数学试卷及答案
2024-2025学年辽宁省三校高三数学上学期10月联考试卷及答案解析
2024—2025学年度上学期高三10月联合教学质量检测高三数学试卷本试卷共5页 满分150分,考试用时120分钟注意事项:1. 答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1. 已知集合{}21A x x =-<,{}3B x a x a =<<+,若{}15A B x x ⋃=<<,则a =()A. 0B. 1C. 2D. 3【答案】C 【解析】【分析】先求出集合A ,再根据并集得出参数的值.【详解】因为()1,3A =,()1,5A B ⋃=,又因为(),3B a a =+,所以35,a +=即a =2.故选:C.2. 如图,在ABC V 中,点D 是BC 边的中点,3AD GD = ,则用向量AB ,AC表示BG 为( )A. 2133BG AB AC=-+u u u u r uu r u u u r B. 1233BG AB AC=-+u u u r u uu r u u u r C. 2133BG AB AC=-u u u r u u u r u u u r D. 2133BG AB AC=+u u u r u u u r u u u r【答案】A 【解析】【分析】利用向量的线性运算求解即可.【详解】3AD GD =,故23AG AD = ,则()2212133233B C G BA BA BA AG AD AB A AB AC =+=+=+⨯+=-+.故选:A3. 在等比数列{}n a 中,记其前n 项和为n S ,已知3212a a a =-+,则84S S 的值为( )A. 2 B. 17 C. 2或8D. 2或17【答案】D 【解析】【分析】根据等比数列通项公式求得1q =或2q =-,再利用等比数的求和公式求解即可.【详解】解:由等比数列的通项公式可得21112a q a q a =-+,整理得220q q +-=,解得1q =或2q =-.当q =1时,1841824S a S a ==;当2q =-时,()()814844184111117111a q S q q q S q a q q ---====-+--.所以84S S 的值为2或17.故选:D .4. 每年10月1日国庆节,根据气象统计资料,这一天吹南风的概率为25%,下雨的概率为20%,吹南风或下雨的概率为35%,则既吹南风又下雨的概率为( )A. 5% B. 10%C. 15%D. 45%【答案】B 【解析】【分析】根据概率公式直接得出结论.【详解】由题知,既吹南风又下雨的概率为25%20%35%10%+-=.故选:B5. 若直线:3l y kx k =+-与曲线:C y =恰有两个交点,则实数k 的取值范围是( )A. 4,+3∞⎛⎫⎪⎝⎭B. 43,32⎛⎤⎥⎝⎦C. 40,3⎛⎫ ⎪⎝⎭D. 43,32⎡⎫⎪⎢⎣⎭【答案】B 【解析】【分析】先得到直线过定点()1,3P ,作出直线l 与曲线C ,由图求出直线l 过点()1,0A -时的斜率和直线l 与曲线C 相切时的斜率即可树形结合得解.【详解】由()313y kx k k x =+-=-+可知直线l 过定点()1,3P ,曲线:C y =两边平方得()2210x y y +=≥,所以曲线C 是以()0,0为圆心,半径为1且位于直线x 轴上方的半圆,当直线l 过点()1,0A -时,直线l 与曲线C 有两个不同的交点,此时3032k k k =-+-⇒=,当直线l 与曲线C 相切时,直线和圆有一个交点,圆心()0,0到直线l的距离1d ,两边平方解得43k =,所以结合图形可知直线l 与曲线C 恰有两个交点,则4332k <≤.故选:B.6. 已知()ππsin 0,32f x x ωϕωϕ⎛⎫⎛⎫=++>< ⎪⎪⎝⎭⎝⎭为偶函数,()()sin g x x ωϕ=+,则下列结论不正确的A. π6ϕ=B. 若()g x 的最小正周期为3π,则23ω=C. 若()g x 在区间()0,π上有且仅有3个最值点,则ω的取值范围为710,33⎛⎫⎪⎝⎭D. 若π4g ⎛⎫= ⎪⎝⎭,则ω的最小值为2【答案】D 【解析】【分析】先根据()f x 是偶函数求ϕ判断A 选项;根据最小正周期公式计算可以判断B 选项;据有且仅有3个最值点求范围判断C 选项;据函数值求参数范围结合给定范围求最值可以判断D 选项.【详解】()ππsin 0,32f x x ωϕωϕ⎛⎫⎛⎫=++>< ⎪⎪⎝⎭⎝⎭为偶函数,则πππππ,Z,,,3226k k ϕϕϕ+=+∈<∴=∣∣A 选项正确;若()g x 的最小正周期为3π,由()sin()g x x ωϕ=+则2π23π,3T ωω==∴=,B 选项正确;πππ(0,π),(,π)666x x ωω∈+∈+ 若()g x 在区间()0,π上有且仅有3个最值点,则5ππ7π710π,26233ωω<+≤<≤,C 选项正确;若π()sin(6g x x ω=+ πππsin +446g ω⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则πππ+2π463k ω=+或ππ2π+2π463k ω=+,Z k ∈,则 283k ω=+或28,Z k k ω=+∈,又因为0ω>,则ω的最小值为23,D 选项错误.故选:D.7. 已知()612a x x x ⎛⎫-- ⎪⎝⎭的展开式中,常数项为1280-,则a =( )A. ―2B. 2C. D. 1【解析】【分析】根据已知条件,结合二项式定理并分类讨论,即可求解.【详解】由题意,62a x x ⎛⎫- ⎪⎝⎭的通项公式为()()6662166C 2C 2rr r r r rr r a T x a x x ---+-⎛⎫=⋅=- ⎪⎝⎭,令620r -=,则3r =,令621r -=-,则72r =不符合题意,所以()612a x x x ⎛⎫-- ⎪⎝⎭的常数项为()3336C 21280a --=-,解得2a =-.故选:A .8. 已知函数22()log f x x mx x =-+,若不等式()0f x >的解集中恰有两个不同的正整数解,则实数m的取值范围是( )A. 23log 33,89+⎡⎫⎪⎢⎣⎭B. 23log 33,94+⎛⎫⎪⎝⎭C. 23log 33,94+⎡⎫⎪⎢⎣⎭ D. 23log 33,89+⎛⎫⎪⎝⎭【答案】C 【解析】【分析】不等式()0f x >可化为2log 1xmx x-<,利用导数分析函数()2log x g x x =的单调性,作函数()1h x mx =-,()2log xg x x=的图象,由条件结合图象列不等式求m 的取值范围.【详解】函数22()log f x x mx x =-+的定义域为(0,+∞),不等式()0f x >化为:2log 1xmx x-<.令()1h x mx =-,()2log x g x x=,()2222221log e log log e log x xx x g x x x --='=,故函数()g x 在()0,e 上单调递增,在()e,∞+上单调递减.当1x >时,()0g x >,当1x =时,()0g x =,当01x <<时,()0g x <,当x →+∞时,()0g x →,当0x >,且0x →时,()g x ∞→-,画出()g x 及()h x 的大致图象如下,因为不等式()0f x >的解集中恰有两个不同的正整数解,故正整数解为1,2.故()()()()2233h g h g ⎧<⎪⎨≥⎪⎩,即22log 2212log 3313m m ⎧-<⎪⎪⎨⎪-≥⎪⎩,解得23log 3943m +≤<.故选:C.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分)9. 已知复数232023i i i i 1iz ++++=+ ,则下列结论正确的是( )A. 1i 2z -=-B. 1i 2z -=C. 1i 2z +=-D. z =【答案】ACD 【解析】【分析】利用234i+i +i +i 0=对分子化简,然后利用复数的除法化简,可求共轭复数、复数的模依次判断即可得出结果.【详解】因为i,411,42i ,i,431,4nn k n k k n k n k=+⎧⎪-=+⎪=∈⎨-=+⎪⎪=⎩Z ,所以234i+i +i +i 0=,所以()()()()2342323202323505i+i +i +i i i i 1i i i i i i i i 111i 1i 1i 1i 1i 1i 1i 22z +++--++++++-======-++++++- ,所以A 正确,B 错误,111i i=222z +=---,C 准确,所以z ==D 正确.故选:ACD10. “费马点”是由十七世纪法国数学家费马提出并征解的一个问题. 该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小”.意大利数学家托里拆利给出了解答,当 ABC V 的三个内角均小于120°时,使得120AOB BOC COA ︒∠=∠=∠=的点O 即为费马点;当 ABC V 有一个内角大于或等于120°时,最大内角的顶点为费马点.下列说法正确的是( )A. 正三角形的的费马点是正三角形的中心B. 若P 为ABC V 的费马点, 且 0PA PB PC ++=u u r u u r u u u r r,则ABC V 一定为正三角形C. 若ABC V 三边长分别为2D. ABC V 的内角A ,B ,C 所对的边分别为a ,b , c , π22A ,bc ∠==,若点P 为ABC V 的费马点,则PA PB PB PC PC PA ⋅+⋅+⋅=.【答案】ABC 【解析】【分析】对A ,根据正三角形中心的性质结合费马点定义易判断;对B ,取AB 的中点D ,由0PA PB PC ++=可得点P 是ABC V 的重心,再结合条件可得点P 是ABC V 的中心,得证;对C ,利用三角形旋转,结合费马点定义,构造正三角形转化线段长求解;对D ,由向量数量积定义,结合费马点定义和三角形等面积法列式求解.【详解】对于A ,如图O 是正三角形ABC 的中心,根据正三角形的性质易得o 120AOB AOC BOC ∠=∠=∠=,所以点O 是正三角形ABC 的费马点,故A 正确;对于B ,如图,取AB 的中点D ,则2PA PB PD += ,因为0PA PB PC ++=,所以2PC PD =-u u u r u u u r,所以,,C P D 三点共线,且点P 是ABC V 的重心,又点P 是ABC V 费马点,则o 120APB APC BPC ∠=∠=∠=,则o 60APD BPD ∠=∠=,又AD BD =,易得PA PB =,同理可得PC PB =,所以PA PB PC ==所以点P 是ABC V 的外心,所以点P 是ABC V 的中心,即ABC V 是正三角形.故B 正确;对于C ,如图,在Rt ABC △中,1AB =,BC =,2AC =,o 30ACB ∠=,点O 是Rt ABC △的费马点,将COA 绕点C 顺时针旋转o 60,得到CED △,易证COE ,ACD 是正三角形,则OC OE =,OA DE =,CD AC =,且点,,,B O E D 共线,所以o90BCD ∠=,所以BD ===又OA OB OC DE OE OB DB ++=++==,的.故C 正确;对于D ,由费马点定义可得o 120APB APC BPC ∠=∠=∠=,设PA x =,PB y =,PC z =,,,0x y z >,由ABC PAB PAB PAB S S S S =++V V V V,可得111122222xy xz yz ++=⨯,整理得xy yz xz ++=,所以111222PA PB PB PC PC PA xy yz xz ⎛⎫⎛⎫⎛⎫⋅+⋅+⋅=⋅-+⋅-+⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()1122xy yz xz =-++=-=,故D 错误.故选:ABC.【点睛】关键点点睛:解答本题首先要理解费马点的含义,解答D 选项的关键在于利用三角形等面积法求出xy yz xz ++=.11. 在四面体ABCD 中,棱AB 的长为4,AB BD ⊥,CD BD ⊥,2BD CD ==,若该四面体的体积为)A. 异面直线AB 与CD 所成角的大小为π3B. AC的长可以为C. 点D 到平面ABCD. 当二面角A BC D --是钝角时,其正切值为【答案】ACD【解析】【分析】根据等体积法可结合三角形的面积公式可得sin CDE ∠=A ,根据余弦定理即可求解B ,根据等体积法即可求解C ,根据二面角的几何法,结合同角关系即可求解D.