基本磁化曲线和动态磁滞回线的测量-南京理工大学
铁磁材料的磁化曲线和磁滞回线的 测量

铁磁材料的磁化曲线和磁滞回线的测量磁化曲线和磁滞回线是铁磁材料的两个基本磁性特性,可以通过实验测量来获得。
磁化曲线反映了铁磁材料在外加磁场下的磁化过程,磁滞回线则是描述铁磁材料在磁场变化时磁化状态的变化过程。
在这篇文章中,我们将详细介绍铁磁材料磁化曲线和磁滞回线的测量方法。
一、磁化曲线的测量1、实验原理铁磁材料在外磁场作用下会被磁化,磁化过程可以被描述为一个磁化曲线。
实验中,我们可以通过应用不同大小的磁场来测量铁磁材料的磁化曲线,并在相应的磁场值处记录样品磁化强度。
2、实验步骤(1)选择适当的铁磁材料。
铁磁材料应该具有较高的磁滞回线,磁化曲线应平滑连续。
(2)制备样品。
将铁磁材料制成条状或薄片状,并尽可能保持样品尺寸一致。
(3)将制备好的铁磁材料打磨并清洗干净。
(4)准备实验装置。
将样品放置于磁感应计中间,并将磁感应计连接到电压表或电流表。
(5)应用不同大小的外磁场,并记录磁化强度。
使用恒流源或电压源,应用不同大小的电流或电压,同时记录磁感应计测得的磁感应强度,以得到磁化曲线。
重复多次实验,取平均值或绘制不同曲线来验证测量结果的准确性。
3、注意事项(1)要保持样品尺寸一致,以避免磁滞回线太宽或太窄。
(2)应避免外界干扰和温度变化对实验结果的影响。
(3)在应用不同磁场时,应注意不要让磁场过强以至于将样品磁化到饱和,否则曲线终止于饱和点。
(1)选择适当的铁磁材料。
(4)以一个磁场方向开始,应用不同大小的磁场,并记录磁化强度,记录下磁化曲线,此时磁滞回线仍未形成完整闭合环形。
(5)随着外磁场方向变化,记录相应的磁化曲线和磁滞回线,直到一整个闭合环形的曲线测得。
(6)重复多次实验,取平均值或绘制不同曲线来验证测量结果的准确性。
(1)测量时应注意保持外部环境的稳定,避免温度、震动等因素对实验结果的影响。
(2)应避免将试样磁滞回线的心磁化带磁化到饱和,否则将不能获得完整的磁滞回线。
(3)应避免在试样磁滞回线完成闭合之前改变外加磁场的方向,否则将失去呈环形的磁化曲线。
基本磁化曲线和动态磁滞回线的测量-南京理工大学

一、实验目的和任务 ; 二、实验项目; 三、参考资料 : 教材及参考书: 1.《现代磁性材料原理和应用》 主编:R.C. O’ Handley 化学工业出版社 2002 2.《磁学基础与磁性材料》 主编:严密等 出版 社:浙江大学出版社 2006 实验指导书: 自编《磁性材料》实验指导书。
《磁性材料》实验 南京理工大学材料科学与工程系
磁化曲线和磁滞回线是铁磁材 料分类和选用的主要依据,图4为 常见的两种典型的磁滞回线,其中 软磁材料的磁滞回线狭长、矫顽力、 剩磁和磁滞损耗均较小,是制造变 压器、电机、和交流磁铁的主要材 料。而硬磁材料的磁滞回磁滞回线 较宽,矫顽力大,剩磁强,可用来 制造永磁体。
C 2 R2 B U2截面积。
《磁性材料》实验 南京理工大学材料科学与工程系
3.实验仪器 磁滞回线实验仪、数字万用表、示波器等。
将图5中的U1(UH)和U2(UB)分别加到示波器的 “X输入”和“Y输入”便可观察样品的动态磁滞回 线;接上数字电压表则可以直接测出U1(UH)和 U2(UB)的值,即可绘制出B-H曲线;通过计算可测 定样品的饱和磁感应强度Bs、剩磁Br、矫顽力HD以 磁导率µ。
《磁性材料》实验 南京理工大学材料科学与工程系
4) 观察基本磁化曲线:按步骤2对样品进行退磁,从 U=0开始,逐渐提高励磁电压,将在显示屏上得到面积 由小到大一个套一个的一蔟磁滞回线。这些磁滞回线顶 点的连线,就是样品的基本磁化曲线,借助长余辉示波 器,便可观察到该曲线的轨迹。 5) 测绘基本磁化曲线,并据此描绘μ-H曲线:接通实验 仪的电源,对样品进行退磁后,依次测定 U = 0,0.2, 0.4,0.6…3.0V时的若干组H和B值,作B-H和μ-H曲线。 6) 令U = 3.00V,R1=2.5Ω测定样品的BS、Br、HD等 参数:从已标定好的示波器上读取UX(UH)、UY(UB)值 (峰值),计算相应的H和B,逐点描绘作B-H曲线。 再由磁滞回线测定样品的BS、Br、HD等参数。
铁磁材料磁滞回线及基本磁化曲线的测量

