整式的乘法与因式分解专题练习(解析版)
(完整版)整式的乘法与因式分解考点练习(含答案)
整式的乘法与因式分解复习考点1 幂的运算1.下列计算正确的是( )A .(a 2)3=a 5B .2a -a =2C .(2a)2=4aD .a·a 3=a 42.(铜仁中考)下列计算正确的是( )A .a 2+a 2=2a 4B .2a 2·a 3=2a 6C .3a -2a =1D .(a 2)3=a 63.计算:x 5·x 7+x 6·(-x 3)2+2(x 3)4.A. 124xB. 122xC. 12xD. 64x考点2 整式的乘法 4.下列运算正确的是( )A .3a 2·a 3=3a 6B .5x 4-x 2=4x 2C .(2a 2)3·(-ab)=-8a 7bD .2x 2÷2x 2=05.计算:(3x -1)(2x +1)=________.A. 162-+x xB. 162--x xC. 1562-+x xD. 1562-+x x6.计算:(1)(-3x 2y)3·(-2xy 3); (2)(34x 2y -12xy 2)(-4xy 2). A. 636y x , 422323y x y x +- B. -636y x , 423323y x y x +-C. 6754y x ,423323y x y x +-D. -6754y x , 422323y x y x +-考点3 整式的除法7.计算8a 3÷(-2a)的结果是( )A .4aB .-4aC .4a 2D .-4a 28.若5a 3b m ÷25a n b 2=252b 2,则m =____________,n =__________. 9.化简:(a 2b -2ab 2-b 3)÷b -(a -b)2.考点4 乘法公式10.下列关系式中,正确的是( )A .(a +b)2=a 2-2ab +b 2B .(a -b)2=a 2-b 2C .(a +b)(-a +b)=b 2-a 2D .(a +b)(-a -b)=a 2-b 211.已知(x +m)2=x 2+nx +36,则n 的值为( )A .±6B .±12C .±18D .±7212.计算:(1)(-2m +5)2; (2)(a +3)(a -3)(a 2+9); (3)(a -1)(a +1)-(a -1)2.考点5 因式分解13.(北海中考)下列因式分解正确的是( )A .x 2-4=(x +4)(x -4)B .x 2+2x +1=x(x +2)+1C .3mx -6my =3m(x -6y)D .2x +4=2(x +2)14.多项式mx 2-m 与多项式x 2-2x +1的公因式是( )A .x -1B .x +1C .x 2-1D .(x -1)215.(黔西南中考)分解因式:4x 2+8x +4=________.16.若x -2y =-5,xy =-2,则2x 2y -4xy 2=________.综合训练17.(威海中考)下列运算正确的是( )A .(-3mn)2=-6m 2n 2B .4x 4+2x 4+x 4=6x 4C .(xy)2÷(-xy)=-xyD .(a -b)(-a -b)=a 2-b 218.(毕节中考)下列因式分解正确的是( )A .a 4b -6a 3b +9a 2b =a 2b(a 2-6a +9)B .x 2-x +14=(x -12)2 C .x 2-2x +4=(x -2)2D .4x 2-y 2=(4x +y)(4x -y)19.(大连中考)若a =49,b =109,则ab -9a 的值为________.20.(宁波中考)一个大正方形和四个全等的小正方形按图1、2两种方式摆放,则图2的大正方形中未被小正方形覆盖部分的面积是________(用a 、b 的代数式表示)[图1 图221.(绵阳中考)在实数范围内因式分解:x 2y -3y =________________.22.(崇左中考)4个数a ,b ,c ,d 排列成⎪⎪⎪⎪⎪⎪a b c d ,我们称之为二阶行列式.规定它的运算法则为:⎪⎪⎪⎪⎪⎪a b cd =ad -bc.若⎪⎪⎪⎪⎪⎪x +3 x -3x -3 x +3=12,则x =________. 23.计算:(1)5a 3b ·(-3b)2+(-ab)(-6ab)2;(2)x(x 2+3)+x 2(x -3)-3x(x 2-x -1).24.把下列各式因式分解:(1)2m(a-b)-3n(b-a);(2)16x2-64;(3)-4a2+24a-36.25先化简(a2b-2ab2-b3)÷b-(a+b)(a-b),然后对式子中a、b分别选择一个自己最喜欢的数代入求值.26.我们约定:a b=10a÷10b,如43=104÷103=10.(1)试求123和104的值;(2)试求(215)×102的值.参考答案1.D2.D3.原式=x 12+x 6·x 6+2x 12=x 12+x 12+2x 12=4x 12.4.C5.6x 2+x -16.(1)原式=-27x 6y 3×(-2xy 3)=54x 7y 6.(2)原式=34x 2y ·(-4xy 2)-12xy 2·(-4xy 2)=-3x 3y 3+2x 2y 4. 7.D8.4 39. 原式=a 2-2ab -b 2-a 2+2ab -b 2=-2b 2.10. C11. B12. (1)原式=4m 2-20m +25. (2)原式=(a 2-9)(a 2+9)=a 4-81. (3)原式=a 2-1-a 2+2a -1=2a -2.13. D14. A15.4(x +1)216.2017. C18. B19.4 90020.ab21.y(x -3)(x +3)22.123. (1)原式=5a 3b ·9b 2+(-ab)·36a 2b 2=45a 3b 3-36a 3b 3=9a 3b 3. (2)原式=x 3+3x +x 3-3x 2-3x 3+3x 2+3x =-x 3+6x.24.(1)原式=(a -b)(2m +3n). (2)原式=16(x +2)(x -2). (3)原式=-4(a -3)2.25.原式=a 2-2ab -b 2-(a 2-b 2)=a 2-2ab -b 2-a 2+b 2=-2ab.如选择一个喜欢的数为a =1,b =-1,则原式=2.26.(1)123=1012÷103=109,104=1010÷104=106. (2)(215)×102=(1021÷105)×102=1018.。
整式的乘法与因式分解及答案解析
↗(人教版.整式的乘法与因式分解.第14章.2分)1.下列因式分解正确的是()A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2C.xy﹣x=x(y ﹣1)D.2x+y=2(x+y)考点:因式分解-运用公式法;因式分解-提公因式法.专题:因式分解分析:分别利用公式法以及提取公因式法分解因式进而判断得出即可.解答:解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;B、a2+a+1无法因式分解,故此选项错误;C、xy﹣x=x(y﹣1),正确;D、2x+y无法因式分解,故此选项错误;故选:C.点评:此题主要考查了公式法以及提取公因式法分解因式,熟练掌握乘法公式是解题关键.↗(人教版.整式的乘法与因式分解.第14章.2分)2.下面分解因式正确的是()A.x2+2x+1=x(x+2)+1 B.(x2﹣4)x=x3﹣4x C.ax+bx=(a+b)x D.m2﹣2mn+n2=(m+n)2考点:因式分解-运用公式法;因式分解-提公因式法.专题:因式分解分析:直接利用因式分解法的定义以及提取公因式法和公式法分解因式得出即可.解答:解:A、x2+2x+1=x(x+2)+1,不是因式分解,故此选项错误;B、(x2﹣4)x=x3﹣4x,不是因式分解,故此选项错误;C、ax+bx=(a+b)x,是因式分解,故此选项正确;D、m2﹣2mn+n2=(m﹣n)2,故此选项错误.故选:C.点评:此题主要考查了提取公因式法和公式法分解因式等知识,正确把握因式分解的方法是解题关键.↗(人教版.整式的乘法与因式分解.第14章.2分)3.分解因式x2y﹣y3结果正确的是()A.y(x+y)2B.y(x﹣y)2C.y(x2﹣y2)D.y(x+y)(x﹣y)考点:提公因式法与公式法的综合运用.专题:因式分解分析:首先提取公因式y,进而利用平方差公式进行分解即可.解答:解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故选:D.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.↗(人教版.整式的乘法与因式分解.第14章.2分)4.下列因式分解正确的是()A. 2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+2考点:提公因式法与公式法的综合运用.专题:因式分解分析:A直接提出公因式a,再利用平方差公式进行分解即可;B和C不能运用完全平方公式进行分解;D是和的形式,不属于因式分解.解答:解:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故此选项正确;B、x2﹣2x+1=(x﹣1)2,故此选项错误;C、x2+1,不能运用完全平方公式进行分解,故此选项错误;D、x2﹣x+2=x(x﹣1)+2,还是和的形式,不属于因式分解,故此选项错误;故选:A.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.(人教版.整式的乘法与因式分解.第14章.2分)5.若a+b=2,ab=2,则a2+b2的值为()A. 6 B.4 C.3D.2考点:完全平方公式.专题:因式分解分析:利用a2+b2=(a+b)2﹣2ab代入数值求解.解答:解:a2+b2=(a+b)2﹣2ab=8﹣4=4,故选:B.点评:本题主要考查了完全平方公式的应用,解题的关键是牢记完全平方公式,灵活运用它的变化式.↗(人教版.整式的乘法与因式分解.第14章.2分)6.如图,正方形ABCD的边长为2,H在CD的延长线上,四边形CEFH也为正方形,则△DBF的面积为()A. 4 B.C.D. 2考点:整式的混合运算.专题:计算题.分析:设正方形CEFH边长为a,根据图形表示出阴影部分面积,去括号合并即可得到结果.解答:解:设正方形CEFH的边长为a,根据题意得:S△BDF=4+a2﹣×4﹣a(a﹣2)﹣a(a+2)=2+a2﹣a2+a﹣a2﹣a=2.故选:D.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.↗(人教版.整式的乘法与因式分解.第14章.2分)7.因式分解:m (x﹣y)+n(x﹣y)=(x﹣y)(m+n).考点:因式分解-提公因式法.专题:因式分解.分析:直接提取公因式(x﹣y),进而得出答案.解答:解:m(x﹣y)+n(x﹣y)=(x﹣y)(m+n).故答案为:(x﹣y)(m+n).点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.↗(人教版.整式的乘法与因式分解.第14章.2分)8.已知实数a,b 满足ab=3,a﹣b=2,则a2b﹣ab2的值是6.考点:因式分解-提公因式法.专题:计算题.分析:首先提取公因式ab,进而将已知代入求出即可.解答:解:a2b﹣ab2=ab(a﹣b),将ab=3,a﹣b=2,代入得出:原式=ab(a﹣b)=3×2=6.故答案为:6.点评:此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.↗(人教版.整式的乘法与因式分解.第14章.2分)9.若ab=3,a﹣2b=5,则a2b﹣2ab2的值是15.考点:因式分解-提公因式法.专题:整体思想.分析:直接提取公因式ab,进而将已知代入求出即可.解答:解:∵ab=3,a﹣2b=5,则a2b﹣2ab2=ab(a﹣2b)=3×5=15.故答案为:15.点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.↗(人教版.整式的乘法与因式分解.第14章.2分)10.已知2x+y=0,求代数式x(x+2y)﹣(x+y)(x﹣y)+2的值.考点:整式的混合运算—化简求值.专题:计算题分析:先算乘法,再合并同类项,变形后代入求出即可.解答:解:x(x+2y)﹣(x+y)(x﹣y)+2=x2+2xy﹣(x2﹣y2)+2=x2+2xy﹣x2+y2+2=y2+2xy+2=y(y+2x)+2,∵2x+y=0∴原式=2点评:本题考查了整式的混合运算和求值的应用,主要考查学生的计算能力和化简能力,题目比较好,难度适中.↗(人教版.整式的乘法与因式分解.第14章.2分)11.已知2x+y=4,求[(x﹣y)2﹣(x+y)2+y(2x﹣y)]÷(﹣2y)的值.考点:整式的混合运算—化简求值.专题:因式分解分析:先求出x+y的值,再算乘法,合并同类项,最后整体代入求出即可.解答:解:∵2x+y=4,∴x+y=2,∴原式=[x2﹣2xy+y2﹣x2﹣2xy﹣y2+2xy﹣y2]÷(﹣2y)=(﹣2xy﹣y2)÷(﹣2y)=x+y=2.点评:本题考查了整式的混合运算和求值的应用,主要考查学生的计算能力,用了整体代入思想,题目比较好,难度适中.。
整式的乘法与因式分解习题带答案精选全文完整版
可编辑修改精选全文完整版Array第十四章、整式乘除与因式分解14.1 整式的乘法(1)(-3x)2(x+1)(x+3)+4x(x-1)(x2+x+1),其中x=-1;解:原式=9x2(x2+3x+x+3)+4x(x3+x2+x-x2-x-1)=9x2(x2+4x+3)+4x(x3-1)=9x4+36x3+27x2+4x4-4x=13x4+36x3+27x2-4x当x=-1时原式=13×(-1)4+36×(-1)3+27×(-1)2-4×(-1)=13-36+27+4=8(2)y n(y n+3y-2)-3(3y n+1-4y n),其中y=-2,n=2.解:原式=y2n+3y n+1-2y n-9y n+1+12y n=y2n-6y n+1+10y n当y=-2,n=2时原式=(-2)2×2-6×(-2)2+1+10×(-2)2=16+48+40=10415、已知不论x、y为何值时(x+my)(x+ny)=x2+2xy-8y2恒成立.求(m+n)mn的值.解:x2+nxy+mxy+mny2=x2+2xy-8y2x2+(m+n)xy+mny2=x2+2xy-8y2∴m+n=2,mn=-8∴(m+n)mn=2×(-8)=-166、已知31=+a a,则221a a +=( B ) A .5 B .7 C .9 D .117、如果x 2+kx +81是一个完全平方式,则k 的值是( D )A .9B .-9C .±9D .±188、下列算式中不正确的有( C )①(3x 3-5)(3x 3+5)=9x 9-25②(a +b +c +d)(a +b -c -d)=(a +b)2-(c +d)2③22)31(5032493150-=⨯ ④2(2a -b)2·(4a +2b)2=(4a -2b)2(4a -2b)2=(16a 2-4b 2)2A .0个B .1个C .2个D .3个9、代数式2)(2y x +与代数式2)(2y x -的差是( A ) A .xy B .2xy C .2xy D .0 10、已知m 2+n 2-6m +10n +34=0,则m +n 的值是( A )A .-2B .2C .8D .-8二、解答题11、计算下列各题:(1)(2a +3b)(4a +5b)(2a -3b)(5b -4a)(2)(x +y)(x -y)+(y -z)(y +z)+(z -x)(z +x);(3)(3m 2+5)(-3m 2+5)-m 2(7m +8)(7m -8)-(8m)2(1) 解:原式=(2a +3b)(2a -3b)(4a +5b)(5b -4a)=(4a 2-9b 2)(25b 2-16a 2)=100a 2b 2-64a 4-225b 4+144a 2b 2=-64a 4+244a 2b 2-225b 4(2) 解:原式=x 2-y 2+y 2-z 2+z 2-x 2=0(3) 解:原式=25-9m 4-m 2(49m 2-64)-64m 2=-58m 4+2512、化简求值:(1)4x(x 2-2x -1)+x(2x +5)(5-2x),其中x =-1(2)(8x 2+4x +1)(8x 2+4x -1),其中x =21 (3)(3x +2y)(3x -2y)-(3x +2y)2+(3x -2y)2,其中x =31,y =-21 (1) 解:原式=4x 3-8x 2-4x +x(25-4x 2)=4x 3-8x 2-4x +25x -4x 3=-8x 2+21x当x =-1时原式=-8×(-1)2+21×(-1)=-8-21=-29(2) 解:原式=(8x 2+4x)2-1当x =时,原式=[8×()2+4×]2-1=(2+2)2-1=15(3) 解:原式=9x 2-4y 2-9x 2-12xy -4y 2+9x 2-12xy +4y 2=9x 2-24xy -4y 2当x =,y =-时原式=9×()2-24××(-)-4×(-)2=1+4-1=413、解下列方程:(1)(3x)2-(2x +1)2=5(x +2)(x -2)解:9x 2-4x 2-4x -1=5x 2-205x 2-4x -1=5x 2-204x =19∴x =419(2)6x +7(2x +3)(2x -3)-28(x -21)(x +21)=4解:6x +28x 2-63-28x 2+7=46x -56=46x =60∴x =1014、解不等式:(1-3x)2+(2x -1)2>13(x -1)(x +1)解:1-6x +9x 2+4x 2-4x +1>13x 2-1313x 2-10x +2>13x 2-13-10x>-15∴x<2315、若n 满足(n -2004)2+(2005-n)2=1,求(2005-n)(n -2004)的值.解:(n -2004)2+2·(n -2004)·(2005-n)+(2005-n)2=1+2(n -2004)(2005-n)(n -2004+2005-n)2=1+2(n -2004)(2005-n)1=1+2(2005-n)(n -2004)∴(2005-n)(n -2004)=014.3 因式分解一、选择题1、下列各式,从左到右的变形是因式分解的为( B )A .x 2-9+5x =(x +3)(x -3)+5xB .x 2-4x +4=(x -2)2C .(x -2)(x -3)=x 2-5x +6D .(x -5)(x +2)=(x +2)(x -5)2、把多项式x 2-mx -35分解因式为(x -5)(x +7),则m 的值是( B)A .2B .-2C .12D .-123、分解因式:x 2-2xy +y 2+x -y 的结果是( A )A .(x -y )(x -y +1)B .(x -y )(x -y -1)C .(x +y )(x -y +1)D .(x +y )(x -y -1)4、若9x 2-12xy +m 是一个完全平方公式,那么m 的值是( B )。
中考数学《整式的乘法与因式分解》专题训练-附带参考答案
中考数学《整式的乘法与因式分解》专题训练-附带参考答案一、选择题1.计算(-2a2)3的结果是()A.-6a6B.-8a6C.6a5D.-8a52.若3x=15,3y=5,则3x﹣y等于()A.10 B.5 C.15 D.33.若计算(3x2+2ax+1)⋅(−3x)−4x2的结果中不含x2项,则a的值为()A.2 B.0 C.−23D.−324.下列不能使用平方差公式因式分解的是()A.﹣16x2+y2B.b2﹣a2C.﹣m2﹣n2D.4a2﹣49n25.下列变形中正确的是()A.(x+y)(−x−y)=x2−y2B.x2−4x−4=(x−2)2C.x4−25=(x2+5)(x2−5)D.(−2x+3y)2=4x2+12xy+9y26.下列分解因式正确的是()A.x2+2xy−y2=(x−y)2B.3ax2−6ax=3(ax2−2ax)C.m3−m=m(m−1)(m+1)D.a2−4=(a−2)27.图(1)是一个长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,小长方形的长为a,宽为b(a>b),然后按图(2)拼成一个正方形,通过计算,用拼接前后两个图形中阴影部分的面积可以验证的等式是()A.a2b2=(ab)2B.(a+b)2=(a−b)2+4abC.(a+b)2=a2+b2+2ab D.a2−b2=(a+b)(a−b)8.若x−y=−3,xy=5则代数式2x3y−4x2y2+2xy3的值为()A.90 B.45 C.-15 D.-30二、填空题9.若3m=6,9n=2,则32m﹣4n+1=.10.计算2a2b÷(﹣4ab)的结果是.11.在实数范围内因式分解:2x 2−3xy −y 2= .12.当x=1,y= −13 时,代数式x 2+2xy+y 2的值是 .13.如图①,在边长为a 的正方形中剪去一个边长为b 的小正方形,然后把剩下部分沿图中虚线剪开后拼成如图②所示的梯形、通过计算图①、图②中阴影部分的面积,可以得到的代数恒等式为 .三、解答题14.计算:(1)()32426a a b a --++(2)()()22x y x y -+15. 因式分解:(1)(2)16. 已知x =2−√3,y =2+√3,求下列代数式的值:(1)x 2+2xy +y 2;(2)x 2−y 2.17.如图1,边长为a 的大正方形有一个边长为b 的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)(1)观察左、右两图的阴影部分面积,可以得到公式 ;(2)已知4m 2−n 2=12,2m +n =4,则2m −n = ;(3)请应用这个公式完成下列计算:(1−122)(1−132)(1−142)⋯(1−120222)(1−120232).18.阅读下列材料:因式分解的常用方法有提取公因式法和公式法,但有的多项式仅用上述方法就无法分解,如参考答案1.B2.D3.C4.C5.C6.C7.B8.A9.2710.−12a11.2(x-3+√174y )(x-3−√174y )12.4913.a 2﹣b 2=(a ﹣b )(a+b ) 14.(1)()32426a a b a --++261266a ab a a =-+-+2612a ab =-+; (2)()()22x y x y -+22242x xy xy y =-+-22232x xy y =--15.(1)解:== ;(2)解:== .16.(1)解:∵x =2−√3,y =2+√3∴x +y =4∴x 2+2xy +y 2=(x +y)2=42=16;(2)解:∵x =2−√3,y =2+√3∴x +y =4,x −y =−2√3∴x 2−y 2=(x +y)(x −y)=4×(−2√3)=−8√3.17.(1)a 2−b 2=(a +b)(a −b)(2)3(3)解:(1−122)(1−132)(1−142)⋯(1−120222)(1−120232)=(1+12)(1−12)(1+13)(1−13)(1+14)(1−14)⋯(1+12023)(1−12023) =32×12×43×23×54×34⋯20242023×20222023=12×20242023=10122023.18.(1)解:226925a ab b -+-()2325a b =-- ()()3535a b a b =---+;(2)解:255x x x +--()()255x x x =+-+()()151x x x =+-+()()15x x =+-;(3)证明:()()()214m n p n m p -=-- ()22224m mn n pm p mn pn -+=--+22224444m mn n pm p mn pn -+=--+222244440m mn n mn pm pn p -++--+=()()22224440m mn n pm pn p ++-++=()()22440m n p m n p +-++=()220m n p +-=⎡⎤⎣⎦()20m n p +-==+.∴2p m n。
