九年级上学期期中考试数学试卷

合集下载

河南省鹤壁市2024-2025学年九年级上学期11月期中考试数学试题

河南省鹤壁市2024-2025学年九年级上学期11月期中考试数学试题

河南省鹤壁市2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.下列不是最简二次根式的是()AB C D 2.若53a b =,则a b a -的值为()A .23B .25C .35D .23-3.下列计算正的是()A .=B 123=C3=D 3=-4.若a ,b ,c 是△ABC 的三边长,则关于x 的方程()22104x a b x -++=的根的情况是()A .无实数根B .有两相等的实数根C .有两不相等的实数根D .无法确定5.已知0xy <,则化简二次根式)AB C .D .6.已知,m n 是关于x 的方程2220210x x --=的根,则代数式2422024m m n --+的值为()A .4040B .4041C .2022D .20237.如图,12∠=∠,要使ABC ADE △△∽,只需要添加一个条件即可,这个条件不可能是()A .B D ∠=∠B .C E ∠=∠C .AD ABAE AC=D .AC BCAE DE=8.某旅游景点的商场销售一款山西文创产品,平均每天可售出100件,每件获利30元.为了尽快减少库存,商场决定采取适当的降价措施.调查发现,如果这款文创产品的售价每降低1元,那么平均每天可多售出10件.商场要想平均每天获利3640元,这款文创产品每件应降价多少元?设这款文创产品每件降价x 元,根据题意可列方程为()A .()()30100103640x x +-=B .()()30100103640x x ++=C .()()30100103640x x -+=D .()()30100103640x x --=9.如图,在四边形ABCD 中,90ABC ∠=︒,2AB BC ==,E ,F 分别是AD ,DC 的中点,连接BE ,BF ,EF ,点P 为边BE 上一点,过点P 作PQ EF ∥,交BF 于点Q ,若12BPQ BEFS S =,则PQ 的长为()A .12B .1CD10.如图所示,在Rt ABC △中,90,BAC AD BC ∠=︒⊥于点,D ACB ∠的平分线CE 交AB 于点E ,交AD 于点F .若,,BD a DF b DC c ===,则关于x 的一元二次方程240ax bx c ++=的根的情况()A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定二、填空题11有意义的x 的取值范围是.12.若()133)05(m m m x x----+=是关于x 的一元二次方程,则m 的值为.13.若23a <<=.14.如图,在梯形ABCD 中,AD BC ∥,对角线AC 和BD 交于点O ,若13ABD BCD S S =△△,则AODBOCSS =△△.15.如图,在边长为4的等边三角形ABC 中,E 是AB 边上一点,且3BE =,D 为BC 边上一动点,作EDF ∠交AC 边于点F ,若60EDF ∠=︒,则AF 的最小值为.三、解答题16.计算:-(2))21-.17.解方程:(1)22630x x -+=;(2)()()25225x x x -=-.18.如图,正方形网格中,每个小正方形的边长都是一个单位长度, ABC 的顶点都在格点上.(1)以点O 为位似中心,画出 ABC 的位似图形 A 1B 1C 1,使 ABC 与 A 1B 1C 1的位似比为1:2.(2)以点O 为坐标原点,建立平面直角坐标系,若点M (a ,b )在线段AC 上,请直接写出点M 经过(1)的位似变换后的对应点M '的坐标.19.如图,在ABC V 中,90C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,DE BD ⊥,交AB 于点E ,(1)求证:ADE ABD △△∽;(2)若103AB BE AE ==,,求线段AD 长.20.已知关于x 的方程()2110m x mx -++=.(1)求证:不论m 取什么实数时,这个方程总有实数根;(2)当m 为何正整数时,关于x 的方程()2110m x mx -++=有两个整数根?21.如图,某农户准备用长34米的铁栅栏,一边利用墙,其余边用铁栅栏围成长方形羊圈ABCD 和一个边长为1米的正方形狗屋CEFG .设AB x =米.(1)请用含x 的代数式表示BC 的长(直接写出结果);(2)设山羊活动范围即图中阴影部分的面积为S 平方米,请用含x 的代数式表示S ;(写出过程)(3)求出山羊活动范围面积S 的最大值.22.已知:如图,四边形ABCD 是平行四边形,在边AB 的延长线上截取BE =AB ,点F 在AE 的延长线上,CE 和DF 交于点M ,BC 和DF 交于点N ,联结BD .(1)求证:△BND ∽△CNM ;(2)如果AD 2=AB •AF ,求证:CM •AB =DM •CN .23.如图:在矩形ABCD 中,m 6AB =,8m BC =,动点Р以2m /s 的速度从A 点出发,沿AC 向C 点移动,同时动点Q 以1m /s 的速度从点C 出发,沿CB 向点B 移动,设P 、Q 两点移动的时间为t 秒()05t <<.(1)AP =______m ,PC =______m ,CQ =_____m (用含t 的代数式表示)(2)t 为多少秒时,以P 、Q 、C 为顶点的三角形与ABC V 相似?(3)在P 、Q 两点移动过程中,四边形ABQP 与 CPQ 的面积能否相等?若能,求出此时t 的值;若不能,请说明理由.。

陕西省西安市爱知中学2024-2025学年上学期九年级期中考试数学试题

陕西省西安市爱知中学2024-2025学年上学期九年级期中考试数学试题

陕西省西安市爱知中学2024-2025学年上学期九年级期中考试数学试题一、单选题1.下列数中是无理数的是()A .1BC .0D .2-2.如图,该几何体的俯视图是()A .B .C .D .3.如图,a b ∥,1100∠=︒,245∠=︒,则3∠的度数是()A .45︒B .50︒C .55︒D .65︒4.下列计算正确的是()A .235a b ab +=B .()325a a =C .()222a b a b +=+D .()31236a a--=-+5.正比例函数的图象经过(),1M m ,()2,N n 两点,则mn 的值为()A .2B .2-C .1D .46.如图,在ABC V 中tan 1,6,30B AC C ==∠=︒,则AB 的长为()A .3B .C .D .7.如图,四边形ABCD 是菱形,对角线AC 、BD 相交于点,O DH BC ⊥于点H ,连接,56OH BAD ∠=︒,则DHO ∠的度数是()A .38︒B .34︒C .28︒D .24︒8.如右图,在平面直角坐标系xOy 中,已知正比例函数512y x =-与一次函数184y x =-的图象交于点A .设x 轴上一点(),0P a ,过点P 作x 轴的垂线(垂线位于y 轴的左侧),分别交512y x =-和184y x =-的图象于点B 、C ,若1613BC OA =,则a 的值为()A .13-B .12-C .11-D .10-二、填空题90.5(填“>”“<”或“=”)10.如图,在平面直角坐标系中,ABC V 与DEF 是以坐标原点O 为位似中心的位似图形,且点A 、D 均在x 轴正半轴上.若点A 坐标为1,0, 1.5, 4.5AB DE ==,则点D 的坐标为.11.如图,在正方形网格中,每个小正方形的顶点叫格点.ABC V 的顶点都在格点上,则cos ABC ∠的值为.12.如图,一次函数()0y ax b a =+≠图象与反比例函数()0k y k x=≠的图象在第一象限内交于点A 、B ,与x 轴交于点C,AB BC =.若OAC 的面积为7,则k 的值为.13.如图,在ABC V 中,45,4,3,BAC BD CD AD BC ︒∠===⊥,将ADB 沿AB 翻折得到AMB ,将ADC △沿AC 翻折得到ANC ,则AD 的长为.三、解答题14()()2234-+-⨯15.解不等式组()3112235x x x x -⎧+>⎪⎨⎪--≥⎩.16.化简:2221211x x x x x x x ⎛⎫-÷+- ⎪-+-⎝⎭17.如图,在ABC V 中,求作线段CD ,点D 在AB 上,且::ACD BCD S S AC BC =△△.(要求尺规作图,保留作图痕迹,不写作法)18.如图,在ABC V 和ADE V 中,点C 在AD 上,AE BC ∥,BAC E ∠=∠,AC AE =,求证:BC DA =.19.在“融通古今,厚植文化自信”校园文化建设活动中,数学文化社团的小童和小龄计划从古代的赵爽、秦九韶,现代的陈景润、陈省身四名数学家中,各查找两名数学家的资料制作成文化宣传材料.为了明确分工以及提高效率,小童和小龄决定按如下方式抽签确定分工:将写有四名数学家名字且除所写名字外完全相同的小球放入不透明的盒子中,摇匀后放在桌面上,两人轮流摸球,每次摸出一球,不放回,最后根据各自小球上数学家的名字制作宣传材料.(1)若小童先摸,第一次摸中写有秦九韶名字的小球的概率是______;(2)若小童先摸,然后小龄再摸,请利用画树状图或列表的方法,求两人第一次摸出的小球上名字恰好是一名古代数学家和一名现代数学家的概率.20.某校组织师生去春游,如果单独租用30座客车若干辆,刚好坐满;如果单独租用40座客车,可少租一辆,且余20个座位.求该校参加春游的人数.(请列方程解答......)21.如图,小知想测量自家小区居民楼下一棵大树AB 的高度,由于大树旁边还有其他灌木无法直接到达大树下面测量,他先通过查询建筑说明得到居民楼CD 的高度为28m ,接着在居民楼CD 的顶端C 处测得大树的顶端A 的俯角为22︒,某一时刻在太阳光的照射下,大树AB 顶端A 的影子落在地面上的点E 处,居民楼CD 顶端C 的影子落在地面上的点F 处,测得10m,30.8m DE DF ==,已知大树和居民楼均垂直于地面,且点,,,B E D F 在同一条直线上,求大树的高度AB .结果精确到0.1m ,参考数据:sin220.37︒≈,cos220.93︒≈,tan220.40︒≈)22.为激发学生兴趣,提高学生素质,促进学生全面发展,某校在课后延时服务期间开展了丰富多彩的选修课,艾老师为大家开展了《我是小小理财家》的选修课,在这节选修课后,同学们为了解全校2400名学生平均每天使用零花钱的情况,他们随机调查了部分学生平均每天使用零花钱的金额,并用得到的数据绘制了如图所示的统计图:根据以上信息,解答下列问题:(1)本次接受随机调查的学生有______人,图①中m 的值是______;(2)本次调查获取样本数据的众数为______元,中位数为______元;(3)根据样本数据,估计该校平均每天使用零花钱的金额大于15元的学生人数.23.某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求1y 和2y 的表达式;(2)九年级学生小爱计划暑期前往该俱乐部健身7次,应选择哪种方案所需费用更少?说明理由.24.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC 的平行线交DC 的延长线于点E .(1)求证:BD =BE ;(2)若BE =10,CE =6,连接OE ,求△ODE 的面积.25.如图,在平面直角坐标中,点O 是坐标原点,一次函数1y kx b =+与反比例函数()230y x x=>的图象交于()1,A m 、(),1B n 两点.(1)求直线AB 的解析式;(2)根据图象,当30kx b x+->时,x 的取值范围为______;(3)如图,y 轴正半轴上有一点P ,当四边形OPAB 的面积为5时,求点P 的坐标.26.【问题提出】(1)如图①,在菱形ABCD 中,6,60AB ABC =∠=︒,点E 、F 分别是AD 、BC 上的点,且EF 平分菱形ABCD 的面积,求EF 的最小值.【问题解决】(2)如图②,m 和n 是两条平行的路,在两条路之间有一块四边形空地,即四边形ABCD .为了美化环境,市政府决定将这块空地改造为一个“口袋公园”,种植两种花卉.现在打算过点C 修一条笔直的通道CE ,交AD 于点E ,以方便市民观赏花卉.并要求通道两侧种植的两种花卉面积相等.经过测量,CD n ⊥,垂足为点D ,AB =,CD =,150m AD =,1tan 2ADC ∠=.如果将通道记为CE ,请求出AE 和通道CE 的长(通道的宽度忽略不计).。