实验26 铁磁材料磁滞回线和基本磁化曲线的测量铁磁性材料分为硬磁材料和软磁材料。
软磁材料的矫顽力小于100A/m ,常用于电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。
铁磁材料的磁化过程和退磁过程中磁感应强度和磁场强度是非线性变化的,磁滞回线和基本磁化曲线是反映软磁材料磁性的重要特性曲线。
矫顽力、饱和磁感应强度、剩余磁感应强度、初始磁导率、最大磁导率、磁滞损耗等参数均可以从磁滞回线和基本磁化曲线上获得,这些参数是磁性材料研制、生产和应用的总要依据。
采用直流励磁电流产生磁化场对材料样品反复磁化测出的磁滞回线称为静态磁滞回线;采用交变励磁电流产生磁化场对材料样品反复磁化测出的磁滞回线称为动态磁滞回线。
本实验利用交变励磁电流产生磁场对不同性能的铁磁材料进行磁化,测绘基本磁化曲线和动态磁滞回线。
【实验目的】①了解用示波器显示和观察动态磁滞回线的原理和方法。
②掌握测绘铁磁材料动态磁滞回线和基本磁化曲线的原理和方法,加深对铁磁材料磁化规律的理解。
③学会根据磁滞回线确定矫顽力 、剩余磁感应强度 、饱和磁感应强度 、磁滞损耗等磁化参数。
【实验仪器与用具】FB310型动态磁滞回线实验仪,双踪示波器,导线。
【实验原理】1.磁性材料的磁化特性及磁滞回线研究磁性材料的磁化规律时,一般是通过测量磁化场的磁场强度H 与磁感应强度B 之间的关系来进行的。
铁磁性材料磁化时,它的磁感应强度B 要随磁场强度H 变化而变化。
但是B 与H 之间的函数关系是非常复杂的。
主要特点如下:(1)当磁性材料从未磁化状态(H =0且B =0)开始磁化时,B 随H 的增加而非线性增加由此画出的H B 曲线称为起始磁化曲线,如图3.26.1(O-a )段曲线。
起始磁化曲线大致分为三个阶段,第一阶段曲线平缓,第二阶段曲线较陡,第三阶段曲线又趋于平缓。
最后当H 增大到一定值m H 后,B 增加十分缓慢或基本不再增加,这时磁化达到饱和状态,称为磁饱和。
铁磁材料动态磁滞回线的观测和研究的实验报告

铁磁材料动态磁滞回线的观测和研究的实验报告铁磁材料的磁滞回线和基本磁化曲线【实验目的】1认识铁磁物质的磁化规律比较两种典型的铁磁物质的动态磁化特性。
2测定样品的基本磁化曲线作H 曲线。
3测定样品的Hc、Br、Bm和Hm�6�1Bm等参数。
4测绘样品的磁滞回线。
【实验原理】1起始磁化曲线和磁滞回线铁磁物质是一种性能特异用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物铁氧体均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化故磁导率很高。
另一特征是磁滞即磁化场作用停止后铁磁质仍保留磁化状态图2-1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。
图2-1 铁磁质起始磁化曲线和磁滞回线图2-2 同一铁磁材料的一簇磁滞回线图中的原点O表示磁化之前铁磁物质处于磁中性状态即BH0当磁场H从零开始增加时磁感应强度B随之缓慢上升如线段Oa所示继之B随H迅速增长如ab所示其后B的增长又趋缓慢并当H增至Hm时B到达饱和值BmOabs称为起始磁化曲线。
图2-1表明当磁场从Hm逐渐减小至零磁感应强度B并不沿起始磁化曲线恢复到“O”点而是沿另一条新的曲线SR下降比较线段OS和SR可知H减少B相应也减小但B 的变化滞后于H的变化这现象称为磁滞磁滞的明显特征是当H0时B 不为零而保留剩磁Br。
当磁场反向从0逐渐变至Hc时磁感应强度B消失说明要消除剩磁必须施加反向磁场Hc称为矫顽力它的大小反映铁磁材料保持剩磁状态的能力线段RD称为退磁曲线。
图2-1还表示当磁场按Hm→0→Hc→-Hm→0→Hc→Hm次序变化相应的磁感应强度B则沿闭合曲线SRDS’R’D’S变化这闭合曲线称为磁滞回线。
所以当铁磁材料处于交变磁场中时如变压器中的铁心将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。
在此过程中要消耗额外的能量并以热的形式从铁磁材料中释放这种损耗称为磁滞损耗可以证明磁滞损耗与磁滞回线所围面积成正比。
2基本磁化曲线应该说明当初始态为HB0的铁磁材料在交变磁场强度由弱到强依次进行磁化可以得到面积由小到大向外扩张的一簇磁滞回线如图2-2所示这些磁滞回线顶点A1、A2、A3、…的连线为铁磁材料的基本磁化曲线由此可近似确定其磁导率因B与H非线性故铁磁材料的不是常数而是随H而变化如图2-3所示。
动态法测量磁滞回线和磁化曲线实验报告

1. 动态法测量磁滞回线和磁化曲线实验报告2. 引言在材料科学和物理学领域,磁性材料的性质对于电磁器件和磁性储存系统的设计和性能起着至关重要的作用。
磁滞回线和磁化曲线是描述磁性材料特性的重要参数,它们对于磁性材料的应用和应力分析具有重要意义。
本实验旨在通过动态法测量磁滞回线和磁化曲线,研究和分析磁性材料的特性,以期能更深入地理解和应用这些理论知识。
3. 实验目的本次实验旨在探索磁性材料的磁滞回线和磁化曲线特性,通过动态法测量并分析磁性材料的磁滞回线和磁化曲线,了解磁性材料在外加磁场作用下的磁性响应规律,并对实验结果进行分析和讨论。
4. 实验原理磁滞回线是描述磁性材料在外加磁场变化时磁化状态的变化规律的曲线。
而磁化曲线则是描述磁性材料在外加磁场的作用下,磁化强度随磁场强度的变化关系。
通过动态法测量磁滞回线和磁化曲线,可以得到材料的磁滞回线图形和磁化曲线图形,并通过分析曲线的各项参数,揭示材料中的一些重要性质。
5. 实验步骤(1)准备工作:准备好磁性材料样品、测量设备和外加磁场设备。
(2)动态法测量磁滞回线:将样品置于外加磁场设备中,通过改变外加磁场的大小和方向,观察样品的磁化状态变化,并记录数据。
(3)动态法测量磁化曲线:在不同外加磁场下,测量样品的磁化强度,并记录数据。
(4)数据处理和分析:根据实验数据,绘制磁滞回线图和磁化曲线图,并分析曲线的各项参数,如剩磁、矫顽力等。
6. 实验结果通过动态法测量,我们得到了样品的磁滞回线和磁化曲线图形,并对实验数据进行了分析。
在磁滞回线图中,我们观察到样品在外加磁场作用下出现了明显的磁滞现象,磁滞回线的形状反映了样品的磁滞性能;在磁化曲线图中,我们观察到了样品在不同外加磁场下磁化强度的变化规律,通过对曲线参数的分析,我们可以得到材料的一些重要性能指标。
7. 实验分析通过对实验数据的分析,我们可以发现磁滞回线和磁化曲线反映了磁性材料在外加磁场作用下的磁性响应规律。
实验6-22铁磁材料磁滞回线和磁化曲线的测量