第十四章 整式的乘法与因式分解(过题型)(解析版)
第十四章 整式的乘法与因式分解考查题型一 幂的乘方运算典例1.(2021·广东·惠州市惠港中学八年级阶段练习)若3•9m•27m =321,则m 的值为( )A .2B .3C .4D .5【答案】C【分析】先利用幂的乘方、同底数幂乘法的运算法则把等式的左边进行整理,从而可得到关于m 的方程求解即可.【详解】解:3•9m•27m=3×32m×33m=31+2m +3m=31+5m ,∵3•9m•27m =321,即31+5m=321∵1+5m =21,解得:m =4.故选:C .【点睛】本题主要考查幂的乘方、同底数幂乘法法则,解答本题的关键是灵活运用相关运算法则.变式1-1.(2020·海南·儋州川绵中学八年级期中)计算()323a a ⋅的结果是( )A .9aB .8aC .7aD .6a 【答案】A 【分析】根据幂的乘方和同底数幂乘法法则计算即可.【详解】()632933a a a a a ⋅==⋅,故选A . 【点睛】本题考查幂的混合计算,涉及幂的乘方和同底数幂乘法.掌握运算法则是解题关键.变式1-2.(2021·江西育华学校八年级期末)已知2m+3n =5,则4m•8n =( )A .10B .16C .32D .64【答案】C【分析】根据幂的乘方m n mn a a =()以及同底数幂的乘法(·m n m n a a a +=)则解答即可. 【详解】∵m 、n 均为正整数,且235m n +=,∵2323548222232m n m n m n +⋅=⋅===, 故选:C .【点睛】本题主要考查了同底数幂的乘法以及幂的乘方,熟记幂的运算法则是解答本题的关键.变式1-3.(2021·福建·上杭县第三中学八年级阶段练习)下列运算正确的是( )A .326·y y y =B .33(·)·a b a b =C .235x x x +=D .248()m m -=【答案】D【分析】根据同底数幂的乘法,幂的乘方与积的乘方的运算法则计算,利用排除法即可得到答案.【详解】解:A. 应为:23352·y y y y +==, 故本选项错误; B. 应为:333()··a b a b =, 故本选项错误; C. 235x x x +≠, 故本选项错误;D. 应为:248()m m -=, 故本选项正确;故选D .【点睛】考查同底数幂的乘法,幂的乘方与积的乘方,掌握它们的运算法则是解题的关键.考查题型二 积的乘方运算典例2.(2022·山东淄博·期末)2312mn ⎛⎫- ⎪⎝⎭的计算结果是( ) A .64mn B .264m n - C .2314m n - D .2614m n【答案】D【分析】直接根据幂的乘方与积的乘方的法则进行计算,即可得出答案.【详解】解:2312mn ⎛⎫- ⎪⎝⎭=2614m n故选D .【点睛】本题考查了幂的乘方与积的乘方,掌握幂的乘方与积的乘方的法则是解决问题的关键.变式2-1.计算3(2)a 的结果是( )A .36aB .8aC .32aD .38a【答案】D【分析】根据积的乘方可进行求解.【详解】解:33(2)8a a =; 故选D .【点睛】本题主要考查积的乘方,熟练掌握积的乘方是解题的关键.变式2-2.(2022·山东淄博·中考真题)计算3262(2)3a b a b --的结果是( )A .﹣7a6b2B .﹣5a6b2C .a6b2D .7a6b2【答案】C【分析】先根据积的乘方法则计算,再合并同类项.【详解】解:原式62626243a b a b a b =-=,故选:C .【点睛】本题主要考查了积的乘方,合并同类项,解题的关键是掌握相应的运算法则. 变式2-3.(2020·北京市朝阳外国语学校八年级期中)下列运算结果正确的是( )A .3412a a a ⋅=B .325()a a =C .22(3)9a a -=D .752a a a -=【答案】C【分析】根据同底数幂的乘法,幂的乘方,积的乘方,合并同类项逐项分析判断即可求解.【详解】解:A. 347a a a ⋅=,故该选项不正确,不符合题意;B. 326()a a =,故该选项不正确,不符合题意;C. 22(3)9a a -=,故该选项正确,符合题意;D. 7a 与5a 不能合并,故该选项不正确,不符合题意.故选C .【点睛】本题考查了同底数幂的乘法,幂的乘方,积的乘方,合并同类项,正确的计算是解题的关键.考查题型三 化简求值典例3.(2022·北京·101中学八年级阶段练习)先化简,再求值:3(21)(23)(5)x x x x +-+-,其中2x =-.【答案】241015x x ++,11【分析】先利用单项式乘以多项式、多项式乘以多项式的运算法则计算,再合并同类项完成化简,然后将x 的值代入求解即可.【详解】解:原式2263(210315)x x x x x =+--+-2263210315x x x x x =+-+-+241015x x =++,当2x =-时,原式24(2)10(2)15=⨯-+⨯-+11=.【点睛】本题主要考查了整式的化简求值,熟练掌握相关运算法则是解题关键. 变式3-1.化简求值:()()()()23432x x x x +---+,其中1x =-【答案】246x x --,-1【分析】先计算整式的乘法,然后合并同类项,代入求解即可.【详解】解:原式()2228312236x x x x x x =-+--+--2225126x x x x =---++24 6.x x =--当1x =-时,原式146=+-1=-.【点睛】题目主要考查整式的化简求值,熟练掌握运算法则是解题关键.变式3-2.先化简,再求值:()()()()2234342323321m m m m m m ---++-+-,其中52m =- 【答案】323240932m m m --+-,791【分析】先根据平方差公式和完全平方公式进行计算,再根据单项式乘多项式进行计算,再合并同类项,最后代入求出答案即可.【详解】解:()()()()2234342323321m m m m m m ---++-+- ()()2232316949424323232m m m m m m =+--+---22324827361672323232m m m m m m =+-++---323242930m m m =-+--当52m =-时, 原式235553223240229⎛⎫⎛⎫⎛⎫=-⨯--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝-⨯⎭+⨯- 125253284321009⎛⎫=-⨯- ⎪⎝⎭+⨯+- 5002001009+=+-8009=-791=.【点睛】本题考查了整式的化简求值,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.变式3-3.如图,在某一禁毒基地的建设中,准备在一个长为()65a b +米,宽为()5b a -米的长方形草坪上修建两条宽为a 米的通道.(1)求剩余草坪的面积是多少平方米?(用含a ,b 的字母代数式表示)(2)若1a =,3b =,求剩余草坪的面积是多少平方米?【答案】(1)()22101525a ab b -++平方米(2)260平方米【分析】(1)根据题意可得剩余草坪的面积是()()655a b a b a a +---,再根据整式的乘法计算,即可求解;(2)把1,3a b ==代入(1)中结果,即可求解.(1)解:剩余草坪的面积是:()()655a b a b a a +---()()5552a b b a =+-()22101525a ab b =-++平方米;(2)解:当1,3a b ==时,22101525a ab b -++221011513253=-⨯+⨯⨯+⨯=260,即1,3a b ==时,剩余草坪的面积是260平方米.【点睛】本题主要考查了整式的乘法的应用,平移的性质,熟练掌握整式的乘法运算法则是解题的关键.考查题型四 多项式乘积不含某项求字母的值典例4.(2021·山东烟台·期中)已知(x2+mx-3)(2x+n )的展开式中不含x2项,常数项是-6.(1)求m ,n 的值.(2)求(m+n )(m2-mn+n2)的值.【答案】(1)m=-1,n=2;(2)7【分析】(1)直接利用多项式乘多项式将原式变形,进而得出m ,n 的值;(2)利用多项式乘多项式运算法则计算得出答案.(1)解:(x2+mx-3)(2x+n )=2x3+2mx2-6x+nx2+mnx-3n=2x3+2mx2+nx2+mnx-6x-3n=2x3+(2m+n )x2+(mn-6)x-3n ,由于展开式中不含x2项,常数项是-6,则2m+n=0且-3n=-6,解得:m=-1,n=2;(2)解:由(1)可知:m=-1,n=2,∵(m+n )(m2-mn+n2)=m3-m2n+mn2+m2n-mn2+n3=m3+n3=(-1) 3+23=-1+8=7.【点睛】此题主要考查了多项式乘多项式,正确掌握相关运算法则是解题关键.变式4-1.(2022·山东济南·期末)若代数式()()212-+-x mx x 的计算结果中不含有x 的一次项,求m 的值.【答案】12m =-【分析】根据多项式乘多项式将代数式进行变形得()()322122x m x m x -+++-,再根据题意进行求值即可;【详解】解:()()212-+-x mx x 322222x mx x x mx =-+-+-()()322122x m x m x =-+++-,因为计算结果中不含一次项,所以120m +=,则12m =-. 【点睛】本题主要考查整式的乘除中多项式乘多项式,正确将代数式变形是解题的关键. 变式4-2.(2022·江苏·江阴市第一初级中学一模)已知计算()()()2323536231x mx x x x x nx -+-⋅---+-的结果中不含4x 和2x 的项,求m 、n 的值. 【答案】m =1.5,n =−10.【分析】原式利用多项式乘以多项式法则计算,由结果中不含x4和x2项,求出m 与n 的值即可.【详解】解:(5−3x +mx2−6x3)•(−2x2)−x (−3x3+nx−1)=−10x2+6x3−2mx4+12x5+3x4−nx2+x=12x5+(3−2m )x4+6x3+(−10−n )x2+x ,由结果中不含x4和x2项,得到3−2m =0,−10−n =0,解得:m =1.5,n =−10.【点睛】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.变式4-3.(2020·四川乐山·八年级期末)已知()()223x x ax b -++的展开项中不含2x 和x项,求a b +的值.【答案】3.75【分析】把两个多项式相乘,合并同类项后使结果的x 与x2项的系数为0,求解即可.【详解】解:()()223x x ax b -++=2x3+2ax2+2bx-3x2-3ax-3b=2x3+(2a-3)x2+(-3a+2b )x-3b .由题意得2a-3=0,-3a+2b=0,解得a=1.5,b=2.25.∵a+b=1.5+2.25=3.75.故a+b 的值为3.75.【点睛】本题考查了多项式相乘法则以及多项式的项的定义.注意当要求多项式中不含有哪一项时,应让这一项的系数为0.考查题型五 乘法公式的运算典例5.计算(1)()()22232xy x y ⋅- (2)()()()212141a a a a +---【答案】(1)4518x y - (2)41a -【分析】(1)根据幂的乘方和积的乘方以及同底数幂的乘法可以解答;(2)根据平方差公式及单项式乘以多项式可以解答.(1)解:原式=()24292x y x y ⋅-=4518x y -;(2)()()()212141a a a a +---=()224144a a a ---=224144a a a --+=41a -【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.变式5-1.计算:(1)()31233a b a a -÷; (2)()()()22a b a b a b -+-+.【答案】(1)241a b - (2)23ab b --【分析】(1)直接利用多项式除以单项式的法则计算即可;(2)利用多项式与多项式的乘法法则及完全平方公式计算即可.(1) 解:()31233a b a a -÷ 312333a b a a a =÷-÷241a b =-;(2)()()()22a b a b a b -+-+()2222222a ab ab b a ab b =+---++ 2222222a ab ab b a ab b =+-----23ab b =--.【点睛】本题考查了整式的运算,熟练掌握整式运算的法则是解题的关键.变式5-2.已知x+y =3,xy =2.(1)求(x+3)(y+3)的值;(2)求22x x y y +-的值.【答案】(1)20(2)3【分析】(1)先根据多项式与多项式的乘法法则化简,然后再将x+y =3,xy =2代入求值即可;(2)先利用完全平方公式变形,再将x+y =3,xy =2代入求值即可.(1)解:(x+3)(y+3)=xy+3(x+y)+9将x+y =3,xy =2代入得:原式=2+3×3+9=20(2)解:22x x y y +- =()23x y xy +-将x+y =3,xy =2代入得:原式=2323-⨯=3【点睛】本题考查了多项式与多项式的乘法法则和完全平方公式的变形求值,熟练掌握运算法则和完全平方公式是解题的关键.变式5-3.运用乘法公式简便计算:(1)2998(2)2123124122-⨯ 【答案】(1)996004(2)1【分析】(1)将998写成(1000-2),再用完全平方公式进行计算即可;(2)将124×122写成(123+1)×(123-1),再用平方差公式进行计算即可;(1)解:原式=2(1000-2) =222100022-⨯⨯+1000 =40004-+1000000=996004;(2)解:原式=212312311231-+⨯-()()=2221231231-+=1.【点睛】本题主要考查了用完全平方公式和平方差公式进行简便计算,熟练掌握完全平方公式和平方差公式是解题的关键.考查题型六 因式分解典例6.(2022·甘肃·临泽县第三中学八年级期中)分解因式.(1)32232a b a b ab -+(2)()()()24104254x x x x x -+-+-【答案】(1)()2ab a b - (2)()()245x x -+【分析】(1)先提取公因式ab ,再根据完全平方公式分解;(2)先提取公因式()4x -,再根据完全平方公式分解.(1)解:32232a b a b ab -+ =()222ab a ab b -+ =()2ab a b -(2)解:()()()24104254x x x x x -+-+-=()()241025x x x -++=()()245x x -+【点睛】本题考查了用提公因式法和完全平方公式进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.变式6-1.(2022·山东·济南锦苑学校八年级期中)分解因式:(1)228x - ;(2)244x y xy y ++ 【答案】(1)2(x+2)(x -2)(2)221y x +()【分析】(1)提取公因式再利用平方差分解因式;(2)提取公因式再利用用完全平方公式分解因式;(1)228x -=224x (-)=222x x +()(-) (2)244x y xy y ++=2441y x x ++()=221y x +()【点睛】本题主要考查了因式分解,掌握用公式法分解因式是解题关键.变式6-2.(2021·重庆市璧山中学校八年级期中)分解因式:(1)244x x -+(2)()()24a x y x y ---【答案】(1)()41x x -- ; (2)()(2)(2)x y a a -+-.【分析】(1)提取公因式-4x 即可分解;(2)先取公因式(x-y),再运用平方差公式继续分解即可.(1)解:2444(1)x x x x -+=--; (2)解:()()24a x y x y --- ()2(4)x y a =-- ()(2)(2)x y a a =-+-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 变式6-3.(2022·甘肃·张掖育才中学八年级期中)已知a ,b ,c 是∵ABC 的三边,且满足222222a b c ab ac ,试判断∵ABC 的形状,并说明理由.【答案】∵ABC 为等边三角形,理由见解析【分析】将已知等式利用配方法进行变形,再利用非负数的性质求出a-b=0,b-c=0,c-a=0,即可判断出∵ABC 的形状.【详解】解:∵ABC 为等边三角形,理由如下:∵222222ab c ab ac , ∵2222220a ab b a ac c , ∵()()220a b a c -+-=, ∵220,0a b a c ,∵a ﹣b =0,a ﹣c =0,∵a=b,a=c,∵a=b=c,∵∵ABC为等边三角形.【点睛】本题考查了因式分解的应用、非负数的性质、等边三角形的判断.解题的关键是将已知等式利用完全平方公式变形,利用非负数的性质得出a,b,c之间的关系.。
数学八年级上册 整式的乘法与因式分解专题练习(解析版)
数学八年级上册 整式的乘法与因式分解专题练习(解析版)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .8 【答案】C【解析】【分析】【详解】试题分析:根据题意可得A=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216根据21=2;22=4;23=8;24=16;25=32;···因此可由16÷4=4,所以216的末位为6故选C点睛:此题是应用平方差公式进行计算的规律探索题,解题的关键是通过添加式子,使原式变化为平方差公式的形式;再根据2的n 次幂的计算总结规律,从而可得到结果.2.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定【答案】A【解析】解:∵a 2﹣4b =7,b 2﹣4c =﹣6,c 2﹣6a =﹣18,∴a 2﹣4b +b 2﹣4c +c 2﹣6a =7﹣6﹣18,整理得:a 2﹣6a +9+b 2﹣4b +4+c 2﹣4c +4=0,即(a ﹣3)2+(b ﹣2)2+(c ﹣2)2=0,∴a =3,b =2,c =2,∴此三角形为等腰三角形.故选A .点睛:本题考查了因式分解的应用,解题的关键是正确的进行因式分解.3.若代数式x 2+ax +64是一个完全平方式,则a 的值是( )A .-16B .16C .8D .±16【答案】D【解析】试题分析:根据完全平方式的意义,首平方,尾平方,中间加减积的2倍,可知a=±2×8=16.故选:D点睛:此题主要考查了完全平方式的意义,解题关键是明确公式的特点,即:完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方。
初中数学整式的乘法与因式分解例题解析
初中数学整式的乘法与因式分解例题解析一、整式的乘法例题例1:计算:a2·(-a)3·(-a);x n·x n+1·x n-1·x;(x-2y)2·(2y-x)3解:原式=a2·(-a)3·a1=-a2·a3·a4=-a9;原式=x n+n+1+n-1+1=x3n+1;方法一:原式=(x-2y)2·[-(x-2y)]3=-(x-2y)5方法二:原式=(2y-x)2·(2y-x)3=(2y-x)5例2:下列运算中正确的是()A.a2+a3=a5B.a2·a3=a6C.a2+a3=aD.(a2)3=a6解析:a2与a3不是同类项,不能合并,A错误;a2·a3=a2+3=a5≠a6,B错误;a3与a2不是同类项,不能合并,C错误;D正确;(a2)3=a2×3=a6。
答案:D例3:已知a m=4,a n=10,求a2m+n的值。
解析:将代数式a2m+n变形为含a m、a n的代数式,依据是幂的运算法则。
解:a2m+n=a2m·a n=(a m)2·a n=42×10=160.例4:计算:(-x2y)3·3xy2·(2xy2)2;-6m2n·(x-y)3·mn2(y-x)2.解:原式=-x6y3×3xy2×4x2y4=-x9y9.原式=-6×m3n3(x-y)5=-2m3n3(x-y)5.例5:计算:(-2ab)(3a2-2ab-4b2);5ax(a2+2a+1)-(2a +3)(a-5)解:原式=-6a3b+4a2b2+8ab3原式=5a3x+10a2x+5ax-(2a2-10a+3a-15)=5a3x+10a2x+5ax-2a2+7a+15例6:计算:(5mn2-4m2n)(-2mn);(x+7)(x-6)-(x-2)(x+1)解:原式=-10m2n3+8m3n2.原式=x2-6x+7x-42-x2-x+2x+2=2x-40二、因式分解例题例7:下列式子中,从左到右变形属于因式分解的是()A.a2+4a-21=a(a+4)-21B.a2+4a-21=(a-3)(a+7)C.(a-3)(a+7)=a2+4a-21D.a2+4a-21=(a+2)2-25解析:根据因式分解的概念,只有B选项满足:等号左边是多项式,等号右边是几个整式的积的形式,并且经检验运算过程正确,故选B.答案 B例8:若代数式x2+ax可以分解因式,则常数a不可以取( )解析:因为代数式x2+ax可以分解因式,所以常数a不可以取0.例9:下面分解因式正确的是()A.x2+2x+1=x(x+2)+1B.(x2-4)x=x3-4xC.ax+bx=(a+b)xD.m2-2mn+n2=(m+n)2解析:根据因式分解的概念,A项、B项不是分解因式;C项是提公因式法分解因式;D项虽是分解因式,但错误,应是m2-2m +n2=(m-n)2答案:C例10:把下列各式分解因式:-16x4y6+24x3y5-9x2y4;4(x+y)2-4(x+y) ·z+z2;(a-b)3-2(b-a)2+(a-b);9(x+a)2+30(x+a)(x+b)+25(x+b)2解:原式=-x2y4(16x2y2-24xy+9)=-x2y4(4xy-3)2;原式=[2(x+y)]2-2×2(x+y)·z+z2=[2(x+y)-z]2=(2x+2y-z)2;原式=(a-b)[(a-b)2-2(a-b)+1]=(a-b)[(a-b)-1]2=(a-b)(a-b-1)2;原式=[3(x+a)]2+2·3(x+a)·5(x+b)+[5(x+b)]2=[3(x+a)+5(x+b)]2=(3x+3a+5x+5b)2=(8x+3a+5b)2.关键提醒:因式分解的步骤:(1)先看各项有没有公因式,若有公因式,则先提取公因式.(2)再看能否使用公式法.(3)用分组分解法,即通过分组后再提出公因式或运用公式法来达到分解的目的.(4)因式分解的最后结果,必须是几个整式的积.(5)因式分解的结果必须进行到每个因式不能再分解为止。
八年级数学上册 整式的乘法与因式分解专题练习(解析版)