【详解】在平面ABD 内过D 作DE AB ∥,且ED AB =,由于AB BD ⊥,故四边形ABDE 为矩形,CD BD ⊥,DE BD ⊥,BD DE C = ,CD ⊂平面CDE ,DE ⊂平面CDE ,故BD ⊥平面CDE ,故11233C ABD C EDA B CDE CDE CDE V V V S BD S ---===⋅=⨯=,11sin 24sin 4sin 22CDE S CD DE CDE CDE CDE=⋅⋅∠=⨯⨯∠=∠故1124sin 233C ABD CDE V S CDE -=⨯=⨯∠⨯=,因此sin CDE ∠=由于()0,CDE π∠∈,所以3CDE π∠=或23π,由于CDE ∠为异面直线AB 与CD 所成角或其补角,故异面直线AB 与CD 所成角的大小为3π,A 正确,当23CDE π∠=时,CE ===,由于BD ⊥平面CDE ,AE BD ,∴AE ⊥平面CDE ,CE ⊂平面CDE ,故AE CE ⊥,此时AC ==当3CDE π∠=时,CE ===,由于BD ⊥平面CDE ,AE BD ,∴AE ⊥平面CDE ,CE ⊂平面CDE ,故AE CE ⊥,此时4AC ==,故B 错误,由于BC ==,4AB =,当AC =cos BAC ∠==sin BAC ∠=,11sin 422ABC S AB AC BAC =⋅⋅∠=⨯⨯= ,当4AC =时,161683cos 2444BAC +-∠==⨯⨯,故sin BAC ∠=,1sin 2ABC S AB AC BAC =⋅∠= ,故点D 到平面ABC的距离为d ===,C 正确,当4AC =时,4AB AC ==,2CD BD ==,取BC 中点为O ,连接OA ,OD ,则AOD ∠即为二面角A BC D --的平面角,12OD BC ===,AO ==所以22cos 0AOD ∠===<,故AOD ∠为钝角,符合题意,此时sin tan cos AODAOD AOD∠∠==∠,当4AC =,由于2DBCS =,点A 到平面BDC距离为d ===,设A 在平面BDC 的投影为H ,则AH =,故HD==HC ==,因此点O 为以D ,C为圆心,以半径为,显然交点位于BC ,同D 的一侧,故此时二面角A BC D --为锐角,不符合要求,故D 正确,故选:ACD三、填空题(本大题共3小题,每小题5分,共15分)12. 已知,a b +∈R ,41a b +=,则aba b+的最大值是________.【答案】19【解析】的【分析】先求出11a b+的最小值,再将aba b +化为111a b+,即可求得答案.【详解】因为,a b +∈R ,41a b +=,故()111144559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4b a a b=,结合41a b +=,即11,63==a b 时等号成立,所以11119ab a b a b =≤++,即ab a b +的最大值是19,故答案为:1913. 刻画空间的弯曲性是几何研究的重要内容,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体(四个面都是等边三角形围成的几何体)在每个顶点有3个面角,每个面角是π3,所以正四面体在每个顶点的曲率为π2π3π3-⨯=,故其总曲率为4π.我们把平面四边形ABCD 外的点P 连接顶点A 、B 、C 、D 构成的几何体称为四棱锥,根据曲率的定义,四棱锥的总曲率为______.【答案】4π【解析】【分析】根据曲率的定义求解即可.【详解】由定义可得多面体的总曲率2π=⨯顶点数各面内角和,因为四棱锥有5个顶点,5个面,分别为4个三角形和1个四边形,所以任意四棱锥的总曲率为()2π5π42π14π⨯-⨯+⨯=.故答案为:4π.14. 过双曲线22221(0,0)y x a b a b-=>>的上焦点1F ,作其中一条渐近线的垂线,垂足为H ,直线1F H 与双曲线的上、下两支分别交于,M N ,若3NH HM =,则双曲线的离心率e =__________.【解析】【分析】设双曲线右焦点为2F ,HM t =,3NH t =,由题意结合双曲线定义可依次求出1F H 、1OF 、1F M 、1F N 、2F N 和2F M ,接着分别在1Rt F OH 、12F MF △和12F NF △中结合余弦定理求出1cos OF M ∠,进而建立等量关系式求出t ,从而求得2b a =,进而由离心率公式即可得解.【详解】设双曲线右焦点为2F ,由题()10,F c ,双曲线的一条渐近线方程为ay x b=-即0ax by +=,过该渐近线作垂线,则由题1F H b =,1OF c =,设HM t =,则由题3NH t =,1F M b t =-,13F N b t =+,所以232F N b t a =+-,22F M b t a =-+,所以在1Rt F OH 中,111cos F H bOF M OF c∠==①,在12F MF △中,()()()()()22222211221112||||22cos 222F M F F F M b t c b t a OF M b t c F M F F +--+--+∠==-⋅②,在12F NF △中,()()()()()22222211221112||||3232cos 2322F N F F F N b t c b t a OF M b t c F N F F +-++-+-∠==+⋅③,由①②得()()()()()2222222b t c b t a bb tc c-+--+=-,化简解得ab t a b =+,由①③得()()()()()2223232232b t c b t a b b t c c++-+-=+,化简解得()3ab t b a =-,所以()23ab abb a a b b a =⇒=+-,故双曲线的离心率c e a====.【点睛】思路点睛:依据题意设双曲线右焦点为2F ,HM t =,则结合双曲线定义可得1Rt F OH 、12F MF △和12F NF △的边长均是已知的,接着结合余弦定理均可求出三个三角形的公共角1OF M ∠的余弦值1cos OF M ∠,从而可建立等量关系式依次求出t 和2b a =,进而由离心率公式得解.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15. 设n S 为数列{}n a 的前n 项和,满足()*1N n n S a n =-∈.(1)求数列{}n a 的通项公式;(2)记22212n n T S S S =+++ ,求n T .【答案】(1)1()2n n a = (2)1235111((3232n nn n T --=+-⋅【解析】【分析】(1)应用1n n n S S a --=,再结合等比数列定义及通项公式计算即可;(2)先化简得出21111()()24n n n S --+=,再应用分组求和及等比数列前n 项和公式计算.小问1详解】因为数列{a n }的前n 项和,满足1n n S a =-,当2n ≥时,可得111n n S a --=-,两式相减得1n n n a a a -=-,即12n n a a -=,所以112n n a a -=,令1n =,可得1111S a a =-=,解得112a =,所以数列{a n }构成首项为12,公比为12的等比数列,所以{a n }的通项公式为1111()(222n nn a -=⋅=.【小问2详解】由(1)知1(2nn a =,可得11(2nn S =-,所以222111111()]12()()1((22224[1n n n n n n S -=-⋅=+=-+-,【则222121111()[1()]244(111)111124n n n n T S S S -⋅-=+++=+++-+-- 1235111()()3232n n n --=+-⋅.16. 如图,正四棱台ABCD EFGH -中,24,EG AC MN ==上为上下底面中心的连线,且MN 与侧面.(1)求点A 到平面MHG 的距离;(2)求二面角E HM G --的余弦值.【答案】(1(2)23-【解析】【分析】(1)由题意建立空间直角坐标系,求得平面法向量,利用点面距向量公式,可得答案;(2)求得两个平面的法向量,利用面面角的向量公式,可得答案.【小问1详解】由题意,易知,,MN MA MB 两两垂直,分别以,,MA MB MN 为,,x y z 轴建立直角坐标系,如下图:则()()()()1,0,0,0,0,0,0,2,1,2,0,1A M H G --,取()()0,2,1,2,0,1MH MG =-=-,设平面MHG 的法向量(),,n x y z = ,则2020n MH y z n MG x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令2z =,则1,1x y ==,所以平面MHG 的一个法向量()1,1,2n =,取()1,0,0MA = ,点A 到平面MHG的距离MA n d n ⋅===.【小问2详解】由(1)可知()()()()2,0,1,0,2,1,0,0,0,2,0,1E H M G --,取()()()()2,2,0,2,0,1,2,2,0,2,0,1HE ME HG MG ===-=-,设平面EHM 的法向量()1111,,m x y z = ,则11111122020m HE x y m ME x z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,令11x =-,则221,2y z ==,所以平面EHM 的一个法向量()11,1,2m =-,设平面HMG 的法向量()2222,,m x y z = ,则22222222020m HG x y m MG x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令21x =,则111,2y z ==,所以平面EHG 的一个法向量()21,1,2m =,设二面角E HM G --的大小为θ,则12121142cos 1143m m m m θ⋅-++=-=-=-++⋅ .17. 某汽车公司最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行整理,得到如下的频率分布直方图:(1)估计这100辆汽车的单次最大续航里程的平均值x (同一组中的数据用该组区间的中点值代表);(2)由频率分布直方图计算得样本标准差s 的近似值为49.75.根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程X 近似地服从正态分布()2,N μσ,其中μ近似为样本平均数x ,σ近似为样本标准差S.(ⅰ)利用该正态分布,求()250.25399.5P X <<;(ⅱ)假设某企业从该汽车公司购买了20辆该款新能源汽车,记Z 表示这20辆新能源汽车中单次最大续航里程位于区间(250.25,399.5)的车辆数,求E (Z );参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<<+=,()()220.9545,330.99731P P μσξμσμσξμσ-<<+=-<<+=.(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在x 轴上从原点O 出发向右运动,已知硬币出现正、反面的概率都12,客户每掷一次硬币,遥控车向右移动一次,若掷出正面,则遥控车向移动一个单位,若掷出反面,则遥控车向右移动两个单位,直到遥控车移到点(59,0)(胜利大本营)或点(60,0)(失败大本营)时,游戏结束,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.设遥控车移到点(),0n 的概率为()160n P n ≤≤,试证明数列{}1n n P P --是等比数列()259n ≤≤,求出数列{}()160n P n ≤≤的通项公式,并比较59P 和60P 的大小.【答案】(1)300 (2)(ⅰ)0.8186;(ⅱ)16.372(3)证明见解析,158211,159362111,60362n n n P n -⎧⎛⎫-⋅-≤≤⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+⋅= ⎪⎪⎝⎭⎩,5960P P >【解析】【分析】(1)根据平均数的求法求得正确答案.(2)(ⅰ)根据正态分布的对称性求得正确答案.(ⅱ)根据二项分布的知识求得正确答案.(3)根据已知条件构造等比数列,然后利用累加法求得n P ,利用差比较法比较59P 和60P 的大小.【小问1详解】2050.12550.23050.453550.24050.05300x ≈⨯+⨯+⨯+⨯+⨯=.【小问2详解】(ⅰ)0.95450.6827(250.25399.5)0.68270.81862P X -<<=+=.(ⅱ))∵Z 服从二项分布()20,0.8186B ,∴()200.818616.372E Z =⨯=.【小问3详解】当359n ≤≤时,()12112111,222n n n n n n n P P P P P P P -----=+-=--,1221111131,,222244P P P P ==⨯+=-=.∴{}1(259)n n P P n --≤≤是以14为首项,12-为公比的等比数列,2111(259)42n n n P P n --⎛⎫-=⋅-≤≤ ⎪⎝⎭.22132111111,,,(259)44242n n n P P P P P P n --⎛⎫⎛⎫-=-=⋅-⋯-=⋅-≤≤ ⎪⎪⎝⎭⎝⎭.累加得:115816058111422111111,(259),1362236212n n n n P P P n P P --⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎝⎭-==-⋅-≤≤==+⋅ ⎪ ⎪⎝⎭⎝⎭+.