, three induction motor speed control systems based on MATLAB are simulated and designed. By introducing the simulation software and the composition of the simulation model, the appropriate coordinate transformation is simulated. The anti-vibration design of three-phase motor vector control speed control system is carried out through SVPWM simulation, and the control system design is completed finally.Key words: MATLAB; three induction motors; speed control system; design目录1. 引言 (1)2. 三相感应电动机的数学模型 (1)2.1 一、三相静止坐标系下的数学模型 (1)2.2矢量控制原理 (3)3.基于MATLAB的三相感应电动机调速系统的仿真 (5)3.1仿真软件介绍 (5)3.2系统仿真模型的组成 (6)3.2.1感应电动机接正弦电压工作 (6)3.2.2电动机系统仿真 (9)3.3矢量坐标变换的仿真 (12)3.4三相感应电动机的SVPWM仿真 (14)3.5三相感应电动机矢量控制调速系统的仿真 (16)3.5.1构建仿真框图 (16)3.5.2对矢量控制模型仿真 (18)4.控制系统的软件设计 .................................................................错误!未定义书签。
三相桥式电压型逆变器电路的建模与仿真实验
三相桥式电压型逆变器电路的建模与仿真实验摘要:本文在对三相桥式电压型逆变电路做出理论分析的基础上,建立了基于MATLAB的三相桥式电压型逆变电路的仿真模型并对其进行分析与研究,用MATLAB 软件自带的工具箱进行仿真,给出了仿真结果,验证了所建模型的正确性。
关键词:逆变;MATLAB;仿真第一章概述1.1电力电子技术顾名思义,可以粗略地理解,所谓电力电子技术就是应用于电力领域的电子技术。
电子技术包括信息电子技术和电力电子技术两大分支。
通常所说的模拟电子技术和数字电子技术都属于信息电子技术。
电力电子技术中所变换的"电能"和"电力系统"所指的"电力"是有一定差别的。
两者都指"电能",但后者更具体,特指电力网的"电力",前者则更一般些。
具体地说,电力电子技术就是对电能进行变换和控制的电子技术。
更具体一点,电力电子技术是通过对电子运动的控制对电能进行变换和控制的电子技术。
其中,用来实现对电子的运动进行控制的器件叫电力电子器件。
目前所用的电力电子器件均由半导体材料制成,故也称电力半导体器件。
电力电子技术所变换的"电力",功率可以大到数百兆瓦甚至吉瓦,也可以小到数瓦甚至是毫瓦级。
信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换,这是二者本质上的不同。
1.2电力电子技术的应用(1)一般工业中,采用电力电子装置对各种交直流电动机进行调速,一些对调速性能要求不高的大型鼓风机近年来也采用变频装置以达到节能的目的,除此之外,有些对调速没有特别要求的电机为了避免启动时的电流冲击而采用软启动装置,这种软启动装置也是电力电子装置。
电化学工业大量使用直流电源,电解铝、电解食盐水以及电镀装置均需要大容量整流电源。
电力电子产品还大量应用于冶金工业中的高频或中频感应加热电源、淬火电源及直流电弧炉电源等场合。
三相桥式整流电路MATLAB仿真报告
五邑大学电力电子技术课程设计报告题目:三相桥式整流电路的MATLAB仿真院系信息工程学院专业轨道交通自动化学号11071336学生姓名容浩宇指导教师张建民三相桥式整流电路的MATLAB仿真一、三相桥式整流电路实验的要求和意义(四号宋字,粗体)1、课程设计的目的:1)利用simlink建立三相桥式整流电路的仿真模型及参数的调节2)理解三相桥式整流电路的工作原理3)分析由记录纯电阻负载,阻感负载时的输出电压波形,故障波形的采集与分析2、设计要求:利用MATLAB软件中的SIMULINK对三相桥式整流电路进行建模、仿真,设置参数,采集波形。