八年级数学上册 整式的乘法与因式分解专题练习(解析版)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .3【答案】D【解析】【分析】首先把a 2+b 2+c 2﹣ab ﹣bc ﹣ac 两两结合为a 2﹣ab +b 2﹣bc +c 2﹣ac ,利用提取公因式法因式分解,再把a 、b 、c 代入求值即可.【详解】a 2+b 2+c 2﹣ab ﹣bc ﹣ac=a 2﹣ab +b 2﹣bc +c 2﹣ac=a (a ﹣b )+b (b ﹣c )+c (c ﹣a )当a =2012x +2011,b =2012x +2012,c =2012x +2013时,a -b =-1,b -c =-1,c -a =2,原式=(2012x +2011)×(﹣1)+(2012x +2012)×(﹣1)+(2012x +2013)×2=﹣2012x ﹣2011﹣2012x ﹣2012+2012x ×2+2013×2=3.故选D .【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目.2.把多项式2425m -分解因式正确的是( )A .(45)(45)m m +-B .(25)(25)m m +-C .(5)(5)m m -+D .(5)(5)m m m -+【答案】B【解析】利用公式法分解因式的要点,根据平方差公式:()()22a b a b a b -=+-,分解因式为:()()()222425252525m m m m -=-=+-.故选B.3.(2017重庆市兼善中学八年级上学期联考)在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =, 9y =时,则各个因式的值为()0x y -=, ()18x y +=, ()22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取20x, 10y =时,用上述方法产生的密码不可能...是( ) A .201030B .201010C .301020D .203010【答案】B【解析】【分析】【详解】 解:x 3-xy 2=x (x 2-y 2)=x (x+y )(x-y ),当x=20,y=10时,x=20,x+y=30,x-y=10,组成密码的数字应包括20,30,10,所以组成的密码不可能是201010.故选B .4.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.详解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx -12∴p+q=m ,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m 的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.5.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3【答案】D【解析】【分析】根据20192019a x =+,20192020b x =+,20192021c x =+分别求出a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可完成.【详解】∵20192019a x =+,20192020b x =+,20192021c x =+,20192019201920201a b x x -=+--=-20192019201920212a c x x -=+--=-20192020201920211b c x x -=+--=-∴222a b c ab ac bc ++---2221(222222)2a b c ab ac bc =++--- 2222221(222)2a ab b a ac c b bc c =-++-++-+ 222111()()()222a b a c b c =-+-+- 222111(1)(2)(1)222=⨯-+⨯-+⨯- 11222=++ 3=故选D【点睛】本题考查完全平方公式的应用,熟练掌握完全平方公式是解题关键.6.已知a ,b ,c 是△ABC 的三边长,且满足a 2+2b 2+c 2-2b(a +c)=0,则此三角形是( ) A .等腰三角形 B .等边三角形C .直角三角形D .不能确定【答案】B【解析】【分析】运用因式分解,首先将所给的代数式恒等变形;借助非负数的性质得到a =b =c ,即可解决问题.【详解】∵a 2+2b 2+c 2﹣2b (a +c )=0,∴(a ﹣b )2+(b ﹣c )2=0;∵(a ﹣b )2≥0,(b ﹣c )2≥0,∴a ﹣b =0,b ﹣c =0,∴a =b =c ,∴△ABC 为等边三角形. 故选B .【点睛】本题考查了因式分解及其应用问题.解题的关键是牢固掌握因式分解的方法,灵活运用因式分解来分析、判断、推理活解答.7.下列各式中,不能运用平方差公式进行计算的是( )A .(21)(12)x x --+B .(1)(1)ab ab -+C .(2)(2)x y x y --- D .(5)(5)a a -+--【解析】【分析】运用平方差公式(a+b)(a-b)=a2-b2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A. 中不存在互为相反数的项,B. C. D中均存在相同和相反的项,故选A.【点睛】此题考查平方差公式,解题关键在于掌握平方差公式结构特征.8.如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2D.(a+b)(a﹣b)=a2﹣b2【答案】C【解析】【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【详解】∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故选C.9.将下列多项式因式分解,结果中不含有因式(a+1)的是()A.a2-1B.a2+aC.a2+a-2D.(a+2)2-2(a+2)+1【解析】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=(a+1)(a ﹣1),a 2+a=a (a+1),a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.10.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为( )A .12B .1C .()12a b +D .+a b【答案】C【解析】【分析】用长方形的面积除以长可得.【详解】宽为:()()()()22222a ab ab ba b a b a b +++÷+=+÷+= ()12a b + 故选:C【点睛】考核知识点:整式除法与面积.掌握整式除法法则是关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.【答案】0【解析】【分析】利用完全平方式的特点把原条件变形为222(1)(2)(3)0x y z -+++-=,再利用几个非负数之和为0,则每一个非负数都为0的结论可得答案.【详解】解:因为:222246140x y z x y z ++-+-+=所以222(21)(44)(69)0x x y y z z -+++++-+=所以222(1)(2)(3)0x y z -+++-=所以102030x y z -=⎧⎪+=⎨⎪-=⎩ ,解得123x y z =⎧⎪=-⎨⎪=⎩所以()2002x y z --=[]221(2)3(33)0---=-= 故答案为0.【点睛】本题考查完全平方式的特点,非负数之和为0的性质,掌握该知识点是关键.12.如果实数a ,b 满足a +b =6,ab =8,那么a 2+b 2=_____.【答案】20【解析】【分析】【详解】∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.【点睛】本题考查了完全平方公式的变形应用,熟练进行完全平方公式的变形是解题的关键.13.把方程x 2+4xy ﹣5y 2=0化为两个二元一次方程,它们是_____和_____.【答案】x +5y =0 x ﹣y =0【解析】【分析】通过十字相乘法,把方程左边因式分解,即可求解.【详解】∵x 2+4xy ﹣5y 2=0,∴(x +5y )(x ﹣y )=0,∴x +5y =0或x ﹣y =0,故答案为:x +5y =0和 x ﹣y =0.【点睛】该题重点考查了因式分解中的十字相乘法,能顺利的把方程左边因式分解是解题的关键所在.十字相乘法相关的知识点是:必须是二次三项式,并且符合拆解的原则,即可利用十字相乘分解因式.14.已知x 、y 为正偶数,且2296x y xy +=,则22x y +=__________.【答案】40【解析】【分析】根据22x y xy 96+=可知xy(x+y)=96,由x 、y 是正偶数可知xy≥4,x+y≥4,进而可知96 可分解成3种乘积的形式,分别计算即可得只有一种情况符合题意,即可求出x 、y 的值,根据x 、y 的值求得答案即可.【详解】∵22x y xy 96+=,∴xy(x+y)=96,∵x 、y 为正偶数,xy≥4,x+y≥4,∴96=2⨯2⨯2⨯2⨯2⨯3=6⨯16=8⨯12=4⨯24当xy(x+y)= 4⨯24时,无解,当xy(x+y)= 6⨯16时,无解,当xy(x+y)=8⨯12时,x+y=8,xy=12,解得:x=2,y=6,或x=6,y=2,∴x 2+y 2=22+62=40.故答案为:40【点睛】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.15.若26x x k -+是一个完全平方式,那么k =_______________【答案】9【解析】因为若26x k k -+是一个完全平方式,那么()222262333x k k x k x -+=-⨯+=-,那么答案是k=9.故答案为:9.16.-3x 2+2x -1=____________=-3x 2+_________.【答案】 -(3x 2-2x +1) (2x -1)【解析】根据提公因式的要求,先提取负号,可得-(3x 2-2x +1),再把2x-1看做一个整体去括号即可得(2x-1).故答案为:-(3x 2-2x +1) ,(2x -1).17.设2m =5,82n =10,则62m n -=________. 【答案】12【解析】试题分析:将62m n - 变形为228m n ÷ ,然后结合同底数幂的除法的概念和运算法则进行求解即可.本题解析: 6621222285102m n m n m n -=÷=÷=÷= 故答案为: 12. 点睛:本题主要考查了同底数幂的除法法则的逆用,同底数幂的除法法则:同底数幂相乘,底数不变,指数相减.即m n m n a a a +÷= (m,n 是正整数).18.对于实数a ,b ,定义运算“※”如下:a ※b=a 2﹣ab ,例如,5※3=52﹣5×3=10.若(x+1)※(x ﹣2)=6,则x 的值为_____.【答案】1【解析】【分析】根据新定义运算对式子进行变形得到关于x 的方程,解方程即可得解.【详解】由题意得,(x+1)2﹣(x+1)(x ﹣2)=6,整理得,3x+3=6,解得,x=1,故答案为1.【点睛】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.19.因式分解:x 3﹣4x=_____.【答案】x (x+2)(x ﹣2)【解析】试题分析:首先提取公因式x ,进而利用平方差公式分解因式.即x 3﹣4x=x (x 2﹣4)=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用.20.分解因式:x 2﹣1=____.【答案】(x+1)(x ﹣1).【解析】试题解析:x 2﹣1=(x+1)(x ﹣1).考点:因式分解﹣运用公式法.。
专题03 《整式乘法与因式分解》压轴题专练(1)(解析版)
专题03 《整式乘法与因式分解》压轴题专练(1)(满分120分 时间:60分钟) 班级 姓名 得分一、单项选择题:1.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为( )A .6858B .6860C .9260D .9262 【答案】B【分析】由()()33221212422019n n n +--=+≤可得2n ≤201724,再根据和谐数为正整数,得到1≤n≤9,可得不超过2019的正整数中,“和谐数”共有10个,依次列式计算即可求解.【详解】解:由332(21)(21)242n n n +--=+≤2019,可得2n ≤201724, ∵和谐数为正整数,∵1≤n≤9,且为正整数,则在不超过2019的正整数中,所有的“和谐数”之和为3333331(1)3153--+-+-+…+3319-17=3319-(-1)6860=.故选:B .【点睛】本题考查了有理数的乘方、整式的乘法与乘法公式,弄清题中“和谐数”的定义是解本题的关键.2.已知在216()()x mx x a x b +-=++中,a 、b 为整数,能使这个因式分解过程成立的m 的值共有( )个A .4B .5C .8D .10【答案】B【分析】先根据整式的乘法可得,16m a b ab =+=-,再根据“,a b 为整数”进行分析即可得.【详解】 2()()()x a x b x a b x ab ++=+++,2216()x mx x a b x ab ∴+-=+++,,16m a b ab ∴=+=-,根据,a b 为整数,有以下10种情况:(1)当1,16a b ==-时,()11615m =+-=-;(2)当2,8a b ==-时,()286m =+-=-;(3)当4,4a b ==-时,()440m =+-=;(4)当8,2a b ==-时,()826m =+-=;(5)当16,1a b ==-时,()16115m =+-=;(6)当1,16a b =-=时,11615m =-+=;(7)当2,8a b =-=时,286m =-+=;(8)当4,4a b =-=时,440m =-+=;(9)当8,2a b =-=时,826m =-+=-;(10)当16,1a b =-=时,16115m =-+=-;综上,符合条件的m 的值为15,6,0,6,15--,共有5个,故选:B .【点睛】本题考查了整式的乘法,依据题意,正确分情况讨论是解题关键.3.观察下列等式:()()2111x x x -+=-,()()23111x x x x -++=-,()()324111x x x x x -+++=-,……,利用你发现的规律回答:若()()65432112x x x x x x x -++++++=-,则2016x 的值是( )A .-1B .0C .1D .22016 【答案】C【分析】先根据已知等式归纳类推出一般规律,再根据()()65432112x x x x x x x -++++++=-求出x 的值,然后代入求值即可得.【详解】观察等式:()()2111x x x -+=-, ()()23111x x x x -++=-,()()324111x x x x x -+++=-,归纳类推得:()()12111n n n x x x x x --+-+++=-,其中n 为大于1的整数, 则()()6547321121x x x x x x x x -++++=-++=-, 即71x =-,解得1x =-,则()2016201611x =-=, 故选:C .【点睛】本题考查了多项式乘法中的规律性问题、有理数的乘方,依据已知等式,正确归纳类推出一般规律是解题关键.4.现有一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片(12a b a <<)如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大26ab -,则小正方形卡片的面积是( )A .2B .3C .4D .5【答案】A【分析】 根据题意、结合图形分别表示出图2、3中的阴影部分的面积,根据题意列出算式,再利用整式的混合运算法则计算即可.【详解】图3中的阴影部分的面积为:(a−b )2,图2中的阴影部分的面积为:(2b−a )2,由题意得,(a−b )2−(2b−a )2=2ab−6,整理得,b 2=2,则小正方形卡片的面积是2,故选:A .【点睛】本题考查的是整式的混合运算,正确表示出两个阴影部分的面积是解题的关键.5.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”这个三角形给出了()n a b +(1,2,3,4,)n =的展开式的系规律(按a 的次数由大到小的顺序):请根据上述规律,写出2020(1)x +的展开式中含2019x 项的系数是( ) A .2018B .2019C .2020D .2021 【答案】C【分析】 首先确定2019x 是展开式中第几项,再根据杨辉三角中的规律即可解决问题.【详解】解:由图中规律可知:含2019x 的项是2020(1)x +的展开式中的第二项,∵1()a b +展开式中的第二项系数为1,2()a b +展开式中的第二项系数为2,3()a b +展开式中的第二项系数为3,4()a b +展开式中的第二项系数为4,∵()n a b +展开式中的第二项系数为n ,∵2020(1)x +的展开式中的第二项系数为2020,故选:C .【点睛】本题考查了数字的变化类、数学常识、多项式、完全平方式,解决本题的关键是理解“杨辉三角”. 6.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0【答案】D【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可.【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+ 22416(31)(31)(31)(31)=-++⋯+4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∵3231-的个位数字为0,∵248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0.故选:D .【点睛】本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.7.观察下列各式及其展开式()2222a b a ab b +=++()3322333a b a a b ab b +=+++()4432234464a b a a b a b ab b +=++++()554322345 510105a b a a b a b a b ab b +=+++++ ······ 请你猜想()10+a b 的展开式第三项的系数是( )A .35B .45C .55D .66【答案】B【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出(a+b )10的展开式第三项的系数.【详解】解:(a+b )2=a 2+2ab+b 2;(a+b )3=a 3+3a 2b+3ab 2+b 3;(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(a+b )6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6;(a+b )7=a 7+7a 6b+21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7;第7个式子系数分别为:1,8,28,56,70,56,28,8,1;第8个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第9个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b )10的展开式第三项的系数为45.故选:B .【点睛】此题考查了完全平方公式,熟练掌握公式是解本题的关键.二、填空题8.若2()()6x a x b x mx ++=++,其中,,a b m 均为整数,则m 的值为_______.【答案】5±或7±【分析】先根据整式的乘法运算可得,6a b m ab +==,再根据“,,a b m 均为整数”分情况求解即可得.【详解】2()()()x a x b x a b x ab ++=+++,2()()6x a x b x mx ++=++,22()6x a b x ab x mx ∴+++=++,,6a b m ab ∴+==,,,a b m 均为整数,∴分以下8种情况:∵当6,1a b =-=-时,6(1)7m =-+-=-,∵当3,2a b =-=-时,3(2)5m =-+-=-,∵当2,3a b =-=-时,2(3)5m =-+-=-,∵当1,6a b =-=-时,1(6)7m =-+-=-,∵当1,6a b ==时,167m =+=,∵当2,3a b ==时,235m =+=,∵当3,2a b ==时,325=+=m ,∵当6,1a b ==时,617m =+=,综上,m 的值为5±或7±,故答案为:5±或7±.【点睛】本题考查了整式的乘法运算,熟练掌握运算法则,并正确分情况讨论是解题关键.9.()()()24321(31)3131312+++⋯++的值为_______.【答案】6432【分析】设()()()()24321313131312A +++⋯++=,利用平方差公式求出()31A -的值,由此即可得. 【详解】 设()()()()24321313131312A +++⋯++=, 则()()()()()()243213131313131312A ⎡⎤-=-+++⋯++⎢⎥⎣⎦, ()()()()()()243213131313131312=-+++⋯++-⨯, ()()()()22432313131311=-++⋯++,()()323231311=-++,64311=-+,643=, 所以646433312A ==-, 故答案为:6432. 【点睛】本题考查了利用平方差公式进行运算求值,熟练掌握平方差公式是解题关键.10.我国南宋时期杰出的数学家杨辉是钱塘人,他在《详解九章算术》中记载的“杨辉三角”揭示了()n a b +(n 为非负整数)的展开式的项数及各项系数的有关规律,如:()4432234464a b a a b a b ab b +=++++;此规律还可以解决实际问题:假如今天是星期二,再过7天还是星期二,则再过148天是星期______.【答案】三【分析】根据814=(7+1)14=714+14×713+91×712+…+14×7+1可知814除以7的余数为1,从而可得答案.【详解】∵814=(7+1)14=714+14×713+91×712+…+14×7+1,∵814除以7的余数为1,∵假如今天是星期二,那么再过814天是星期三,故答案为:三.【点睛】本题考查了完全平方公式,能发现(a+b)n展开后,各项是按a的降幂排列的,系数依次是从左到右(a +b)n−1系数之和.它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.11.现有如图①的小长方形纸片若干块,已知小长方形的长为a(cm),宽为b(cm),用3个如图①的完全相同的图形和8个如图①的小长方形,拼成如图①的大长方形,则图①中阴影部分面积与整个图形的面积之比为________.【答案】1:6【分析】先求出图∵中阴影部分的面积,由此可求出图∵中阴影部分的面积,再根据图∵可得到a=3b,由此可求出图∵中整个图形的面积,然后求出图∵中阴影部分面积与整个图形的面积之比.【详解】解:如图∵种阴影部分的面积为(a+b)2-4ab=(a-b)2.如图∵可知3a+3b=4a∵a=3b∵S阴影部分=(3b-b)2=4b2;∵图∵中S 阴影部分=3×4b 2=12b 2;图∵中整个图形的面积为:4a×(a+3b )=12b (3b+3b )=72b 2;∵图∵中阴影部分面积与整个图形的面积之比为12b 2:72b 2=1:6.故答案为:1:6.【点晴】此题考查了完全平方公式的几何背景,解题的关键是:结合图形找出长与宽的数量关系.12.若多项式241x Q ++是完全平方式,请你写出所有满足条件的单项式Q 是_______.【答案】±4x , 4x 4【分析】根据题意可知本题是考查完全平方式,设这个单项式为Q ,∵如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q = ±4x ; ∵如果如果这里首末两项是Q 和1,则乘积项是4x 2=2×2x 2,所以Q = 4x 4.【详解】解:∵4x 2 +1±4x = (2x ±1)24x 2+1+4x 4 = (2x 2+1)2;∵加上的单项式可以是±4x , 4x 4,中任意一个,故答案为:±4x , 4x 4.【点睛】本题主要考查完全公式的有关知识,根据已知两个项分类讨论求出第三项是解题的关键.13.已知20052004,20052005,20052006,a x b x c x =+=+=+则多项式222a b c ab bc ac ++---的值为_________________.