实验6-22 铁磁材料磁滞回线和磁化曲线的测量在交通、通讯、航天、自动化仪表等领域中,大量应用各种特性的铁磁材料。
常用的铁磁材料多数是铁和其它金属元素或非金属元素组成的合金以及某些包含铁的氧化物(铁氧体)。
铁磁材料的主要特性是磁导率μ非常高,在同样的磁场强度下铁磁材料中磁感应强度要比真空或弱磁材料中的大几百至上万倍。
磁滞回线和磁化曲线表征了磁性材料的基本磁化规律,反映了磁性材料的基本磁参数,对铁磁材料的应用和研制具有重要意义。
本实验利用交变励磁电流产生磁化场对不同性能的铁磁材料进行磁化,通过单片机采集实验数据,测绘磁滞回线和磁化曲线,研究铁磁材料的磁化性质。
实验目的1、了解用示波器显示和观察动态磁滞回线的原理和方法。
2、掌握测绘铁磁材料动态磁滞回线和基本磁化曲线的原理和方法,加深对铁磁材料磁化规律的理解。
3、学会根据磁滞回线确定矫顽力Hc 、剩余磁感应强度Br 、饱和磁感应强度Bm 、磁滞损耗][BH 等磁化参数。
4、学习测量磁性材料磁导率μ的一种方法,并测绘铁磁材料的μ—H 曲线,了解铁磁材料的主要特性。
实验仪器TH —MHC 型磁滞回线实验仪,智能磁滞回线测试仪,双踪示波器等。
实验原理1、铁磁材料的磁化特性及磁导率 1)初始磁化曲线和磁滞回线研究铁磁材料的磁化规律,一般是通过测量磁化场的磁场强度H 与磁感应强度B 之间的关系来进行的。
铁磁材料的磁化过程非常复杂,B 与H 之间的关系如图1所示。
当铁磁材料从未磁化状态(H=0且B=0)开始磁化时,B 随H 的增加而非线性增加。
当H 增大到一定值Hm 后,B 增加十分缓慢或基本不再增加,这时磁化达到饱和状态,称为磁饱和。
达到磁饱和时的Hm 和Bm 分别称为饱和磁场强度和饱和磁感应强度(对应图1中Q 点)。
B ~H 曲线OabQ 称为初始磁化曲线。
当使H 从Q 点减小时,B 也随之减小,但不沿原曲线返回,而是沿另一曲线QRD 下降。
当H 逐步较小至0时,B 不为0,而是Br ,说明铁磁材料中仍然保留一定的磁性,这种现象称为磁滞效应;Br 称为剩余磁感应强度,简称剩磁。
动态法测量磁滞回线和磁化曲线实验报告

动态法测量磁滞回线和磁化曲线实验报告动态法测量磁滞回线和磁化曲线实验报告一、引言磁滞回线和磁化曲线是研究磁性材料磁化性质的重要工具。
磁滞回线描述了材料在外加磁场作用下磁化程度的变化规律,而磁化曲线则反映了材料的磁化特性。
本实验通过动态法测量磁滞回线和磁化曲线,旨在深入了解磁性材料的磁化行为,并通过分析实验数据得出相关结论。
二、实验原理1. 磁滞回线磁滞回线是描述材料在外加磁场逐渐增加和减小过程中磁化程度的变化情况。
在实验中,我们需要使用霍尔效应磁强计来测量磁场强度,从而可以得到材料的磁滞回线。
2. 磁化曲线磁化曲线是描述材料在外加磁场作用下磁化程度随磁场变化的曲线。
在实验中,我们需要使用霍尔效应磁强计和恒流源来测量材料在不同磁场强度下的磁场强度和磁化强度,并绘制出磁化曲线。
三、实验步骤1. 实验准备:a. 准备一块磁性材料样品,并将其放置在实验装置上。
b. 连接霍尔效应磁强计和恒流源到实验装置上,确保测量的准确性和稳定性。
2. 磁滞回线的测量:a. 调整恒流源的电流使得霍尔效应磁强计输出为零。
b. 逐渐增加恒流源的电流,记录同时测量到的磁场强度和霍尔效应磁强计输出的数值。
c. 逐渐减小恒流源的电流,重复步骤b的测量过程。
d. 根据实验数据绘制磁滞回线图。
3. 磁化曲线的测量:a. 调整恒流源的电流使得霍尔效应磁强计输出为零。
b. 逐渐增加恒流源的电流,记录同时测量到的磁场强度和霍尔效应磁强计输出的数值。
c. 根据实验数据绘制磁化曲线图。
四、实验结果与讨论1. 磁滞回线的分析根据所测得的磁滞回线数据,我们可以观察到磁性材料在磁场逐渐增大过程中逐渐磁化,达到饱和磁化强度后,进一步增大磁场也不会有明显增加的效果。
而在磁场逐渐减小过程中,磁性材料的磁化程度也会随之减小,直到完全消除磁化。
磁滞回线的形状对应着材料的磁滞损耗和剩磁等特性。
2. 磁化曲线的分析根据所测得的磁化曲线数据,我们可以观察到磁性材料在不同磁场强度下的磁化程度存在一定的非线性关系。
磁化曲线和磁滞回线测量实验报告