∴158211,159362111,60362n n n P n -⎧⎛⎫-⋅-≤≤⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+⋅= ⎪⎪⎝⎭⎩∵58585960111111033232P P ⎛⎫⎛⎫⎛⎫-=-⨯=-> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴5960P P >.注:比较59P 和60P 的另一个过程:58596059592112111,13623622P P P P ⎛⎫=-⋅>-==-<< ⎪⎝⎭.18. 已知函数()1e xx f x +=.(1)求函数()f x 的极值;(2)若不等式()e ln 1xf x a x +≥恒成立,求实数a 的取值范围;(3)已知直线l 是曲线()y f x =在点()(),t f t 处的切线,求证:当1t >时,直线l 与曲线()y f x =相交于点()(),s f s ,其中s t <.【答案】(1)极大值为1,没有极小值 (2)[]e,0- (3)证明见解析【解析】【分析】(1)求导,利用导数判断()f x 的单调性和极值;(2)根据题意可得ln 0x a x +≥恒成立,构建()ln ,0g x x a x x =+>,分类讨论a 的符号,利用导数求最值,结合恒成立问题分析求解;(3)根据导数的几何意义可得当1t >时,方程2110e e ex t tx tx t t ++++-=有小于t 的解,构建()211e e ex t tx tx t t h x +++=+-,其中x t <,1t >,利用导数研究函数零点分析证明.小问1详解】由题意可知:()f x 的定义域为R ,且()ex xf x '-=,令()0f x '=时,0x =,则x ,f ′(x ),()f x 的关系为x(),0∞-0(0,+∞)f ′(x )+0-()f x 单调递增极大值单调递减所以,当0x =时,()f x 取到极大值为1,没有极小值.【小问2详解】若()e ln 1xf x a x +≥,即ln 0x a x +≥恒成立,设()ln ,0g x x a x x =+>,则()1a x a g x x x'+=+=,①当0a =时,则()0g x x =>恒成立,符合题意;②当0a >时,则()0g x '≥,可知()g x 在(0,+∞)上单调递增,因为11e e 10a a g --⎛⎫=-< ⎪⎝⎭,所以ln 0x a x +≥不恒成立;③当0a <时,x ,()g x ',()g x 的关系为x()0,a -a-(),a ∞-+()g x '-+【()g x 单调递减极小值单调递增可知()g x 的最小值为()()min ln g x a a a =-+-,则()ln 0a a a -+-≥,因为0a <,则()1ln 0a --≥,解得e 0a ≤-<;综上所述:实数a 的取值范围是[]e,0-.【小问3详解】因为()1e x x f x +=,()e x x f x '-=,则()1e t tf t +=,e t t k -=即切点坐标为1,e t t t +⎛⎫⎪⎝⎭,切线l 斜率为e tt k -=,可得l 的方程为()1e e t t t t y x t +--=-,即21e et tt t t y x -++=+,联立方程21e e 1e t txt t t y x x y ⎧-++=+⎪⎪⎨+⎪=⎪⎩,可得2110e e e x t tx tx t t ++++-=,由题可知:当1t >时,方程2110e e ex t tx tx t t ++++-=有小于t 的解,设()211e e ex t tx tx t t h x +++=+-,其中x t <,1t >且()0h t =,则()e e x t x t h x '-=+,设()()F x h x =',则()1e xx F x '-=,因为1t >,x ,()F x ',F (x )的关系为x(),1∞-1()1,t ()F x '-+F (x )单调递减1e et t -+,单调递增可知F (x )的最小值()()()min 10F x F F t =<=,且()1e 0e ttF -=+>,可知()01,1x ∃∈-,使()00F x =,当()0,x x ∞∈-时,()0F x >,即h ′(x )>0;当()0,x x t ∈时,()0F x <,即h ′(x )<0;可知h (x )在()0,x ∞-内单调递增;在()0,x t 内单调递减,可知h (x )的最大值()()()0max 0h x h x h t '=>=,且()()2110e t t h -+-=<,可知h (x )存在小于t 的零点,所以当1t >时,直线l 与曲线y =f (x )相交于点()(),s f s ,其中s t <,得证.【点睛】方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.19. 蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆M 的方程为222()x y b r +-=,直线x my =与圆M 交于()11,C x y ,()22,D x y ,直线x ny =与圆M 交于()33,E x y ,()44,F x y .原点O 在圆M 内.设CF 交x 轴于点P ,ED 交x 轴于点Q .(1)当0b =,r =,12m =-,2n =时,分别求线段OP 和OQ 的长度;(2)①求证:34121234y y y y y y y y ++=.②猜想|OP |和|OQ |的大小关系,并证明.【答案】(1)53OP OQ == (2)①证明见解析;②猜测OP OQ =,证明见解析.【解析】【分析】(1)联立直线与圆的方程,可求,,,C D E F 各点的坐标,利用直线的两点式方程,可得直线CF 和ED 的方程,并求它们与x 轴的交点坐标,可得问题答案.(2)①联立直线与圆的方程,求出两根之和与两根之积,找到相等代换量,从而证明成立.②分别求出点P 和点Q 的横坐标表达式,结合①中的结论,从而证明成立.【小问1详解】当0b =,r =,12m =-,2n =时,圆M :225x y +=,直线CD :12x y =-,由22512x y x y ⎧+=⎪⎨=-⎪⎩⇒12x y =⎧⎨=-⎩或12x y =-⎧⎨=⎩,故()1,2C -,()1,2D -;直线EF :2x y =,由2252x y x y⎧+=⎨=⎩⇒21x y =⎧⎨=⎩或21x y =-⎧⎨=-⎩,故()2,1E ,()2,1F --.所以直线CF :122112y x ++=+-+,令0y =得53x =-,即5,03P ⎛⎫- ⎪⎝⎭;直线ED :122112y x --=---,令0y =得53x =,即5,03Q ⎛⎫ ⎪⎝⎭.所以:53OP OQ ==.【小问2详解】①由题意:22b r <.由()222x y b r x my ⎧+-=⎪⎨=⎪⎩⇒()()222my y b r +-=⇒()2222120m y by b r +-+-=,则1y ,2y 是该方程的两个解,由韦达定理得:12222122211b y y m b r y y m ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,所以1222122y y b y y b r +=⋅-.同理可得:3422342y y b y y b r +=⋅-,所以34121234y y y y y y y y ++=⋅⋅.②猜测OP OQ =,证明如下:设点(),0P p ,(),0Q q .因为,,C P F 三点共线,所以:414100y y x p x p --=--⇒411414x y x y p y y -=-,又因为点C 在直线x my =上,所以11x my =;点F 在直线x ny =上,所以44x ny =.所以()1441141414y y n m ny y my y p y y y y --==--;同理因为,,E Q D 三点共线,可得:()2323y y n m q y y -=-.由①可知:34121234y y y y y y y y ++=⋅⋅⇒12341111y y y y +=+⇒14321111y y y y -=-⇒23411423y y y y y y y y --=⋅⋅⇒231414230y y y y y y y y ⋅⋅+=--, 所以()()14231423y y n m y y n m p q y y y y --+=+--()23141423y y y y n m y y y y ⎛⎫=-+ ⎪--⎝⎭0=.即p q =-,所以OP OQ =成立.【点睛】关键点点睛:本题的关键是联立直线与圆的方程,结合一元二次方程根与系数的关系,进行化简处理,设计多个字母的运算,整个运算过程一定要小心、仔细.。
数学小学试卷试题及答案
数学小学试卷试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是最小的自然数?A. 0B. 1C. 2D. 3答案:A2. 一个长方形的长是10厘米,宽是4厘米,它的面积是多少平方厘米?A. 20B. 30C. 40D. 50答案:C3. 一个数的3倍是45,这个数是多少?A. 10B. 15C. 20D. 25答案:B4. 一个班级有40名学生,其中男生比女生多5人,女生有多少人?A. 15B. 17C. 18D. 20答案:C5. 一个数加上它的一半等于10,这个数是多少?A. 6B. 7C. 8D. 9答案:A6. 一个数乘以3再加上4等于21,这个数是多少?A. 5B. 6C. 7D. 8答案:B7. 一个数的4倍减去8等于12,这个数是多少?A. 6B. 7C. 8D. 9答案:A8. 一个数的3倍加上另一个数的2倍等于20,如果这个数是4,另一个数是多少?A. 2B. 4C. 6D. 8答案:A9. 一个数的5倍减去另一个数的3倍等于10,如果这个数是5,另一个数是多少?A. 5B. 10C. 15D. 20答案:B10. 一个数的4倍加上另一个数的2倍等于30,如果这个数是6,另一个数是多少?A. 2B. 4C. 6D. 8答案:B二、填空题(每题2分,共20分)1. 一个数的2倍是8,这个数是______。
答案:42. 一个数的3倍加上另一个数的2倍等于20,如果这个数是5,另一个数是______。
答案:53. 一个数的4倍减去8等于12,这个数是______。
答案:74. 一个数的5倍加上另一个数的3倍等于30,如果这个数是6,另一个数是______。
答案:25. 一个数的6倍减去另一个数的4倍等于24,如果这个数是8,另一个数是______。
答案:106. 一个数的7倍加上另一个数的5倍等于45,如果这个数是3,另一个数是______。
答案:67. 一个数的8倍减去另一个数的6倍等于32,如果这个数是4,另一个数是______。
初中数学试卷试题及答案
一、选择题(每题4分,共20分)1. 下列各数中,不是有理数的是()A. 3.14B. -2/3C. √4D. π答案:D2. 下列各式中,正确的是()A. a² = aB. a³ = aC. (a²)³ = a⁶D. (a³)² = a⁶答案:C3. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b > 0C. a - b < 0D. a + b < 0答案:B4. 已知函数f(x) = 2x - 3,若f(2) = 1,则f(3) = ()A. 1B. 3C. 5答案:C5. 在直角坐标系中,点A(2,3),点B(-1,2)关于原点对称的点是()A. (2,3)B. (-2,-3)C. (-1,-2)D. (1,2)答案:B二、填空题(每题5分,共20分)6. 若x² - 5x + 6 = 0,则x的值为______。
答案:2 或 37. 若√(a² + b²) = c,则a² + b² = ______。
答案:c²8. 若a > b > 0,则下列不等式中正确的是______。
答案:a³ > b³9. 已知等腰三角形底边长为6cm,腰长为8cm,则该三角形的高为______cm。
答案:6√3 cm10. 若sinA = 1/2,且A为锐角,则cosA = ______。
答案:√3/2三、解答题(共60分)11. (10分)解下列方程:(1) 3x - 5 = 2x + 4(2) 5(x - 2) = 2(3x - 1) - 3(1) x = 9(2) x = 112. (15分)已知函数f(x) = -x² + 4x - 3,求:(1) 函数的对称轴;(2) 函数的最大值。
中考数学试题试卷及答案