山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题

山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题

山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.2024年巴黎奥运会,中国体育健儿勇夺91枚奖牌,如图是本届奥运会的领奖台,其左视图是()A .B .C .D .2.已知点()13,A y -,()21,B y -和()32,C y 都在反比例函数()0ky k x=>的图象上,则1y ,2y 和3y 的大小关系是()A .312y y y <<B .213y y y <<C .123y y y <<D .321y y y <<3.如图1是某班级的花架,图2是其侧面示意图,已知AB CD EF ∥∥,36cm AC =,35BD DF =,则AE 的长为()A .48cmB .60cmC .96cmD .120cm4.10月16日是世界粮食日.某校组织了粮食安全公益活动,现有“节粮宣讲员”、“光盘示范员”和“爱粮监督员”三类志愿者岗位身份,小霞和小艺从中任选一类,则她们恰好选到同一类岗位的概率是()A .14B .13C .12D .235.函数y kx k =-和()210k y k x+=-≠在同一平面直角坐标系中的图象可能是()A .B .C .D .6.“黄金比例分割法”是启功先生研究的一套楷书结构法,是将正方形按照黄金分割的比例来分割,形成“黄金格”(如图,四条与边平行的线的交点都是黄金分割点),汉字的笔画至少要穿过两个黄金分割点才美观.若正方形“黄金格”的边长为8cm ,四个黄金分割点组成的正方形的边长为()A .()4cmB .()16cmC .(12cm-D .(24cm-7.如图,直线y x =-与双曲线()0ky k x=≠交于A ,B 两点,已知OA =表达式为()A .3y x=B .3y x=-C .9y x=D .9y x=-二、填空题8.如图,圭表是度量日影长度的一种天文仪器,垂直于地面的直杆叫“表”,水平放置于地面上刻有刻度以测量影长的标尺叫“圭”.当正午太阳照射在表上时,日影便会投影在圭面上,冬至日影最长,夏至日影最短.圭面上冬至线与夏至线之间的距离AB 的长为3.5m ,则表高为()(参考数据:冬至时,0.5≈表高影长;夏至时,3≈表高影长)A .2.1mB .2.4mC .56m .D .5.8m三、单选题9.如图,点光源O 射出的光线沿直线传播,将胶片上的建筑物图片AB 投射到与胶片平行的屏幕上,形成影像CD .已知3cm AB =,胶片与屏幕的距离EF 为定值,设点光源到胶片的距离OE 长为x (单位:cm ),CD 长为y (单位:cm ),y 随x 的变化而变化,且当60x =时,43y =,则y 与x 的函数关系可表示为()A .4360y x =B .233y x =+C .24003y x=+D .2580y x=10.已知反比例函数()22a y a x-=≠,点()11,M x y 和()22,N x y 是反比例函数图象上的两点.若对于12x a =,256x ≤≤,都有12y y >,则a 的取值范围是()A .502a -<<或522a <<B .532a -<<且2a ≠,0a ≠C .532a -<<-或02a <<D .5522a -<<且2a ≠,0a ≠四、填空题11.若()304n m m =≠,则n mm+=.12.近年来,济南环境保护效果显著,越来越多的候鸟选择来济过冬.为了解候鸟的情况,生物学家采用“捕获—标记—再捕获”的方法估计候鸟的数量.先随机捕捉40只候鸟,戴上标记卡并放回,经过一段时间后,重复进行5次捕捉.记录数据如下表,由此估计该区域约有只候鸟.累计捕捉数量(只)100200350420480带有标记卡数量(只)132444526013.坐落于济南市大明湖的超然楼是一座拥有700年历史的名楼,《周髀算经》中有“偃矩以望高”的测高方法,“矩”在古代指两条边呈直角的曲尺(即图中的ABC ),小明受到启发,利用“矩”测量超然楼DE 的高度.通过调整自己的姿势和“矩”的摆放位置,使AC 保持水平,点A 、B 、D 在同一直线上,90AFE DEF ∠=∠=︒,测得0.15m AB =,0.2m BC =, 1.7m AF =,37.5m EF =,则超然楼的高度DE =m .14.如图,点P ,Q ,R 在反比例函数()0ky x x=>的图象上,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为1S ,2S ,3S .若OE ED DC ==,2320S S +=,则k =.15.如图,在ABCD 中,4AB =,6AD =,45A ∠=︒,点E 为边AD 上的一个动点,连接EC 并延长至点F ,使得12CF CE =,以EB ,EF 为邻边构造BEFG ,连接CG ,则CG 的最小值为.五、解答题16.如图,一次函数4y kx =+的图象与反比例函数()0my x x=<的图象交于A ,B 两点,与y 轴交于点C ,()1,3B -,连接OA ,OB .(1)求k 和m 的值;(2)求AOB V 的面积.17.图1是小亮沿广场道路AB 散步的示意图,线段CD 表示直立在广场上的灯柱,点C 表示照明灯的位置,已知小亮身高1.5m ,6m CD =.(1)如图2,小亮站在E 处时与灯柱的距离9m ED =,则此时小亮的影长AE =m ;(2)如图3,小亮继续行至G 处时,发现其影长KG 恰为身高的一半,求此时小亮与灯柱的距离.18.如图,在平面直角坐标系中,ABC V 的顶点坐标分别是()2,6A ,()6,2B ,()10,0C .(1)以原点O 为位似中心画111A B C △,使它与ABC V 位似.若1112A B AB =在第一象限内画出111A B C △;(2)在(1)的条件下,求点1A的坐标.19.如图1,直角尺是机械行业中检验工件垂直度的常用工具.如图2,在矩形ABCD中,直角尺的顶点G在CD上滑动,当点E落在BD上时,另外两个顶点恰好与A,B重合.若==,求BD的长.BE AE22420.2024年8月8日是中国第16个“全民健身日”.为提高学生身体素质,积极倡导全民健身,某校开展了一分钟跳绳比赛.数学兴趣小组随机抽取了部分学生成绩,并对数据进行统计整理,以下是不完整的统计图表.一分钟跳绳成绩统计表成绩等级一分钟跳绳次数频数x≥nA160x≤<75B120160x≤<69C80120x<36D80请根据以上信息,完成下列问题.(1)随机抽取的学生人数为人,统计表中的n=,统计图中B等级对应扇形的圆心角为度;(2)该校共有800人参加比赛,请你估计该校成绩达到B等级及以上的有多少人?(3)该比赛服务组有两名男生和两名女生,现从中随机挑选两名同学负责跳绳发放工作,请用树状图法或列表法求出恰好选中“一男一女”的概率.21.如图1,在平面直角坐标系中,直线y x b =+与双曲线()10ky k x=≠交于()4,1A m +,(),3B m -.(1)求一次函数和反比例函数的表达式;(2)根据图象,直接写出关于x 的不等式kx b x+<的解集;(3)如图2,将直线y x b =+向上平移a 个单位长度得到直线l ,直线l 与反比例函数()2130y x x=-<的图象交于C ,D 两点,与双曲线1k y x =在第一象限内交于点E ,连接BD ,EA ,若四边形ABDE 是平行四边形,求a 的值.22.2024年9月,济南港—寿光港集装箱业务的首船作业,标志着小清河复航业务再结硕果.集装箱搬运车是为了更高效地对集装箱进行搬运和叠放,当液压撑杆与吊臂垂直且吊臂完全伸展开时,集装箱搬运车的抓手可以达到最大高度.如图1是抓手达到最大高度时的示意图,四边形ABCD 为矩形,5m AB =,0.9m BC =,AE BF ⊥,延长FB DC ,交于点H , 1.2m CH =.(1)求此时液压撑杆AE 的长;(2)已知吊臂BF 最长为9.5m ,抓手0.5m FG =,某批集装箱的长宽高如图2所示,使用该款搬运车最多能将集装箱在地面上叠放几层?请通过计算说明.23.小光根据学习函数的经验,探究函数11y x =-的图象与性质.(1)刻画图象①列表:下表是x ,y 的几组对应值,其中a =,b =;x …4-2-1-0122334544332234 (11)x -…15-13-12-1-2-a4-4321b13…②描点:如图所示;③连线:请用平滑的曲线顺次连接.(2)认识性质观察图象,完成下列问题:①当1x >时,y 随x 的增大而;②函数11y x =-的图象的对称中心是.(填写点的坐标)(3)类比探究①小光发现,函数11y x =-的图象可以由反比例函数1y x =的图象经过平移得到.请结合图象说明平移过程;②函数43y x =-的图象经平移可以得到函数42=+y x 的图象,请说明平移过程.24.(1)在ABC V 和DEC 中,AB AC =,DE DC =,90BAC EDC ∠==︒.①如图1,当CE 与AC 重合时,BEAD=;②如图2,DEC 绕点C 逆时针旋转一定角度,连接AD ,BE ,BEAD的值是否改变?请说明理由;(2)如图3,正方形ABCD 的边长为2,E 为边AB 上一动点,以CE 为斜边在正方形ABCD 内部作等腰直角CFE △,90CFE ∠=︒,连接AF ,BF ,当AFE ABF ∠=∠时,求BE 的长.25.某数学兴趣小组学习了反比例函数后,进一步研究反比例函数8y x=的图象,他们在平面直角坐标系内选定点133,2P ⎛⎫- ⎪⎝⎭,过点P 作直线,并将图象沿该直线按一定的操作翻折,探究过程如下:【动手操作】操作1:如图1,过点P 作x 轴的平行线l ,将直线l 上方的反比例函数图象沿直线l 翻折得到新图象,与第一、三象限未翻折的图象组成“X 图象”.操作2:如图2,过点P 作y 轴的平行线m ,将直线m 左侧的反比例函数图象沿直线m 翻折得到新图象,与第一、三象限未翻折的图象组成“Y 图象”.操作3:如图3,过点P 作直线n :152y x =-+,将第一象限内反比例函数的图象在直线n 下方的部分沿直线n 翻折得到新图象,与直线n 下方的图象组成的封闭图象是“Z 图象”.试卷第11页,共11页【解决问题】(1)如图1,求“X 图象”与x 轴的交点C 的坐标;(2)过x 轴上一点(),0Q t 作y 轴的平行线,与“Y 图象”交于点M ,N .若3MN QN =,求t 的值;(3)如图3,反比例函数()80y x x =>的图象与直线n 交于点E ,F ,已知点G 和点H 是“Z 图象”上的两个动点,当以点E ,G ,F ,H 为顶点的四边形面积最大时,直接写出点G 和点H 的坐标.。