具体要求如下:(1)利用六个晶闸管搭建三相桥式整流电路的模型,输入三相电压源的线电压取380V,频率为50Hz,内阻为0.002欧姆。
(2)负载为1欧姆的纯电阻负载,仿真时间取0.06s,设置相关参数,利用示波器查看仿真波形,并将Ud 、Id、UVT1波形记录下来。
并画出电路的移相特性曲线Ud=f(α)。
(3)负载为电阻取1欧姆,电感10mH的阻感负载,其仿真时间取0.08s,设置相关参数,利用示波器查看仿真波形,并将Ud 、Id、UVT1波形记录下来。
并画出电路的移相特性曲线Ud=f(α)。
(4)故障波形的采集:当触发角为30度时,将第六个个晶闸管断开,查看阻感负载下的输出电压Ud 、UVT1的波形,记录下来,并分析故障现象。
二、方案的论证和设计1.1三相桥式全控整流电路三相桥式整流电路原理图如下:图1三相桥式整流电路中有6个晶闸管,三个共阴极,三个共阳极。
晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6.工作特点是任何时刻都有不同组别的两只晶闸管同时导通,为保证电路启动或电流断续后能正常导通,必须对不同组别导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于π/3的宽脉冲。
每个π/3换相一次,换相过程在共阴极组合共阳极组轮流进行,但只在同一组别中换相。
三相SVPWM逆变电路MATLAB仿真
基于电压空间矢量控制的三相逆变器的研究1、SVPWM 逆变电路的基本原理及控制算法图1.1中所示的三相逆变器有6个开关,其中每个桥臂上的开关工作在互补状态, 三相桥臂的上下开关模式得到八个电压矢量,包括6个非零矢量(001)、(010)、(011)、(100)、(101)、(110)和两个零矢量 (000)、(111).图1.-1 三相桥式电压型有源逆变器拓扑结构在平面上绘出不同的开关状态对应的电压矢量,如图1.2所示。
由于逆变器能够产生的电压矢量只有8个,对与任意给定的参考电压矢量,都可以运用这8个已知的参考电压矢量来控制逆变器开关来合成。
3U (011)1U (001)5U (101)4U (100)6U (110)2U (010)ⅠⅡⅢⅣⅤⅥ0U (000)7U (111)βcU θβu αu 1sv U 2sv U 3sv U图1.2 空间电压矢量分区图1.2中,当参考电压矢量在1扇区时,用1扇区对应的三个空间矢量U sv 1、U sv 2、U sv 3来等效参考电压矢量。
若1.2 合成矢量ref U 所处扇区N 的判断三相坐标变换到两相βα-坐标:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡)()()(23- 23 021- 21- 132)()(t t t t t u u u u u co bo ao βα (1.1)根据u α、u β的正负及大小关系就很容易判断参考电压矢量所处的扇区位置。
如表1.1所示。
表1.1 参考电压矢量扇区位置的判断条件可以发现,扇区的位置是与u β、 u u βα-3及u u βα--3的正负有关。
为判断方便,我们设空间电压矢量所在的扇区NN=A+2B+3C (1.2)其中,如果u β >0,那么A=1,否则A=0如果u u βα-3 >0,那么B=1,否则B=0 如果u u βα--3 >0,那么C=1,否则C=01.3 每个扇区中基本矢量作用时间的计算在确定参考电压矢量的扇区位置后,根据伏秒特性等效原理,采用该扇区三个顶点所对应的三个电压空间矢量来逼近参考电压矢量。
两电平三相PWM电压逆变器MATLAB仿真分析
Three-phase Two-level PWM Converters (discrete)两电平三相PWM电压逆变器1、原理分析如图1,该系统主要由两个独立的电路说明两个两电平三相的PWM电压源逆变器。
每个PWM电压源逆变器输入为一个通过三相变压器二次侧得到的交流电,变压器数据为:1kw,208V/ rms 500 var 60Hz。
电路中所有转换器属于开环控制,其中PWM发生器是属于离散模块的,这个模块可在离散控制模块库中查找。
这两个电路使用相同的直流电压(Vdc = 400V)、载波频率(1080赫兹)、调制指数(m = 0.85)与生成频率(f = 60赫兹)。
采用变压器漏电感和负载电容进行谐波滤波。