【答案】3【分析】观察知可先把多项式转化为完全平方形式,再代入值求解.【详解】∵a =2005x +2004,b =2005x +2005,c =2005x +2006,∵a−b =−1,b−c =−1,a−c =−2,∵222a b c ab bc ac ++---=12(2a 2+2b 2+2c 2−2ab−2bc−2ca )=12 [(a 2−2ab +b 2)+(b 2−2bc +c 2)+(a 2−2ac +c 2)]=12 [(a−b )2+(b−c )2+(a−c )2] =12[(−1)2+(−1)2+(−2)2]=3. 故答案为:3. 【点睛】本题考查了完全平方公式,关键在于灵活思维,对多项式扩大2倍是利用完全平方公式的关键. 14.观察下列各式:111113132a ⎛⎫==- ⎪⨯⎝⎭; 2111135235a ⎛⎫==- ⎪⨯⎝⎭; 3111157257a ⎛⎫==- ⎪⨯⎝⎭; 4111179279a ⎛⎫==- ⎪⨯⎝⎭; ①①①,则123200a a a a +++⋅⋅⋅+=______【答案】200401【分析】根据题意,总结式子的变化规律,然后得到1111()(21)(21)22121n a n n n n ==--⨯+-+,然后把代数式化简,通过拆项合并的方法进行计算,即可求出答案. 【详解】 解:∵111113132a ⎛⎫==- ⎪⨯⎝⎭;2111135235a ⎛⎫==- ⎪⨯⎝⎭; 3111157257a ⎛⎫==- ⎪⨯⎝⎭; 4111179279a ⎛⎫==- ⎪⨯⎝⎭; ……∵1111()(21)(21)22121n a n n n n ==--⨯+-+;∵123200a a a a +++⋅⋅⋅+11111111111(1)()()()232352572399401=-+-+-+⋅⋅⋅+⨯- 11111111(1)233557399401=⨯-+-+-+⋅⋅⋅+- 11(1)2401=⨯- 14002401=⨯200401=; 故答案为:200401. 【点睛】本题考查了整式的混合运算,以及数字的变化规律,解题的关键是熟练掌握正确掌握题意,找到题目的规律,从而运用拆项法进行解题.三、解答题15.已知a+b=1,ab=-1,设S 1=a+b ,S 2=a 2+b 2,S 3=a 3+b 3,…,S n =a n +b n (1)计算S 2和S 4(2)已知a 3+b 3=(a+b)(a 2-ab+b 2),求S 3并猜想S n -2,S n -1,S n 三者之间的数量关系(不需要证明);(3)若M=(S 1+S 2+S 3+----S 99)(S 2+S 3+----S 100),N=(S 1+S 2+S 3+----S 100)(S 2+S 3+----S 99)判断M ,N 的大小,并说明理由.【答案】(1)S 2=3,S 4=7,(2)S 3=4, S n -2+S n -1=S n ,理由见详解;(3)M >N ,理由见详解 【分析】(1)根据完全平方公式以及变形公式,即可求解;(2)根据a 3+b 3=(a+b)(a 2-ab+b 2),即可求出S 3=4,由a n -2+b n -2 +a n -1+ b n -1结合a+b=1,ab=-1,可得S n -2+S n -1=S n ; (3)设A= S 1+S 2+S 3+----+S 99,B= S 2+S 3+----+S 100,利用作差法,即可判断M ,N 的大小. 【详解】解:(1)S 2=a 2+b 2=(a +b )2−2ab =12−2×(−1)=3,S 4=a 4+b 4=(a 2+b 2)2−2a 2b 2=(a 2+b 2)2−2(ab )2=32−2×(−1)2=7, (2)S 3=a 3+b 3=(a+b)(a 2-ab+b 2)=1×(3+1)=4, 猜想:S n -2+S n -1=S n , 理由如下:∵a+b=1,ab=-1,∵a n -2+b n -2 +a n -1+ b n -1= a n -2(1+a)+ b n -2(1+b)= a n -2(-ab+a)+ b n -2(-ab+b)= a n -1(1-b)+ b n -1(1-a)= a n +b n , ∵S n -2+S n -1=S n ;(3)∵S 1=a+b ,S 100= a 100+b 100>0, 设A= S 1+S 2+S 3+----+S 99,B= S 2+S 3+----+S 100 ∵M -N=AB -(A+ S 100)(B - S 100) =AB -AB+(A -B) S 100+ S 100×S 100 =(S 1-S 100) S 100+ S 100×S 100 = S 1 S 100 = S 100>0, ∵M >N . 【点睛】本题考查了整式的混合运算和求值,能根据求出的结果得出规律是解此题的关键,规律是S n−2+S n−1=S n . 16.阅读理解并填空:(1)为了求代数式223x x ++的值,我们必须知道x 的值. 若1x =,则这个代数式的值为_________, 若2x =,则这个代数式的值为_________,....可见,这个代数式的值因x 的取值不同而变化,尽管如此,我们还是有办法来考虑这个代数式的值的范围. (2)把一个多项式进行部分因式分解可以解决求代数式的最大(或最小)值问题.例如:22223212(1)2x x x x x ++=+++=++,因为2(1)x +是非负数,所以这个代数式的最小值是_________,此时相应的x 的值是_________.(3)求代数式21235x x -+的最小值,并写出相应的x 的值. (4)求代数式2612x x --+的最大值,并写出相应的x 的值.【答案】(1)6;11;(2)2;-1;(3)最小值是-1,相应的x 的值是6;(4)最大值是21,相应的x 的值是-3. 【分析】(1)把x=1和x=2分别代入代数式x 2+2x+3中,再进行计算即可得出答案; (2)根据非负数的性质即可得出答案;(3)先把给出的式子化成完全平方的形式,再根据非负数的性质即可得出答案; (4)根据完全平方公式把给出的式子进行整理,即可得出答案. 【详解】解:(1)把x=1代入x 2+2x+3中,得:12+2+3=6; 若x=2,则这个代数式的值为22+2×2+3=11; 故答案为6;11; (2)根据题意可得:x 2+2x+3=(x 2+2x+1)+2=(x+1)2+2, ∵(x+1)2是非负数,∵这个代数式x 2+2x+3的最小值是2,相应的x 的值是-1. 故答案为2;-1;(3)∵x 2-12x+35=(x -6)2-1,∵代数式x 2-12x+35的最小值是-1,相应的x 的值是6; (4)∵-x 2-6x+12=-(x+3)2+21,∵-x 2-6x+12的最大值是21,相应的x 的值是-3. 【点睛】此题考查了因式分解的应用,用到的知识点是完全平方公式,非负数的性质,解题的关键是把给出的式子化成完全平方的形式进行解答.17.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到()2222a b a ab b +=++,请解答下列问题(1)写出图2中所表示的数学等式(2)根据整式乘法的运算法则,通过计算验证上述等式;(3)利用(1)中得到的结论,解决下面的问题:若10,35a b c ab ac bc ++=++=,则222a b c ++= (4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形z 张边长分别为,a b 的长方形纸片拼出一个面积为()()5794a b a b ++长方形,则x y z ++=【答案】(1)()2222222a b c a b c ab ac bc ++=+++++; (2)见解析 ; (3)30 ; (4)156. 【分析】(1)利用整体法求解正方形的面积为()2a b c ++,利用分割法求解正方形的面积为:222222a b c ab ac bc +++++,从而可得答案;(2)利用多项式乘以多项式的法则把左边通过计算展开,合并同类项后可得结论;(3)利用变形公式:()2222222a b c a b c ab ac bc ++=++---,再整体代入即可得到答案; (4)由题意可得,所拼图形的面积为:22xa yb zab ++,再利用整式的乘法运算法则计算:()()5794a b a b ++,由面积相等可得,,x y z 的值,从而可得答案.【详解】 解:(1)正方形的面积()2a b c =++;正方形的面积222222a b c ab ac bc =+++++()2222222.a b c a b c ab ac bc ++=∴+++++故答案为:()2222222.a b c a b c ab ac bc ++=∴+++++ (2)证明:()()a b c a b c ++++222,a ab ac ab b bc ac bc c =++++++++222222.a b c ab ac bc =+++++(3)10,35a b c ab ac bc ++=++=()2222222a b c a b c ab ac bc ∴++=++---()2102ab ac bc =-++ 100235,=-⨯30.=故答案为:30(4)由题可知,所拼图形的面积为:22xa yb zab ++()()5794a b a b ++2245206328a ab ab b =+++ 22452883a b ab =++ 45,28,83x y z ∴=== 452883156x y z ∴++=++=故答案为:156【点睛】本题考查的是乘法公式的几何意义,整式的乘法运算,公式的应用能力,掌握以上知识是解题的关键.18.设a,b,c为整数,且对一切实数都有(x-a)(x-8)+1=(x-b)(x-c)恒成立.求a+b+c的值.【答案】20或28.【分析】等式两边化简之后,利用一次项系数相等和常数项相等得到两个等式a+8=b+c和8a+1=bc;消去a,再因式分解得到(b﹣8)(c﹣8)=1,进而b﹣8=1,c﹣8=1或b﹣8=﹣1,c﹣8=﹣1,分别计算出a,b,c 的值即可得出答案.【详解】解:∵(x﹣a)(x﹣8)+1=x2﹣(a+8)x+8a+1,(x﹣b)(x﹣c)=x2﹣(b+c)x+bc又∵(x﹣a)(x﹣8)+1=(x﹣b)(x﹣c)恒成立,∵﹣(a+8)=﹣(b+c),∵8a+1=bc,消去a得:bc﹣8(b+c)=﹣63,(b﹣8)(c﹣8)=1,∵b,c都是整数,故b﹣8=1,c﹣8=1或b﹣8=﹣1,c﹣8=﹣1,解得b=c=9或b=c=7,当b=c=9时,解得a=10,当b=c=7时,解得a=6,故a+b+c=9+9+10=28或7+7+6=20,故答案为:20或28.【点睛】本题主要考查多项式乘多项式和因式分解变形,有一定难度.此题若直接求a,b,c的值不易,需另辟蹊径,这种解题思想很常用,需要特别注意19.阅读材料:1261 年,我国南宋数学家杨辉著《详解九章算法》,在注释中提到“杨辉三角”解释了二项和的乘方规律.在他之前,北宋数学家贾宪也用过此方法,“杨辉三角”又叫“贾宪三角”.这个三角形给出了()na b +(n 为正整数)的展开式(按a 的次数由大到小的顺序、b 的次数由小到大的顺序排列)的系数规律.例如:在三角形中第三行的三个数 1、2、1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第四行的四个数 1、3、3、1,恰好对应()3322333a b a a b ab b +=+++展开式中各项的系数等.从二维扩展到三维:根据杨辉三角的规则,向下进行叠加延伸,可以得到一个杨辉三角的立体图形.经研究,它的每一个切面上的数字所对应的恰巧是展开式的系数.(1)根据材料规律,请直接写出()4a b +的展开式;(2)根据材料规律,如果将-a b 看成()a b +-,直接写出211n n ⎛⎫-+ ⎪⎝⎭的展开式(结果化简);若24212527n n n =-+,求211n n ⎛⎫-+ ⎪⎝⎭的值; (3)已知实数a 、b 、c ,满足22224610a b c a b c +++-+=-,且1110123a b c +-=+-+,求a b c +-的值.【答案】(1)()4432234464a b a a b a b ab b +=++++;(2)211n n ⎛⎫-+ ⎪⎝⎭221212n n n n =+-+-,211n n ⎛⎫-+ ⎪⎝⎭=1或9;(3)6a b c +-=或2 【分析】(1)依据规律进行计算即可;(2)24212527n n n =-+分子分母同时除以2n 可化为22112725n n =-+,得出222257n n -+=,从而求得2216n n +=,即可求得12n n -=±,代入211n n ⎛⎫-+ ⎪⎝⎭即可求解; (3)将式子22224610a b c a b c +++-+=-通过完全平方式变形为()()()2221234a b c ++-++=,设1a x +=,2b y -=,3c z +=,通过a b c +-与x y z +-的关系联立阅读材料可求得a b c +-的值.【详解】解:(1)()4432234464a b a a b a b ab b +=++++;(2)22111=1n n n n ⎡⎤⎛⎫⎛⎫-++-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦222111122121n n n n n n ⎛⎫⎛⎫⎛⎫=+-++⨯-+⨯+⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2212122n n n n =++-+-221212n n n n =+-+-∵24212527n n n =-+ ∵22112725n n =-+,即222257n n -+=,可得2216n n+=,∵2221126n n n n ⎛⎫+=-+= ⎪⎝⎭,可得12n n -=±当12n n -=时,211n n ⎛⎫-+ ⎪⎝⎭221212n n n n =+-+-=61229=-+⨯=当12n n -=-时,211n n ⎛⎫-+ ⎪⎝⎭221212n n n n =+-+-=()61221=-+⨯-=(3)∵22224610a b c a b c +++-+=- 整理得到()()()2221234a b c ++-++= ∵1110123a b c +-=+-+ 设1a x +=,2b y -=,3c z +=,则2224111x y z x y z ⎧++=⎪⎨+-=⎪⎩,解得22240x y z xy xz yz ⎧++=⎨--=⎩ ∵()()()2221234x y z a b c a b c +-=++---=+--222222x y z xy xz yz =+++--()2222x y z xy xz yz =+++--4=∵42a b c +--=±∵当42a b c +--=时,6a b c +-=; 当42a b c +--=-时,2+-=a b c ; ∵6a b c +-=或2 【点睛】本题考查了乘法公式的运用;解题的关键是根据题目式子的形式进行恰当变形,从而求解,注意平方根的个数.20.我们可以用以下方法求代数式265x x ++的最小值.222226523335(3)4x x x x x ++=+⋅⋅+-+=+-①2(3)0x +≥ ①()2443x -≥-+,①当3x =-时,265x x ++有最小值-4. 请根据上述方法,解答下列问题(1)求代数式241x x -+的最小值;(2)求证:无论x 、y 取任何实数,代数式2221066211x y xy x y +---+的值都是正数;(3)已知x 为实数,求代数式()2424162021x x x x ++++的最小值.【答案】(1)241x x -+有最小值3-;(2)证明见解析;(3)()2424162021x x x x ++++有最小值2020.【分析】(1)通过配方可得:241x x -+()223x =--,再利用非负数的性质,结合不等式的性质可得答案; (2)把原式通过配方化为:()()()2221331y x x y -+-+-+,再利用非负数的性质可得:()()()22213311,y x x y -+-+-+≥从而可得结论;(3)利用配方法把原式化为:()2424162021x x x x ++++()22212020x x =+++()412020,x =++ 再利用非负数的性质可得代数式的最小值.【详解】解:(1)241x x -+()2443x x =-+-()223x =-- ()220,x -≥()2233,x ∴--≥-∴ 当2x =时,241x x -+有最小值3-.(2) 2221066211x y xy x y +---+ 22222169691y y x x x xy y =-++-++-++()()()2221331y x x y =-+-+-+ ()()()22210,30,30,y x x y -≥-≥-≥()()()22213311,y x x y ∴-+-+-+≥∴ 22210662111x y xy x y +---+≥,∴ 无论x 、y 取任何实数,代数式2221066211x y xy x y +---+的值都是正数;(3) ()2424162021x x x x ++++()()222214142020x x x x =+++++()22212020x x =+++ ()412020x =++ ()410,x +≥()4120202020,x ∴++≥∴ 当1x =-时,()2424162021x x x x ++++有最小值2020.【点睛】本题考查的是配方法的应用,非负数的性质,利用配方法求代数式的最值,因式分解的应用,掌握利用完全平方式的特点进行配方是解题的关键.。
八年级数学整式的乘法与因式分解专题练习(解析版)
八年级数学整式的乘法与因式分解专题练习(解析版)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-5【答案】A【解析】【分析】观察已知m 2-m-1=0可转化为m 2-m=1,再对m 4-m 3-m+2提取公因式因式分解的过程中将m 2-m 作为一个整体代入,逐次降低m 的次数,使问题得以解决.【详解】∵m 2-m-1=0,∴m 2-m=1,∴m 4-m 3-m+2=m 2 (m 2-m)-m+2=m 2-m+2=1+2=3,故选A .【点睛】本题考查了因式分解的应用,解决本题的关键是将m 2-m 作为一个整体出现,逐次降低m 的次数.2.利用平方差公式计算(25)(25)x x ---的结果是A .245x -B .2425x -C .2254x -D .2425x + 【答案】C【解析】【分析】平方差公式是(a+b )(a-b )=a 2-b 2.【详解】解:()()()()()2225252525425254x x x x x x ---=--+=--=-, 故选择C.【点睛】本题考查了平方差公式,应牢记公式的形式.3.化简()22x 的结果是( )A .x 4B .2x 2C .4x 2D .4x 【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.4.把228a -分解因式,结果正确的是( )A .22(4)a -B .22(2)a -C .2(2)(2)a a +-D .22(2)a +【答案】C【解析】【分析】先提公因式2,然后再利用平方差公式进行分解即可.【详解】 228a -=22(4)a -=2(2)(2)a a +-,故选C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.5.边长为a ,b 的长方形周长为12,面积为10,则a 2b +ab 2的值为( )A .120B .60C .80D .40【答案】B【解析】【分析】直接利用提取公因式法分解因式,进而求出答案.【详解】解:∵边长为a ,b 的长方形周长为12,面积为10,∴a +b =6,ab =10,则a 2b +ab 2=ab (a +b )=10×6=60.故选:B .【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题关键.6.下列运算正确的是( )A .()2224a a -=-B .()222a b a b +=+C .()257a a =D .()()2224a a a -+--=- 【答案】D【解析】【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【详解】22(2)4a a -=,故选项A 不合题意;222()2a b a ab b +=++,故选项B 不合题意;5210()a a =,故选项C 不合题意;22(24)()a a a -+--=-,故选项D 符合题意.故选D .【点睛】此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.7.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( )A .8B .-8C .0D .8或-8 【答案】B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++- 由于不含一次项,m+8=0,得m=-8.8.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.9.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( )A .b>0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b <0,b 2-ac ≥0【答案】D【解析】【分析】 根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24a c -,可根据平方的非负性求得b 2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b ,∴a+2b+c=4b <0,∴b <0, ∴a 2+2ac+c 2=4b 2,即22224a ac c b ++= ∴b 2-ac=()22222220444a c a ac c a ac c ac -++-+-==≥, 故选:D.【点睛】 本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.10.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -【答案】B【解析】【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ;如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式故选B.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的基本形式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.【答案】27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.12.在实数范围内因式分解:22967x y xy --=__________.【答案】11933xy xy ⎛⎫+--- ⎪ ⎪⎝⎭⎝⎭【解析】【分析】将原多项式提取9,然后拆项分组为222189399x y xy ⎛⎫-+- ⎪⎝⎭ ,利用完全平方公式将前一组分解后,再利用平方差公式继续在实数范围内分解.【详解】解:22967x y xy -- 2227=939x y xy ⎛⎫-- ⎪⎝⎭222117=9+3999x y xy ⎛⎫--- ⎪⎝⎭ 218=939xy ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦11=93333xy xy ⎛⎫⎛---+ ⎪ ⎪⎝⎭⎝⎭11=933xy xy ⎛+--- ⎝⎭⎝⎭故答案为:11933xy xy ⎛+--- ⎝⎭⎝⎭【点睛】本题考查在实数范围内因式分解,利用分组分解法将原多项式“三一”分组后采用公式法因式分解,注意在实数范围内因式分解是指系数可以是根式.13.已知3a b +=,2ab =-, (1)则22a b +=____;(2)则a b -=___.【答案】13;【解析】试题解析:将a+b=-3两边平方得:(a+b )2=a 2+b 2+2ab=9,把ab=-2代入得:a 2+b 2-4=9,即a 2+b 2=13;(a-b )2=a 2+b 2-2ab=13+4=17,即.14.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为______. 【答案】-15【解析】【分析】观察所求的式子以及所给的方程组,可知利用平方差公式进行求解即可得.【详解】∵x 2y 5x 2y 3-=⎧+=-⎨⎩, ∴22x 4y -=(x+2y )(x-2y )=-3×5=-15,故答案为:-15.【点睛】本题考查代数式求值,涉及到二元一次方程组、平方差公式因式分解,根据代数式的结构特征选用恰当的方法进行解题是关键.15.因式分解:3222x x y xy +=﹣__________. 【答案】()2x x y -【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy y x x y =-+=-, 故答案为:()2x x y -【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.16.分解因式:x 3y ﹣2x 2y+xy=______.【答案】xy (x ﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =_____.【答案】-5【解析】【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn 计算,再根据乘积中不含x 的一次项,得出它的系数为0,即可求出p 的值.【详解】解:(x +p )(x +5)=x 2+5x +px +5p =x 2+(5+p )x +5p ,∵乘积中不含x 的一次项,∴5+p =0,解得p =﹣5,故答案为:﹣5.18.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【解析】【分析】首先提取公因式a ,再利用平方差进行分解即可.原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.若2x+5y ﹣3=0,则4x •32y 的值为________.【答案】8【解析】∵2x+5y ﹣3=0,∴2x+5y=3,∴4x •32y =(22)x ·(25)y =22x ·25y =22x+5y =23=8, 故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.20.分解因式:32363a a a -+=_____.【答案】()231a a -【解析】【分析】先提取公因式3a ,再根据完全平方公式进行二次分解即可.【详解】 ()()232236332131a a a a a a a a -+=-+=-. 故答案为:()231a a -【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.。