上海市徐汇中学2024-2025学年九年级上学期数学期中考试试卷

上海市徐汇中学2024-2025学年九年级上学期数学期中考试试卷

上海市徐汇中学2024-2025学年九年级上学期数学期中考试试卷一、单选题1.下列各组线段中,成比例线段的组是()A .0.2cm,0.3cm,4cm,6cmB .1cm,3cm,4cm,8cmC .3cm,4cm,5cm,8cmD .1.5cm,2cm,4cm,6cm2.下列命题一定正确的是()A .两个等腰三角形一定相似B .两个等边三角形一定相似C .两个直角三角形一定相似D .两个含有30°角的三角形一定相似3.把抛物线y=﹣x 2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A .y=﹣(x+3)2+1B .y=﹣(x+1)2+3C .y=﹣(x ﹣1)2+4D .y=﹣(x+1)2+44.如图,在ABC V 中,DE BC ∥,2AD =,3BD =,10AC =,则AE 的长为()A .3B .6C .5D .45.如图,梯形ABCD 中,AB CD ∥,AC ,BD 交于O ,下列等式正确的是()A .AOD AOB S ADS AB=△△B .COD AOB S CDS AB=△△C .AOD BOA S DOS OB= D .AOD BOC S DOS OC=△△6.如图,是二次函数2y ax bx c =++图象的一部分,直线1x =-是对称轴,且经过点(2,0).有下列判断:①20a b -=;②1640a b c -+<;③9a b c a -+=-;④若1(3,)A y -,2(1.5,)B y 是抛物线上两点,则12y y >.其中正确的是()A .①③B .①④C .①③④D .②③④二、填空题7.已知:1:3x y =,那么():x y y +=.8.如果地图上A 、B 两处的图距是4cm ,表示这两地的实际距离是200km ,那么实际距离是500km 的两地在地图上的图距是cm .9.已知点P 是线段AB 上的一点,且2AP AB PB =⋅,如果2AB =,那么AP =.10.若两个相似三角形的周长比为2:3,则它们的面积比是.11.如图,直线AD ,BC 交于点O ,AB EF CD ∥∥,若5AO =,2OF =,3FD =,则BE EC的值为.12.抛物线()212y x =-+与y 轴交点的坐标为.13.已知抛物线y=ax 2+bx+c (a >0)的对称轴是直线x=2,且经过点P (3,1),则a+b+c 的值为.14.如图,DE 是ABC V 的中位线,点F 在DB 上,2DF BF =,连接EF 并延长,与CB 的延长线交于点M .若8BC =,则线段CM 的长为.15.如图1是装了液体的长方体容器的主视图(数据如图),将该容器绕地面一棱进行旋转倾斜后,水面恰好接触到容器口边缘,如图2所示,此时液面宽度AB.16.如图,点P 是ABC V 的重心,点D 是边AC 的中点,PE AC ∥交BC 于点E ,DF BC ∥交EP 于点F .若四边形CDFE 的面积为6,则ABC 的 面积为17.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y =ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为.18.如图,在等腰直角ABC V 中,2AC =,M 为边BC 上任意一点,连接AM ,将ACM △沿AM 翻折得到AC M '△,连接BC '并延长交AC 于点N ,若点N 为AC 的中点,则CM 的长为.三、解答题19.如图,AD BE ,BD CE .(1)试说明OA OBOB OC=;(2)若4OA =,12AC =,求OB 的长.20.在ABC 中,2AB =,将ABC 绕点B 逆时针旋转得到MBN ,且CN BM ∥,MA 的延长线与CN 交于点P ,若3AM =,152CN =.(1)求证:ABM CBN ∽;(2)求AP 的长.21.如图,抛物线2y a(x 1)4=-+与x 轴交于点A ,B ,与轴交于点C ,过点C 作CD ∥x轴,交抛物线的对称轴于点D ,连结BD ,已知点A 坐标为(-1,0).(1)求该抛物线的解析式;(2)求梯形COBD 的面积.22.在初中物理中我们学过凸透镜的成像规律.如图MN 为一凸透镜,F 是凸透镜的焦点.在焦点以外的主光轴上垂直放置一小蜡烛AB ,透过透镜后呈的像为CD .光路图如图所示:经过焦点的光线AE ,通过透镜折射后平行于主光轴,并与经过凸透镜光心的光线AO 汇聚于C 点.若焦距4OF =,物距6OB =,小蜡烛的高度1AB =,求蜡烛的像CD 的长度以及像CD 与透镜MN 之间的距离.23.已知,如图,在梯形ABCD 中,AD BC ∥,90BCD ∠=︒,对角线AC 、BD 相交于点E ,且AC BD ⊥.(1)求证:2CD BC AD =⋅;(2)点F 是边BC 上一点,连接AF ,与BD 相交于点G ,如果BAF DBF ∠=∠,求证:22AG BGBDAD =.24.如图,在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++>与x 轴相交于点()1,0A -和点B ,与y 轴交于点C ,对称轴为直线1x =.(1)求点C 的坐标(用含a 的代数式表示);(2)连接AC 、BC ,若ABC V 的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q 为x 轴正半轴上一点,点G 与点C ,点F 与点A 关于点Q 成中心对称,当CGF △为直角三角形时,求点Q 的坐标.25.在ABC V 中,45ACB ∠=︒,点D (与点B 、C 不重合为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB AC =.如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB AC ≠,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =3BC =,CD x =,求线段CP 的长.(用含x 的式子表示)。