中考数学试题试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x-3>0的解集?A. x>1B. x<1C. x>3/2D. x<3/2答案:C2. 一个圆的半径为3cm,其面积是多少平方厘米?A. 28.26B. 18.84C. 9.42D. 15.7答案:B3. 如果一个数的立方根等于它本身,那么这个数可能是?A. 0B. 1C. -1D. A和B答案:D4. 计算下列哪个表达式的结果为-1?A. (-2)^3B. (-2)^2C. (-1)^3D. (-1)^2答案:C5. 以下哪个函数的图像是一条直线?A. y = 2x + 3B. y = x^2C. y = √xD. y = 3/x答案:A6. 一个等腰三角形的两边长分别为5cm和10cm,那么它的周长是多少?A. 20cmB. 15cmC. 25cmD. 不能构成三角形答案:D7. 计算下列哪个表达式的结果是正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) × (-2) + 1答案:A8. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A9. 下列哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:A10. 一个等差数列的首项是3,公差是2,那么第5项是多少?A. 13B. 11C. 9D. 7答案:A二、填空题(每题3分,共30分)11. 一个直角三角形的两个直角边长分别是3cm和4cm,那么斜边的长度是_________。
答案:5cm12. 一个数的绝对值是5,那么这个数可能是_________或_________。
答案:5或-513. 一个正数的平方根是2,那么这个数是_________。
答案:414. 一个数除以-1/2等于乘以_________。
初中考试数学试卷及答案
一、选择题(每题4分,共40分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. -1D. 02. 如果a < b,那么下列不等式中正确的是()A. a - 2 < b - 2B. a + 2 > b + 2C. 2a < 2bD. 2a > 2b3. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 22cmB. 24cmC. 26cmD. 28cm4. 下列图形中,轴对称图形是()A. 矩形B. 等腰三角形C. 平行四边形D. 等边三角形5. 下列代数式中,同类项是()A. 2x^2y 和 3xy^2B. 4x^3 和 5x^2C. 7xy 和 -3xyD. 2x^2 和 3x^2y6. 如果sin∠A = 0.5,那么∠A的度数是()A. 30°B. 45°C. 60°D. 90°7. 下列函数中,一次函数是()A. y = 2x + 5B. y = x^2 + 1C. y = 3x - 4D. y = √x8. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 等边三角形9. 下列数列中,第10项是正数的是()A. 1, 2, 3, 4, ...B. 1, 3, 5, 7, ...C. 1, 1/2, 1/4, 1/8, ...D. 1, 2, 4, 8, ...10. 如果一个正方形的边长扩大到原来的2倍,那么它的面积扩大到原来的()A. 2倍B. 4倍C. 8倍D. 16倍二、填空题(每题4分,共40分)11. 若a + b = 5,ab = 6,则a^2 + b^2的值为______。
12. 在直角三角形ABC中,∠C是直角,∠A = 30°,那么∠B的度数是______。
13. 下列方程的解是x = 2,那么方程2x - 3 = 5的解是______。
七年级数学全部试卷及答案
一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -2.5B. -3.2C. 0D. 1.2答案:D2. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 长方形C. 平行四边形D. 梯形答案:B3. 下列代数式中,同类项是()A. 3x^2yB. 2xyC. 4x^2D. 5y^2答案:B4. 已知一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的面积是()A. 40cm^2B. 32cm^2C. 48cm^2D. 64cm^2答案:A5. 如果a=3,b=-2,那么2a-b的值是()A. 1B. 5C. -1D. -5答案:B6. 下列各数中,能被3整除的是()A. 16B. 27C. 34D. 49答案:B7. 下列图形中,中心对称图形是()A. 等腰三角形B. 正方形C. 等边三角形D. 长方形答案:B8. 一个长方形的长是10cm,宽是5cm,那么它的周长是()A. 25cmB. 30cmC. 35cmD. 40cm答案:B9. 下列各数中,绝对值最大的是()A. -5B. -3C. 2D. 1答案:A10. 下列方程中,解为x=3的是()A. 2x+1=7B. 3x-2=5C. 4x+3=11D. 5x-1=13答案:A二、填空题(每题3分,共30分)11. 有理数-3的相反数是__________。
答案:312. 下列各数中,负数是__________。
答案:-213. 下列图形中,有3条对称轴的是__________。
答案:正方形14. 下列各数中,绝对值最小的是__________。
答案:015. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是__________。
答案:22cm16. 如果a=2,b=3,那么a^2+b^2的值是__________。
答案:1317. 下列各数中,能被5整除的是__________。
答案:2518. 下列图形中,中心对称图形是__________。
数学试卷完美版(带答案)
数学试卷本卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
第Ⅰ卷一、选择题(每题5分,共60分)1、设0a b <<,则下列不等式中正确的是 ( )A. 2a b a b ab +<<<B . 2a b a ab b +<<<C .2a b a ab b +<<<D . 2a b ab a b +<<<2、已知等比数列{}n a 的公比2=q ,前n 项和为n S ,则42S a = ( )A. 2B. 4C.152D. 1723、已知向量→a ,→b 满足,2b ,1a ,0b a ===∙→→→→则 =→→b -a 2 ( )A. 0B. 22C. 4D. 84、有一个几何体的正视、侧视、俯视图分别如下,则该几何体的表面积为 ( )A.π12B.π24C.π36D.π48 5、已知函数()42322+++=kx kx x x f 的定义域是R ,则k 的取值范围是 ( )A. ()4,0B. [)4,0C. (]4,0D. []4,0 6、=-+oooo oo7sin 15sin 8cos 7sin 15cos 8sin ( )A.32-B.32+C. 32±D.23-5565567、设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,362=-+k k S S ,则k = ( )A . 8B . 7C . 6D . 5 8、已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )A. 7B. 5C. -5D. -79、在ABC ∆中,,30A ,100b ,80a o ===则角B 的解得个数是 ( ) A.0个 B.1个 C.2个 D.不确定的10、已知()x f y =是开口向上的二次函数,且()()x f x f -11=+恒成立.若()()2-31x f x f <+,则x 的取值范围是 ( ) A. ⎪⎭⎫⎝⎛2343, B. ⎪⎭⎫⎝⎛∞43-,∪⎪⎭⎫⎝⎛∞+,23C. ⎪⎭⎫ ⎝⎛43-23-, D. ⎪⎭⎫ ⎝⎛∞23--,∪⎪⎭⎫⎝⎛∞+,43- 11、已知⎥⎦⎤⎝⎛∈20πθ,,则函数()θθθsin 2sin +=f 的最小值为 ( )A .22 B. 3 C. 32 D. 212、定义在R 上的偶函数()x f 满足()()x f x f =+2,且在[]2,-3-上是减函数.若B A 、是锐角三角形的两内角,则有 ( ) A. ()()B cos A sin f f > B. ()()sinB A sin f f > C. ()()B cos A sin f f < D. ()()B cos A cos f f >第Ⅱ卷二、填空题(共4个小题,每小题5分,共20分;把答案填答题纸上)13、在ABC ∆中,3B π=中,且34B C B A =⋅,则ABC ∆的面积是___________.14、设,x y 满足约束条件:⎪⎪⎩⎪⎪⎨⎧≥≥-≥-≤+.0y 0x ,1y x ,3y x 则y 2x z -=的取值范围为 .15、已知0,0x y >>,若2282y x m m xy+>+恒成立,则实数m 的取值范围是 .16、 若)y ,x (P 在圆()()63y 3x 22=-+-上运动,则xy 的最小值为__________.三、解答题(共6小题,17题10分,18—22题各12分,共70分;解答应写出文字说明,证明过程或演算步骤)17、已知a 千克的糖水中含有b 千克的糖;若再加入m 千克的糖()0,0>>>m b a ,则糖水变甜了.请你根据这个事实,写出一个不等式 ; 并证明不等式ma mb a b ++<()0,0>>>m b a 成立,请写出证明的详细过程.18、如图,正三棱柱111C B A AB C -的底面边长为3,侧棱233AA 1=,D 是CB 延长线上一点,且BD=BC(1)求证:直线1B C //平面D AB 1; (2)求二面角B AD B 1--的大小; (3)求三棱锥11AB B C -的体积.19、已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,并且有c b C a C a +=+sin 3cos 。
2025届六安市一中高三数学上学期第三次月考试卷及答案解析
六安一中2025届高三年级第三次月考数学试卷时间:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数()i 12i z =-+,其中i 是虚数单位,则z =( )A. 1B. 2C.D.【答案】D 【解析】【分析】根据复数的乘法运算可得2i z =-,进而可求模长.【详解】因为()i 12i 2i z =-+=-,所以z ==.故选:D.2. 已知等差数列{}n a 的前n 项和为 n S ,若38304S a ==,,则9S =( )A. 54 B. 63C. 72 D. 135【答案】B 【解析】【分析】根据给定条件,利用等差数列的性质求出2a ,再求出9S .【详解】等差数列{}n a 中,由330S =,得2123330a a a a =++=,解得210a =,而84a =,所以192899()9()6322a a a a S ++===.故选:B3. 已知平面向量,a b 满足4a = ,(1,b = ,且()()23a b a b +⊥- .则向量a 与向量b的夹角是( )A.π6B.π3C.2π3D.5π6【答案】C 【解析】【分析】根据垂直得出向量的数量积,再由夹角公式计算即可.【详解】因为(1,b =,所以3b == ,由()()23a b a b +⊥- 可得()()2223325481850a b a b a b a b a b +⋅-=-+⋅=-+⋅=,所以6a b ⋅=-,所以61cos ,432a b a b a b ⋅-===-⨯⋅,由[],0,πa b ∈ 知2π,3a b =,故选:C4. 在等比数列{}n a 中,已知13a =,48n a =,93n S =,则n 的值为( )A. 4 B. 5C. 6D. 7【答案】B 【解析】【分析】由1(1)1-=-n n a q S q及通项公式11n n a a q -=,列出方程组求解即可.【详解】在等比数列{a n }中,13a =,48n a =,93n S =,所以1q ≠,由1(1)1-=-n n a q S q ,及通项公式11n n a a q -=,可得13(1)931483n n q q q -⎧-=⎪-⎨⎪=⎩,解得2,5q n ==.故选:B.5. 已知数列{}n a 满足1211n n a a n +-=-,且110a =,则n a 的最小值是( )A. -15 B. -14C. -11D. -6【答案】A 【解析】【分析】根据已知条件得出最小项为6a ,利用迭代的思想即可求得6a .【详解】∵1211n n a a n +-=-,∴当5n ≤时,10n n a a +-<,当5n >时,10n n a a +->,∴12345678a a a a a a a a >>>>><<<⋅⋅⋅,显然n a 的最小值是6a .又1211n n a a n +-=-,∴()()()()()612132435465a a a a a a a a a a a a =+-+-+-+-+-()()()()()109753115=+-+-+-+-+-=-,即n a 的最小值是15-.故选:A6. 已知ABC V 是边长为1的正三角形,1,3AN NC P = 是BN 上一点且29AP mAB AC =+,则AP AB ⋅=( )A.29B.19C.23D. 1【答案】A 【解析】【分析】根据题意得89AP mAB AN =+,由,,P B N 三点共线求得19m =,利用向量数量积运算求解.