初中数学整式乘法与因式分解500题(含解析)
一、整式的乘除(共 73 题)1.一种计算机每秒可做 4×108 次运算,它工作 3×103 秒运算的次数为( )A .12×1024B .1.2×1012C .12×1012D .12×1082.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)2×(22)3 中,结果等于 66 的是() A .①②③B .②③④C .②③D .③④3.下列运算正确的是( )A .6a-5a=1B .(a 2)3=a 5C .3a 2+2a 3=5a 5D .2a 2•3a 3=6a 54A .(a 2)3=a 5B5.下面是一名学生所做的 4 道练习题:①(-3)0=1;②a 3+a 3=a 6;③4m -4=;④(xy 2)3=x 3y 6,他做对的个数是()A .0.36.下列计算中,结果正确的是( )AC7.下列运算正确的是( )3+a 3=2a 6 C .a 3÷a 3=0D .3x 2•5x 3=15x 58.下列运算正确的是( )A . x 2•x 3=x 6B . x 2+x 2=2x 4C . (-2x )2=4x 2D . (-2x )2•(-3x )3=6x 59.下列运算正确的是()A . (x 2)3=x 5B . 3x 2+4x 2=7x 4C . (-x )9÷(-x )3=x 6D . -x (x 2-x+1)=-x 3-x 2-xA . a 2+2a 3=3a 5B .(2b 2)3=6b 6C . (3ab )2÷(ab )=3abD . 2a•3a 5=6a 610.下面运算正确的是( )A .(-2x 2)•x 3=4x 6B .x 2÷x=xC .(4x 2)3=4x 6D .3x 2-(2x )2=x 211.下列运算正确的是( )12.若 a 为仸意实数,则下列式子恒成立的是( )A .a+a=a 2B .a ×a=2aC .3a 3+2a 2=aD .2a ×3a 2=6a 313.下列各式正确的是( )A .a 4×a 5=a 20B .a 2×2a 2=2a 4C14.下列计算中正确的是()AC15.下列计算正确的是( )A4=a 5 D .-2x 2•3x =-6x 316.下列计算正确的是().2a 3+3a 3=5a 6 D .4a 3•2a 2=8a 517.下列运算丌正确的是( ). 2a 2•(-3a 3)=-6a 5 .b 5•b 5=b 2518.下列计算正确的是( )A . x 2+2x 2=3x 4B . a 3•(-2a 2)=-2a 5C . (-2x 2)3=-6x 6D . 3a •(-b )2=-3ab 219.下列计算正确的是( )A .(2x 3)•(3x )2=6x 6B . (-3x 4)•(-4x 3)=12x 7C.(3x4)•(5x3)=8x7 D.(-x)•(-2x)3•(-3x)2=-72x620.计算:3x2y•(-2xy)结果是()A.6x3y2 B.-6x3y2 C.-6x2y D.-6x2y2 21.下列计算正确的是()A.a+a=a2 B.a•a2=a3 C.(a2)3=a5 D.a(2a+1)=a3+1 22.一个长方体的长、宽、高分别 3a-4,2a,a,它的体积等于()A.3a3-4a2 B.a2 C.6a3-8a2 D.6a3-8a 23.2x2•(-3x3)= .24.(-2x2)•3x4= .25.(3x2y)(- x4y)= .26.2a3•(3a)3= .27.(-3x2y)•( xy2)= .28.-3x3•(-2x2y)= .29.3x2•(-2xy3)= .30.(-2a)(-3a)= .31.8b2(-a2b)= .32.8a3b3•(-2ab)3= .33.(-3a3)2•(-2a2)3= .34.(-8ab)()= .35.2x2•3xy= .36.3x4•2x3= .37.x2y•(-3xy3)2= .38.(2a2b)3c÷(3ab)3= .39.(-2a)3•b4÷12a3b2= .40.计算:()•3a b2=9ab5;-12a3bc÷()=4a2b;(4x2y-8x3)÷4x2= .41.若(a m+1b n+2)•(a2n-1b2m)=a5b3,则 m+n 的值为.42.若 n 为正整数,且 a2n=3,则(3a3n)2÷(27a4n)的值为.43.利用形如 a(b+c)=ab+ac 的分配性质,求(3x+2)(x-5)的积的第一步骤是()A.(3x+2)x+(3x+2)(-5)B.3x(x-5)+2(x-5)C.3x2-13x-10 D.3x2-17x-1044.下列多项式相乘的结果是 a2-3a-4 的是()A.(a-2)(a+2)B.(a+1)(a-4).(a+2)(a+2)45.下列多项式相乘结果为 a2-3a-18 的是()A.(a-2)(a+9)B.(a+2)(a-9)C.(a+3)(a-6)D.(a-3)(a+6)46.下面的计算结果为 3x2+13x-10 的是()A.(3x+2)(x+5)B.(3x-2)(x-5)C.(3x-2)(x+5)D.(x-2)(3x+5)47.下列计算正确的是()A.(-2a)•(3ab-2a2b)=-6a2b-4a3bB.(2ab2)•(-a2+2b2-1)=-4a3b4C.(abc)•(3a2b-2ab2)=3a3b2-2a2b3D.(ab)2•(3ab2-c)=3a3b4-a2b2c48.下列运算中,正确的是()A.2ac(5b2+3c)=10b2c+6ac2B.(a-b)2(a-b+1)=(a-b)3-(b-a)2C.(b+c-a)(x+y+1)=x(b+c-a)-y(a-b-c)-a+b-cD.(a-2b)(11b-2a)=(a-2b)(3a+b)-5(2b-a)249.(-2a3+3a2-4a)(-5a5)= .50.(x-2)(x+3)= .51.(x-2y)(2x+y)= .52.3x(5x-2)-5x(1+3x)= .53.(x-a)(x2+ax+a2)= .54.5x(x2-2x+4)+x2(x+1)= .55.若(x-1)(x+3)=x2+mx+n,那么 m,n 的值分别是()A.m=1,n=3 B.m=4,n=5 C.m=2,n=-3 D.m=-2,n=356.若(x+1)(2x-3)=2x2+mx+n,则 m= ,n= .57.若(x+4)(x-3)=x 2+mx-n ,则 m=,n= .58.已知(x+a )(x+b )=x 2-13x+36,则 a+b 的值是 . A .13 B .-13 C .36D .-3659.若(mx 3)•(2x k )=-8x 18,则适合此等式的 m=,k=.60.若(x+1)(2x-3)=2x 2+mx+n ,则 m=,n= .61.若(x-2)(x-n )=x 2-mx+6,则 m=,n=.62.若(x+p )不(x+2)的乘积中,丌含 x 的一次项,则 p 的值是.63.如果(x+a )(x+b )的结果中丌含 x 的一次项,那么 a 、b 满足( )A .a=bB64.计算(a+m )(a+ )的结果中丌含关于字母 a 的一次项,则 m 等于()65.如果(x+1)(x 2-5ax+a )的乘积中丌含 x 2 项,则 a 为.66.已知(5-3x+mx 2-6x 3 1-2x )的计算结果中丌含 x 3 的项,则 m 的值为.67.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等 式是()A . (a-b )2=a 2-2ab+b 2B . (a+b )2=a 2+2ab+b 2C . 2a (a+b )=2a 2+2abD . (a+b )(a-b )=a 2-b 268.如图,正方形卡片 A 类,B 类和长方形卡片 C 类若干张,如果要拼一个长 为(a+2b ),宽为(a+b )的大长方形,则需要 C 类卡片张.69.已知 m+n=2,mn=-2,则(1-m)(1-n)的值为()A.-3 B.-1 C.1 D.570.若 2x(x-1)-x(2x+3)=15,则 x= .71.已知 a2-a+5=0,则(a-3)(a+2)的值是.72.按下列程序计算,最后输出的答案是.73.下列运算正确的是()A.(am+bm+cm)÷n=a m÷n+bm÷n+cm÷n=B.(-a3b-14a2+7a)÷7a=-7a2b-2aC.(36x4y3-24x3y2+3x2y2)÷(-6x2y)=-6x2y+4x5y3- x4y3D.(6a m+2b n-4a m+1b n+1+2a m b n+2)÷(-2a m b n)=-3a2+2ab-b n+1二、乘法公式(共 150 题)74.下列计算正确的是()A.x4-x2=x2B.(x3)2=x5C.-6x5÷(-2x3)=3x2 D.(x+y)2=x2+y275.在下列各式中,不(a-b)2 一定相等的是()A.a2+2ab+b2 B.a2-b2 C.a2+b2 D.a2-2ab+b276.下列等式成立的是()A.(a2)3=a6 B.2a2-3a=-a C.a6÷a3=a2 D.(a+4)(a-4)=a2-477.下列计算正确的是()A.3a+2b=5ab B.(x-y)2=x2-y2 C.a10÷a5=a2 D.a4•a3=a7(a-b )2-c 2D . c 2-a+b 2只能是单项式 C . 只能是多项式 D . 以上都可以(a+b )(a-b )=a 2-b 2 B . (x+1)(x-1)=x 2-1 (-a+b )(-a-b )=a 2-b 2 (2x+1)(2x-1)=2x 2-1D .78.下列计算正确的是()A . 3a+2b=5abB . (a-1)2=a 2-2a+1C . a 6÷a 3=a 2D . (a 3)2=a 579.计算(-a-b )2 等于( )A .a 2+b 2B .a 2-b 2C .a 2+2ab+b 2D .a 2-2ab+b 280.若(x-y )2=0,则下列成立的等式是( )A .x 2+y 2=2xyB .x 2+y 2=-2xyC .x 2+y 2=0D .(x+y )2=(x-y )281.(a-b+c )(-a+b-c )等于( )A .-(a-b+c )2B .c 2-(a-b )2C .82.平方差公式(a+b )(a-b )=a 2-b 2 中字母 a 、b 表示()A .只能是数B .83.下列运用平方差公式计算,错误的是( )A . C .84.下列运算正确的是( )A .x 5+x 5=2x 10 . -(x )3(-x )5=x 8C . (-2x 2y )3=-6x 6y 3. (2x-3y )(-2x+3y )=4x 2-9y 285.下列运算正确的是()A . (x+y )(-x-y )=x 2-y 2 . (-3a 2)3=-9a 6C . (-a+b )2=a 2+2ab+b 2. 2009×2007=20082-1286.下列运算中正确的是()A . x 5+x 5=2x 10B . -(-x )3•(-x )5=-x 8C . (-2x 2y )3•4x -3=-24x 3y 3D . ( x-3y )(- x+3y )= x 2-9y 287.下列各式中计算正确的是()A . (a-b )2=a 2-b 2B . (a+2b )2=a 2+2ab+4b 2C . (a 2+1)2=a 4+2a+1D . (-m-n )2=m 2+2mn+n 288.(a+1)2-(a-1)2=.89.化简(a+b )2-(a-b )2 的结果是.90.(-4a-1)不(4a-1)的积等于( ) A .-1+16a 2B .-1-8a 2C .1-4a 2D .1-16a 291.运算结果为 2mn-m 2-n 2 的是( )A .(m-n )2B92.下列各式是完全平方式的是()A .x 2-x+.x 2+2x-193.下列多项式中是完全平方式的是( )A 2-12a+4 D .x 2y 2+2xy+y 294.小明计算一个二项式的平方时,得到正确结果 a 2-10ab +■,但最后一项丌 慎被污染了,这一项应是( ).25b 2D .100b 295.下列多项式乘法中,可以用平方差公式计算的是( ). ( a+b )(b- a ) . (x 2-y )(x+y 2)96.下列各式中,能用平方差公式计算的是( )①(7ab-3b )(7ab+3b );②73×94;③(-8+a )(a-8);④(-15-x )(x-15).A .①③B .②④C .③④D .①④A . (x+2)2=x 2+2x+4B . (-3-x )(3+x )=9-x 2C . (-3-x )(3+x )=-x 2-9+6xD . (2x-3y )2=4x 2+9y 2-12xy97.应用(a+b )(a-b )=a 2-b 2 的公式计算(x+2y-1)(x-2y+1),则下列变 形正确的是()A . [x-(2y+1)]2B . [x+(2y+1)]2C . [x-(2y-1)][x+(2y-1)]D . [(x-2y )+1][(x-2y )-1]98.下列各式中,计算错误的是( ) A .( x- y )( x+ y )= x 2- y 2 B . ( a+ b )( a- b )= a 2- b 2 C . (3x 2+5)(3x 2-5)=9x 4-25D .101×99=(100+1)(100-1)=10000-1=999999.对于仸意的整数 n ,能整除(n+3)(n-3)-(n+2)(n-2)的整数是( )A .4B100.如果两个数互为倒数,那么这两个数的和的平方不它们的差的平方的差是( )A .3.6101.若(x-2y )2=(x+2y )2+m ,则 m 等于()A D .-8xy102.下列各式的计算中,正确的是( ). (2a 2+b )2=4a 2+2a 2b+b 2 .(-a-b )2=(a-b )2103.下列各式是完全平方式的是( )A .a 2+4B .x 2+2xy-y 2C .a 2-ab+b 2D .4x 2-4xy+y 2104.下列计算中正确的是( )A . (m+n )2=m 2+n 2B .C . (4x+1)2=16x 2+8x+1D .105.下列各式中,计算结果正确的是()A . (x+y )(-x-y )=x 2-y 2B . (x 2-y 3)(x 2+y 3)=x 4-y 6C . (-x-3y )(-x+3y )=-x 2-9y 2D . (2x 2-y )(2x 2+y )=2x 4-y 2106.下列计算正确的()A . (-4x )(2x 2+3x-1)=-8x 3-12x 2-4xB . (x+y )(x 2+y 2)=x 3+y 3C . (-4a-1)(4a-1)=1-16a 2D . (x-2y )2=x 2+4y 2-2xy107.下列等式恒成立的是( )(2a-b )2=4a 2-2ab+b 2 (x-3)2=x 2-9108.下列代数式中是完全平方式的是( )①y 4-4y 2+4;②9m 2+16n 2-20mn ;③4x 2-4x+1;④6a 2+3a+1;⑤a 2+4ab+2b 2. A109.多项式有:①x 2+xy+y 2;②a 2-a+ ;③ m 2+m+1;④x 2-xy+ y 2;⑤m 2+2mn+4n 2;⑥ a 4b 2-a 2b+1.以上各式中,形如 a 2±2ab+b 2 的形式的多项式有( )A个 D .5 个110.下列各式丌是完全平方式的是( ).3x 2-2 x+1 D .4a 2-12ab-9b 2111.若 m ≠n ,下列等式中正确的是()①(m-n )2=(n-m )2;②(m-n )2=-(n-m )3;③(m+n )(m-n )=(-m-n )(-m+n );④(-m-n )2=-(m-n )2. A .1 个B .2 个C .3 个D .4 个112.下列计算中:①x (2x 2-x+1)=2x 3-x 2+1;②(a+b )2=a 2+b 2;③(x-4)2=x 2-4x+16;④ (5a-1)(-5a-1)=25a 2-1;⑤(-a-b )2=a 2+2ab+b 2,正确的个数有( )A .1 个B .2 个C .3 个D .4 个x 2-6y 2C . x 2-9y 2D . 2x 2-6y 2-2x 2B . 0C .A . a 8-b 8B .113.两个连续奇数的平方差是( )A .6 的倍数B .8 的倍数C .12 的倍数D .16 的倍数114.若等式(x-4)2=x 2-8x+m 2 成立,则 m 的值是( ) A .16B .4C .-4D .4 戒-4115.计算(x-)2 的结果是.116.不( - )2 的结果一样的是()A . (x+y )2-xyB .( + )2+xyC . (x-y )2D . (x+y )2-xy117.计算(x-3y )(x+3y )的结果是( )A .x 2-3y 2B .118.计算:1232-124×122=.119.计算:a 2-(a+1)(a-1)的结果是.120.(x-1)(x+1)(x 2+1)-(x 4+1)的值是( )A . -2 D .-1121.如果,,则 xy 的值是.122.计算(a 4+b 4)(a 2+b 2)(b-a )(a+b )的结果是( ) a 6-b 6 C .b 8-a 8D .b 6-a 6123.下列各式中,运算结果为 1-2xy 2+x 2y 4 的是( )A .(-1+xy 2)2B .(-1-xy 2)2C .(-1+x 2y 2)2D .(-1-x 2y 2)2124.(x+y )2-=(x-y )2.125.填空,使等式成立:x 2- x+ =(x+ )2126.若 4x 2+kx+25=(2x-5)2,那么 k 的值是.127.设(5a+3b )2=(5a-3b )2+A ,则 A=.128.若 x 2+ax+9=(x+3)2,则 a 的值为.129.如果 x 2+8x+m=(x+n )2,则 m 、n 的值为( ) A .m=16,n=4B .m=16,n=-4C .m=-16,n=-4D .m=-16,n=4130.要使 x 2-6x+a 成为形如(x-b )2 的完全平方式,则 a ,b 的值为( )A .a=9,b=9B .a=9,b=3C131.如果 ax 2+2x+ =(2x+ )2+m ,则 a ,m 的值分别是.132.如果( a-x )2= a 2+ ya+ ,则 x 、y 的值分别为.133.若 a 满足(383-83)2=3832-83×a ,则 a 值为.134.a 2+3ab+b 2 加上( )可得(a-b )2.A D .-7ab135.已知(x+a )(x-a )=x 2-16,则 a 的值是.136.4a 2+2a 要变为一个完全平方式,则需加上的常数是( ) C .- D .137.如果二次三项次 x 2-16x+m 2 是一个完全平方式,那么 m 的值是_______.138.如果 a 2+8ab+m 2 是一个完全平方式,则 m 的值是( )A .b 2B .2bC .16b 2D .±4b139.如果关于 x 的二次三项式 x 2-mx+16 是一个完全平方式,那么 m 的值是 ()A .8 戒-8B .8C .-8D .无法确定140.已知 x 2+kxy+64y 2 是一个完全平方式,则 k 的值是.141.若 9x 2+mxy+16y 2 是一个完全平方式,则 m 的值为( )A .24B .-12C .±12D .±24142.若 4a 2+2abk+16b 2 是完全平方式,那么 k 的值是( )A .16B .±16C143.当 m=()时,x 2+2(m-3)x+25 是完全平方式.144.如果 x 2-2(m+1)x+m 2+5 是一个完全平方式,则 m=.145.若要使 4x 2+mx+ 成为一个两数差的完全平方式,则 m 的值应为( )A .D .146.若 k-12xy+9x 2 是一个完全平方式,那么 k 应为( ) A .2y 2D .4y 2147.若 4x 2+pxy 3+ y 6 是完全平方式,则 p 等于.148.(x+b )2=x 2+ax+121,则 ab=.149.若改动 9a 2+12ab+b 2 中某一项,使它变成完全平方式,则改动的办法是 ()A . 只能改动第一项B . 只能改动第二项C . 只能改动第三项D . 可以改动三项中的仸一项150.老师布置了一道作业题:把多项式 25x4+1 增加一个单项式后,使之成为一个整式的平方式,以下是某学习小组给出的答案①-1,②-25x4,③10x2,④-10x2,⑤()2x8,其中正确的有()A.5 个B.4 个C.3 个D.2 个151.若二项式 x2+4 加上一个单项式后成为一个完全平方式,则这样的单项式共有个.152.当 x=-2 时,代数式-x2+2x-1 的值等于.153.若 x=2- ,则 x2-4x+8= .154.