吉林省长春市农安县2024-2025学年九年级上学期10月期中考试数学试题

吉林省长春市农安县2024-2025学年九年级上学期10月期中考试数学试题

吉林省长春市农安县2024-2025学年九年级上学期10月期中考试数学试题一、单选题1.下列方程中,属于一元二次方程的是().A .21x y -=B .2210x x -+=C .2240x y -+=D .223x x+=2.若25a b =,则ab =()A .25B .52C .2D .53.方程2421x x -=-的二次项系数、一次项系数、常数项分别为()A .4、2-、1-B .4、2、1-C .4、2-、1D .4、2、14.一元二次方程2650x x -+=配方可变形为()A .()234-=xB .()2314x +=C .()2314x -=D .()234x +=5.下列运算正确的是()A B =C .4=D .1=6.下列四组线段中,是成比例线段的一组是()A .1a =,2b =,3c =,4d =B .5a =,6b =,7c =,8d =C .1a =,b =,c =d =D .4a =,6b =,6c =,8d =7.下列二次根式中属于最简二次根式的是()ABC D 8.如图,MN 是凸透镜的主光轴,点O 是光心,点F 是焦点.若蜡烛PM 的像为NB ,测量得到:5:3OM ON =,蜡烛高为10cm ,则像BN 的长为()A.4cm B.5cm C.6cm D.7cm,9.如图,为测量池塘边上两点A,B之间的距离,小敏在池塘的一侧选取一点O,测得OA OBDE=,那么A,B两点间的距离是()的中点分别是点D,E,且15mA.20m B.24m C.30m D.28m10.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为x m,则下面所列方程正确的是().A.(32﹣2x)(20﹣x)=570B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x2=570二、填空题11=.12在实数范围内有意义,则实数x能合并,则m的值为.1314.一元二次方程方程2310x x--=的根的判别式的值为.15.已知1x,2x是方程22510x x--=的两个根,则1+2的值是.16.地图上两地间的距离(图上距离)为3厘米,比例尺是1:1000000,那么两地间的实际距离是米.17.如图在ABC V 中,G 是三角形的重心,AG GC ⊥,8AC =,则BG 的长为.18.如图,AD BE CF ∥∥,若2AB =,5AC =,4DE =,则EF 的长是.19.如图,四边形DBCE 中,DE BC ∥,若19EOD BOC S S = ::,则OB OE =:.20.按下列方法,将ABC V 的三边缩小为原来的12,如图所示,任取一点O ,连接AO ,BO ,CO ,并取它们的中点D ,E ,F ,连接D ,EF ,FD 得到DEF ,则下列说法正确的序号有.①ABC V 与DEF 是位似图形;②ABC V 与DEF 是相似图形;③ABC V 与DEF 的周长之比为2:1;④ABC V 与DEF 的面积之比为2:1.三、解答题21.计算:(1)(2)+22.解方程(1)()2116x +=(2)2610x x -+=23.一种药品原价每盒48元,经过两次降价后每盒27元,且两次降价的百分率相同,求每次降价的百分率.24.求证:对于任意实数m ,关于x 的方程22220x mx m -+-=总有两个不相等的实数根.25.如图,在平行四边形ABCD 中,E 为边BC 上一点,连接DE ,F 为线段DE 上一点,且AFE B ∠=∠.求证:ADF DEC ∽△△.26.如图,在平面直角坐标系中,AOB V 的顶点坐标分别为()2,1A 、0,0、()1,2B -.(1)画出将AOB V 向左平移3个单位,再向上平移1个单位后的111A O B ;(2)以原点O 为位似中心,位似比为1:2,在y 轴的左侧,画出将111A O B 放大后的222A O B △;(3)判断AOB V 与222A O B △,能否是关于某一点Q 为位似中心的位似图形,若是,请直接写出点Q 的坐标.27.阅读材料:黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,其意指两个人合在一起,取长补短,威力无比.在二次根式中也有这样相辅相成的例子.如:221⋅=-=;223⋅=-=,它们的积是有理数,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:227⋅==+=,像这样,通过分子、分母同乘以一个式子把分母中的根号化去或根号中的分母化去,叫作分母有理化.解决问题:(1)3的有理化因式是____________;(2)“<”“>”或“=”填空);(3)⋅⋅⋅+.28.【感知】如图①,在正方形ABCD 中,E 为AB 边上一点,连结DE ,过点E 作EF DE ⊥交BC 于点F .易证:AED BFE △∽△.(不需要证明)【探究】如图②,在矩形ABCD 中,E 为AB 边上一点,连结DE ,过点E 作EF DE ⊥交BC 于点F .(1)求证:AED BFE ∽ ;(2)若10AB =,6AD =,E 为AB 的中点,求BF 的长.【应用】如图③,在ABC V 中,90ACB ∠=︒,AC BC =,4AB =.E 为AB 边上一点(点E 不与点A 、B 重合),连结CE ,过点E 作45CEF ∠=︒交BC 于点F .当CEF △为等腰三角形时,BE 的长为__________.。

广东省韶关市翁源县2024-2025学年九年级上学期11月期中考试数学试题(含答案)

广东省韶关市翁源县2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024-2025学年度第一学期期中考试九年级数学注意事项:1.全卷共6页,满分为120分,考试用时为120分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号,用2B 铅笔把对应的号码的标号涂黑.3.在答题卡上完成作答,答案写在试卷上无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.关于的一元二次方程的二次项系数、一次项系数、常数项分别是( )A .1,2,5B .C .D .3.已知和关于原点对称,则的值为( )A .B .1C .D .54.二次函数的图象顶点坐标是( )A .B .C .D .5.将抛物线先向下平移1个单位长度,再向右平移3个单位长度,所得到的抛物线为( )A .B .C .D .6.如图,已知点,将线段绕点按顺时针方向旋转,旋转后点的对应点坐标为( )A .B .C .D .7.如图,已知一菜园为长10米,宽7米的矩形,为了方便浇水和施肥,修建了同样宽的四条互相垂直的“井”x 2250x x -+-=1,2,5--1,2,5-1,2,5-(),2A a ()3,B b a b +5-1-23(1)2y x =-+-()1,2-()1,2-()1,2()1,2--22y x =+2(3)1y x =++2(3)3y x =-+2(3)3y x =++2(3)1y x =-+()1,2P PO O 90︒P ()1,2-()2,1-()2,1-()2,1字形道路,余下的部分种青菜,已知种植青菜的面积为54平方米,设小路的宽为米,则根据题意列出的方程是( )A .B .C .D .8.关于的一元二次方程的一个根是1,则的值为( )A .1或B .C .1D .9.设是抛物线上的三点,则的大小关系为( )A .B .C .D .10.如图,在正方形中,点的坐标分别是,点在抛物线的图象上,则的值是( )A .B.C .D .二、填空题:本大题共5小题,每小题3分,共15分.11.若方程是关于的一元二次方程,则的取值范围是_______.12.若二次函数与轴只有1个交点,则_______.13.数学课堂上,为探究旋转的性质,同学们进行了如下操作:如图所示,将一个三角形硬纸板,放置在一张白纸上,描出硬纸板的形状,并用图钉固定点,将三角形硬纸板绕点顺时针旋转一定角度后,再描出形状得到,经测量,则_______.x ()()1027254x x --=()()10754x x --=()()107254x x --=()()1027254x x +-=x ()22120a x x a -++-=a 2-2-1-()()()1233,,2,,2,A y B y C y --22y x x c =--+123,,y y y 321y y y >>123y y y >>132y y y >>213y y y >>ABCD A C 、()()1,17,3-、D 21y x bx =+-b 32-3212-12()2230a x x -+-=x a 22y x x m =-+x m =ABC △A A ADE △50,15BAC CAD ∠=︒∠=︒CAE ∠=14.设是方程的两个实数根,则的值为_______.15.如图,在中,,将绕点逆时针旋转得到,当点的对应点恰好落在边上时,则的长为_______三、解答题(一):本大题共3小题,每小题7分,共21分.16.(7分)解方程:17.(7分)如图,在平面直角坐标系中,点的坐标分别为.(1)画出关于点的中心对称图形;(2)将绕点顺时针方向旋转后得,画出.18.