这两个电路是:1、三相、两电平转换器(单/三桥臂,六开关器件);2、三相、两级转换器(双/三桥臂,十二开关器件的H型结构)图1 两电平三相PWM电压逆变器仿真图2、参数设置1、通用桥图2 通用桥参数设置如图2,参数分别为:·Number of bridge arms:桥臂数量,可以选择1、2、3相桥臂,构成不同形式的整流器·Snubber resistance Rs(Ohms):缓冲电阻Rs,为消除缓冲电路,可将Rs参数设置为inf。
·Snubber capacitance Cs(F):缓冲电容Cs,单位F,为消除缓冲电路,可将缓冲电容设置为0;为得到纯电阻,可将电容参数设置为inf。
·Resistance Ron(Ohms):晶闸管的内电阻Ron,单位为Ω。
·Forward voltage Vf(V):晶闸管元件的正向管压降Vf和二极管的正向管压降Vfd,单位为V。
·Measurements:测量可以选择5种形式,即None(无)、device voltages (装置电压)、Device currents(装置电流)、UAB UBC UCA UDC(三相线电压与输出平均电压)或All voltages and currents(所有电压电流),选择之后需要通过Multimeter(万用表模块)显示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于matlab的三相桥式PWM逆变电路的仿真实验报告
一、小组成员
指导教师
二、实验目的
1.深入理解三相桥式PWM逆变电路的工作原理。
2.使用simulink和simpowersystem工具箱搭建三相桥式PWM 逆变电路的仿真框图。
3.观察在PWM控制方式下电路输出线电压和负载相电压的波形。
4.分别改变三角波的频率和正弦波的幅值,观察电路的频谱图并进行谐波分析。
三、实验平台
Matlab / simulink / simpowersystem
五、实验模块介绍
1. 正弦波,
电路常用到的正弦信号模
块,双击图标,在弹出的窗
口中调整相关参数。
其信号
生成方式有两种:Time
based和Sample based。
2. 锯齿波发
生器,产生一个时基和高度
可调的锯齿波序列。
块可以接受多个输入信号,3. 示波器,其模
每个端口的输入信号都将在
一个坐标轴中显示。
4. 关系运算
符,<、>、=等运算。
源,提供一个直流电源。
5. 直流电压
6. 三相RLC串联电路,电阻、电感、电容串联的三相电路,单位欧姆、亨利、法拉。
7. 电压测量,用于检测电压,使用时并联在被测电路中,相当于电压表的检测棒,其输出端“v”则输出电压信号。
8. 多路测量仪,可以接收该需要测模块的电压、电流或电压电流信号并输出。
9. IGBT/二极管,带续流二极管的IGBT模型.
10 为了执行仿真其可以允许修改初始状态、进行电网稳定性分析、傅里叶分解等功能.
六、实验原理
三相桥式PWM逆变电路图1-1如下:
图1-1三相桥式PWM逆变电路图
三相桥式PWM逆变电路波形
七、仿真实验内容
三相桥式PWM逆变电路仿真框如图1-2所示:
图1-2 三相桥式PWM逆变电路仿真框图
仿真参数设置如下:
三角波参数如图1-3所示:载波频率f=1kHz,周期T=1e-3s,幅值Ur=1V.
图1-3三角波参数图
正弦波参数,正弦信号A/B/C相位差为120,分别为0、2*pi/3、-2*pi/3,幅值都为1,如图1-4、1-5、1-6所示。
图1-4正弦波参数图
图1-5正弦波参数图
图1-6正弦波参数图
示波器参数设置如图1-7、1-8所示:采样时间Sample time 为1e-6s,端口number of axes 为4。
图1-7示波器参数设置
图
1-8示波器参数设置直流电源参数设置,U=50V ,如图1-9所示:
图1-9直流电源参数设置
阻感参数设置,R=10Ω,L=H
103如图1-10所示:
图1-11阻感参数设置
IGBT/Diode参数设置(按默认值),如图1-12所示:
图1-12 IGBT/Diode参数设置
仿真算法设置,如图1-13所示:
图1-13仿真算法设置
八、仿真实验分析
当正弦波幅值1、三角波频率1kHz时,三角波、正弦波的波形图1所示:
图1三角波、正弦波的波形图
PWM波形和线电压uUV波形图2所示:
图2 PWM波形和线电压uUV波形图
负载相电压波形图3所示:
图3负载相电压波形图 小结: 由图形可得:
1.逆变器的输出线电压PWM 波由+Ud,-Ud,0三种电平构成。
2.负载相电压PWM 波由+U d 3
2,-U d 3