【详解】13AN NC =,14AN AC ∴=u u u r u u u r ,且2899AP mAB AC mAB AN =+=+u u u r u u u r u u u r u u u r u u u r ,而,,P B N 三点共线,819m ∴+=,即19m =,1299AP AB AC ∴=+u u u r u u u r u u u r ,所以o12122cos 6099999AP AB AB AC AB ⎛⎫⋅=+⋅=+⨯= ⎪⎝⎭.故选:A.7. 数列{}n a 的前n 项和为n S ,满足1024n n S a +=,则数列{}n a 的前n 项积的最大值为( )A. 552 B. 452 C. 92 D. 102【答案】B 【解析】【分析】根据给定的递推公式求出1a ,进而求出数列{}n a 通项,借助单调性求解即得.【详解】依题意,N n *∈,1024n n S a +=,则1512a =,当2n ≥时,111024n n S a --+=,两式相减得12n n a a -=,即112n n a a -=,因此数列{}n a 是以512为首项,12为公比的等比数列,于是1101512()22n n n a --=⨯=,显然数列{}n a 单调递减,当10n ≤时,1n a ≥,当11n ≥,1n a <,所以当9n =或10n =时,数列{}n a 的前n 项积最大,最大值为98720452222222⨯⨯⨯⨯⨯⨯= .故选:B8. 已知O 是ABC V 所在平面内一点,且2AB = ,1OA AC ⋅=- ,1OC AC ⋅=,则ABC ∠的最大值为( )A.π6B.π4C.π3D.π2【答案】B 【解析】【分析】根据题意可得C 点轨迹是以A 为圆心,的圆,再由直线与圆相切可得ABC ∠的最大值为π4.【详解】根据1OA AC ⋅=- ,1OC AC ⋅=可得()22OC AC OA AC OC OA AC AC ⋅-⋅=-⋅== ,即可知C 点轨迹是以A的圆,如下图所示:由图可知,当BC 与圆相切时,ABC ∠取到最大,又2AB =可知此时π4ABC ∠=故选:B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知z 为复数,设z ,z ,i z 在复平面上对应的点分别为A ,B ,C ,其中O 为坐标原点,则( )A. OA OB= B. OA OC⊥.C. AC BC= D. OB AC∥ 【答案】AB 【解析】【分析】根据复数的几何意义、共轭复数、复数的乘法运算可以表示出A ,B ,C 三点的坐标,通过向量的模长、向量的平行和垂直知识进而可以判断.【详解】设()i ,z a b a b =+∈R ,(),∴A a b ,()i ,z a b a b =-∈R ,(),B a b ∴-,()i i i i =+=-+z a b b a ,(),∴-C b a ,()()()()(),,,,,,,,,==-=------+==OA a b OB a b OC b a b a a b b a a b AC BC 对于A,=∴=OA O B ,故选项A 正确;对于B , ()0-+= a b ba ,∴⊥OA OC ,故选项B 正确;对于C ,AC =,当0ab ≠时,AC BC ≠,故选项C 错误;对于D ,()()()222a a b b b a a ab b -----=-- ,222a ab b --可以为零,也可以不为零,所以OB 不一定平行于AC,故选项D 错误.故选:AB.10. 已知等差数列{}n a 的首项为1a ,公差为d ,前n 项和为n S ,若1089S S S <<,则下列说法正确的是( )A. 当9n =时,n S 最大B. 使得0nS <成立的最小自然数18n =C. 891011a a a a +>+D. 数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为1100S a 【答案】ABD 【解析】【分析】利用,n n a S 关系及等差数列通项公式得a 1>0d <0,a 9>0,a 10<0判断A ;根据已知及A 项分析得81191090a a a a a +=+<<,进而确定()101189101189,a a a a a a a a +-++++的符号判断C ;根据A 、C 项分析确定数列正负分界项,再由等差数列前n 项和确定0nS <对应n 的最小值判断B ;根据以上分析确定n n S a ⎧⎫⎨⎬⎩⎭各项符号判断D.【详解】根据题意:S 8<S 9S 10<S 9⇒S 9−S 8=a 9>0S 10−S 9=a 10<0,即911018090a a d a a d -=--<⎧⎨=+<⎩,两式相加,解得a 1>0d <0,a 9>0,a 10<0,当9n =时,n S 最大,故A 正确;由108S S <,可得91090a a a +<<,所以8110a a +<,故()10118910118940,0a a a a d a a a a +-+=<+++<,所以891011a a a a +<+,故C 错误;由以上可得:1213910110a a a a a a >>>>>>>> ,()117179171702a a S a +==>,而()()1181891018902a a S a a +==+<,当17n ≤时,0n S >;当18n ≥时,0n S <;所以使得0nS <成立的最小自然数18n =,故B 正确.当9n ≤或18n ≥时0nn S a >;当918n <<时0n nS a <;由101117101112170,0a a a S S S S >>>>>>>>> ,所以n n S a ⎧⎫⎨⎬⎩⎭中最小项为1100S a ,故D 正确.故选:ABD11. 已知数列{}n a 是各项为正数的等比数列,公比为q ,在12,a a 之间插入1个数,使这3个数成等差数列,记公差为1d ,在23,a a 之间插入2个数,使这4个数成等差数列,公差为2,d ,在1,n n a a +之间插入n 个数,使这2n +个数成等差数列,公差为n d ,则下列说法错误的是( )A. 当01q <<时,数列{}n d 单调递减B. 当1q >时,数列{}n d 单调递增C. 当12d d >时,数列{}n d 单调递减D. 当12d d <时,数列{}n d 单调递增【答案】ABC 【解析】【分析】由等差数列得(1)1n n a q d n -=+,然后在01q <<或1q >分别确定{}n d 的单调性判断AB ,进行讨论判断各选项.再由12d d <或12d d >确定q 的范围,从而确定{}n d 的单调性判断CD .【详解】数列{a n }是各项为正数的等比数列,则公比为0q >,由题意1(1)n n n a a n d +=++,得()1111n n n n a q a a d n n +--==++,01q <<时,0n d <,有()1112n n q n d d n ++=<+,1n n d d +>,数列{}n d 单调递增,A 选项错误;1q >时,0n d >,()112n n q n d d n ++=+,若数列{}n d 单调递增,则()112q n n +>+, 即21n q n +>+,由*N n ∈,需要32q >,故B 选项错误;12d d >时,()()111123a q a q q -->,解得312q <<,1q >时,0n d >,由()112n n q n d d n ++=+,若数列{}n d 单调递减,则()112q n n +<+, 即21111n q n n +<=+++,而 312q <<不能满足()*11N 1q n n <+∈+恒成立,C 选项错误;12d d <时,()()111123a q a q q --<,解得01q <<或32q >,由AB 选项的解析可知,数列{}n d 单调递增,D 选项正确.故选:ABC【点睛】方法点睛:本题数列的单调性,解题方法是利用等差数列的定义确定n d 与q 的关系,利用此关系通过q 的范围确定{}n d 的单调性,同样根据12,d d 的大小确定q 的范围,再得单调性.三、填空题:本题共3小题,每小题5分,共15分.12. 设正项等比数列{}n a 的前n 项和为n S ,若4210S S =,则62S S 的值为______.【答案】91【解析】【分析】方法一:利用等比数列前n 项和性质即可求解;方法二:利用等比数列前n 项和的公式,代入计算即可求解.【详解】方法一:等比数列{}n a 中,2S ,42S S -,64S S -成等比数列,则2S ,29S ,281S 成等比数列,∴64281S S S -=,∴6291S S =,∴6291S S =.方法二:设{}n a 公比为q ,由题意显然0q >且1q ≠,所以()()42111110311a q a q q qq--=⋅⇒=--,∴()()616622211131911311a q S q S a q q---===---,故答案为:91.13. 已知数列{}n a 中,11a =,12,2,n n na n a a n ++⎧=⎨-+⎩为奇数为偶数,则数列{}n a 前2024项的和为__________.【答案】2024【解析】【分析】利用数列{}n a 的周期性可得答案.【详解】因为11a =,12,2,n n na n a a n ++⎧=⎨-+⎩为奇数为偶数,所以2123a a =+=,322321=-+=-+=-a a ,4321=+=a a ,542121=-+=-+=a a ,652123=+=+=a a ,L ,所以数列{}n a 是周期为4的周期数列,且123413114+++=+-+=a a a a ,所以()220241202443215062024+=⨯==+++++ S a a a a a a a .的故答案为:2024.14. 在ABC V 中,内角A ,B ,C 所对的边分别为,,a b c (a b ≠).已知2cos c a A =,则sin sin B A -的最大值是__________.【解析】【分析】利用正弦边角关系、三角恒等变换得到2C A =、π03A <<,再应用和角正弦公式、倍角公式,将目标式化为34sin 2sin A A -+,应用换元法及导数研究其最大值即可.【详解】由2cos c a A =,则sin 2sin cos sin 2C A A A ==,,(0,π)A C ∈,所以2C A =或2πC A +=,而πA B C ++=,且a b ≠,即A B ≠,所以2C A =,且03πA C A <+=<,即π03A <<,sin sin sin 3sin sin cos 2cos sin 2sin B A A A A A A A A∴-=-=+-2232sin (12sin )2cos sin sin sin 2sin 2(1sin )sin sin A A A A A A A A A A=-+-=-+--34sin 2sin A A =-+,令sin t A =∈,则3()42f t t t =-+,2()122f t t '=-+,当t ∈时()0f t '>,则()f t在上递增;当t ∈时()0f t '<,则()f t在上递减;故t =()f t 的极大值点,()f t ∴最大值为342-⨯+⨯=..四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 设等比数列{a n }满足124a a +=,318a a -=.的(1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S +++=,求m .【答案】(1)13n n a -=;(2)6m =.【解析】【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式;(2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13n na -=;(2)令313log log 31n n n b a n -===-,所以(01)(1)22n n n n n S +--==,根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=,整理得2560m m --=,因为0m >,所以6m =,【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.16. 在ABC V 中,角,,A B C 所对的边分别为,,a b c ,且()22a cb bc -=+.(1)求角A ;(2)若3,2a BA AC BD DC =⋅==,求AD 的长.【答案】(1)2π3(2【解析】【分析】(1)变形后利用余弦定理可求;(2)先将2π3A =代入3BA AC ⋅= 可得6bc =,再将a =代入()22a c b b c -=+得2213b c +=,联立方程组解得,b c ,由此将向量AD 用,AB AC 表示,求解向量的模可得.【小问1详解】由()22a c b b c -=+得222b c a bc +-=-,则由余弦定理得2221cos 222b c a bc A bc bc +--===-,0πA << ,2π3A ∴=.