磁化曲线和磁滞回线测量实验报告磁化曲线和磁滞回线测量实验报告引言:磁场是物质中储存的一种能量形式,而磁化曲线和磁滞回线则是描述磁场特性的重要工具。
本实验旨在通过测量磁化曲线和磁滞回线的变化,了解磁场对物质的影响,以及探索磁场的特性和应用。
实验步骤:1. 实验仪器和材料准备:- 电磁铁- 磁场强度计- 直流电源- 磁滞回线测量仪2. 实验过程:a. 将电磁铁连接到直流电源上,并调节电流大小以改变磁场强度。
b. 在不同电流下,使用磁场强度计测量磁场强度,并记录数据。
c. 使用磁滞回线测量仪,测量不同电流下的磁滞回线。
实验结果与讨论:通过实验测量,我们获得了一系列磁化曲线和磁滞回线的数据。
根据这些数据,我们可以得出以下结论:1. 磁化曲线:磁化曲线描述了物质在外加磁场作用下磁矩的变化情况。
从实验数据中,我们可以观察到磁化曲线呈现出非线性的特点。
随着外加磁场的增加,磁矩也随之增加,但增加的速率逐渐减慢,直至趋于饱和。
这是因为在磁场较小的情况下,磁矩的增加主要是由于磁矩的取向发生变化,而在磁场较大时,磁矩的取向已经趋于饱和,因此磁矩的增加速率减慢。
2. 磁滞回线:磁滞回线描述了物质在磁场强度发生变化时,磁矩的变化情况。
从实验数据中,我们可以看到磁滞回线呈现出环形的特点。
当磁场强度逐渐增加时,磁矩也随之增加,但当磁场强度减小时,磁矩并不完全回到初始状态,而是略微偏离。
这是因为在磁场强度减小时,磁矩的取向需要一定的能量来改变,导致磁矩的回复不完全。
3. 磁场的应用:磁场的特性和应用广泛。
在电磁铁中,通过改变电流大小可以控制磁场强度,从而实现吸附和释放物体的功能。
在电动机和发电机中,利用磁场与电流的相互作用,实现能量的转换和传输。
此外,磁场还在磁存储器、磁共振成像等领域发挥着重要作用。
结论:通过本次实验,我们深入了解了磁化曲线和磁滞回线的测量方法和特性。
磁化曲线展示了物质在外加磁场下磁矩的变化规律,而磁滞回线则描述了物质在磁场强度变化时磁矩的变化情况。
《磁化曲线和磁滞回线测量》实验要求与指引

《磁化曲线和磁滞回线测量》实验要求与指引z 实验预习要求:(实验前完成)1、 明确本实验要求做的内容(测量初始磁化曲线和磁滞回线);2、 阅读实验原理部分,弄懂(1)铁磁质磁化过程中的初始磁化、磁饱和、磁滞、剩磁、矫顽力等现象和概念,以及H 与B 的非单值关系;(2)实验中,H 和B 的测量原理和方法;阅读【附录1】初步了解仪器的使用; B B H U SN CR B dt E CR U dt dB S N E U LR N H R I UH L I N H ⋅=⇒=−=⋅=⇒==∫22222221111111和,和3、 阅读【注意事项】;4、 写好预习报告(预先写好实验报告里的实验目的、实验仪器、实验原理(要有文字描述、有关公式)、实验主要步骤等部分以及在预习报告纸上设计画好实验数据的记录表格和做好要求做的【预备问题】的1、2、3。
z 实验测量要求1、 设定测量电路的电路元件参数(按智能实验仪默认参数取值):取样电阻R 1=5.5Ω,积分电阻R 2=30K Ω,积分电容C=3.0μF, 励磁电流频率实验时分别设f =50.0Hz 和f =70.0Hz 。
另外蓝色磁环几何参数:截面S=124mm 2,平均磁路长度L=130mm ,N1 =N2 =100匝已由实验室给定; 2、 测量电路连接(5分钟内连接好);3、 打开电源开关,按实验讲义的【实验内容与步骤】要求进行实验:¾ 观察磁滞回线簇和初始磁化曲线; ¾ 逐点测量初始磁化曲线;(分别取交流励磁电流频率f =50Hz 和70Hz 测量); ¾ 逐点测量磁滞回线。
(分别取交流励磁电流频率f =50Hz 和100Hz 测量)。
(自行设计数据表记录数据)。
4、 数据处理;(课后完成,写在实验报告上)按讲义【数据处理】要求作图(一定要用作图纸作图或用(建议)Excel 作图打印); 5、 做思考题1、2。
(课后完成,写在实验报告上)z 实验报告要求(实验后完成)按实验报告格式要求写好实验报告,其中思考题做P.150的1、2、3题。
09-10磁化曲线和磁滞回线测量(2)

i a0 a1[U1 cos(0t 0 ) U cos( t )] a2 [U1 cos(0t 0 ) U cos( t )]2
把第三项展开并用三角函数积化和差公式变换可得:
当 u1和u 共同作用到非线性元件或电路上,使得有:
P0 P0 调制光波
主控振荡器 W 产生的调制 波信号 (108 Hz )
t
调制光波包络 (108 Hz )
对发光二极管直接光强调制的原理
设:调制信号 则光源驱动电流:
i I cos t
I I I 0 I cos t I 0 (1 ) cos t I 0 (1 m) cos t I0
仪面板
【实验原理】
1、铁磁质材料的磁化规律(B~H关系) B BS S 在强度为H的磁场中放入铁磁物 Br 质,则铁磁物质被磁化。铁磁物质的 H -HC 磁化规律可用磁化场的磁场强度H和 O HC HS -HS 磁感应强度B之间的关系(即B-H曲线) -Br 来说明。 -BS S′ (1)初始磁化曲线和磁滞回线 ◆初始磁化曲线(OS段): B 直到磁饱和(H S , BS) H 磁饱和现象:当H >Hs,Bs基本不变。 ◆磁滞回线(如右上图的绿色闭合线) 磁滞现象:H从Hs逐渐减小,虽然B也随之减小, 但并不按OS段逆向减小,而是按SBr段减小,在H减 为0时,B并未减为0,而是B=Br。
i a2U 2U cos[(0 )t (0 ) ]
可见,u1、u2分别与 u混频后均含有差频分量,只要 选择适当的本振频率 f ( ) ,可使差频等于455KHz, 而且两差频的相位差与 u1、u2 的相位差一样,没有 改变。 所以可用选频器把两差频分量分别选出来测量相 位差,以代替对 u1、u2相位差的测量。 [返回]
讲义:磁化曲线和磁滞回线测量