当 x=22005,y=(-2)2005 时,代数式 4x2-8xy+4y2 的值为.155.(a+b-1)(a-b+1)=()2-()2.156.4a2- =(+3b)(-3b).158.()+16x2=[()+1][()-1]159.(x- -3)(x+2y- )=[()-2y][()+2y] 160.(x-y)(x+y)(x2+y2)(x4+y4)…(x2n+y2n)= .161.已知 a-b=3,ab=2,则 a2+b2 的值为()A.13 B.7 C.5 D.11162.已知(a+b)2-2ab=5,则 a2+b2 的值为.163.已知 a2+b2=12,且 ab=-3,那么代数式(a+b)2 的值是.164.若 m2-n2=6,且 m-n=3,则 m+n= .165.若 a+b=0,ab=11,则 a2-ab+b2 的值为.166.已知 x+y=-5,xy=6,则 x2+y2 的值是.167.若 m+n=7,mn=12,则 m2-mn+n2 的值是.168.已知 a-b=3,a2-b2=9,则 a= ,b= .169.已知 x2+y2=13,xy=6,则 x+y 的值是()A.±5 B.±1 C.±D.1 戒170.已知 x2+y2=25,x+y=7,且 x>y,则 x-y 的值等于.171.已知(x+y)2=18,(x-y)2=6,则 x2+y2= ,xy= .172.若|x+y-5|+(xy-6)2=0,则 x2+y2 的值为.173.若 x(y-1)-y(x-1)=4,则-xy= .174.若 a-b=2,a-c=1,则(2a-b-c)2+(c-a)2 的值是.175.已知 a=2003,b=2002,则 a2-2ab+b2-5a+5b+6 的值为.176.若 n 满足(n-2006)2+(2007-n)2=1,则(2007-n)(n-2006)等于.177.已知(2009-a)(2008-a)=2007,那么(2009-a)2+(2008-a)2=. 178.已知a=x+20,b=x+19,c=x+21,那么代数式a2+b2+c2-ab-bc-ac的值是.179.如果 a-b=2,a-c= ,那么 a2+b2+c2-ab-ac-bc 等于.180.当 a(a-1)-(a2-b)=-2 时,则-ab 的值为.181.记 x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且 x+1=2128,则n= .182.如果x-=3,那么x2+= .183.若 a- =2,则 a2+ 的值为.184.已知,则= .185.若 x2+ =7,则 x+ = .186.如果 x+ =2,则= .187.若(x+ )2= ,试求(x- )2 的值为.188.已知 x- =1,则= .189.已知 a+b=3,a3+b3=9,则 ab 等于.190.a、b 是仸意实数,则下列各式的值一定为正数的是()A.|a+2| B.(a-b)2 C.a2+1 D.191.已知 a2-2a+1=0,则 a2007= .192.如果 1- + =0,那么 = .A . 一定为负数B . 丌可能为正数C . 一定为正数D . 可能为正数,负数戒 0193.若 a 2+2a+b 2-6b+10=0,则( )A .a=1,b=3B .a=-1,b=-3C .a=1,b=-3D .a=-1,b=3194.已知 x 2+y 2+4x-6y+13=0,那么 x y =.195.丌论 a 为何值,代数式 a 2-2a+1 的值总是( )A .>0B .≥0C .0D .<0196.已知 x 为仸意有理数,则多项式-1+x- x 2 的值为( )197.若 x=a 2-2a+2,则对于所有的 x 值,一定有( )AA .总丌小于 2D .可能为负数199.若 M=3x 2-8xy+9y 2-4x+6y+13(x ,y 是实数),则 M 的值一定是()AD .整数200.用简便方法计算:99×101×10 001= .201.用简便方法计算:20032-2003×8+16=.202.由 m (a+b+c )=ma+mb+mc ,可得:(a+b )(a 2-ab+b 2) =a 3-a 2b+ab 2+a 2b-ab 2+b 3=a 3+b 3,即(a+b )(a 2-ab+b 2)=a 3+b 3…① 我们把等式①叫做多项式乘法的立方和公式. 下列应用这个立方和公式迚行的变形丌正确的是()A . (x+4y )(x 2-4xy+16y 2)=x 3+64y 3B . (2x+y )(4x 2-2xy+y 2)=8x 3+y 3C . (a+1)(a 2+a+1)=a 3+1D . x 3+27=(x+3)(x 2-3x+9)203.为了美化城市,经统一规划,将一正方形草坪的南北方向增加 3m,东西方向缩短 3m,则改造后的长方形草坪面积不原来正方形草坪面积相比()A.增加 6m2 B.增加 9m2 C.减少 9m2 D.保持丌变204.某商品原价为 100 元,现有下列四种调价方案,其中 0<n<m<100,则调价后该商品价格最低的方案是()A.先涨价 m%,再降价 n% B.先涨价 n%,再降价 m%C.行涨价%,再降价% D.先涨价%,再降价% 205.图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()AC206.如图所示,在边长为 a 的正方形中,剪去一个边长为 b 的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于 a、b 的恒等式为().(a+b)2=a2+2ab+b2.a2+ab=a(a+b)207.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a-b)=a2-b2B.(a-b)2=a2-2ab+b2C.a(a+b)=a2+ab D.a(a-b)=a2-ab208.在边长为 a 的正方形中挖去一个边长为 b 的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b2 209.将边长分别为(a+b)和(a-b)的两个正方形摆放成如图所示的位置,则阴影部分的面积化简后的结果是.210.(m+n-p)(p-m-n)(m-p-n)4(p+n-m)2 等于()A.-(m+n-p)2(p+n-m)6B.(m+n-p)2(m-n-p)6 C.(-m+n+p)8D.-(m+n+p)8211.若 A=(2+1)(22+1)(24+1)(28+1),则 A-2003 的末位数字是()A.0 B.2 C.4 D.660C . 120D . 60212.一个非零的自然数若能表示为两个非零自然数的平方差,则称这个自然数 为“智慧数”,比如 28=82-62,故 28 是一个“智慧数”.下列各数中,丌是 “智慧数”的是()213.设 a >b >0,a 2+b 2-6ab=0,则的值等于 .214.已知 a-b=b-c= ,a 2+b 2+c 2=1,则 ab+bc+ca 的值等于.215.某校数学课外活动探究小组,在老师的引导下迚一步研究了完全平方公 式.结合实数的性质发现以下规律:对于仸意正数 a 、b ,都有 a+b≥2 成立.某 同学在做一个面积为 3 600cm 2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来作对角线用的竹条至少需要准备 xcm .则 x 的值是( )A .120B .216.如图为杨辉三角表,它可以帮助我们按规律写出(a+b )n (其中 n 为正 整数)展开式的系数,请仔绅观察表中规律,填出(a+b )4 的展开式中所缺的 系数.(a+b )1=a+b ; (a+b )2=a 2+2ab+b 2; (a+b )3=a 3+3a 2b+3ab 2+b 3; (a+b )4=a 4+a 3b+ a 2b 2+ ab 3+b 4.217.三个连续自然数中,两个较大数的积不第三个数平方的差为 188,那么这三个自然数为( )A .60,61,62B .61,62,63C .62,63,64D .63,64,65218.设 n 为大于 1 的自然数,则下列四个式子的代数值一定丌是完全平方数的 是()A .3n 2-3n+3B .5n 2-5n-5C .9n 2-9n+9D .11n 2-11n-112 C . 3D . 4219.设 x 为正整数,若 x+1 是完全平方数,则它前面的一个完全平方数是( ) A .xB .C .D .220.如果自然数 a 是一个完全平方数,那么不 a 之差最小且比 a 大的一个完全 平方数是( )A .a+1B .a 2+1C .a 2+2a+1D .a+2+1221.如果多项式 p=a 2+2b 2+2a+4b+2008,则 p 的最小值是( )A .2005B .2006C .2007D .2008222.已知实数 x ,y 满足方程(x 2+2x+3)(3y 2+2y+1)= ,则 x+y=.223.如果对于丌<8 的自然数 n ,当 3n+1 是一个完全平方数时,n+1 能表示 成 k 个完全平方数的和,那么 k 的最小值为( )A .1B .三、因式分解(共 277 题)因式分解四个基本方法:提公因式法、公式法、十字相乘法、分组分解法 提公因式法224.分解因式:a 2+2a=.225.分解因式:ab-a=.226.分解因式:ax+ay=.227.分解因式:2mx-6my=.228.分解因式:3a 2-6a=.229.分解因式:15a 2b+5ab=.230.分解因式:x 3-2x 2y=.231.分解因式:-12a2b-16ab2= .232.分解因式:9x-3x3= .233.分解因式:-4x2y+6xy2-2xy= .234.分解因式:-6mn+18mnx+24mny= .235.分解因式:-4a3+16a2b-26ab2= .236.分解因式:-7ab-14a2bx+49ab2y= .237.分解因式:12x3y-18x2y2+24xy3= .238.分解因式:x3y-x2y2+2xy3= .239.分解因式:-4x2yz-12xy2z+4xyz= .240.分解因式:-6xy+18xym+24xym = .241.分解因式:6x3-18x2+3x= .242.分解因式:m(x-y)+n(y-x)= .243.分解因式:2x(x-3)-5(x-3)= .244.分解因式:(2x2+3x-1)(x+2)-(x+2)(x+1)= .245.分解因式:4b(x-y+z)+10b2(y-x-z)= .246.分解因式:2y(x-2)-x+2= .247.分解因式:(x+3y)2-(x+3y)= .248.分解因式:(a-b)2-(b-a)3= .249.分解因式:(1+a)mn-a-1= .250.分解因式:(a-b)2(x-y)-(b-a)(y-x)2= .251.分解因式:4a(x-y)2-6b(y-x)= .252.分解因式:16(x-y)2-24xy(y-x)= .253.分解因式:6ab(a+b)2-4a2b(a+b)= .254.分解因式:n(m-n)(p-q)-n(n-m)(p-q)= .255.分解因式:x2-4x+4+(2x-4)= .256.分解因式:m(m+n)3+m(m+n)2-m(m+n)(m-n)= .257.分解因式:-3a(1-x)-2b(x-1)+c(1-x)= .258.分解因式:x(x-y)-y(y-x)= .259.分解因式:xy(x-y)-y(y-x)2= .260.分解因式:a(x2+y2)+b(-x2-y2)=_ .261.分解因式:(a+b)(a+b-1)-a-b+1=_ .262.分解因式:21(a-b)3+35(b-a)2=_ .263.分解因式:3x3y4+12x2y= .264.分解因式:a n+a n+2+a2n= .265.分解因式:-31x m-155x m+2+93x m+3= .266.分解因式:3x m•y n+2+x m-1y n+1= .267.分解因式:x(a-b)2n+y(b-a)2n+1= .268.分解因式:mn2(x-y)3+m2n(x-y)4= .269.分解因式:a3(x-y)-3a2b(y-x)= .270.分解因式:-12xy2(x+y)+18x2y (x+y)= .271.分解因式:18(x-y)3-12y(y-x)2= .272.分解因式:a(m-n)3-b(n-m)3= .273.分解因式:x2y(x-y)2-2xy(y-x)3= .274.分解因式:3x(x-y)+2x(y-x)-y(x-y)= .275.分解因式:(x+y)2-3(x+y)= .276.分解因式:m2n(m-n)2-2mn(n-m)3= .277.分解因式:2(a-b)3-4(b-a)2= .278.分解因式:(a-b)2(a+b)+(a-b)(a+b)2= .279.分解因式:(x-y)2-(3x2-3xy+y2)= .280.分解因式:1+x+x(1+x)+x(1+x)2+…+x(1+x)1995= .A . 3x 2-9xy=x (3x-9y )B . x 3+2x 2+x=x (x 2+2x )C . -2x 3+2x 2-4x=-2x (x 2+x-2)D . x (x-y )2-y (y-x )2=(x-y )3281.分解因式 6a (a-b )2-8(a-b )3 时,应提取公因式是( )A .aB .6a (a-b )3C .8a (a-b )D .2(a-b )2282.在下列多项式中,没有公因式可提取的是( )A .3x-4yB .3x+4xyC .4x 2-3xyD .4x 2+3x 2y283.下列选项在用提取公因式法分解因式时,正确的是( )284.分解因式 a (a-b-c )+b (c-a+b )+c (b-a+c )的结果是( )A . (b+c-a )2B . (a-b-c )(a+b-c )C . -(a-b-c )2D . (a-b-c )2285.下列因式分解正确的是()AB C D286.下面各式的因式分解中,正确的是( )A .-7ab-14+49aby=7ab (1-2x+7y )B . -3x m y n +x m+1y n-1=-3x m y n-1(y+3x )C . 6(a-b )2-2(b-a )=2(a-b )(3a-3b+1)D .xy (x-y )-x (y-x )=x (x-y )(y-1)287.把下列各式因式分解,错误的有( )①a 2b+7ab-b=b (a 2+7a ); ②3x 2y-3xy+6y=3y (x 2-x+2); ③8xy z-6x 2y 2z=2xyz (4-3xyz ); ④-2a 2+4ab-6ac=-2a (a+2b-3c ). A .1 个B .2 个C .3 个D .4 个288.多项式 a 2n -a n 提取公因式后,另一个因式是( )A .a nB .a n -1C .a 2n -1D .a 2n-1-1289.若多项式-6ab+18abx+24aby 的一个因式是-6ab ,那么另一个因式是 ()A .-1-3x+4yB .1+3x-4yC .-1-3x-4yD .1-3x-4y290.下列各个分解因式中正确的是( )A .10ab 2c+6ac 2+2ac=2ac (5b 2+3c )B . (a-b )3-(b-a )2=(a-b )2(a-b+1)C . x (b+c-a )-y (a-b-c )-a+b-c=(b+c-a )(x+y-1)D .(a-2b )(3a+b )-5(2b-a )2=(a-2b )(11b-2a )291.若(x+y )3-xy (x+y )=(x+y )•A ,则 A 为( )A .x 2+y 2B292.m 2(a-b )+m (b-a )因式分解的结果是() A .(a-b )(m 2.m(b-a )(n+1293.若要把多项式-12xy 2(x+y )+18x 2y (x+y )因式分解,则应提取的公因式为.294.利用分解因式计算:1.38×29-17×1.38+88×1.38=.295.若(p-q )2-(q-p )3=(q-p )2•E,则 E 是.296.若 a ,b 互为相反数,则 a (x-2y )-b (2y-x )的值为.297.若 m 、n 互为相反数,则 m (a-3b )-n (3b-a )=.298.若 a 2+a=0,则 2a 2+2a+20130 的值为 .A . 4B . -4299.已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a )(x+b ), 其中 a ,b 均为整数,则 a+3b=,ab= .300.已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a )(x+b ), 其中 a 、b 均为整数,则 a+3b=.301.已知 a+b=3,ab=2,则 a 2b+2a 2b 2+ab 2=.302.已知 x 2-xy=2,则 x (2x-2y )-4=.303.已知 m+n=1,mn=- ,则 m (m+n )(m-n )-m (m-n )2=.304.多项式 4x 3-2x 2-2x+k 能被 2x 整除,则常数项为.305.若(b+c )(c+a )(a+b )+abc 有因式 m (a 2+b 2+c 2)+l (ab+ab+bc ), 则 m=,l= .306.设 x 为满足 x 2002+20022001=x 2001+20022002 的整数,则 x=.公式法307.若多项式 x 2+mx+4 能用完全平方公式分解因式,则 m 的值可以是( ) C .±2D .±4308.下列多项式中,能用公式法分解因式的是( )A .x 2-xyB .x 2+xyC .x 2-y 2D .x 2+y 2309.下列各式中,能用平方差公式分解因式的是( )A .x 2+4y 2B .x 2-2y 2+1C .-x 2+4y 2D .-x 2-4y 2310.在有理数范围内,下列各多项式能用公式法迚行因式分解的是( )A .a 2-6aB .a 2-ab+b 2C .D .C . x 2-x+D . x 2-4y4-4a+a 2=(a-2)2 B . 1+4a-4a 2=(1-2a )2 1+x2=(1+x )2 D . x 2+xy+y 2=(x+y )2B . a 4+b 2-2a 2bC .A . ①②B . ②③311.下列因式分解中,结果正确的是()A . x 2-4=(x+2)(x-2)B . 1-(x+2)2=(x+1)(x+3)C . 2m 2n-8n 3=2n (m 2-4n 2)D .312.下列多项式中,丌能运用平方差公式因式分解的是( )A .-m 2+4B .-x 2-y 2C .x 2y 2-1D .(m-a )2-(m+a )2313.下列多项式中能用平方差公式分解因式的是( )A .a 2+(-b )2B .5m 2-20mnC .-x 2-y 2D .-x 2+9314.下列多项式中能用公式迚行因式分解的是( )A .x 2+4B .x 2+2x+4315.下列多项式因式分解正确的是( )A . C .316.下列多项式中,丌能运用公式分解因式的是( )A .m 4-25 D .x 2+2xy-y 2317.在多项式①x 2+2xy-y 2;②-x 2-y 2+2xy ;③x 2+xy+y 2;④4x 2+1+4x 中, 能用完全平方公式分解因式的有( ) C .①④ D .②④318.下列因式分解中,正确的有()①4a-a 3b 2=a (4-a 2b 2);②x 2y-2xy+xy=xy (x-2);③-a+ab-ac=-a (a-b-c ); ④9ab c-6a 2b=3abc (3-2a );⑤x 2y+xy 2=xy (x+y ) A .0 个B .1 个C .2 个D .5 个319.下列多项式丌能用平方差公式分解因式的是( )A .a 2-(-b )2B .(-a )2-(-b )2C .-a 2-(-b )2D .-a 2+b 24a 2-(a+b )2 C . a 2-8b 2D . x 2y 2-121-a 2+b 2B . -x 2-y 2A . a 2-2ab-b 2B .320.下列各式中丌能用完全平方公式分解的是( )A .-x 2-y 2+2xyB .x4+x2y2-2x3yC .m 2-m+1D .x 2-xy+y 2321.下列多项式中,能运用完全平方公式因式分解的是( )A .a 2+2ax+4x 2B .-a 2-4ax+4x 2C .-2x+1+4x 2D .x 2+4+4x322.下列多项式中,能直接用完全平方式分解因式的是( )A .x 2+2xy-y 2B .-x 2+2xy+y 2C .x 2+xy+y 2D .323.下列各式能用平方差公式因式分解的是( )A .A 2+B 2B .-A 2-B 2C .324.下列多项式,在有理数范围内丌能用平方差公式分解的是( )A .-x 2+y 2B .325.下列多项式丌能用完全平方公式分解因式的是()A .C .326.下列各式中,丌能用平方差公式分解因式的是()A . C .49x 2y 2-z 2D .16m 4-25n 2p 2327.下列多项式中,能用公式法迚行因式分解的是( )a 2-2ab+4b 2 C .-x 2+9D .x 2+xy+y 2328.下列各式中,能用平方差公式分解因式的有( )①x 2+y 2;②x 2-y 2;③-x 2+y 2;④-x 2-y 2;⑤1-a 2b 2. A .2 个B .3 个C .4 个D .5 个329.下列多项式丌能用平方差公式分解的是( )A . a 2b 2-1B .4-0.25m 2C .1+a 2D .-a 4+12 个C . 3 个D . 5 个B . y 2-2y+1C . -x 2-4y 2x 2-y 2B . x 2+y 2C .A . (-k-t 2)B . (k+t 2)330.下列多项式中丌能分解因式的是( )A .a 2b 2-abB .(x-y )2+(y-x )C .0.36x 2-6D .(-x )2+331.下列各式中能迚行因式分解的是( )A .a 2+b 2B .-a 2-b 2C .x 2-2xy+4y 2D .a 2+2a+1332.在多项式①+b 2;②-m 2+14mn+49n 2;③a 2-10a+25;④ab 2+2a 2b-1;⑤y 6-2y 3+1 中,丌能用完全平方公式分解因式的有( )A .①②⑤B .③④⑤C .①②④D .②④⑤333.下列多项式中能用平方差公式分解的有( )①-a 2-b 2;②2x 2-4y 2;③x 2-4y 2;④(-m )2-(-n )2;⑤-144a 2+121b 2;⑥-m 2+2n 2. A .1 个B .334.下列各式中,能用平方差公式分解因式的是() A .x 2+9y 2D .-4y 2+x 2335.-(x+y )(x-y )是()分解因式的结果.A . -x 2-y 2 D .-x 2+y 2336.不(k-t 2)之积等于 t 4-k 2 的因式为( )C .(k-t 2)D .(t 2-k )337.下列各式分解因式错误的是()A . 2x 2+2x=2x (x+1)B . x 2-4x+4=(x-2)2C . x 2-y 2=(x+y )(x-y )D . a +ab-ac=a (b-c )338.下列各式中能用完全平方公式分解的是( )①x 2-4x+4;②6x 2+3x+1;③4x 2-4x+1;④x 2+4xy+2y 2;⑤9x 2-20xy+16y 2A .①②B .①③C .②③D .①⑤339.一次课堂练习,小明做了如下 4 道因式分解题,你认为小明做得丌够完整 的一题是()A . x 2-2xy+y 2=(x-y )2B . x 2y-xy 2=xy (x-y )C . x 3-x=x (x 2-1)D . x 2-y 2=(x-y )(x+y )340.下列各式的因式分解中,正确的是()A . 3m 2-6m=m (3m-6)B . a 2b+ab+a=a (ab+b )C . -x 2+2xy-y 2=-(x-y )2D . x 2+y 2=(x+y )2341.在多项式①a 2-b 2+2ab ;②1-a+a 2;③ -x+x 2;④-4x 2+12xy-9y 2 中能用完全平方公式分解的有( )个. A .1B .2C342.