(7分)如图,是二次函数的图象.12,x x 23210x x --=1212x x x x --ABC △3,1AB AC ==ABC △C 90︒CDE △A D AB AE ()330x x x --+=A B C 、、()()()1,1,2,3,4,2ABC △O 111A B C △111A B C △O 90︒222A B C △222A B C △2y ax bx c =++(1)求二次函数解析式;(2)根据图象直接写出关于的不等式的解集.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)如图,四边形为矩形,,将对角线绕点逆时针旋转得,作交于点.(1)证明:;(2)连接,求的长.20.(9分)乐昌马蹄是广东韶关的特产,韶关乐昌有着“马蹄之乡”的美称.乐昌马蹄以个头大、清甜多汁、爽脆无渣为特点而闻名全国,畅销国内外.某农产品商以每斤5元的价格收购乐昌马蹄,若按每斤10元出售,平均每天可售出100斤.市场调查反映:如果每斤降价1元,每天销售量相应增加50斤.(1)若该农产品商想要日销售利润达到600元,测每斤马蹄应降低多少元?(2)日销售利润能否达到700元?如果能,请计算出每斤马蹄降价多少元;如果不能,请说明理由.21.(9分)为解方程,我们可以将视为一个整体,然后设,则原方程化为,解此方程得.当时,.当时,原方程的解为.以上方法叫做换元法解方程,达到了降次的目的,体现了转化思想.根据以上阅读材料内容,解决下列问题,并写出解答过程.(1)请用上述方法解方程:.x 20ax bx c ++>ABCD 3,4AB BC ==AC A 90︒AF FE AD ⊥AD E ABC AEF △≌△DF DF ()()22237360x x ---+=23x -23x t -=2760t t -+=121,6t t ==1t =231,2x x -=∴=±6t =236, 3.x x -=∴=±∴12342,2,3,3x x x x ==-==-42540x x -+=(2)已知实数满足,求的值.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22.(13分)如图,直线与抛物线相交于和.(1)求抛物线的解析式;(2)点是线段上的动点,过点作轴,交抛物线于点.是否存在这样的点,使线段的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)轴上是否存在点,使得为等腰三角形?若存在,求出点的坐标;若不存在,请说明理由.23.(14分)【阅读理解】半角模型是指有公共顶点,锐角等于较大角的一半,且组成这个较大角的两边相等.通过旋转或截长补短,将角的倍分关系转化为角的相等关系,并进一步构成全等三角形,用以解决线段关系、角度、面积等问题,【初步探究】如图1,在正方形中,点分别在边上,连接.若,将绕点顺时针旋转,点与点重合,得到.易证:.(1)根据以上信息,填空:(1)_______°;(2)线段之间满足的数量关系为_______;【迁移探究】(2)如图2,在正方形中,若点在射线上,点在射线上,,猜想线段之间的数量关系,请证明你的结论;【拓展探索】(3)如图3,已知正方形的边长为,连接分别交于点,若点恰好为线段的三等分点,且,求线段的长.,x y ()()2222222222150x y x y +-+-=22x y +2y x =-()220y ax bx a =++≠()1,1A -(),2B m C AB C CD x ⊥D C CD x M ABM △M ABCD ,E F ,BC CD ,,AE AF EF 45EAF ∠=︒ADF △A 90︒D B ABG △AEF AEG △≌△EAG ∠=BE EF DF 、、ABCD E CB F DC 45EAF ∠=︒BE EF DF 、、ABCD 45EAF ∠=︒BD AE AF 、M N 、M BD BM DM <MN2024-2025学年度第一学期期中考试九年级数学参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.1-5CBADD 6-10CABDB二、填空题:本大题共5小题,每小题3分,共15分.11. 12.1 13. 14. 15三、解答题(一):本大题共3小题,每小题7分,共21分.解答要求写出文字说明、证明过程或演算步骤.16.解:.解得:.(方法不唯一,酌情给分)17.解:(1)如图所示:即为所求.(2)如图所示:即为所求.18.解:(1)设二次函数解析式为:2a ≠35︒1-()()330x x x -+-=()()130x x +-=121,3x x =-=111A B C △111A B C △()()()240y a x x a =+-≠把点代入得:解得:(2).四、解答题(二):本大题共3小题,每小题9分,共27分.解答要求写出文字说明、证明过程或演算步骤.19.(1)证明:四边形为矩形绕点逆时针旋转得,,,在和中.(2)解:四边形为矩形,,,在中,根据勾股定理得:20.解:(1)设每斤马蹄降价元根据题意得解得答:若该农商想要日销售利润达到600元,则每斤马蹄应降低1元或2元.(2)日销售利润不能达到700元.理由如下:设每斤马蹄降价元则化简得方程无实数根日销售利润不能达到700元.()0,484a -=12a =-24x -<< ABCD 90B BAD ∴∠=∠=︒90BAD CAD ∴∠+∠=︒AC A 90︒AF,90BC EF CAF ∴=∠=︒90EAF CAD ∴∠+∠=︒BAD EAF∴∠=∠FE AD ⊥ 90AEF ∴∠=︒B AEF∴∠=∠ABC △AEF △BAD EAF B AEFAC AF ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABC AEF ∴△≌△ ABCD 4AD BC ∴==ABC AEF △≌△3,4AB AE BC EF ∴====431DE AD AE ∴=-=-=FE AD ⊥ 90DEF ∴∠=︒Rt DEF △DF ===x ()()10510050600x x --+=111,2x x ==a ()()10510050700a a --+=2340a a -+=2(3)4470=--⨯=-<△∴∴21.解:(1)设则原方程化为:解得:当时当时原方程的解为:(2)设则原方程化为:解得:,,.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.解答要求写出文字说明、证明过程或演算步骤.22.解:(1)把代入直线得,,在抛物线上,,解得,抛物线的解析式为.(2)存在.理由如下:设动点的坐标为,则点的坐标为,点是线段上的动点,当时,线段有最大值且为.(3)存在.设点①当时,2y x=2540y y -+=121,4y y ==1y =2,1,1x x =∴=±4y =2,4,2x x =∴=±∴12341,1,2,2x x x x ==-==-2222w x y=+22150w w --=125,3w w ==-22220x y +≥ 22225x y ∴+=2252x y ∴+= (),2B m 2y x =-4m =()4,2B ∴()()1,14,6A B - 、22y ax bx =++2116422a b a b ++=-⎧∴⎨++=⎩14a b =⎧⎨=-⎩∴242y x x =-+C (),2n n -D ()2,42n n n -+()()2242PC n n n ∴=---+254n n =-+-25924n ⎛⎫=--+ ⎪⎝⎭ C AB 14n ∴≤≤∴52n =PC 94(),0M c AB AM =解得:或.②当时,解得:或.③当时,解得:,综上所述,为等腰三角形时,点的坐标为或或或或23.(1)①45 ②.(2)解:.证明如下:如图在上截取,连接,和中,,,,即,,,在和中,,2222(14)(12)(1)(10)c -+--=-+--121,1c c =+=+)1,0M ∴+()1,0M +AB BM =2222(14)(12)(4)(20)c -+--=-+-124,4c c =+=)4,0 M ∴+()4,0M +AM BM =2222(1)(10)(4)(20)c c -+--=-+-3c =()3,0M ∴∴ABM △M )1,0+()1,0+)4,0+()4,0+()3,0BE DF EF +=BE EF DF +=DC DH BE =AH ABE △ADH △,AB AD ABE D BE DH =⎧⎪∠=∠⎨⎪=⎩()SAS ABE ADH ∴△≌△,AE AH BAE DAH ∴=∠=∠90BAE BAH BAH DAH ∴∠+∠=∠+∠=︒90EAH BAD ∠=∠=︒45EAF ∠=︒ 45EAF FAH ∴∠=∠=︒EAF △HAF △AE AH EAF HAF AF AF =⎧⎪∠=∠⎨⎪=⎩,,,,(3)将绕点顺时针旋转得到,连接,由旋转可得,,又,,,设,则,在中,,,解得,;()SAS EAF HAF ∴△≌△EF HF ∴=DF DH HF =+ DF BE EF ∴=+ADN △A 90︒ABK △KM 90AB AD ADC ==∠=︒6BD ∴==12,43BM BD DM BD BM ∴===-=,90ADN ABK KAN ∠=︒△≌△,,45AK AN BK DN ABK ADB ∴==∠=∠=︒90KBM ABK ABD ∴∠=∠+∠=︒90,45KAN MAN ∠=︒∠=︒45KAM MAN ∴∠=∠=︒AM AM = AMK AMN ∴△≌△KM MN ∴=∴MK MN x ==4BK DN x ==-Rt BMK △222BK BM MK +=222(4)2x x ∴-+=2.5x = 2.5MN ∴=。