实验C 磁化曲线和磁滞回线测量磁性材料应用广泛,扬声器永久磁铁、变压器铁芯、计算机磁盘等都采用磁性材料。
铁磁材料分为硬磁和软磁两大类。
硬磁材料的剩磁和矫顽力大(102 ~2⨯104 A/m),可做永久磁铁。
软磁材料的剩磁和矫顽力小(102 A/m以下),容易磁化和去磁,广泛用于电机和仪表制造业。
磁化曲线和磁滞回线是磁材料的重要特性,是变压器等设备设计的重要依据。
磁滞回线测量可分静态法和动态法。
静态法是用直流来磁化材料,得到的B—H曲线称为静态磁滞回线。
动态法是用交变来磁化材料,得到的B—H曲线称为动态磁滞回线。
静态磁滞回线只与磁化磁场的大小有关,磁样品中只有磁滞损耗;而动态磁滞回线不仅与磁化磁场的大小有关,还与磁化场的频率有关,磁样品中不仅有磁滞损耗,还有涡流损耗。
因此,同一磁材料在相同大小磁化场下,动态磁滞回线的面积比静态磁滞回线大,损耗大。
本实验采用动态法测量软磁样品的动态磁滞回线和磁化曲线,测量曲线可连续或逐点显示在LCD(液晶)屏上,直观、简便、物理过程清晰。
【实验目的】1.了解磁滞回线和磁化曲线概念,加深对磁材料矫顽力、剩磁等参数的理解。
2.掌握磁材料磁化曲线和磁滞回线的测量方法,确定B s、B r和H c等参数。
3.探讨励磁电流频率对动态磁滞回线的影响。
【预备问题】1.为什么测磁化曲线先要退磁?2.为什么测量磁化曲线要进行磁锻炼?3.为什么动态磁滞回线的面积比静态磁滞回线大,损耗大?【实验仪器】FC10-II型智能磁滞回线实验仪。
【实验原理】1.铁磁材料的磁化规律(1) 初始磁化曲线在强度为H的磁场中放入铁磁物质,则铁磁物质被磁化,其磁感应强度B与H的关系为:B = H, 为磁导率。
对于铁磁物质,μ不是常数,而是H的函数。
如图1所示,当铁磁材料从H=0开始磁化时,B随H逐步增大,当H增加到H s时,B趋于饱和值B s,H s称为饱和磁场强度。
从未磁化到饱和磁化的这段磁化曲线OS,称为初始磁化曲线。
铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告实验的第一部分,我们得先明确铁磁材料的基本概念。
铁磁材料能在外磁场作用下,形成稳定的磁性。
你知道吗?这就是为什么铁钉能吸引铁屑的原因。
实验中,我们使用的是一种常见的铁磁材料,像铁氧体或硅钢片。
通过施加不同强度的外磁场,材料的磁性会发生变化,最终形成一条独特的曲线。
这个过程就像一场舞蹈,材料在外部刺激下,展现出它的“个性”。
接着,进入到实验的具体步骤。
首先,我们把样品放入测试装置。
然后,逐步增加外部磁场的强度。
随着外场强度的增强,材料的磁性逐渐增强,形成了磁化过程。
到了某个临界点,磁性不再增强,似乎是遇到了瓶颈。
这时,咱们要测量一下,记录下这个“转折点”的磁场强度,心里别提多兴奋了!而在反向施加外磁场时,情况就变得有趣了。
磁性逐渐减弱,然后出现了滞后现象。
这种滞后特性,就是所谓的磁滞回线。
我们会发现,这条回线与之前的磁化曲线形成了一个闭合的环。
这种现象不仅让我们看到了材料的记忆效应,更让我们感受到材料的复杂性和奇妙之处。
然后,再深入一些,咱们得讨论一些专业术语。
磁滞损耗,这个名词听起来有点复杂,其实它指的就是在磁场变化过程中,材料吸收的能量损失。
很直观地说,就是材料在不断变化的磁场中,有些能量会“跑掉”。
这就像我们在熬夜时,虽说努力学习,但总有点效率低下,没能全部吸收知识。
接下来的部分,咱们需要把数据整理出来。
将不同强度下的磁感应强度和外磁场强度绘制成图,最终得出一个清晰的磁滞回线。
你看,这就像画一幅画,每一笔每一划都很重要。
这幅图不仅让人一目了然,更是研究磁性材料的重要依据。
然后,咱们再来聊聊应用。
磁滞回线不仅在科学研究中有用,实际上在很多工业应用中也能见到它的身影。
比如说,变压器和电动机的设计,就需要充分考虑到这种特性。
好的设计能够减少能量损失,提高效率,真是一举两得。
最后,咱们总结一下。
这次实验不仅让我们深入了解了铁磁材料的行为,更重要的是,让我们体会到了实验的乐趣。
实验4-7动态磁滞回线和磁化曲线的测量动态磁滞回线和磁化曲线的测量