【小问2详解】由31cos 2BA AC A A bc A b B C c ⋅=-⋅=-== ,解得6bc =①,a = ,22219abc bc ∴=++=,则2213b c +=②,联立①②可得,2,3b c ==,或3,2b c ==.2BD DC = ,∴()2AD AB AC AD -=- ,则1233AD AB AC =+ ,且3AB AC ⋅=- , 所以()()22222114441299AD AB AC AB AC c b =++⋅=+- ,当2,3b c ==时,2113(91612)99AD =+-= ,则AD当3,2b c ==时,2128(43612)99AD =+-= ,则AD .综上所述,AD .17. 已知数列{}n a 的前n 项和为n S ,*12111,3,22(2,N )n n n a a S S S n n +-==+=+≥∈.(1)求证:数列{}n a 为等差数列;(2)在数列{}n b 中,1213,n n n n b a b a b ++==,若{}n b 的前n 项和为n T ,求证:92n T <.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)利用n a 与n S 的关系式,结合等差数列的定义即可得证;(2)利用(1)中结论求得n a ,进而利用累乘法求得n b ,再利用裂项相消法求得n T ,从而得证.【小问1详解】因为*1122(2,N )n n n S S S n n +-+=+≥∈,所以*112(2,N )n n n n S S S S n n +--=-+≥∈,即1*(2,N )2n n a n a n +=+≥∈,又21312a a -=-=,所以数列{}n a 是首项为1,公差为2的等差数列.【小问2详解】由(1)知:()11221n a n n =+-⨯=-,则()222123n a n n +=+-=+,又21n n n n a b a b ++=,所以122123n n n n b a n b a n ++-==+,所以312112213332325272151n n n n n b b b b b n b b b b n n b n ---=⋅⋅⋅=⋅-⋅--⋅+9911(21)(21)22121n n n n ⎛⎫==- ⎪-+-+⎝⎭,所以911111123352121n T n n ⎛⎫=-+-++- ⎪-+⎝⎭ 91912212n ⎛⎫=-< ⎪+⎝⎭.18. 设各项均为正数的数列{}n a 的前n 项和为n S ,已知2132a a a =+,数列是公差为d 的等差数列.(1)求证:21a d =,并求出数列{}n a 的通项公式(用,n d 表示);(2)设c 为实数,对满足3m n k +=且m n ≠的任意正整数,,m n k ,不等式m n k S S cS +>都成立,求证:c 的最大值为92.【答案】(1)证明见解析,()221n a n d =-(2)证明见解析【解析】【分析】(1关于1,a d 的关系式,再利用题设条件得到关于1,a d 的方n a ,从而得解;(2)利用(1)中结论与完全平方公式求得92c ≤,再利用基本不等式检验92c =时的情况,从而得证.【小问1详解】由题意知:0d >(1)(1)n d n d =+-=+-,因为2132a a a =+,则233a S =,所以2133()S S S -=,则2212)]2)d a d +-=+,整理得210a d d -+=21,d a d ==,22(1),n d n d nd S n d =+-==,当2n ≥时,222221(1)(21)n n n a S S n d n d n d -=-=--=-,适合1n =情形.所以()221n a n d =-.【小问2详解】由m n k S S cS +>,得222222m d n d c k d +>⋅,则222m n c k +>⋅,所以222m n c k+<恒成立,又3m n k +=且m n ≠,,,m n k 正整数,所以22222()()9m n m n k +>+=,则22292m n k +>,故92c ≤,当92c =时,()2222222222999222m n k S S S m d n d k d k d m n mn ⎡⎤=+--⎢⎥+-⎣=+⎦-,22922d k mn ⎛⎫=- ⎪⎝⎭,由不等式可得3m n k +=≥,即294k mn ≤,当且仅当32m n k ==时,等号成立,而m n ≠,故294k mn <,为故092m n k S S S ->+,故c 的最大值为92.19. 已知函数()x f x e =.(1)当0x ≥时,求证:()()2f x f x x --≥;(2)若0k >,且()f x kx b ≥+在R 上恒成立,求2k b +的最大值;(3)设*2,n n ≥∈Nln n +> .【答案】(1)证明见解析(2)2e(3)证明见解析【解析】【分析】(1)不等式成立转换为函数最小值问题,利用导函数求得到点区间,从而得出最小值,不等式得证;(2)构建函数,利用导函数求得单调区间,从而找到最小值,由题意得到不等关系,再令所求代数式为函数,借助导函数求得最大值;(3)由(1()ln ln ln 11n n n n ⎛⎫>=-- ⎪-⎝⎭,从而得证.【小问1详解】令e e ()2(0)x x g x x x -=--≥,所以()()1e 20e x x g x x '=+-≥,所以()e 2e 220x x g x -'=-+≥-=,当且仅当1e e 1ex x x =⇒=,即0x =时,等号成立,所以当[)0,x ∈+∞时,()()0,g x g x '≥单调递增,则()()00g x g ≥=;小问2详解】令()e x F x kx b =--,e ()x F x k '=-;由()0F x '>得出ln x k >;由()0F x '<得出ln x k <;min ()(ln )ln 0F x F k k k k b ∴==--≥;ln b k k k ∴≤-,23ln k b k k k ∴+≤-,令()3ln G k k k k =-,0k >;()2ln G k k '=-,【当20e k <<时,()0G k '>,()G k 单调递增,当2e k >时,()0G k '<,()G k 单调递减,所以2e 是的()G k 极大值点,22()(e )e G k G ∴≤=,2k b +的最大值为2e ;【小问3详解】由(1)知,()e 2e 0,0,x x x x ∞--->∈+,令ln (1)x s s =>,则12ln 0s s s --->,即12ln (1)s s s s ->>,设*2,s n n =≥∈N ,则满足1s >,->1ln 11n ⎛⎫>+ ⎪-⎝⎭,()ln ln ln 11n n n n ⎛⎫>=-- ⎪-⎝⎭,()ln2ln1ln3ln2ln ln 1ln n n n +>-+-++--= ,ln n ++> .【点睛】方法点睛:不等式成立问题:(1)通过令两项的差为函数关系,再利用函数单调性求出函数的最值的方式来解决;(2)多项求和的不等关系的证明,可以先找到某一项的不等关系,再求和得到结论.。
数学试卷及答案
数学试卷及答案一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 12B. 17C. 18D. 202. 一个等边三角形的边长为10cm,求其面积。
A. 25cm²B. 43cm²C. 100cm²D. 225cm²3. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。
A. 72cm³B. 48cm³C. 36cm³D. 24cm³4. 下列哪个数是负数?A. 3B. 3C. 0D. 15. 一个正方形的边长为8cm,求其周长。
A. 16cmB. 24cmC. 32cmD. 40cm6. 下列哪个数是偶数?A. 7B. 8C. 9D. 107. 一个圆的半径为5cm,求其面积。
A. 25πcm²B. 50πcm²C. 100πcm²D. 200πcm²8. 下列哪个数是整数?A. 3.5B. 4C. 5.6D. 6.79. 一个三角形的底边长为6cm,高为4cm,求其面积。
A. 12cm²B. 24cm²C. 48cm²D. 96cm²10. 下列哪个数是正数?A. 2B. 0C. 2D. 3二、填空题(每题2分,共20分)1. 5 + 3 = _______2. 9 4 = _______3. 8 × 7 = _______4. 12 ÷ 3 = _______5. 7² = _______6. 3³ = _______7. √9 = _______8. √16 = _______9. √25 = _______10. √36 = _______三、解答题(每题10分,共30分)1. 解方程:3x 7 = 112. 解不等式:2x + 5 < 153. 解应用题:小明有30元,他想买5支笔,每支笔的价格是6元。
初中数学试卷试题及答案
初中数学试卷试题及答案一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,则此三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形2. 下列各数中,最小的数是()A. -3B. -2C. -1D. 03. 计算(-2)^3 + (-2)^2 的结果是()A. 0B. -2C. 2D. -64. 已知x = 2,y = -1,下列代数式中计算结果为0的是()A. x + yB. x - yC. xyD. x^2 - y^25. 若x = 3是方程2x - 3 = 3x - 6的解,则方程的另一个解是()A. x = 3B. x = 0C. x = 1D. x = 26. 一个数的相反数是-5,这个数是()A. 5B. -5C. 0D. 17. 一个数的绝对值是5,这个数是()A. 5B. -5C. 5或-5D. 08. 一个数的倒数是2,这个数是()A. 1/2B. 2C. 0D. 19. 一个数的平方是9,这个数是()A. 3B. -3C. 3或-3D. 910. 一个数的立方是-8,这个数是()A. 2B. -2C. 8D. -8二、填空题(每题3分,共15分)11. 一个数的绝对值是5,这个数可以是______或______。
12. 一个数的相反数是-3,这个数是______。
13. 一个数的倒数是1/3,这个数是______。
14. 一个数的平方是16,这个数可以是______或______。
15. 一个数的立方是-27,这个数是______。
三、解答题(每题10分,共55分)16. 计算:(-3)^2 - 4 × (-2) + 5。
17. 解方程:3x - 2 = 2x + 3。
18. 已知a = 2,b = -3,求代数式3a - 2b的值。
19. 已知x = 1,y = -2,求代数式x^2 + 2xy + y^2的值。
初中数学试卷的题目及答案
1. 下列各数中,有理数是()A. √9B. √-9C. √4D. √-4答案:C解析:有理数是可以表示为两个整数之比的数,因此只有C选项√4是有理数。
2. 下列各式中,同类项是()A. 2x^2 + 3y^2B. 4x^2y^3C. 5xy^2 + 2xyD. 3x^3 + 2x^2答案:C解析:同类项是指含有相同字母,且相同字母的指数也相同的项,因此只有C选项5xy^2 + 2xy是同类项。
3. 下列各式中,分式有()A. 2/3B. √3/2C. 5x^2 + 3xD. 2/x答案:D解析:分式是指形如a/b的式子,其中a和b都是整数,且b不等于0,因此只有D选项2/x是分式。
4. 下列各式中,绝对值最大的是()A. -2B. -3C. 2D. 3答案:B解析:绝对值是指一个数去掉符号后的值,因此绝对值最大的是B选项-3。
5. 下列各式中,二次根式有()A. √9B. √-9C. √4D. √-4答案:B解析:二次根式是指形如√a的式子,其中a是正数,因此只有B选项√-9是二次根式。
6. 下列各数中,有理数是()A. √9B. √-9C. √4D. √-4答案:C解析:有理数是可以表示为两个整数之比的数,因此只有C选项√4是有理数。
7. 下列各式中,同类项是()A. 2x^2 + 3y^2B. 4x^2y^3C. 5xy^2 + 2xyD. 3x^3 + 2x^2答案:C解析:同类项是指含有相同字母,且相同字母的指数也相同的项,因此只有C选项5xy^2 + 2xy是同类项。
8. 下列各式中,分式有()A. 2/3B. √3/2C. 5x^2 + 3xD. 2/x答案:D解析:分式是指形如a/b的式子,其中a和b都是整数,且b不等于0,因此只有D选项2/x是分式。
9. 下列各式中,绝对值最大的是()A. -2B. -3C. 2D. 3答案:B解析:绝对值是指一个数去掉符号后的值,因此绝对值最大的是B选项-3。
初中数学试卷精选及答案