上海市普陀区2024-2025学年九年级上学期数学期中考试试卷(含答案)

上海市普陀区2024-2025学年九年级上学期数学期中考试试卷(含答案)

2024学年第一学期九年级数学学科期中考试试卷2024.10(时间:100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列函数中,一定为二次函数的是()A. B. C. D.2.已知点P是线段AB的黄金分割点,且,那么下列结论正确的是()A. B.C.D.3.如图,在中,点D、E和F分别在边AB、AC和BC上,,,如果,那么下列结论中正确的是()A. B. C. D.4.下列关于向量的说法中,正确的是()A.如果,那么B.如果,,那么C.已知是单位向量,如果,那么D.如果,,其中是非零向量,那么5.在同一平面直角坐标系中,画出直线与抛物线,这个图形可能是()A. B.21yx=()()11y x x=+-2y ax=()21y x x x=-+BP AP>2BP AP AB=⋅2AP BP AB=⋅APAB=BPAP=ABC△DE BC∥DF AC∥34ADBD=34DEBC=34BFCF=37CFBC=37DFAC=k=0ka=2a=1b=2a b=e4a=4ea=23a b c+=2b c=ca b∥y ax b=+2y ax b=+C. D.6.已知在中,点D 、E 分别在边AB 和AC 上,联结CD 、BE 交于点F ,下列条件中,不一定能得到和相似的是( )A. B. C. D.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.已知,且,那么_______.8.抛物线与y 轴的交点坐标为_______.9.已知二次函数的图像经过点、,那么该二次函数图像的对称轴为直线_______.10.已知二次函数的图像在对称轴的左侧部分是上升的,那么m 的取值范围是_______.11.如图,已知在中,,CD 是边AB 上的高,如果,,那么_______.12.如图,在中,,点D 和点E 在边BC 上,,,那么_______.13.如图,已知,且,那么_______.ABC △ADE △ABC △DF EF BF CF =DF EF CF BF=BDE BFC ∠=∠BDF CEFS S =△△234a b c k ===0k ≠c a c b-=+223y x x =+-()20y x bx c a =++≠()1,1A --()5,1B -()21y m x =+ABC △90ACB ∠=︒3AD =2BD =CD =ABC △3AB AC ==4BE =BAE ADC ∠=∠CD =AD EF BC ∥∥::2:5:7AD EF BC =:AE AB =14.如图,在中,点D 在边BC 上,线段AD 经过重心G ,向量,向量,那么向量______.(用向量、表示)15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔10米种一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸有两根相邻的电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有一棵树,那么这段河的宽度为_______米.16.如图,在中,点D 在边AB 上,,点E 和F 分别在边BA 和CA 的延长线上,且,如果,那么_______.17.定义:如果将抛物线上的点的横坐标不变,纵坐标变为点A 的横、纵坐ABC △BA a = BC b = AG =a b ABC △ACD B ∠=∠CD EF ∥::3:4:2EA AD DB =AEF ABCS S =△△()20y ax bx c a =++≠(),A x y标之和,就会得到一个新的点,我们把这个点叫做点A 的“简朴点”,已知抛物线上一点B 的简朴点是,那么该抛物线上点的简朴点的坐标为_______.18.如图,在矩形ABCD 中,,在边CD 上取一点E ,将沿直线BE 翻折,使点C 恰好落在边AD 上的F 处,的平分线与边AD 交于点M ,如果,那么_______.三、解答题(本大题共7题,满分78分)19.(本题满分10分)如图,已知两个不平行的向量、,求作,满足.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的向量.)20.(本题满分10分,第(1)小题5分,第(2)小题5分)已知点在二次函数的图像上.(1)求二次函数图像的对称轴和顶点坐标;(2)将二次函数的图像先向左平移4个单位,再向上平移t 个单位后图像经过点,求的值.21.(本题满分10分,第(1)小题5分,第(2)小题5分)已知二次函数的图像经过原点,顶点坐标为.(1)求二次函数的解析式;(2)如果二次函数的图像与x 轴交于点A (不与原点重合),联结OP 、AP ,试判断的形状并说明理由.22.(本题满分10分,第1小题5分,第2小题5分)如图,已知在中,点D 在边AC 上,过点A 作,交BD 的延长线于点E ,点F 是BE 延长线上一点,联结CF ,如果.(1)求证:;(2)如果,,求的值.()1,A x x y +1A 241y ax x =-+()12,3B ()1,C m 1C 1AB =BCE △ABF ∠2AD MF =BC =a bx x ()2a x b x -=- ()3,1-2y x bx b =-++()1,5-t ()2,2P -AOP △ABC △AE BC ∥2BD DE DF =⋅AB CF ∥2DE =6EF =AB CF23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在中,CD 是AB 边上的高,点E 是边AC 的中点,联结ED 并延长交CB 的延长线于点F ,且.(1)求证:;(2)如果,求证:.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xOy 中,二次函数的图像与x 轴交于点,与y 轴交于点.(1)求该二次函数的解析式;(2)如果点是二次函数图像对称轴上的一点,联结AD 、BD ,求的面积;(3)如果点P 是该二次函数图像上位于第二象限内的一点,且,求点P 的横坐标.ABC △BD BF =ADE FDB ∽△△2DF AC CF AD=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B (),1D m -ABD △PB AB ⊥25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在矩形ABCD 中,,,点E 是射线D A 上的一点,点F 是边AB 延长线上的一点,且.联结CE 、EF ,分别交射线DB 于点O 、点P ,联结CF 、CP .(1)当点E 在边AD 上时,①求证:;②设,,求y 关于x 的函数解析式;(2)过点E 作射线DB 的垂线,垂足为点Q ,当时,请直接写出DE 的长.2AB =1BC =2DE BF =DCE BCF ∽△△DE x =CP y =14OQ PQ =2024学年第一学期九年级数学学科期中考试卷2024.10参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.A ;3.C ;4.D ;5.D ;6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.;8.;9.;10.;;12.;13.;14.;15.;16.;17.;18.三、解答题:(本大题共7题,其中第19—22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解: ,20.解:(1)∵点在二次函数的图像上,∴把,代入,得.解得.∴二次函数的解析式为.∴对称轴为直线.顶点的坐标为.(2)二次函数的解析式化为.∵将二次函数的图像先向左平移4个单位,再向上平移t 个单位,∴平移后新二次函数的解析式为.∵平移后图像经过点,∴把,代入,得.解得.21.解:(1)∵二次函数图像的顶点坐标为,∴设二次函数的解析式为.∵二次函数的图像经过原点,∴把,代入得..27()0,3-2x =1m <-94352133a b -+ 45238()1,05322a x b x -=- 2x a b =- ()3,1-2y x bx b =-++3x =1y =-2y x bx b =-++193b b -=-++2b =222y x x =-++1x =()1,3()213y x =--+()233y x t =-+++()1,5-1x =5y =-()233y x t =-+++5163t -=-++8t =()2,2P -()222y a x =--0x =0y =()222y a x =--()20022a =--解得.∴这个二次函数的解析式为.(2)∵二次函数的图像与x 轴交于点A ,∴把,代入得,(舍去).得点A 的坐标为.∴.∵,∴.∵,∴是等腰直角三角形.22.解:(1)∵,∴.∵,∴.∴∴.(2)∵,,∴.∵,∴.∵,∴,∴.23.证明:(1)∵,∴.∵CD 是AB 边上的高,点E 是边AC 的中点,∴在中.又∵,∴.∴.∵,∴.∴.(2)∵,∴.∴.∵,∴∴∴.∵,∴.∴.∴.24.解:(1)∵二次函数的图像与x 轴交于点,与y 轴交于点,12a =()21222y x =--0y =()21222y x =--14x =20x =()4,04OA =OP ==AP ==OP AP =222OP AP OA +=AOP △AE BC ∥AD DE CD BD=2BD DE DF =⋅DE BD BD DF=AD BD CD DF=AB CF ∥2DE =6EF =8DF DE EF =+=216BD DE DF =⋅=4BD =AB CF ∥AB BD CF DF =12AB CF =BD BF =F BD ∠=∠Rt ACD △12DE AC =12AE AC =AE DE =A ADE ∠=∠ADE BDF ∠=∠A F ∠=∠ADE FDB ∽△△2DF AC CF AD =DF AE CF AD =DF CF AE AD=A F ∠=∠ADE FCD ∽△△ADE FCD ∠=∠A FCD ∠=∠ABC CBD ∠=∠ABC CBD ∽△△BD BC BC AB=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B得解得.∴二次函数的解析式为.(2)∵点是二次函数图像对称轴上的一点,又∵二次函数图像的对称轴为直线.∴,点D 坐标为.设直线AB 的表达式为.∵直线AB 经过,,得,解得,∴直线AB 的表达式为.设抛物线的对称轴与直线AB 交于点E ,得点E 坐标为.∴.∴.(3)过点P 作轴,垂足为H .设点.∴,.∵,又∵,∴.∵,∴.∴.∴.∴(舍去),.即点P 的横坐标是.25.解:(1)∵四边形ABCD 是矩形,∴,,∵,∴.()202224b c c⎧=-⨯--+⎪⎨=⎪⎩2b =-2224y x x =--+(),1D m -12x =-12m =-1,12⎛⎫-- ⎪⎝⎭()0y px q p =+≠()2,0A -()0,4B 024p q q =-+⎧⎨=⎩24p q =⎧⎨=⎩24y x =+1,32⎛⎫- ⎪⎝⎭4DE =1142422ABD ADE BDE S S S DE AO =+=⋅=⨯⨯=△△△PH y ⊥()2,224P t t t --+PH t =-222BH t t =--ABO ABP P PHB ∠+∠=∠+∠90ABP PHB ∠=∠=︒ABO BPH ∠=∠90AOP PHB ∠=∠=︒ABO BPH ∽△△PH BH BO AO =22242t t t ---=10t =234t =-34-2AB CD ==90CDE ABC ∠=∠=︒90CBF ∠=︒CDE CBF ∠=∠∵,∴.∵,∴.∴.∴.(2)∵,∴.即.∵,∴.∴.∴.∵,∴.∴.又∵且,∴.∴.∵,∴.∴.∴.∵在中,,,∴.同理可得∴∴(3)1BC =12BC CD =2DE BF =12BF DE =BF BC DE CD=DCE BCF ∽△△DCE BCF ∠=∠DCE BCE BCF BCE ∠+∠=∠+∠BCD ECF ∠=∠,CD CE CB CF =CD CB CE CF=DCB ECF ∽△△PEC BDC ∠=∠EOP DOC ∠=∠EOP DOC ∽△△OE OP OD OC=OE OD OP OC=DOE COP ∠=∠DOE COP ∽△△EDO PCO ∠=∠EDO DBC ∠=∠PCE DBC ∠=∠ECP DBC ∽△△PC EC BC BD=Rt CDE △DE x =2CD =CE =BD =1y =y =1DE =2DE =3DE =。

湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)

湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024~2025学年度上学期学情监测九年级数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔。

一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是( )A.B. C. D.2.一元二次方程根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.两根互为相反数3.如图,紫荆花绕它的旋转中心,按下列角度旋转,能与其自身重合的是( )A. 60°B. 120°C. 144°D. 180°4.如图,是的直径,,则的度数是( )A. 30°B. 40°C. 50°D. 60°5.若是方程的一个根,则的值为( )A. 2024B. C. D. 10156.用配方法解方程时,配方正确的是()2210x x --=AB O e 30CDB ∠=︒ABC ∠x m =2210090x x --=2246m m -+2012-1003-2840x x --=A. B. C. D.7.函数和函数(a 是常数,且)在同一平面直角坐标系中的图象可能是( )A.B. C. D.8.小聪以二次函数的图象为模型设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )A. B. C. D.9.如图,小程爸爸用一段长的铁丝网围成一个一边靠墙(墙长)的矩形鸭舍,其面积为,在鸭舍侧面中间位置留一个宽的门(由其它材料制成),则的长为( )A. 8m 或5mB. 4m 或2.5mC. 8mD. 5m 10.如图,开口向上的抛物线()与x 轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③当时,y 随x 的增大而减小;④当时,关于x 的一元二次方程有两个不相等的实数根.其中正确的结论是( )A.①③④ B.②③④ C.②③ D.①②④二、填空题(共5题,每题3分,共15分)11.在平面直角坐标系中,点关于原点对称的点的坐标是______.12.抛物线向左平移2个单位长度,向下平移1个单位长度后的图象解析式为______.13.如图,是的直径,弦于点E ,,,则的长为______cm.()2412x -=()2420x -=()2868x -=()2860x -=y ax a =+221y ax x =--+0a ≠()292616y x =-+8cm AB =4cm DE =CE 13cm 12cm 15cm 9cm12m 6m 220m 1m BC 2y ax bx c =++0a ≠()4,01x =a c b +>20a b +=0x <m a b c >++2ax bx c m ++=()2,3-()2234y x =-+AB O e CD AB ⊥16cm CD =4cm BE =OC14.已知关于x 的方程,若等腰三角形的一边长,另外两边长b ,c 恰好是这个方程的两个根,则这个三角形的周长为______.15.如图,的半径为2,圆心M 的坐标为,点P 是上的任意一点,,且,与x 轴分别交于A ,B 两点,若点A ,点B 关于原点O 对称,则的最小值为______.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知二次函数.(1)写出该函数图象的开口方向;(2)求出该函数图象的对称轴和顶点坐标;(3)当x 满足什么条件时,y 随x 增大而减小?18.(6分)如图,在平面直角坐标系中,已知点,,.(1)画出关于原点O 成中心对称的;(2)画出绕点逆时针旋转90°后得到的.19.(8分)已知关于x 的一元二次方程有两个不相等的实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为,,且,求m 的值.20.(8分)如图,已知抛物线和直线相交于点和.()23230x k x k -+++=4a =M e ()3,4M e PA PB ⊥PA PB AB 2240x x --=23100x x --=247y x x =-+-()2,0A ()1,1B ()4,2C ABC △111A B C △ABC △()0,1Q -222A B C △()222110x m x m -++-=1x 2x 22124x x +=21y x bx c =-++21522y x =+()1,A m -(),4B n(1)求m 和n 的值;(2)求抛物线的解析式;(3)结合图象直接写出满足的x 的取值范围.21.(8分)如图,为的直径,点C ,D 为直径同侧圆上的点,且点D 为的中点,过点D 作于点E ,交于点G ,延长,交于点F .图① 图②(1)如图①,若,求证:;(2)如图②,若,,求的半径.22.(10分)我市某镇是全国著名的蓝莓产地,某蓝莓基地近几年不断改良种植技术,产量明显增加,2022年的产量是5000千克,2024年的产量达到7200千克。