实验4-7动态磁滞回线和磁化曲线的测量动态磁滞回线和磁化曲线的测量指南预习指南铁磁材料包括铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体),在外磁场的作用下,能被强烈磁化,磁导率很高并随磁场变化,当外磁场撤掉以后,铁磁材料仍具有一定的磁性,磁化规律复杂。
铁磁材料具有的这种保持原定磁化状态的性质称为磁滞。
研究铁磁材料的磁化规律,一般是通过测量磁化场的磁场强度H与磁感应强度B之间的关系来进行的。
实验中要了解示波器显示和观察动态磁滞回线的原理与方法,掌握测绘铁磁材料动态磁滞回线和基本磁化曲线的原理与方法,学会根据磁滞回线确定铁磁材料的矫顽力、剩磁、饱和磁感应强度、磁滞损耗等磁化参数,学习测量磁性材料磁导率的一种方法,理解铁磁材料的磁化规律和主要特性。
该实验是一个综合物理实验,难度系数:1.00,适合自动化、电子信息工程、电气工程及其自动化、机械设计制造及其自动化、过程装备与控制工程、材料成型及控制工程、数学、信息、车辆工程、安全、计算机等专业以及对近代物理理论和实验感兴趣的同学选做。
实验内容1、线路连接选择测试样品,正确连接实验线路(实验室已连接好,只需选择好待测样品即可),调整好双踪示波器。
2、观测样品的磁滞回线(1)退磁。
顺时针方向转动励磁电压旋钮,使其从0V 增加到3V,再逆时针方向转动电压旋钮,从3V 降至0,消除剩磁,使样品处于磁中性状态。
(2)观察磁滞回线。
调节示波器各旋钮使光点处于坐标原点,选择Ω=5.21R ,励磁电压选取一个合适的值,调节示波器的X 轴和Y 轴灵敏度,使屏幕上显示大小合适的磁滞回线.若出现畸变,可适当降低励磁电压.(3)测绘磁滞回线。
使用智能磁滞回线测试仪采集B 和H 的数据,并记录磁滞损耗[]BH 和40组左右的B 、H 数据,注意在磁滞回线顶点、剩磁与矫顽力附近读取数据点间隔稍微密集一些。
用坐标纸或计算机绘出磁滞回线,从所绘制的磁滞回线上读取m B 、m H 、c H 。
磁化曲线和磁滞回线的测量

铁磁材料的磁化曲线和磁滞回线磁性材料应用广泛,从常用的永久磁铁、变压器铁芯到录音、录像、计算机存贮用的磁带、磁盘等都采用磁性材料。
磁滞回线和基本磁化曲线反映了磁性材料的主要特征。
通过实验研究这些性质不仅能掌握用示波器观察磁滞回线以及基本磁化曲线的基本测绘方法,而且能从理论和实际应用上加深对材料磁特性的认识。
铁磁材料分为硬磁和软磁两大类,其根本区别在于矫顽磁力C H 的大小不同。
硬磁材料的磁滞回线宽,剩磁和矫顽磁力大()以上从m A m A /102~/1204⨯,因而磁化后,其磁感应强度可长久保持,适宜做永久磁铁。
软磁材料的磁滞回线窄,矫顽磁力C H 一般小于m A /120,但其磁导率和饱和磁感强度大,容易磁化和去磁,故广泛用于电机、电器和仪表制造等工业部门。
磁化曲线和磁滞回线是铁磁材料的重要特性,也是设计电磁机构作仪表的重要依据之一。
本实验采用动态法测量磁滞回线。
需要说明的是用动态法测量的磁滞回线与静态磁滞回线是不同的,动态测量时除了磁滞损耗还有涡流损耗,因此动态磁滞回线的面积要比静态磁滞回线的面积要大一些。
另外涡流损耗还与交变磁场的频率有关,所以测量的电源频率不同,得到的H B ~曲线是不同的,这可以在实验中清楚地从示波器上观察到。
【实验目的】1.掌握磁滞、磁滞回线和磁化曲线的概念,加深对铁磁材料的主要物理量:矫顽力、剩磁和磁导率的理解。
2.学会用示波法测绘基本磁化曲线和磁滞回线。
3.根据磁滞回线确定磁性材料的饱和磁感应强度S B 、剩磁Br 和矫顽力C H 的数值。
4.研究不同频率下动态磁滞回线的区别,并确定某一频率下的磁感应强度S B 、剩磁Br 和矫顽力C H 的数值。
5.改变不同的磁性材料,比较磁滞回线形状的变化。
【实验原理】1.磁化曲线如果在通电线圈产生的磁场中放入铁磁物质,则磁场将明显增强,此时铁磁物质中的磁感应强度比单纯由电流产生的磁感应强度增大百倍,甚至在千倍以上。
铁磁物质内部的磁场强度H 与磁感应强度B 有如下的关系:H B ∙=μ对于铁磁物质而言,磁导率μ并非常数,而是随H 的变化而改变的物理量,即()H f =μ,为非线性函数。
磁化曲线和磁滞回线测量

实验背景
•铁磁材料(铁、钴、镍及铁氧化物)在航天、通信、仪 表等领域应用广泛,如变压器铁芯、硬盘,有测量意义。
•铁磁材料分为硬磁(矫顽力大于102~2104 A/m)和软 磁(小于102 A/m)两大类。
•高磁导率和磁滞是铁磁材料的两大特性,磁化曲线和磁 滞回线是变压器等设备设计的重要依据。
•磁滞回线测量可分静态法(直流励磁法)和动态法(交流 励磁法)。本实验采用动态法测量软磁样品。
(c)将原点O与各磁滞回线的顶点a1, a2, a3,…相连,得到初始磁化曲线。
(4) 逐点测量初始磁化曲线
(1)将励磁正弦信号的频率调为50 Hz,幅度波段 开关调至0挡,从退磁状态开始测量。 (2)按“D/确定”键,结束当前操作。 (3)按“4/起始磁化曲线”键。
(5)逐点测量磁滞回线
(1)按“D/确定”键,结束当前操作。 (2)将励磁正弦信号50 Hz,幅度波段开关调至饱和磁化幅度(如IX挡)。 (3)按“6/逐点测量”键:
如果lcd显示的磁滞回线大小不合适可以通过8b缩小键9b放大键ah放大键ah缩小键在b坐标方向或h坐标方向放大或缩小磁如果漏记了前面某个测量点的bh值可以按7逐点查询键来查询
磁化曲线和磁滞回线测量
超声测速
13 实验背景 23 实验目的 3 实验演示 34 实验原理与方法 35 实验内容 63 注意事项与思考题
实验原理
H N1I1 L
UH I1R1
E2
d
dt
N2S2
dB dt
H
N1 LR1
UH
UB
UC
Q C
1 C
I2dt
1 CR2
E2dt
软磁材料磁滞回线和基本磁化曲线的测量