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. πC. 0.3333...D. 无理数答案:C2. 已知a、b、c为等差数列,且a+b+c=12,则b=()A. 4B. 6C. 8D. 10答案:B3. 下列函数中,有最小值的是()A. y=x^2B. y=x^3C. y=|x|D. y=√x答案:A4. 在等腰三角形ABC中,AB=AC,∠B=40°,则∠C=()A. 40°B. 50°C. 60°D. 70°答案:C5. 下列各式中,正确的是()A. (a+b)^2=a^2+2ab+b^2B. (a-b)^2=a^2-2ab+b^2C. (a+b)^3=a^3+3a^2b+3ab^2+b^3D. (a-b)^3=a^3-3a^2b+3ab^2-b^3答案:C6. 下列图形中,有外接圆的是()A. 等腰三角形B. 等边三角形C. 平行四边形D. 梯形答案:B7. 已知a、b、c、d为等比数列,且a+b+c+d=24,则a^2+b^2+c^2+d^2=()A. 48B. 72C. 96D. 108答案:C8. 下列各式中,正确的是()A. sin^2x+cos^2x=1B. tan^2x+1=sec^2xC. cot^2x+1=csc^2xD. sin^2x+cos^2x=tan^2x答案:B9. 在直角坐标系中,点A(2,3)关于原点对称的点为()A. (-2,-3)B. (-2,3)C. (2,-3)D. (2,3)答案:A10. 下列各式中,正确的是()A. (a+b)^2=a^2+b^2B. (a-b)^2=a^2-b^2C. (a+b)^3=a^3+b^3D. (a-b)^3=a^3-b^3答案:B二、填空题(每题5分,共50分)1. 若x=√2-1,则x^2+2x+1=()答案:22. 若a、b、c为等差数列,且a+b+c=12,则a^2+b^2+c^2=()答案:483. 在直角坐标系中,点P(3,4)到原点O的距离为()答案:54. 若sinx=0.6,则cosx=()5. 在等腰三角形ABC中,AB=AC,∠B=50°,则∠A=()答案:80°6. 若a、b、c为等比数列,且a+b+c+d=24,则a^2+b^2+c^2+d^2=()答案:967. 在直角坐标系中,点A(2,3)关于x轴的对称点为()答案:(2,-3)8. 若sinx=0.8,则cosx=()答案:0.69. 在等腰三角形ABC中,AB=AC,∠B=70°,则∠A=()答案:40°10. 若a、b、c为等差数列,且a+b+c=12,则a^2+b^2+c^2=()答案:48三、解答题(每题10分,共30分)1. 已知a、b、c为等差数列,且a+b+c=12,求证:a^2+b^2+c^2=48。
数学竞赛试卷试题及答案
数学竞赛试卷试题及答案试题一:代数问题1. 解方程:\( x^2 - 5x + 6 = 0 \)2. 证明:对于任意实数 \( a \) 和 \( b \),\( (a+b)^2 \leq2(a^2 + b^2) \)试题二:几何问题1. 在直角三角形ABC中,角C为直角,已知AB=5,AC=3,求BC的长度。
2. 证明:圆的内接四边形的对角和为180度。
试题三:数列问题1. 给定数列:\( a_n = 2n - 1 \),求前10项的和。
2. 证明:数列 \( b_n = n^2 \) 是一个严格递增数列。
试题四:组合问题1. 有5个不同的球和3个不同的盒子,将这些球放入盒子中,求有多少种不同的放法。
2. 证明:对于任意正整数 \( n \),\( n^3 - n \) 总是能被6整除。
试题五:概率问题1. 抛掷一枚均匀硬币两次,求至少出现一次正面的概率。
2. 证明:如果一个事件的概率为 \( p \),则其补事件的概率为\( 1-p \)。
答案:试题一:1. 解:\( (x-2)(x-3) = 0 \),所以 \( x = 2 \) 或 \( x = 3 \)。
2. 证明:\( (a+b)^2 = a^2 + 2ab + b^2 \),由于 \( 2ab \leqa^2 + b^2 \),所以 \( (a+b)^2 \leq 2(a^2 + b^2) \)。
试题二:1. 解:根据勾股定理,\( BC = \sqrt{AB^2 - AC^2} = \sqrt{5^2 - 3^2} = 4 \)。
2. 证明:设圆内接四边形为ABCD,连接对角线AC和BD,由于圆周角定理,\( \angle{AOC} + \angle{BOC} = 180^\circ \),同理\( \angle{AOD} + \angle{BOD} = 180^\circ \),所以\( \angle{AOC} + \angle{AOD} + \angle{BOD} + \angle{BOC} = 360^\circ \)。
数学考试试卷(含答案)
数学考试试卷(含答案)
一、选择题
1. 以下哪个是质数?
A. 4
B. 11
C. 15
D. 20
正确答案:B
2. 若a = 5,b = 3,下列哪个式子是正确的?
A. a × b = 15
B. a ÷ b = 1.5
C. a + b = 8
D. a - b = 2
正确答案:C
3. 一辆汽车行驶了150公里,油箱容量为40升,若每升油可行驶12公里,则还剩下多少升油?
A. 4
B. 8
C. 12
D. 16
正确答案:A
二、填空题
1. 已知两个数的和为18,差为4,求这两个数分别是多少?
答案:11, 7
2. 若x = 3,求解方程2x + 5 = 17的解?
答案:x = 6
3. 有一个长方形,长为12米,宽为8米,求其面积。
答案:96平方米
三、解答题
1. 求解方程3x + 7 = 22的解。
解答:首先将方程两边减去7,得到3x = 15,然后将15除以3,得到x = 5。
所以方程的解为x = 5。
2. 计算2的平方根。
解答:2的平方根为1.414。
3. 若a:b = 3:5,且b = 20,求a的值。
解答:由比例关系可知,a:b = 3:5,则a = (3/5) * b。
将b = 20代入,得到a = 12。
所以a的值为12。
以上是数学考试试卷及答案的内容。
注:答案仅供参考,请自行核对。
2024年安徽普通专升本高等数学真题试卷及参考答案
2024年安徽省普通高校专升本招生考试试题高等数学考试真题还原(以下真题来自学生考试后的回忆,或有部分不准确)一、单项选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、当x →0+时,比sin x 更低阶的无穷小是()A、1-cos xB、3xD、In(1+x )参考答案:C 2、若函数sin ,0()2,=0ln(12),0x x ax f x x x x bx ⎧⎪⎪=⎨⎪+⎪⎩<>,在x =0处连续,其中a ,b 为常数,则()A、22a b ==,B、112a b ==,C、21a b ==,D、122a b ==,参考答案:B 3、已知21sin ()x xf x x x +=+,则()A、0()x f x =是的可去间断点,1()x f x =-是的无穷间断点B、0()x f x =是的可去间断点,1()x f x =-是的跳跃间断点C、0()x f x =是的跳跃间断点,1()x f x =-是的无穷间断点D、0()x f x =是的无穷间断点,1()x f x =-是的可去间断点参考答案:B4、设函数()f x 在[,b]a 上连续,在(,b)a 上可导,且()()f a f b >,则在(,b)a 内至少存在一点ξ,使得()A、'()f ξ<0B、'()f ξ>0C、'()=f ξ0D、'()f ξ不存在参考答案:A5、已知函数()x f x xe -=,则()A、()f x 在(1),-∞内单调减少B、()f x 在(1)+,∞内单调增加C、()f x 在1x =处取得极大值D、()f x 在1x =处取得极小值参考答案:C6、若函数4cos y x =,则dy =()A、3424sin x x dxB、3424sin x x dx -C、2422sin x x dx D、2422sin x x dx -参考答案:D7、已知2x 是()f x 的一个原函数,则2(1)fxf x dx -=()A、22x C -+B、-22x C-+C、222x C -+D、222x C--+参考答案;B8、下列广义积分收敛的是()A、143dx e xin x+⎰∞B、1dxe xinx +⎰∞C、123e xin x+⎰∞D、inx dxe x +⎰∞参考答案:A9、函数2ln z x y x =+在点(1,1)处的全微分(1,1)dz =()A、3dx dy +B、3dx dy+C、2dx dy +D、2dx dy+参考答案:A10、设n 阶方阵A 满足2,A A A E =且≠,其中E 为n 阶单位矩阵,则()A、A 是零矩阵B、齐次线性方程组0AX =只有零解C、A 是可逆矩阵D、A 的秩小于n参考答案:D 11、设随机事件A 与B 互不相容,则()A、(AB)0P =B、(A B)0P =C、(AUB)1P =D、(AB)1P =参考答案:D 12、设随机变量X 的概率密度函数2(1)4()x f x +-=其中()x -∞<<+∞,且{}{}P X c P X c ≥=≤,则常数C=()A、-2B、2C、-1D、1参考答案:C 二、填空题(本大题共6小题,每小题4分,共24分)13、函数323y x x =-在拐点处的切线方程为_____________参考答案:31y x =-+14、由曲线y e x =,直线1,0,0x x y =-==,所围成的封闭图形绕x 轴旋转所形成的旋转体体积参考答案:212)e --π(15、已知(,)z f x y =由方程221x t z Inz y e dt ++=⎰确定,则z x∂∂=_____________参考答案:21xze z +16、已知113122023x-=,则x =_____________参考答案:-117、同时投两个质地均匀的骰子,则两个骰子点数和为7的概率为_____________参考答案:1618、已知13X ~B(3,),则{x }p <D(X)=_____________参考答案:827三、计算题(本大题共7小题,共78分,计算应写出必要的计算步骤)19、2x →参考答案:120、求解不定积分2ln(1)d x x x +⎰参考答案:332111ln |1|c 33111ln()963x x x x x x ++++-+-21、求解:D xd σ⎰⎰,其中积分区域D 由曲线2y x =,直线2y x =-,和0y =所围成的封闭图形参考答案:111222、已知123,,a a a 线性无关,112321233123===a a a a a a a a a βββ+--+--,,,证明:向量组123βββ,,线性无关参考答案:存在一组常数123,,k k k ,使得1122330k k k βββ++=,证明:123,,k k k 全为零即可23、某工地拟建造截面为矩形加半圆的通风口,已知截面面积为2平方米时,则底长x 为多少米时,截面的周长最短。
高中数学试卷试题及答案
高中数学试卷试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=2x^2-4x+3,则f(2)的值为()A. 1B. 3C. 5D. 7答案:C2. 已知等差数列{an}的前三项分别为1, 4, 7,则该数列的通项公式an=()A. 3n - 2B. 3n + 1C. 3nD. 3n - 1答案:A3. 集合A={1, 2, 3, 4, 5},集合B={2, 4, 6, 8},则A∩B的元素个数为()A. 1B. 2C. 3D. 4答案:B4. 已知向量a=(3, -4),向量b=(2, 1),则向量a·b的值为()A. -2B. 2C. -5D. 5答案:A5. 函数y=x^3-3x^2+4的极值点个数为()A. 0B. 1C. 2D. 3答案:C6. 已知双曲线x^2/a^2 - y^2/b^2 = 1(a, b > 0)的焦点在x轴上,且离心率为e=√2,则a与b的关系为()A. a = bB. a = 2bC. a = √2bD. a = b/√2答案:C7. 抛物线y^2 = 4px(p > 0)的焦点坐标为()A. (p, 0)B. (0, p)C. (p/2, 0)D. (0, p/2)答案:C8. 函数y=x^2-6x+9的图像与x轴的交点个数为()A. 0B. 1C. 2D. 3答案:B9. 已知圆x^2 + y^2 - 6x - 8y + 24 = 0的半径为()A. 2√2B. 4C. 6D. 8答案:B10. 函数f(x)=|x-1|+|x-3|的最小值为()A. 1B. 2C. 3D. 4答案:B二、填空题(每题5分,共30分)11. 若等比数列{an}的第二项为2,第三项为8,则该数列的公比为______。
答案:412. 已知直线l的方程为3x - 4y + 5 = 0,点P(2, 3)到直线l的距离为______。
答案:113. 函数f(x)=x^3-3x+1的单调递增区间为______。
数学试题分析试卷及答案
数学试题分析试卷及答案一、选择题1. 下列哪个选项是正确的?A. \(2x + 3 = 7\)B. \(3x - 5 = 2\)C. \(4x^2 - 9 = 0\)D. \(x^2 - 6x + 9 = 0\)答案:D解析:选项D是一个完全平方公式,即\((x-3)^2 = 0\),解得\(x = 3\)。