2,+U d 3
1,-U d 3
1和0
共五种电平组成。
3. uUN(
实
-66.65-33.320V 33.31V 66.64V
测)V V
uUN(理论)-66.67
V
-33.33
V
0V 33.33V 66.67V
由上表格,可得出uUN的实测值与理论值相吻合。
负载输出电压频谱图4所示:
图4负载输出电压频谱图
当三角波的频率1kHz不变,改变正弦波的幅值分别为0.8、0.5、0.3观察波形的变化。
当正弦波的幅值为0.8时,波形变化如下:
三角波、正弦波的波形图5所示:
图5 三角波、正弦波的波形图
PWM波形和线电压uUV波形图6所示:
图6PWM波形和线电压uUV波形图
负载相电压波形图7所示:
图7 PWM波形和线电压uUV波形图负载输出电压频谱图8所示:
图8负载输出电压频谱图
当正弦波的幅值为0.5时,波形变化如下:三角波、正弦波的波形图9所示:
图9三角波、正弦波的波形图
PWM波形和线电压uUV波形图10所示:
图10 PWM波形和线电压uUV波形图负载相电压波形图11所示:
图11负载相电压波形图
负载输出电压频谱图12所示:
图12负载输出电压频谱图
当正弦波的幅值为0.3时,波形变化如下:三角波、正弦波的波形图13所示:
图13三角波、正弦波的波形图
PWM波形和线电压uUV波形图14所示:
图14 PWM波形和线电压uUV波形图负载相电压波形图15所示:
图15负载相电压波形图
负载输出电压频谱图16所示:
图16负载输出电压频谱图
小结:1.谐波的幅值越小,谐波的次数越高。
2.谐波的幅值越小,基谐波越小。
3.由负载输出电压频谱图可得
正弦波幅值基波分量THD(%)
1 49.96 68.58
0.8 39.96 91.64
0.5 24.98 139.52
0.3 14.96 198.11
当正弦波的幅值不变恒为1,改变三角波的频率分别为0.5kHz、2kHz、10kHz,波形变化如下:
当三角波的频率为0.5kHz时,波形如下:
三角波、正弦波的波形图17所示:
图17三角波、正弦波的波形图
PWM波形和线电压uUV波形图18所示:
图18 PWM波形和线电压uUV波形图
负载相电压波形图19所示:
图19负载相电压波形图
负载输出电压频谱图20所示:
图20负载输出电压频谱图
当三角波的频率为2kHz时,波形如下:三角波、正弦波的波形图21所示:
图21三角波、正弦波的波形图
PWM波形和线电压uUV波形图22所示:
图22 PWM波形和线电压uUV波形图
负载相电压波形图23所示:
图23负载相电压波形图
负载输出电压频谱图24所示:
图24负载输出电压频谱图
当三角波的频率为10kHz时,波形如下:三角波、正弦波的波形图25所示:
图25三角波、正弦波的波形图
PWM波形和线电压uUV波形图26所示:
图26PWM波形和线电压uUV波形图负载相电压波形图27所示:
图27负载相电压波形图
负载输出电压频谱图28所示:
图28负载输出电压频谱图
小结:1.随着三角波的频率增大,谐波次数不太稳定。
2. 随着三角波的频率增大,基谐波基本稳定。
3. 由负载输出电压频谱图可得
载波频率(kHz) 基波分量THD(%)
0.5 49.94 68.66
1 49.96 68.58
2 49.95 68.54
10 48.18 75.86
改变FFT settings 中Max Frequency,分别为
2000Hz 、4000Hz、6000Hz、8000Hz、10000 Hz,负载输出频谱图如下所示:
当2000Hz时,负载输出电压频谱图如图1-1所示:
图1-1负载输出电压频谱图
当4000Hz时,负载输出电压频谱图如图1-2所示:
图1-2负载输出电压频谱图
当6000Hz时,负载输出电压频谱图如图1-3所示:
图1-3负载输出电压频谱图
当8000Hz时,负载输出电压频谱图如图1-4所示:
图1-4负载输出电压频谱图
当10000Hz时,负载输出电压频谱图如图1-5所示:
图1-5负载输出电压频谱图
小结:
1.随着Max Frequency的增大,负载输出电压频谱图越清
晰。
2.随着Max Frequency的增大,谐波出现次数越明显。
九、实验体会
通过这次仿真实验,我们更深入理解了三相桥式PWM的逆变电路的工作原理,和掌握使用MATLAB软件做仿真实验。
在其过程中我们小组共同协作,找资料,搭建电路,最后完成仿真实验。
其中我们都收获了不少,在此,我们还要感谢老师的辛苦指导,使得我们的仿真实验顺利完成。