实验六、软磁材料磁滞回线和基本磁化曲线的测量铁磁材料按特性分硬磁和软磁两大类•软磁材料的矫顽力H e小于100A/m,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯•磁化曲线和磁滞回线是反映铁磁材料磁性的重要特征曲线•矫顽力和饱和磁感应强度B s、剩磁B r.磁滞损耗P等参数均可以从磁滞回线和磁化曲线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据.1. 一快从未被磁化的材料磁化时,当H由0 开始逐渐增加至某最大值Hm, B也由0开铁磁材料磁化时,其磁感强度随磁场强度的变化非常复杂.有如下特点:始逐渐增加,由此画出的B-H曲线o-a称起始磁化曲线,如图 1.起始磁化曲线大致分为三个阶段,第-阶段曲线平缓,第二阶段曲线很陡,第三阶段曲线又变得平缓.最后B趋于不变,这种现象称为饱和.饱和时的磁感强度称为饱和磁感强度,记做B s.H也可以得到一条磁滞回线.但这条曲线不是饱和的.逐渐增加磁场至H2, H3 , H4,…(H2VH3VH4…),可以得到一系列磁滞回线.将这些磁滞回线的顶点连起来,就得到基本磁化曲线,如图2. 【实验目的】i •了解有关铁磁性材料性质的知识;2•了解用示波器动态测量软磁材料磁滞回线和基本磁化曲线的原理; 3 •学习并体会物理实验方法中的转换测量法;4•掌握用示波器动态测量软磁材料磁滞回线和基本磁化曲线的方法 .【实验器材】GY-4隔离变压器;CZ-2磁质回线装置;COS5020示波器. 【实验原理】软磁材料的样品可做成闭合回路状(如图所示),在样品上绕N i 匝初级线圈和 N样品被磁化后产生变化的磁通量,进而在次级线圈中产生感应电动势:可得:^U2N 2SU 2是电容器两端的电压.由此可见U i 正比于H ,U 2正比于B ,将信号分分别输入到双通 道示波器的x 端和y 端,选择x-y 方式,就可以在示波器上看到磁滞回线.匝次级线圈,初级线圈里通过电流i i ,在 样品中产生磁场,其磁场强度为N i i iN i R 1lU i(1)式中I 是初级线圈所绕样品的平均长度, R i 是与初级线圈串联的电阻,u i 是R i 两 端的电压.采用动态测量法,初级线圈里需通过 交流电(由隔离变压器提供)•d dt7匸dt-N 2SdB dtS 是样品的截面积.次级线圈的电压正比于磁感强度 B 随时间的变化率,必须积分后才能得到B.积分可由RC 电路来完成,电路中满足条件iR 2…応,忽略次级线圈的内阻后,(2)〜定量测量时,记录每一步磁滞回线的定点坐标,由电压参数得到相应的电压值,再根据(1)、(2)计算对应的B、H值,从而可做出基本磁化曲线.在饱和磁滞回线上记录H e、B s、B r的坐标,可算出相应的实验值.【实验内容及步骤】实验内容:1 •在坐标纸上做出基本磁化曲线和饱和磁滞回线.2 •给出H e、B s、B r的实验结果.步骤:1 •正确连接线路,调节示波器,观察磁滞回线的形状.2•将隔离变压器电压调至80V左右,调整磁滞回线至理想的大小和形状,确定实验所需的两通道电压参数.3•将电压缓慢调至零,实现对样品的退磁,并在示波器上调整坐标原点.4•将磁场由0(电压为0)开始,逐步(电压每10V变化一步)增加至B达到饱和,记下每一步磁滞回线定点的坐标.5 •在饱和磁滞回线上记录H e、B s、B r的坐标,测量时应在>0、<0两点进行测量,取平均值.【数据记录】表1软磁材料基本磁化曲线绘制的测量数据表2 H C、R、B的测量数据注意事项:1测量前检查示波器两通道的垂直微调旋钮是否在校准位置2•确定软磁材料饱和时对应隔离变压器的电压,饱和时示波器上类磁滞回线的尖端连接处的两条曲线变得重合•思考题:1如果测量前没有将材料退磁,会出现什么情况?2•用磁路不闭合的样品进行测量会导致什么结果?3•测量时磁场H是正弦变化的,磁感强度B是否按正弦规律变化?反之,若磁感强度B是正弦变化的,磁场H是否也按正弦规律变化?附录:磁滞回线装置参数2= 2000匝N2 =121 匝尺=12门R2=16k「3 2L =0.132m S =0.208 10 m C=(10一0. 05)。
铁磁材料的磁滞回线和基本磁化曲线实验报告