下列因式分解中正确的是( )AC343.小明在抄分解因式的题目时,丌小心漏抄了 x 的指数,他只知道该数为丌 大于 10 的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是 x □-4y 2(“□”表示漏抄的指数),则这个指数可能的结果共有( )A .4 种 D .5 种344.分解因式:x 2-1=.345.分解因式:a 2-2ab+b 2=.346.分解因式:x 2-4x+4=.347.分解因式:9-x 2=.348.分解因式:x 2-4=.349.分解因式:a 2-4a+4=.350.分解因式:2a2-4a+2= .351.分解因式:x2-y2= .352.分解因式:y2+4y+4= .353.分解因式:(x-1)2-9= .354.分解因式:x2-4x+4= .355.分解因式:4a2-b2= .356.分解因式:-1+0.04m2= .357.分解因式:1-(a-b)2= .358.分解因式:4x2-(y-z)2= .359.分解因式:x4-16= .360.分解因式:a4-2a2b2+b4= .361.分解因式:(a+b)2-100= .362.分解因式:4x2-12xy+9y2= .363.分解因式:2xy-x2-y2= .364.分解因式:(m-n)2+(m-n)+= .365.分解因式:(m-n)2- (m-n)+ = .366.分解因式:(m-n)2-9n2(n-m)2= .367.分解因式:(4m+5)2-9= .368.分解因式:a3-4ab2= .369.分解因式:4a2-a2x2= .370.分解因式:x3-x= .371.分解因式:ab2-6ab+9a= .372.分解因式:ax2+2axy+ay2= .373.分解因式:ax3y+axy3-2ax2y2= .374.分解因式:-x3+2x2-x= .375.分解因式:3x3-12x2y+12xy2= .376.分解因式:x3-2x2+x= .377.分解因式:3x3-6x2y+3xy2= .378.分解因式:(x+2)(x+3)+x2-4= .379.分解因式:x9-x= .380.分解因式:x m+3-x m+1= .381.分解因式:9(x-y)2+12(x2-y2)+4(x+y)2= .382.分解因式:(x2+y2)2-8(x2+y2)+16= .十字相乘法384.49x2+ +y2=(-y)2,t2+7t+12= .385.若对于一切实数 x,等式 x2-px+q=(x+1)(x-2)均成立,则 p2-4q 的值是.386.分解因式:x2+x-6= ,x2-x-6= .387.分解因式:x2+5x-6= .388.分解因式:x2+x-12= .389.分解因式:x2+2x-15= .390.分解因式:x2-9x+14= .391.分解因式:x2-5x-14= .392.分解因式:x2+4x-21= .393.分解因式:x2-x-42= .394.若(x-3)•A=x2+2x-15,则 A= .395.分解因式:2x2-4x-6= .396.分解因式:-2x2+4x+6= .397.分解因式:x3-2x2-3x= .398.分解因式:4a2b+12ab+8b= .400.分解因式:2x2-7x+3= .401.分解因式:3x2-5x-2= .402.分解因式:3x2-7x+2= .403.分解因式:6x2+7x-5= .404.若 x+5 是二次三项式 x2-kx-15 的一个因式,那么这个二次三项式的另一个因式是.405.x2- -20=(x+4)().406.分解因式:(x-3)(x-5)-3= .407.分解因式:(x+2)(x-13)-16= .408.分解因式:(x-1)(x-2)-20= .409.分解因式:(a+3)(a-7)+25= .410.分解因式:x2-3x(x-3)-9= .411.已知 5x2-xy-6y2=0,则的值为.412.分解因式:2x2+5xy-12y2= .413.分解因式:x2+7xy-18y2= .414.分解因式:a2+2ab-3b2= .415.分解因式:18ax2-21axy+5ay2= .416.分解因式:2003x2-(20032-1)x-2003= .417.用十字相乘法分解因式:a2x2+7ax-8= .418.分解因式:m4+2m2-3= .419.分解因式:(x+y)2+5(x+y)-6= .420.分解因式:(x-y)2-4(x-y)+3= .421.分解因式:(a-b)2+6(b-a)+9= .422.分解因式:(x+y)2-3x-3y-4= .423.若p 是正整数,二次三项式x2-5x﹢p 在整数范围内分解因式为(x-a x-b)的形式,则 p 的所有可能的值.424.已知 a 为整数,且代数式 x2+ax+20 可以在整数范围内迚行分解因式,则符合条件的 a 有个.425.分解因式:2b2-2b+ = .426.分解因式:x8+x4+1= .427.分解因式:(x2+3x)2-2(x2+3x)-8= .428.分解因式:(a2+3a)2-2(a2+3a)-8= .429.分解因式:(x2-2x)2-11(x2-2x)+24= .430.分解因式:x(x-1)(x+1)(x+2)-24= .431.分解因式:(x-3)(x-1)(x-2)(x+4)+24= .432.分解因式:(x2+5x+2)(x2+5x+3)-12= .433.分解因式:(x4+x2-4)(x4+x2+3)+10= .434.分解因式:(x+1)4+(x+3)4-272= .435.将 x3-ax2-2ax+a2-1 分解因式得.436.在有理数范围内分解因式:(x+y)4+(x2-y2)2+(x-y)4= .437.分解因式:x4+2500= .438.分解因式:(1-7t-7t2-3t3)(1-2t-2t2-t3)-(t+1)6= .分组分解法439.分解因式:ab+b2-ac-bc=()-(ac+bc)= .440.分解因式:ax2+ax-b-bx=(ax2-bx)+()=()().441.分解因式:2ax+4bx-ay-2by=()+()=()().442.分解因式:x2-a2-2ab-b2=()-()=()().443.分解因式:ax-ay+a2+bx-by+ab= .444.分解因式:ab-3ac+2ay-bx+3cx-2xy=. 445.分解因式:(ax-by)2+(ay+bx)2= .446.分解因式:1-a2-b2+2ab= .447.分解因式:1-x2+2xy-y2= .448.分解因式:a2-b2+4a+2b+3= .449.分解因式:x2-4y2-9z2-12yz= .450.分解因式:a2-4b2+4bc-c2= .451.分解因式:-x3-2x2-x+4xy2= .452.分解因式:9-6a-6b+a2+2ab+b2= .453.分解因式:a2+4b2+9c2-4ab+6ac-12bc= .454.分解因式 x3+(1-a)x2-2ax+a2= .455.已知 p、q 满足等式|p+2|+(q-4)2=0,分解因式:(x2+y2)-(pxy+q)= .456.已知,且x≠y,则= .457.分解因式:a4b-a2b3+a3b2-ab4= .458.分解因式:(x+y-2xy)(x+y-2)+(xy-1)2= .459.分解因式:a2+2b2+3c2+3ab+4ac+5bc= .460.分解因式:x2y+xy2-x2-y2-3xy+2x+2y-1= .461.分解因式:(1-x2)(1-y2)-4xy= .462.分解因式:ax3+x+a+1= .463.分解因式:(x2-1)(x4+x2+1)-(x3+1)2= .464.分解因式:x5+x3-x2-1= .465.分解因式:x3+x2+2xy+y2+y3= .466.分解因式:32ac2+15cx2-48ax2-10c3= .467.分解因式:x2(y-z)+y2(z-x)+z2(x-y)= .468.分解因式:(x+y-2xy)(x+y-2)+(1-xy)2= .469.分解因式:x4+x3+6x2+5x+5= .470.分解因式:bc(b+c)+ca(c-a)-ab(a+b)= .471.分解因式 y2+xy-3x-y-6=472.分解因式:x2+5xy+x+3y+6y2= .473.分解因式:2x3+11x2+17x+6= .474.分解因式:x4+2x3-9x2-2x+8= .475.分解因式:2x2-xy-6y2+7x+7y+3= .476.分解因式:6x2+xy-15y2+4x-25y-10= .477.分解因式:(x2-1)(x+3)(x+5)+12= .478.分解因式:x3+6x2+5x-12= .479.分解因式:a4+2a3b+3a2b2+2ab3+b4= .480.分解因式:ab(a+b)2-(a+b)2+1= .481.分解因式:x4-5x2+4x= .482.分解因式:(x-1)3+(x-2)3+(3-2x)3= .483.分解因式:x3+(2a+1)x2+(a2+2a-1)x+(a2-1)= .因式分解的应用484.计算:(x2-2x+1-y2)÷(x+y-1)= .485.(a4-16b4)÷(a2+4b2)÷(2b-a)= .486.分解因式:①x3+(2a+1)x2+(a2+2a-1)x+(a2-1);②a4+b4+(a+b)4.487.将关于 x 的一元二次方程 x2+px+q=0 变形为 x2=-px-q,就可将 x2 表示为关于 x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”,已知 x2-x-1=0,可用“降次法”求得 x4-3x+2014 的值是.488.有理数的值等于_______.489.计算= .490.已知:,则abc= .。
(完整版)整式的乘法与因式分解考点练习(含答案),推荐文档
整式的乘法与因式分解复习考点1幕的运算1 •下列计算正确的是()A •(a2)3= a5B . 2a—a= 22.(铜仁中考)下列计算正确的是()A . a2+ a2= 2a4B . 2a2 a3= 2a63 .计算:x5x7+ x6( —x3)2+ 2(x3)4.12 12A. 4xB. 2xC. (2a)2= 4aD. a a3= a4 C. 3a—2a= 1 D. (a2)3= a6C. xD. 4x考点2整式的乘法4.下列运算正确的是()A . 3a2 - a3 = 3a6B . 5x4— x2 = 4x2C . (2a2)3 - ( — ab) = — 8a7bD . 2x2十 2X2= 05.计算:(3x — 1)(2x + 1) = ______ .2 2 2A. 6x x 1B. 6x x 1C. 6x 5x 1D.6.计算:(1)( —3x2y)3( —2xy3); (2)&勺—*xy2)( —4xy2).A. 6x3y6 , 3x3y22x2y4B. - 6x3y6 , 3x3y32x2y47 6 八33 ^24C. 54x y , 3x y 2x y7 6 ^32 ^24D. - 54x y , 3x y 2x y考点3整式的除法7.计算8a3r —2a)的结果是()A . 4a B. —4a C. 4a2D. —4a22 258.若5a3b m+ 2a n b2= 2?b2,贝V m= _______________ , n= ___________5 29.化简:(a2b—2ab2—b3)占—(a—b)2.考点4乘法公式10.下列关系式中,正确的是()A . (a+ b)2= a2—2ab+ b2B. (a—b)2= a2—b22 2C . (a+ b)( —a+ b) = b —aD . (a+ b)( —a —b) = a2—b211.已知(x + m)2= x2+ nx + 36,贝V n 的值为()6x25x 1A . ± 6B . ± 12C . ± 18D . ± 7212 .计算:(1)( — 2m + 5)2; (2)(a + 3)(a —3)(a2+ 9); 考点5因式分解13. (北海中考)下列因式分解正确的是()A . x 2 — 4= (x + 4)(x — 4)B . x 2+ 2x + 1 = x(x + 2) + 1C. 3mx — 6my = 3m(x — 6y)D. 2x + 4= 2(x + 2)14. 多项式 mx 2 — m 与多项式x 2— 2x + 1的公因式是()A . x — 1B . x + 1C . x 2— 1D . (x — 1)2 15 .(黔西南中考)分解因式:4X 2+ 8x + 4= ___________ . 16 .若 x — 2y =— 5, xy = — 2,贝U 2x 2y — 4xy 2= ____ .综合训练17 .(威海中考)下列运算正确的是()A . (— 3m n)2=— 6m 2 n 2B . 4X 4 + 2x 4 + x 4= 6x 4C . (xy)2* (— xy) = — xyD . (a — b)( — a — b) = a 2 — b 218 .(毕节中考)下列因式分解正确的是()A . a 4b — 6a 3b + 9a 2b = a 2b(a 2— 6a + 9)21 / 1 2B . x 2— x + 4 = (x — 2)2C . x 2— 2x + 4= (x — 2)2D . 4x 2— y 2= (4x + y)(4x — y)19 .(大连中考)若a = 49, b = 109,贝U ab — 9a 的值为 _______ .20 .(宁波中考)一个大正方形和四个全等的小正方形按图1、2两种方式摆放,则图2的大正方形中未被小正方形覆盖部分的面积是 ________ (用a 、b 的代数式表示)图1 图221.(绵阳中考)在实数范围内因式分解:x 2y — 3y= ________________ . a b 一 a b 22 .(崇左中考)4个数a , b , c , d 排列成 ,我们称之为二阶行列式.规定它的运算法则为: =ad — bc.cdcdx + 3 x — 3 若 ________ =12,则 x = . x — 3 x + 323 .计算:(1)5a 3b • (— 3b)2+ (— ab)(— 6ab)2; (3)(a — 1)(a + 1) — (a — 1)2.(2)x(x 2+ 3) + x2(x —3)—3x(x 2—x —1).24.把下列各式因式分解:(2)16x2—64; (3) —4a2+ 24a—36.(1)2m(a —b) —3n(b —a);25先化简(a2b—2ab2—b3) -b —(a+ b)(a —b),然后对式子中a、b分别选择一个自己最喜欢的数代入求值.26.我们约定:a b= 10a- 10b,如4 3 = 104- 103= 10.(1)试求12 3和10 4的值;⑵试求(21 5) X 102的值.参考答案1. D2. D3.原式=x12+ x6•x6+ 2X12= x12+ x12+ 2X12=4X124. C5.6X2+ X—16.(1)原式=—27x6y3X ( —2xy3)= 54x7y6.⑵原式=|x2y •(—4xy2)—2xy2•(—4xy2)= —3x3y3+ 2x2y4.7.D8.4 39.原式=a2—2ab—b2—a2+ 2ab— b2=—2b2.10. C11. B12.(1)原式=4m2—20m + 25. (2)原式=(a2—9)(a2+ 9) = a4—81. (3)原式=a2—1 —a2+ 2a—1 = 2a—2.13. D14.A15.4(X + 1)216.2017. C18. B19.490020.ab21.y(x —,3)(X + ;3)22.123.(1)原式=5a3b •9b2+ (—ab) 36a2b2= 45a3b3—36a3b3= 9a3b3. (2)原式=X3+ 3X + X3—3X2—3X3+ 3X2 + 3X =—X3+6X.24.(1)原式=(a—b)(2m + 3n). (2)原式=16(X + 2)(X—2). (3)原式=—4(a—3)2.25.原式=a2—2ab—b2—(a2—b2)= a2—2ab—b2—a2+ b2=—2ab.如选择一个喜欢的数为a= 1, b=—1,则原式=2.26.(1)12 3 = 1012* 103= 109, 10 4= 1010 * 104= 106. (2)(21 5) X 102 = (1021* 105)X102 = 1018.。
天津霍元甲文武学校数学整式的乘法与因式分解专题练习(解析版)
天津霍元甲文武学校数学整式的乘法与因式分解专题练习(解析版)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.在矩形ABCD 中,AD =3,AB =2,现将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.则S 1﹣S 2的值为( )A .-1B .b ﹣aC .-aD .﹣b【答案】D【解析】【分析】 利用面积的和差分别表示出S 1、S 2,然后利用整式的混合运算计算它们的差.【详解】∵1()()()(2)(2)(3)S AB a a CD b AD a a a b a =-+--=-+--2()()()2(3)()(2)S AB AD a a b AB a a a b a =-+--=-+--∴21S S -=(2)(2)(3)a a b a -+--2(3)()(2)a a b a -----32b b b =-+=-故选D.【点睛】本题考查了整式的混合运算,计算量比较大,注意不要出错,熟练掌握整式运算法则是解题关键.2.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.【答案】A【解析】【分析】根据多项式相乘展开可计算出结果.【详解】 ()()1x m x +-=x 2+(m-1)x-m ,而计算结果不含x 项,则m-1=0,得m=1.【点睛】本题考查多项式相乘展开系数问题.3.已知x 2+4y 2=13,xy=3,求x+2y 的值,这个问题我们可以用边长分别为x 和y 的两种正方形组成一个图形来解决,其中x>y ,能较为简单地解决这个问题的图形是( )A .B .C .D .【答案】A【解析】 ∵222(2)44x y x y xy +=++,∴若用边长分别为x 和y 的两种正方形组成一个图形来解决(其中x y >), 则这个图形应选A ,其中图形A 中,中间的正方形的边长是x ,四个角上的小正方形边长是y ,四周带虚线的每个矩形的面积是xy .故选A.4.计算,得( ) A . B .C .D .【答案】C【解析】【分析】直接提取公因式(-3)m-1,进而分解因式即可.【详解】(-3)m +2×(-3)m-1=(-3)m-1(-3+2)=-(-3)m-1.故选C .【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.5.下列各式中,不能运用平方差公式进行计算的是( )A .(21)(12)x x --+B .(1)(1)ab ab -+C .(2)(2)x y x y ---D .(5)(5)a a -+--【答案】A【解析】【分析】运用平方差公式(a+b )(a-b )=a 2-b 2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A. 中不存在互为相反数的项,B. C. D 中均存在相同和相反的项,故选A.【点睛】此题考查平方差公式,解题关键在于掌握平方差公式结构特征.6.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( )A .8B .-8C .0D .8或-8 【答案】B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++- 由于不含一次项,m+8=0,得m=-8.7.下面计算正确的是( )A .33645x x x +=B .236a a a ⋅=C .()4312216x x -=D .()()22222x y x y x y +-=- 【答案】C【解析】【分析】A.合并同类项得到结果;B.利用同底数幂的乘法法则计算得到结果;C.利用幂的乘方与积的乘方运算法则计算得到结果;D.利用平方差公式计算得到结果,即可作出判断.【详解】A.原式=35x ,错误;B.原式=5a ,错误;C.原式=1216x ,正确;D.原式=224x y -,错误.故选C.【点睛】本题主要考查同底数幂的乘法,合并同类项,幂的乘方与积的乘方,平方差公式运算,熟知其运算法则是解题的关键.8.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.9.下列各式中,从左到右的变形是因式分解的是( )A .2a 2﹣2a+1=2a (a ﹣1)+1B .(x+y )(x ﹣y )=x 2﹣y 2C .x 2﹣6x+5=(x ﹣5)(x ﹣1)D .x 2+y 2=(x ﹣y )2+2x【答案】C【解析】【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【详解】A 、2a 2-2a+1=2a (a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B 、(x+y )(x-y )=x 2-y 2,这是整式的乘法,故此选项不符合题意;C 、x 2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D 、x 2+y 2=(x-y )2+2xy ,等号的右边不是整式的积的形式,故此选项不符合题意; 故选C .【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.10.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >> 【答案】A【解析】【分析】先把a ,b ,c 化成以3为底数的幂的形式,再比较大小.【详解】解:3112412361122a 813b 3c 93a b c.,,,=====>>故选A.【点睛】此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知a-b=4,ab=6,则22a b += _________.【答案】28【解析】【分析】对完全平方公式进行变形即可解答.【详解】解:∵222()216a b a ab b -=-+=∴22a b +=2()a b -+2ab=16+2×6=28故答案为28.【点睛】本题考查了完全平方公式的应用,掌握完全平方公式并能够进行灵活变形是解答本题的关键.12.如果9x 2-axy+4y 2是完全平方式,则a 的值是____.【答案】±12【解析】【分析】根据完全平方式得出-axy=±2×3x2y ,求出即可.【详解】解:9x 2-axy+4y 2=(3x±2y )2即-axy=±2×3x2y所以a=±12 【点睛】本题考查了完全平方式,能熟记完全平方公式的特点是解此题的关键,注意:完全平方式有两个a 2-2ab+b 2和a 2+2ab+62是本题的易错点.13.已知25,23a b==,求2a b +的值为________.【答案】15.【解析】【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】解:∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.14.222---x xy y =__________【答案】()2x y -+【解析】根据因式分解的方法,先提公因式“﹣”,再根据完全平方公式分解因式为:()()2222222x xy y x xy y x y ---=-++=-+. 故答案为()2x y -+.点睛:此题主要考查了因式分解,因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),注意符号的变化.15.若4x 2+20x + a 2是一个完全平方式,则a 的值是 __ .【答案】±5【解析】225,5a a ==±16.已知2x +3y -5=0,则9x •27y 的值为______.【答案】243【解析】【分析】先将9x •27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x ⋅27y =32x ⋅33y =32x+3y =35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则.17.因式分解:3x 3﹣12x=_____.【答案】3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x ,然后利用平方差公式进行分解即可.【详解】3x 3﹣12x=3x (x 2﹣4)=3x (x+2)(x ﹣2),故答案为3x (x+2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.18.若3a b +=,则226a b b -+的值为__________.【答案】9【解析】分析:先将226a b b -+化为()()6a b a b b +-+,再将3a b +=代入所化式子计算即可. 详解:∵3a b +=,∴226a b b -+=()()6a b a b b +-+=3()6a b b -+=336a b b -+=3()a b +=9.故答案为:9.点睛:“能够把226a b b -+化为()()6a b a b b +-+”是解答本题的关键.19.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解.详解:2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- ,故答案为:12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.20.分解因式:32231827m m n mn -+=____________________【答案】23(3)m m n -【解析】【分析】先提公因式3m ,然后再利用完全平方公式进行分解即可得.【详解】3322m 18m n 27mn -+=3m(m 2-6mn+9n 2)=3m(m-3n)2,故答案为:3m(m-3n)2.【点睛】本题考查了提公因式法与公式法的综合运用,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.。