其他选项均不符合方程的解。
2. 计算下列哪个表达式的结果为负数?A. \(-2^2\)B. \((-2)^2\)C. \(-(-2)^2\)D. \((-2)^3\)答案:D解析:选项A的结果是4,选项B的结果是4,选项C的结果是-4,而选项D的结果是-8,是唯一的负数。
二、填空题1. 一个数的平方根是它本身的数是______。
答案:0解析:0的平方根是0,这是唯一一个数的平方根等于它本身的数。
2. 一个数的立方等于它本身的数是______。
答案:-1,0,1解析:-1的立方是-1,0的立方是0,1的立方是1,这三个数的立方都等于它们本身。
三、解答题1. 解方程:\(2x - 3 = 7\)。
答案:\(x = 5\)解析:将方程两边同时加3,得到\(2x = 10\),再将两边同时除以2,得到\(x = 5\)。
2. 证明:对于任意实数\(a\)和\(b\),\((a+b)^2 = a^2 + 2ab +b^2\)。
答案:证明如下:\[(a+b)^2 = (a+b)(a+b) = a(a+b) + b(a+b) = a^2 + ab + ba + b^2= a^2 + 2ab + b^2\]解析:通过展开乘法,我们可以看到\(ab\)和\(ba\)是相同的,因此可以合并为\(2ab\),从而证明了等式。
结束语:以上是对数学试题的分析及答案,希望对同学们的学习和理解有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)1、一个直棱柱有8个面,则它的棱的条数为( )A 、12B 、14C 、18D 、22c2、把直线a 沿箭头方向平移1.5cm 得直线b 。
这两条直线之间的距离是( )A 、1.5cmB 、3cmC 、0.75cmD 、343cm3、已知一等腰三角形的两边长分别是4和6,则它的面积为( )A 、73B 、162C 、67或162D 、37或284、图中同旁内角有( )个A 、4 B 、5 C 、6 D 、75、将一条两边沿互相平行的纸带按如图折叠,当∠1:∠2=2:3,则∠2的度数为( )A 、22.50 B 、450 C 、67.50 D 、3006、2条直线y 1=ax+b 与y 2=-bx+a 在同一坐标系中的图像可能是下列图中的( )7、下列说法中,正确的有( ) ①腰相等的两个等腰三角形全等 ②;三角之比为3:4:5的三角形是直角三角形 ③在ABC ∆中,AB=AC=x,BC=6,则腰长x 的取值范围是3<x<6; ④要了解一批灯管的使用寿命,从中选取了20只进行测试,在这个问题中20支灯管是样本容量;⑤已知ABC ∆的三边长分别是a,b,c,且ac b c b c a b a -++=+,则ABC ∆一定是底边长为a 的等腰三角形 A 、0个 B 、1个 C 、2个 D 、3个8、一个底面为正六边形的直六菱形的主视图和俯视图如图所示,则其左视图的面积为( )A 、8B 、8+83C 、16D 、2+239、设三角形ABC 为一等腰直角三角形,角ABC 为直角,D 为AC 中点。
以B 为圆心,AB 为半径作一圆弧AFC ,以D 为中心,AD 为半径,作一半圆AGC ,作正方形BDCE 。
月牙形AGCFA 的面积与正方形BDCE 的面积大小关系( )A 、S 月牙=S 正方形B 、S 月牙=21S 正方形 C 、S 月牙=22S 正方形 D 、S 月牙=2S 正方形 10、直线y=433+-x 和x 轴、y 轴分别相交于点A ,B.在平面直角坐标系内,A 、B 两点到直线a 的距离均为2,则满足条件的直线a 的条数有( )A 、1条B 、2条C 、3条D 、4条二、认真填一填 (本题有6个小题, 每小题4分, 共24分)11、已知点M(3a-9,1-a),将M 点向右平移3个单位后落在y 轴上则a=_______12、数据x ,0,x ,4,6,2中,中位数恰好是x ,则整数x 可能的值是_______.13、已知P 点到x 轴正半轴的距离是2,到y 轴的距离是3,则点P 的坐标是 。
14、若不等式组⎩⎨⎧->-≥-1230x a x 有5个整数解,则a 的取值范围是15、线段AB 其中点A (1,-4)点B (5,-4),将线段AB 绕中点C 逆时针旋转300后,得到新的线段''B A ,则线段''B A 的解析式为 。
16、已知Rt ABC △中,90C =∠,6AC =,8BC =,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D 处,折痕交另一直角边于E ,交斜边于F ,则CD CE 的值为 . 三. 全面答一答 (本题有7小题, 共66分)17、解下列不等式(组)(本小题满分6分)(1)3222x x x -<+- (2)⎪⎩⎪⎨⎧->--->-25.2423)12(253x x x x x 18、(本小题满分8分)如图,点A 、E 、F 、C 在一条直线上,AE=CF,过点E 、F 分别作DE 垂直AC ,BF 垂直AC ,若AB=CD ,那么BD 平分EF ,请说明理由。
19、(本小题满分8分)我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm )收集并整理如下统计表:男生序号 ① ② ③④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 身高 163 171 173 159 161 174 164 166 169 164根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生?并说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?20、(本小题满分10分)某中学八年(1)班利用70元钱的班费,同时购买单价分别为3元、2元、1元的甲、乙、丙三种纪念品,奖励参加校“元旦会演”活动的同学。
已知购买乙种纪念品件数比购买甲种纪念品的件数多2件,而购买甲种纪念品的件数不少于10件,且购买甲种纪念品的费用不超过总费用的一半,若购买的甲、乙、丙三种纪念品恰好用了70元钱,问可有几种购买方案?每种方案中购买的甲、乙、丙三种纪念品各有多少件?21、(本小题满分10分)小聪和小明沿同一条路同时从学校出发到新华书店买书,学校与书店的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达书店,图中折线O -A -B -C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在新华书店买书的时间为________分钟,小聪返回学校的速度为_______千米/分钟。
(2)请你求出小明离开学校的路程(千米)与所经过的时间(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?22、(本小题满分12分)如图,点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=α.将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD .(1)求证:△COD 是等边三角形;(2)当α=150°时,试判断△AOD 的形状,并说明理由;(3)探究:当α为多少度时,△AOD 是等腰三角形?23、(本小题满分12分)如图,已知一次函数y = - x +7与正比例函数y = 34 x 的图象交于点A ,且与x 轴交于点B.(1)求点A 和点B 的坐标; (2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.2012年12月份八年级质量调研数学试卷(参考答案)一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)题号1 2 3 4 5 6 7 8 9 10 答案 C C D D C B A A C D二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11、2 12、2或3或413、(3,2)或(3,-2) 14、34-≤<-a15、)3333.(3433+≤≤---=x x y 16、5124855或 三. 全面答一答 (本题有8个小题, 共66分)19、:(1)平均数为:163+171+173+159+161+174+164+166+169+16410=166.4(cm ),-------------1分中位数为:(166+164)÷2=165cm-----------1分众数为:164cm ;--------------1分(2)三个标准任选一个,总3分选平均数作为标准:身高x 满足166.4×(1-2%)≤x≤166.4×(1+2%),即163.072≤x≤169.728时为“普通身高”,此时⑦、⑧、⑨、⑩男生的身高具有“普通身高”,选中位数作为标准:身高x满足165×(1-2%)≤x≤165×(1+2%),即161.7≤x≤168.3时为“普通身高”,此时①、⑦、⑧、⑩男生的身高具有“普通身高”;选众数作为标准:身高x满足164×(1-2%)≤x≤164×(1+2%),即160.72≤x≤167.28时为“普通身高”,此时①、⑤、⑦、⑧、⑩男生的身高具有“普通身高”,(3)三个标准任选一个,总2分以平均数作为标准,估计全年级男生中“普通身高”的人数约为:280×0.4=112(人)以中位数作为标准,估计全年级男生中“普通身高”的人数约为:280×0.4=112(人),以众数数作为标准,估计全年级男生中“普通身高”的人数约为:280×0.5=140(人).21、解(1):30-15=15分钟-----------------1分4÷(45-30)=4/15 千米/分钟------------------1分小聪在买书的时间是( 15 )分钟,小聪返回学校的速度为(4/15)千米/分钟(2):小明的速度=4÷45=4/45 千米/分钟---------------1分小明离开学校的路程S(千米)与所经过的时间t(分钟)之间的函数关系S=(4/45)t------------------1分(3):设小聪返回时与学校的距离S(千米)与他离开学校的时间t(分钟)的函数关系式为:S=k t+b (其中k, b为常数) 因为函数S=kt+b经过点(30, 4)和点(45,0)所以,分别把t=30, S=4; t=45, S=0代入S=kt+b得关于k, b的方程组:30k+b=445k+b=0------------------------1分解方程组,得:k=-4/15, b=12--------------------2分所以,S=(-4/15)t+12----------------1分联立S=(4/45)t, S=(-4/15)t+12 解得:S=3-------------------2分当小聪与小明迎面相遇时,离学校的路程是3千米。
22、(1)、根据题意知:△BOC≌△ADC所以CO=OD,ΔABC为等腰三角形-------2分因为∠COD=60° 所以△AD O是等边三角形---------------1分(2)、由△AD O是等边三角形知∠ODC=60°由旋转知∠ADC=∠BOC=150O所以∠ADO=150-60=90O--------------1分所以三角形AOD为直角三角形------------1分3)当CO=CD时因为CD=BO 所以CO=BO因为AO=AO,AB=AC 所以△AB O≌△AC O所以∠A OB=∠A OC 所以∠A OB=(360°-110°)/2=125°即x=125°----2分综上所述,当x=140°或x=110°或x=125°时△D OC是等腰三角形--- -----1分23、解:(1)根据题意,得,解得,∴A(3,4) . …………………2分令y=-x+7=0,得x=7.∴B(7,0). ……………………2分(2)①当P 在OC 上运动时,0≤t <4.由S △APR=S 梯形COBA-S △ACP-S △POR-S △ARB=8,得(3+7)×4- ×3×(4-t)- t(7-t)- t×4=8整理,得t2-8t+12=0, 解之得t1=2,t2=6(舍) ……2分当P 在CA 上运动,4≤t <7.由S △APR= ×(7-t) ×4=8,得t=3(舍)……2分 ∴当t=2时,以A 、P 、R 为顶点的三角形的面积为8.当P 在CA 上运动时,4≤t <7. 过A 作AD ⊥OB 于D,则AD=BD=4.设直线l 交AC 于E ,则QE ⊥AC ,AE=RD=t-4,AP=7-t.P 点坐标(t-4,4)点Q 的横坐标为7-t,带入到直线y = 34 x 中,得点Q 的纵坐标为34 (7-t ) AQ=22)34328()37(t t -+--=(t -4)PQ=22)343284()74(t t t +-++-- 当AP=AQ 时,7-t = (t -4),解得t = .当AQ=PQ 时,AE =PE ,即AE = AP 得t -4= (7-t ),解得t =5. 当AP=PQ 时,过P 作PF ⊥AQ 于F AF = AQ = ×(t -4). 即 ×(t -4)= ×(7-t ),解得t= .∴综上所述,t=1或或5或 时,△APQ 是等腰三角形. …………4个答案各1分。