实验题目:铁磁材料的磁滞回线和基本磁化曲线实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。
实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。
以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。
如右上图中a ,称为起始磁化曲线。
当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。
当H=0时,B=B r 称为保留剩磁。
当B=0时,H=-H c ,H c 称为矫顽力。
当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。
若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。
磁滞回线的顶点的连线称为基本磁化曲线(右下图)。
B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至3.0V,测量铁磁质的磁滞回线;3、将电压从0.5V逐渐调至3.0V,依次得到B m、H m,从而得到铁磁质的基本磁化曲线。
实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:B m=0.604T;H m=194.0A/m;B r=0.183T;H c=37.3A/m。
基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图4 不同铁磁材料 的磁滞回线
《磁性材料》实验
南京理工大学材料科学与工程系
3) 示波器显示B-H曲线的原理和线路
图5 实验线路
《磁性材料》实验 南京理工大学材料科学与工程系
根据安培环路定律,样品的磁化场强为:
Ni1 N H U1 L LR1
式中N为励磁绕组,R1为励磁电流取样电阻,U1是交 流励磁电压,L为样品的平均磁路长度。 根据法拉第电磁感应定律,在交变磁场下样品的 磁感应强度B是测量绕组n和R2C2电路给定的:
《磁性材料》实验
一、实验目的和任务 ; 二、实验项目; 三、参考资料 : 教材及参考书: 1.《现代磁性材料原理和应用》 主编:R.C. O’ Handley 化学工业出版社 2002 2.《磁学基础与磁性材料》 主编:严密等 出版 社:浙江大学出版社 2006 实验指导书: 自编《磁性材料》实验指导书。
《磁性材料》实验 南京理工大学材料科学与工程系
4) 观察基本磁化曲线:按步骤2对样品进行退磁,从 U=0开始,逐渐提高励磁电压,将在显示屏上得到面积 由小到大一个套一个的一蔟磁滞回线。这些磁滞回线顶 点的连线,就是样品的基本磁化曲线,借助长余辉示波 器,便可观察到该曲线的轨迹。 5) 测绘基本磁化曲线,并据此描绘μ-H曲线:接通实验 仪的电源,对样品进行退磁后,依次测定 U = 0,0.2, 0.4,0.6…3.0V时的若干组H和B值,作B-H和μ-H曲线。 6) 令U = 3.00V,R1=2.5Ω测定样品的BS、Br、HD等 参数:从已标定好的示波器上读取UX(UH)、UY(UB)值 (峰值),计算相应的H和B,逐点描绘作B-H曲线。 再由磁滞回线测定样品的BS、Br、HD等参数。
《磁性材料》实验ຫໍສະໝຸດ 南京理工大学材料科学与工程系
4.实验内容及步骤 1) 电路连接:选择样品,按实验仪上所给的电路 接线图连接好线路。令R1=2.5Ω,置励磁电压U于 0位。UH和UB分别接示波器的“X输入”和“Y输 入”,插孔“⊥”为接地公共端。 2) 样品退磁:开启仪器电源开关,对样品进行退 磁,顺时针方向转动电压U的调节旋钮,观察数字 电压表可看到U从0逐渐增加增至最大,然后逆时针 方向转动电压U的调节旋钮,将U逐渐从最大值调 为0,这样做的目的是消除剩磁,确保样品处于磁 中性状态,即B=H=0,如图7所示。
《磁性材料》实验 南京理工大学材料科学与工程系
谢谢!
《磁性材料》实验
南京理工大学材料科学与工程系
《磁性材料》实验
南京理工大学材料科学与工程系
2.实验原理 1) 磁滞回线
图1 铁磁质起始磁化 图2 同一铁磁材料的 图3 铁磁材料µ与H 曲线和磁滞回线 一簇磁滞回线 关系曲线
《磁性材料》实验 南京理工大学材料科学与工程系
当磁场按Hs→O→-HD→-Hs→O→HD→Hs次 序变化,相应的磁感应强度B则沿闭合曲线 SRDS’R’D’S变化,这闭合曲线称为磁滞回线。 2) 磁化曲线 当初始态为H=B=0的铁磁材料,在交变 磁场强度由弱到强依次进行磁化,可以得到面 积由小到大向外扩张的一簇磁滞回线,其中最 大面积的磁滞回线称为极限磁滞回线,如图2所 示,这些磁滞回线顶点的连线称为铁磁材料的 基本磁化曲线,由此可近似确定其磁导率 μ=B/H,因B与H非线性,故铁磁材料的μ不是 常数而是随H而变化(如图3所示)
《磁性材料》实验 南京理工大学材料科学与工程系
图7 退磁示意图
图8 U2和B的相位差等因素引起的畸变
3) 观察样品在50HZ交流信号下的磁滞回线:开启 示波器电源,调节示波器上“X”、“Y”位移旋钮,使 光点位于坐标网格中心,调节励磁电压U和示波器的 X和Y轴灵敏度,使显示屏上出现大小合适、美观的磁 滞回线图形(若图形顶部出现编织状的小环,如图8 所示,这时可降低U予以消除)。
《磁性材料》实验 南京理工大学材料科学与工程系
5.实验数据记录 1) 作B-H基本磁化曲线与μ-H曲线 2) 描绘动态磁滞回线并计算样品的BS、Br、HD 参数。
6.思考题 1) 为什么要退磁?如果不退磁,对实验结果会 有什么影响? 2) 为什么测绘磁滞回线时,励磁电压不宜过高 或过低?
C 2 R2 B U2 nS
式中U2为积分电容C2两端电压,S为样品的截面积。
《磁性材料》实验 南京理工大学材料科学与工程系
3.实验仪器 磁滞回线实验仪、数字万用表、示波器等。
将图5中的U1(UH)和U2(UB)分别加到示波器的 “X输入”和“Y输入”便可观察样品的动态磁滞回 线;接上数字电压表则可以直接测出U1(UH)和 U2(UB)的值,即可绘制出B-H曲线;通过计算可测 定样品的饱和磁感应强度Bs、剩磁Br、矫顽力HD以 磁导率µ。
《磁性材料》实验 南京理工大学材料科学与工程系
实验一 基本磁化曲线和动态磁滞回线的测量
1.实验目的 1) 认识铁磁物质的磁化规律,比较两种典型铁磁物 质的动态磁化特性。 2) 测定样品的基本磁化曲线,并作出μ-H曲线。 3) 测定样品的HD、Br、Bs等参数。 4) 学会用示波器测绘基本磁化曲线和动态磁滞回线。
《磁性材料》实验 南京理工大学材料科学与工程系
磁化曲线和磁滞回线是铁磁材 料分类和选用的主要依据,图4为 常见的两种典型的磁滞回线,其中 软磁材料的磁滞回线狭长、矫顽力、 剩磁和磁滞损耗均较小,是制造变 压器、电机、和交流磁铁的主要材 料。而硬磁材料的磁滞回磁滞回线 较宽,矫顽力大,剩磁强,可用来 制造永磁体。