八年级数学整式的乘法与因式分解专题练习(解析版)
八年级数学整式的乘法与因式分解专题练习(解析版)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a2+b2+c2—ab-bc-ca的值等于( )A.0 B.1 C.2 D.3【答案】D【解析】【分析】首先把a2+b2+c2﹣ab﹣bc﹣ac两两结合为a2﹣ab+b2﹣bc+c2﹣ac,利用提取公因式法因式分解,再把a、b、c代入求值即可.【详解】a2+b2+c2﹣ab﹣bc﹣ac=a2﹣ab+b2﹣bc+c2﹣ac=a(a﹣b)+b(b﹣c)+c(c﹣a)当a=2012x+2011,b=2012x+2012,c=2012x+2013时,a-b=-1,b-c=-1,c-a=2,原式=(2012x+2011)×(﹣1)+(2012x+2012)×(﹣1)+(2012x+2013)×2=﹣2012x﹣2011﹣2012x﹣2012+2012x×2+2013×2=3.故选D.【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目.2.因式分解x2+mx﹣12=(x+p)(x+q),其中m、p、q都为整数,则这样的m的最大值是()A.1 B.4 C.11 D.12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p、q的关系判断即可.详解:∵(x+p)(x+q)= x2+(p+q)x+pq= x2+mx-12∴p+q=m,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.3.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.4.若代数式x 2+ax +64是一个完全平方式,则a 的值是( )A .-16B .16C .8D .±16【答案】D【解析】试题分析:根据完全平方式的意义,首平方,尾平方,中间加减积的2倍,可知a=±2×8=16.故选:D点睛:此题主要考查了完全平方式的意义,解题关键是明确公式的特点,即:完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方。
八年级整式的乘法与因式分解专题练习(解析版)
八年级整式的乘法与因式分解专题练习(解析版)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .3【答案】D【解析】【分析】首先把a 2+b 2+c 2﹣ab ﹣bc ﹣ac 两两结合为a 2﹣ab +b 2﹣bc +c 2﹣ac ,利用提取公因式法因式分解,再把a 、b 、c 代入求值即可.【详解】a 2+b 2+c 2﹣ab ﹣bc ﹣ac=a 2﹣ab +b 2﹣bc +c 2﹣ac=a (a ﹣b )+b (b ﹣c )+c (c ﹣a )当a =2012x +2011,b =2012x +2012,c =2012x +2013时,a -b =-1,b -c =-1,c -a =2,原式=(2012x +2011)×(﹣1)+(2012x +2012)×(﹣1)+(2012x +2013)×2=﹣2012x ﹣2011﹣2012x ﹣2012+2012x ×2+2013×2=3.故选D .【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目.2.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-5【答案】A【解析】【分析】观察已知m 2-m-1=0可转化为m 2-m=1,再对m 4-m 3-m+2提取公因式因式分解的过程中将m 2-m 作为一个整体代入,逐次降低m 的次数,使问题得以解决.【详解】∵m 2-m-1=0,∴m 2-m=1,∴m 4-m 3-m+2=m 2 (m 2-m)-m+2=m 2-m+2=1+2=3,故选A .【点睛】本题考查了因式分解的应用,解决本题的关键是将m 2-m 作为一个整体出现,逐次降低m 的次数.3.若999999a =,990119b =,则下列结论正确是( ) A .a <bB .a b =C .a >bD .1ab =【答案】B【解析】 ()9999999909990909119991111===99999a b +⨯⨯==⨯, 故选B.【点睛】本题考查了有关幂的运算、幂的大小比较的方法,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.4.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( )A .4B .8C .12D .16【答案】D【解析】(x -2 015)2+(x -2 017)2=(x -2 016+1)2+(x -2 016-1)2=22(2016)2(2016)1(2016)2(2016)1x x x x -+-++---+=22(2016)2x -+=34∴2(2016)16x -=故选D.点睛:本题主要考查了完全平方公式的应用,把(x -2 015)2+(x -2 017)2化为 (x -2 016+1)2+(x -2 016-1)2,利用完全平方公式展开,化简后即可求得(x -2 016)2的值,注意要把x-2016当作一个整体.5.已知x -y =3,12x z -=,则()()22554y z y z -+-+的值等于( ) A .0B .52C .52-D .25 【答案】A【解析】【分析】此题应先把已知条件化简,然后求出y-z 的值,代入所求代数式求值即可.【详解】由x-y=3,12x z -=得:()()x z x y y z ---=-15322 =-=-;把52-代入原式,可得255252525255=0224424⎛⎫⎛⎫-+-+-+=⎪ ⎪⎝⎭⎝⎭.故选:A.【点睛】此题考查的是学生对代数式变形方法的理解,这一方法在求代数式值时是常用办法.6.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A.a2-b2=(a+b)(a-b) B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b2【答案】B【解析】图(4)中,∵S正方形=a2-2b(a-b)-b2=a2-2ab+b2=(a-b)2,∴(a-b)2=a2-2ab+b2.故选B7.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab【答案】B【解析】【分析】【详解】解:∵a*b=ab+a+b∴a*(﹣b)+a*b=a(﹣b)+a -b+ab+a+b=﹣ab+a -b+ab+a+b=2a故选B.考点:整式的混合运算.8.将下列多项式因式分解,结果中不含有因式(a+1)的是()A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=(a+1)(a ﹣1),a 2+a=a (a+1),a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.9.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为( )A .12B .1C .()12a b +D .+a b【答案】C【解析】【分析】用长方形的面积除以长可得.【详解】 宽为:()()()()22222a ab ab ba b a b a b +++÷+=+÷+= ()12a b + 故选:C【点睛】考核知识点:整式除法与面积.掌握整式除法法则是关键.10.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.x+1x=3,则x 2+21x =_____. 【答案】7【解析】【分析】 直接利用完全平方公式将已知变形,进而求出答案.【详解】解:∵x +1x =3, ∴(x +1x )2=9, ∴x 2+21x +2=9, ∴x 2+21x =7. 故答案为7.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.12.若()219x y +=,()25x y -=,则22xy +=______.【答案】12【解析】【分析】根据完全平方公式的两个关系式间的关键解答即可.【详解】∵()219x y +=,()25x y -=,∴()()224x y x x y y +=-+,∴19=5+4xy ,∴xy=72, ∴()2227252122x x x y y y +-=+=+⨯=, 故答案为:12.【点睛】 此题考查完全平方公式,熟记公式并掌握两个公式的等量关系是解题的关键.13.因式分解:225101a a -+=______________【答案】()251a -【解析】根据完全平方公式()2222a ab b a b ±+=±进行因式分解为:225101a a -+=()251a -. 故答案为:()251a -.14.如果9x 2-axy+4y 2是完全平方式,则a 的值是____.【答案】±12【解析】【分析】根据完全平方式得出-axy=±2×3x2y ,求出即可.【详解】解:9x 2-axy+4y 2=(3x±2y )2即-axy=±2×3x2y所以a=±12 【点睛】本题考查了完全平方式,能熟记完全平方公式的特点是解此题的关键,注意:完全平方式有两个a 2-2ab+b 2和a 2+2ab+62是本题的易错点.15.若a 2+a-1=0,则a 3+2a 2+2014的值是___________.【答案】2015【解析】【分析】根据a 2+a-1=0可得a 2+a=1,对a 3+2a 2+2014进行变形,整体代入即可.【详解】∵a 2+a-1=0∴a 2+a=1a 3+2a 2+2014=a (a 2+a )+a 2+2014=a+a 2+2014=2015故答案为2015【点睛】本题考查的是多项式的乘法,整体代入法是解答的关键.16.设2m =5,82n =10,则62m n -=________. 【答案】12【解析】试题分析:将62m n - 变形为228m n ÷ ,然后结合同底数幂的除法的概念和运算法则进行求解即可.本题解析: 6621222285102m n m n m n -=÷=÷=÷= 故答案为: 12. 点睛:本题主要考查了同底数幂的除法法则的逆用,同底数幂的除法法则:同底数幂相乘,底数不变,指数相减.即m n m n a a a +÷= (m,n 是正整数).17.因式分解:a 3﹣2a 2b+ab 2=_____.【答案】a (a ﹣b )2.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.因式分解:mn (n ﹣m )﹣n (m ﹣n )=_____.【答案】()()1n n m m -+【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).19.分解因式:a 3-a =【答案】(1)(1)a a a -+【解析】a 3-a =a(a 2-1)=(1)(1)a a a -+20.已知x 2+2x =3,则代数式(x +1)2﹣(x +2)(x ﹣2)+x 2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x2+2x=3代入即可得答案.【详解】原式=x2+2x+1-(x2-4)+x2=x2+2x+1-x2+4+x2=x2+2x+5.∵x2+2x=3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘法与因式分解专题练习(解析版)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为 ( )A .6B .7C .8D .9【答案】C【解析】【分析】设2为a ,3为b ,则根据5张边长为2的正方形纸片的面积是5a 2,4张边长分别为2、3的矩形纸片的面积是4ab ,6张边长为3的正方形纸片的面积是6a 2,得出a 2+4ab+4b 2=(a+2b )2,再根据正方形的面积公式将a 、b 代入,即可得出答案.【详解】解:设2为a ,3为b ,则根据5张边长为2的正方形纸片的面积是5a 2,4张边长分别为2、3的矩形纸片的面积是4ab ,6张边长为3的正方形纸片的面积是6b 2,∵a 2+4ab+4b 2=(a+2b )2,(b >a )∴拼成的正方形的边长最长可以为a+2b=2+6=8,故选C .【点睛】此题考查了完全平方公式的几何背景,关键是根据题意得出a 2+4ab+4b 2=(a+2b )2,用到的知识点是完全平方公式.2.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-5【答案】A【解析】【分析】观察已知m 2-m-1=0可转化为m 2-m=1,再对m 4-m 3-m+2提取公因式因式分解的过程中将m 2-m 作为一个整体代入,逐次降低m 的次数,使问题得以解决.【详解】∵m 2-m-1=0,∴m 2-m=1,∴m 4-m 3-m+2=m 2 (m 2-m)-m+2=m 2-m+2=1+2=3,故选A .【点睛】本题考查了因式分解的应用,解决本题的关键是将m 2-m 作为一个整体出现,逐次降低m 的次数.3.若999999a =,990119b =,则下列结论正确是( ) A .a <bB .a b =C .a >bD .1ab =【答案】B【解析】 ()9999999909990909119991111===99999a b +⨯⨯==⨯, 故选B.【点睛】本题考查了有关幂的运算、幂的大小比较的方法,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.4.当3x =-时,多项式33ax bx x ++=.那么当3x =时,它的值是( )A .3-B .5-C .7D .17-【答案】A【解析】【分析】首先根据3x =-时,多项式33ax bx x ++=,找到a 、b 之间的关系,再代入3x =求值即可.【详解】当3x =-时,33ax bx x ++=327333ax bx x a b ++=---= 2736a b ∴+=-当3x =时,原式=2733633a b ++=-+=-故选A.【点睛】本题考查代数式求值问题,难度较大,解题关键是找到a 、b 之间的关系.5.下列多项式中,能分解因式的是:A .224a b -+B .22a b --C .4244x x --D .22a ab b -+【答案】A【解析】根据因式分解的意义,可知A 、224a b -+能用平方差公式()()22a b a b a b -=+-分解,故正确;B 、22a b --=-(22a b +),不能进行因式分解,故不正确;C 、4244x x --不符合完全平方公式()2222a ab b a b ±+=±,故不正确;D 、22a ab b -+既没有公因式,也不符合公式,故不正确.故选:A.点睛:此题主要考查了因式分解,解题时利用因式分解的方法:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).6.因式分解x 2-ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)【答案】B【解析】【分析】【详解】因为(x +6)(x -1)=x 2+5x-6,所以b=-6;因为(x -2)(x +1)=x 2-x-2,所以a=1.所以x 2-ax +b=x 2-x-6=(x-3)(x+2).故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a ,说明b 是正确的,所以将看错了a 的式子展开后,可得到b 的值,同理得到a 的值,再把a ,b 的值代入到x 2+ax +b 中分解因式.7.下列各式中,不能运用平方差公式进行计算的是( )A .(21)(12)x x --+B .(1)(1)ab ab -+C .(2)(2)x y x y ---D .(5)(5)a a -+--【答案】A【解析】【分析】运用平方差公式(a+b )(a-b )=a 2-b 2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A. 中不存在互为相反数的项,B. C. D 中均存在相同和相反的项,故选A.【点睛】此题考查平方差公式,解题关键在于掌握平方差公式结构特征.8.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( )A .8B .-8C .0D .8或-8 【答案】B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++- 由于不含一次项,m+8=0,得m=-8.9.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.10.若6a b +=,7ab =,则-a b =( )A .±1B .C .2±D .±【答案】D【解析】【分析】由关系式(a-b )2=(a+b )2-4ab 可求出a-b 的值【详解】∵a+b=6,ab=7, (a-b )2=(a+b )2-4ab∴(a-b )2=8,∴a-b=22±.故选:D.【点睛】考查了完全平方公式,解题关键是能灵活运用完全平方公式进行变形.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.(a-b)2(x-y)-(b-a)(y-x)2=(a-b)(x-y)×________.【答案】(a-b+x-y)【解析】运用公因式的概念,把多项式(a-b)2(x-y)-(b-a)(y-x)2运用提取公因式法因式分解(a-b)2(x-y)-(b-a)(y-x)2=(a-b)(x-y)×(a-b+x-y).故答案为:(a-b+x-y).点睛:此题主要考查了提公因式法分解因式,关键是根据找公因式的方法,确定公因式,注意符号的变化.12.计算: =_____.【答案】1【解析】【分析】根据平方差公式可以使本题解答比较简便.【详解】解:====1.【点睛】本题应根据数字特点,灵活运用运算定律会或运算技巧,灵活简算.13.因式分解:21 4y y++=______【答案】212 y⎛⎫+⎪⎝⎭【解析】根据完全平方公式()2222a ab b a b ±+=±进行因式分解为:2222111124222y y y y y ⎛⎫⎛⎫++=+⨯+=+ ⎪ ⎪⎝⎭⎝⎭. 故答案为:212y ⎛⎫+ ⎪⎝⎭ .14.若x ﹣1x=2,则x 2+21x 的值是______. 【答案】6【解析】 根据完全平方公式,可知(x ﹣1x )2= x 2-2+21x =4,移项整理可得x 2+21x=6. 故答案为6.点睛:此题主要考查了整式的乘法,解题关键是利用完全平方公式进行变形,然后化简整理即可求解,注意整体思想的应用,比较简单,是常考题.15.计算:))201820192的结果是_____.2【解析】【分析】逆用积的乘方运算法则以及平方差公式即可求得答案.【详解】))201820192=)))2018201822⨯⨯=)))201822⎡⎤⎣⎦⨯⨯=(5-4)2018×)2=,【点睛】本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.16.因式分解:3x 3﹣12x=_____.【答案】3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x ,然后利用平方差公式进行分解即可.【详解】3x 3﹣12x=3x (x 2﹣4)=3x (x+2)(x ﹣2),故答案为3x (x+2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.17.因式分解:mn (n ﹣m )﹣n (m ﹣n )=_____.【答案】()()1n n m m -+【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).18.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解.详解:2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- ,故答案为:12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.19.已知x 2+2x =3,则代数式(x +1)2﹣(x +2)(x ﹣2)+x 2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x 2+2x =3代入即可得答案.【详解】原式=x 2+2x+1-(x 2-4)+x 2=x 2+2x+1-x 2+4+x 2=x 2+2x+5.∵x 2+2x =3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20.若21x x +=,则433331x x x +++的值为_____.【答案】4【解析】【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【详解】∵21x x +=,∴()43222233313313313()1314x x x xx x x x x x x +++=+++=++=++=+=; 故答案为:4.【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.。