甘肃省张掖市甘州区2024-2025学年上学期九年级数学期中考试卷

甘肃省张掖市甘州区2024-2025学年上学期九年级数学期中考试卷

甘肃省张掖市甘州区2024-2025学年上学期九年级数学期中考试卷一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A .平行四边形B .矩形C .正三角形D .等腰梯形2.下列方程中是一元二次方程的是()A .2530x x +-=B .2310x x+-=C .2250x xy y +-=D .410x -=3.下列说法中,不正确的是()A .两组对边分别平行的四边形是平行四边形B .对角线互相平分且垂直的四边形是菱形C .一组对边平行另外一组对边相等的四边形是平行四边形D .有一组邻边相等的矩形是正方形4.已知三角形的两边长分别是3和4,第三边是方程x 2﹣12x +35=0的一个根,则此三角形的周长是()A .12B .14C .15D .12或145.掷一个骰子时,点数小于2的概率是()A .16B .13C .12D .06.若25x y =(0x ≠),则下列各式成立的是()A .25x y =B .25x y=C .23x x y =-D .72x y y +=7.下列四组线段中,能构成比例线段的一组是()A .1cm ,3cm ,3cm ,6cmB .2cm ,3cm ,4cm ,6cmC .1cm ,2cm ,3cm D .1cm ,1.5cm ,3cm ,4cm8.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是()A .x 2+130x ﹣1400=0B .x 2+65x ﹣350=0C .x 2﹣130x ﹣1400=0D .x 2﹣65x ﹣350=09.如图,1l ∥2l ∥3l ,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F .已知32AB BC =,则DEDF的值为()A .32B .23C .25D .3510.如图,菱形ABCD 中,AB =2,∠BAD =60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE +PB 的最小值是().A .1B .2C D二、填空题11.一元二次方程3221x x -=的一次项系数、常数项分别、.12.关于x 的方程()2735mm x x ---=是一元二次方程,则m 的值为.13.已知0234a b c==≠,则a b c -的值为.14.已知点C 是线段AB 的黄金分割点,且AC BC >,若2AB =,则AC =.15.已知1x ,2x 是方程2630x x ++=的两实数根,则1211x x +的值为.16.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x 人,则根据题意可列方程为.17.如图,DE BC ∥,DF AC ∥,4cm AD =,12cm AB =,5cm DE =,则线段BF 长为cm.18.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,点E 在OC 上一点(不与点O 、C 重合),AF ⊥BE 于点F ,AF 交BD 于点G ,则下述结论:①△ABG ≌△BCE 、②AG =BE 、③∠DAG =∠BGF 、④AE =DG 中,一定成立的有.三、解答题19.解下列方程.(1)22530x x +-=;(2)()()3242x x x -=-.20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC 的顶点均在格点上,建立平面直角坐标系后,点A 的坐标为(-4,1),点B 的坐标为(-2,1).(1)画出△ABC绕C点顺时针旋转90°后得到的△A1B1C1并写出A1点的坐标;(2)以原点O为位似中心,位似比为2,在第二象限内作△ABC的位似图形△A2B2C2,并写出C2的坐标.21.如图,在△ABC中,点D,E分别是AB,AC边上的两点,且AB=8,AC=6,AD=3,AE=4,DE=6,求BC的长.22.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.23.2020年某县投入100万元用于农村“扶贫工程”,计划以后每年以相同的增长率投入,2022年该县计划投入“扶贫工程”144万元.(1)求该县投入“扶贫工程”的年平均增长率;(2)若2023年保持从2020年到2022年的年平均增长率不变,求2023年该县将投入“扶贫工程”多少万元.24.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.25.如图,矩形ABCD 中,8AB =,4BC =,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形.(2)当四边形BEDF 是菱形时,求EF 的长.26.如图,在ABC 中,10cm,16cm AB BC ==,点P 从点A 开始,沿A 边向点B 以2cm/s 的速度移动;点Q 从点B 开始,沿BC 边向点C 以3cm/s 的速度移动,如果P 、Q 同时出发,经过几秒钟,BPQ 与ABC 相似?27.如图,强强同学为了测量学校一座高楼OE 的高度,在操场上点A 处放一面平面镜,从点A 处后退1m 到达点B 处,恰好在平面镜中看到高楼的顶部点E 的像.再将平面镜向后移动4m (即4m AC =)放在点C 处,从点C 处后退1.5m 到达点D 处,恰好再次在平面镜中看到高楼的顶部点E 的像,测得强强同学的眼睛距地面的高度FB ,GD 为1.5m.已知点O ,A ,B ,C ,D 在同一水平线上,且GD ,FB ,EO 均与OD 垂直.求高楼OE 的高度(平面镜的厚度忽略不计)28.如图,在ABC 中,A 是BC 边上的高,120cm,80cm BC AD ==.(1)当四边形EFMN 为正方形时,求正方形的边长?(2)当四边形EFMN 为长方形,并且长是宽的2倍时,求长方形的长与宽.。

九年级上学期数学期中考试试卷及答案解析

九年级上学期数学期中考试试卷及答案解析

九年级上学期数学期中考试试卷及答案解析一、选择题(每题4分,共40分)1. 有下列四个数:-1, 0, 1, √2,其中无理数是()A. -1B. 0C. 1D. √2答案:D解析:无理数是指不能表示为两个整数比的数,√2无法表示为两个整数的比,故选D。

2. 下列各数中,与-3的平方相等的是()A. 3B. -3C. 9D. -9答案:C解析:-3的平方为9,故选C。

3. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 25B. -25C. 1D. -1答案:A解析:将a和b的值代入a² - 2ab + b²,得(2)² -22(-3) + (-3)² = 4 + 12 + 9 = 25,故选A。

4. 下列等式中,正确的是()A. (a²)³ = a⁶B. (a³)² = a⁶C. (a²)³ = a⁹D. (a³)² = a⁹答案:B解析:幂的乘方规则,(a³)² = a³² = a⁶,故选B。

5. 已知|a| = 5,且a < 0,则a的值为()A. 5B. -5C. 10D. -10答案:B解析:绝对值表示一个数的非负值,|a| = 5表示a的绝对值为5,由于a < 0,所以a = -5,故选B。

6. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = x² + 1答案:B解析:奇函数的定义是f(-x) = -f(x),y = x³满足这个条件,故选B。

7. 下列关于x的不等式中,有解的是()A. x² < 0B. x² ≤ 0C. x² > 0D. x² ≥ 0答案:D解析:任何数的平方都是非负数,所以x² ≥ 0对所有的x都有解,故选D。

九年级数学上册期中考试试卷及答案

九年级数学上册期中考试试卷及答案

九年级数学上册期中考试试卷及答案(试卷满分:150分;考试时间:120分钟)一.选择题(共10小题,每小题4分,共40分)1.﹣2023的绝对值是()A.﹣2023B.12023C.﹣12023D.20232.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200用科学记数法表示应为()A.2912×102B.29.12×104C.2.912×105D.2.912×1064.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.55.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a37.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2 B.3 C.7 D.109.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>bC.ab>0D.﹣a>c①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020二.填空题(共6小题,每小题4分,24分共)11.比较大小:﹣7﹣5.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=.15.用符号(a,b)表示a、b两数中较小的一个数,用符号[a,b]表示a、b两数中较大的一个数,计算[﹣2,1]﹣(﹣1,﹣2.5)=.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为.三.解答题(共7小题)17.(12分)(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)(﹣+﹣)×(﹣24)(3)(﹣)÷+(﹣)÷(﹣15)(4)﹣14﹣×[2﹣(﹣3)2]18.(6分)(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.19.(6分)化简.(1)(6m﹣5n)﹣(7m﹣8n)(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)20.(8分)先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.21.(6分)如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是.22.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.23.(12分)校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?24.(10分)书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?25.(12分)探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=+.(2)像这样继续排列下去,你会发现一些有趣的规律,﹣n2=+.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.26.(12分)已知|a+30|+(c﹣20)2=0,在数轴上点A表示的数是a,点C表示的数是c,A,C两点之间的距离AC=|a﹣c|.(1)直接写出a、c的值,a=,c=;(2)若数轴上有一点D满足CD=3AD,且点D在A,C之间,则D点表示的数为;(3)点M从原点O出发在O,A之间以v1的速度沿数轴负方向运动,点N从点C出发在O,C之间以v2的速度沿数轴负方向运动,运动时间为t,点Q为O,N之间一点,且QN=AN,若M,N运动过程中MQ的值固定不变,求的值.参考答案一.选择题(共10小题)1.﹣2023的绝对值是()A.﹣2023B.C.D.2023【分析】一个数在数轴上对应的点到原点的距离即为这个数的绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,据此即可求得答案.【解答】解:|﹣2023|=2023故选:D.【点评】本题考查绝对值的定义及绝对值的性质,此为基础且重要知识点,必须熟练掌握.2.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.【分析】根据每一个几何体的特征判断即可.【解答】解:A、将所示图形绕直线旋转一周,可以得到圆柱,故A符合题意;B、将所示图形绕直线旋转一周,可以得到球体,故B不符合题意;C、将所示图形绕直线旋转一周,可以得到圆锥,故C不符合题意;D.将所示图形绕直线旋转一周,可以得到圆台,故D不符合题意;故选:A.【点评】本题考查了点、线、面、体,熟练掌握每一个几何体的特征是解题的关键.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200A.2912×102B.29.12×104C.2.912×105D.2.912×106【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:291200=2.912×105.故选:C.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.5【分析】根据绝对值、有理数的乘方、负数解决此题.【解答】解:∵8>0,﹣0.5<0,﹣|﹣2|=﹣2<0,0,(﹣3)2=9>0,﹣12=﹣1<0∴负数有﹣0.5,﹣|﹣2|,﹣12,共3个.故选:B.【点评】本题主要考查绝对值、有理数的乘方、负数,熟练掌握绝对值、有理数的乘方、负数是解决本题的关键.5.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a3【分析】A.根据去括号法则,去掉括号,进行判断即可;B.根据合并同类项法则,进行合并,然后判断;C,D选项均观察各个加数是不是同类项,能否合并,进行判断即可.【解答】解:A.∵﹣(x+6)=﹣x﹣6,∴此选项计算正确,故符合题意;B.∵﹣y2﹣y2=﹣2y2,∴此选项计算错误,故不符合题意;D.∵a和a2不是同类项,不能合并,∴此选项计算错误,故不符合题意;故选:A.【点评】本题主要考查了整式的加减运算,解题关键是熟练掌握去括号法则和合并同类项法则.7.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:A、﹣的系数是﹣,此选项错误;B、单项式x的系数为1,次数为1,此选项错误;C、﹣22xyz2的次数是4,此选项错误;D、xy+x﹣1是二次三项式,此选项正确;故选:D.【点评】此题主要考查了单项式,关键是掌握单项式的系数、次数的定义,以及多项式的次数的计算方法.8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2B.3C.7D.10【分析】由代数式2x2﹣x+3的值是4,可得2x2﹣x=1,再将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5,再整体代入计算即可.【解答】解:∵2x2﹣x+3的值是4,即2x2﹣x+3=4∴2x2﹣x=1∴﹣4x2+2x+5=﹣2(2x2﹣x)+5=﹣2×1+5=﹣2+5=3故选:B.【点评】本题考查代数式求值,将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5是正确解答的关键.9.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>b C.ab>0D.﹣a>c【分析】根据数轴上点的位置,先确定a、b、c对应点的数,再逐个判断得结论.【解答】解:A、由数轴知:﹣4<a<﹣3,故选项A错误;B、由数轴知,a<b,故选项B错误;C、因为a<0,b>0,所以ab<0,故选项C错误;D、因为﹣4<a<﹣3,所以3<﹣a<4,因为2<c<3,所以﹣a>c,故选项D正确.故选:D.【点评】本题考查了数轴及有理数乘法的符号法则.认真分析数轴得到有用信息是解决本题的关键.10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020【分析】通过计算可知从第4次开始,运算结果1,4循环出现,则第2022次“F”运算的结果与第1次运算结果相同,再求解即可.【解答】解:当n=13时第1次运算结果为13×3+1=40第2次运算结果为=5第3次运算结果为5×3+1=16第4次运算结果为=1第5次运算结果为1×3+1=4第6次运算结果为=1第7次运算结果为1×3+1=4……∴从第4次开始,运算结果1,4循环出现∵(2022﹣3)÷2=1009 (1)∴第2022次“F”运算的结果是1故选:A.二.填空题(共6小题)11.比较大小:﹣7 <﹣5.【分析】根据两个负数,绝对值大的其值反而小判断即可.【解答】解:∵|﹣7|=7,|﹣5|=5而7>5∴﹣7<﹣5.故答案为<.【点评】本题考查了有理数大小比较,关键是掌握有理数大小比较法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.【分析】根据正数与负数的意义可直接求解.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故答案为零下3℃.【点评】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是﹣7.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:由图可知:﹣4与﹣3相对∴﹣4+(﹣3)=﹣7故答案为:﹣7.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=﹣1.【分析】根据同类项的定义判断出a,b的值,可得结论.【解答】解:由题意a=3,b=2∴b﹣a=2﹣3=﹣1.故答案为:﹣1.【点评】本题考查整式的加减,解题的关键是理解题意,灵活运用所学知识解决问题.1,﹣2.5)= 3.5.【分析】根据定义,所求式子可化为1﹣(﹣2.5),再求值即可.【解答】解:[﹣2,1]﹣(﹣1,﹣2.5)=1﹣(﹣2.5)=1+2.5=3.5故答案为:3.5.【点评】本题考查有理数的加减法,熟练掌握有理数的加减法运算,会比较有理数的大小,弄清定义是解题的关键.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为2035.【分析】根据题中所给“任意相邻三个数的和为同一个常数”可求出这一列数,进而可解决问题.【解答】解:由题知因为这列数中任意相邻三个数的和为同一个常数所以a1+a2+a3=a2+a3+a4则a1=a4.同理可得a1=a4=a7=…=a100a2=a5=a8=…=a98a3=a6=a9=…=a99所以这列数按2002,﹣2023,22循环出现.又因为100÷3=33余1且2002+(﹣2023)+22=1所以a1+a2+a3+…+a98+a99+a100=1×33+2002=2035.故答案为:2035.【点评】本题考查数字变化的规律,能根据题意得出这列数按2002,﹣2023,22循环出现是解题的关键.三.解答题(共7小题)17.(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(﹣+﹣)×(﹣24);(3)(﹣)÷+(﹣)÷(﹣15);(4)﹣14﹣×[2﹣(﹣3)2].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算除法,再算加法即可;(4)先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:(1)(﹣12)﹣5+(﹣14)﹣(﹣39)=(﹣12)+(﹣5)+(﹣14)+39=8;(2)(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=20+(﹣9)+6=17;(3)(﹣)÷+(﹣)÷(﹣15)=(﹣)×9+(﹣)×(﹣)=﹣24+=﹣23;(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.18.(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.【分析】(1)在数轴上准确找到各数对应的点,即可解答;(2)利用(1)的结论,即可解答.【解答】解:(1)如图:(2)由(1)可得:.【点评】本题考查了有理数的大小比较,数轴,绝对值,准确熟练地在数轴上找到各数对应的点是解题的关键.19.化简.(1)(6m﹣5n)﹣(7m﹣8n);(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y);【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;【解答】解:(1)(6m﹣5n)﹣(7m﹣8n)=6m﹣5n﹣7m+8n=﹣m+3n;(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)=15x2y﹣5xy2+4xy2﹣8x2y=7x2y﹣xy2;20.先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b)=﹣a2b﹣8ab2﹣a2b﹣10ab2+2a2b=﹣18ab2当a=﹣1,b=时原式=﹣18×(﹣1)×()2=2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是48cm3.【分析】(1)根据三视图的定义画图即可.(2)用1个小立方块的体积乘以小方块的个数即可.【解答】解:(1)如图所示.(2)该几何体的体积是23×6=48(cm3).故答案为:48cm3.【点评】本题考查作图﹣三视图,解题的关键是理解三视图的定义,难度不大.22.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.【分析】(1)根据题意可知:所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1),然后计算即可;(2)将x=﹣2代入(1)中的结果计算即可.【解答】解:(1)由题意可得所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1)=﹣x2﹣4x﹣3+2x2﹣2x+1=x2﹣6x﹣2;(2)当x=﹣2时,x2﹣6x﹣2=(﹣2)2﹣6×(﹣2)﹣2=4+12﹣2=14.【点评】本题考查整式的加减、代数式求值,解答本题的关键是明确去括号法则和合并同类项的方法.23.校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是10米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处4次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?【分析】(1)分别求出小明每次运动后的位置,即可得到答案;(2)结合(1),在数轴上标出最后位置即可;(3)由运动过程可求出经过仲裁处的次数;(4)根据每步行1米消耗0.04卡路里列式计算即可.【解答】解:(1)∵+10﹣8=2;2+6=8;8﹣13=﹣5;﹣5+7=2,2﹣12=﹣10;﹣10+2=﹣8;﹣8﹣2=﹣10;∴小明离主席台最远是10米;故答案为:10;(2)如图所示,点A即为所求;(3)从主席台出发,+10经过仲裁处,由+10到﹣8经过仲裁处,﹣8到+6经过仲裁处,+6到﹣13经过仲裁处∴经过仲裁处4次;故答案为:4;(4)(10+8+6+13+7+12+2+2)×0.04=60×0.04=2.4(卡路里)答:小明在拍照过程中步行消耗2.4卡路里.【点评】本题考查有理数混合运算,解题的关键是读懂题意,理解小明的运动过程.24.书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?【分析】(1)由题意列式计算即可;(2)当x=2cm时,求出包书纸长和宽,即可解决问题.【解答】解:(1)小海所用包书纸的周长为:2(18.5×2+1+2x)+2(26+2x)=2(38+2x)+2(26+2x)=(8x+128)cm答:小海所用包书纸的周长为(8x+128)cm;(2)当x=2cm时,包书纸长为:18.5×2+1+2×2=42(cm)包书纸宽为:26+2×2=30(cm)∴包书纸的面积=42×30﹣2×2×4﹣2×1×2=1240(cm2)答:包书纸的面积为1240cm2.【点评】本题考查了矩形的性质以及列代数式,熟练掌握矩形的性质是解题的关键.25.探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=5+4.(2)像这样继续排列下去,你会发现一些有趣的规律,(n+1)2﹣n2=n+1+n.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.【分析】(1)根据所给的等式的形式进行求解即可;(2)根据(1)进行总结,从而可求解;(3)利用(2)中的规律进行求解即可.【解答】解:(1)由题意得:图③空白部分小正方形的个数是52﹣42=5+4故答案为:5,4;(2)(n+1)2﹣n2=n+1+n故答案为:(n+1)2,n+1,n;(3)(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012=(2024+2023+2022+2021+2020+2019+2018+…+2+1)÷1012=[(2024+1)+(2023+2)+(2022+3)+…+(1013+1012)]÷1012=2025×1012÷1012=2025.【点评】本题主要考查数字的变化规律,解答的关键是由所给的等式总结出存在的规律.26.已知|a +30|+(c ﹣20)2=0,在数轴上点A 表示的数是a ,点C 表示的数是c ,A ,C 两点之间的距离AC =|a ﹣c |.(1)直接写出a 、c 的值,a = ﹣30 ,c = 20 ;(2)若数轴上有一点D 满足CD =3AD ,且点D 在A ,C 之间,则D点表示的数为 ﹣ ; (3)点M 从原点O 出发在O ,A 之间以v 1的速度沿数轴负方向运动,点N 从点C 出发在O ,C 之间以v 2的速度沿数轴负方向运动,运动时间为t ,点Q 为O ,N 之间一点,且QN =AN ,若M ,N 运动过程中MQ 的值固定不变,求的值.【分析】(1)根据绝对值和平方的非负性求解即可;(2)根据两点间距离公式求解即可;(3)写出MQ 距离的代数式,根据MQ 距离不变,得出v 1,v 2的比值即可.【解答】解:(1)∵|a +30|≥0,(c ﹣20)2≥0,|a +30|+(c ﹣20)2=0∴|a +30|=0,(c ﹣20)2=0∴a =﹣30,c =20故答案为:﹣30,20.(2)设D 点表示的数为x则有:20﹣x =3{x ﹣(﹣30)}解得:x =﹣故答案为:﹣.(3)OM 的长度为:v 1t ,CN 的长度为v 2t∴AM =﹣v 1t ﹣(﹣30)=﹣v 1t +30,AN =20+20﹣v 2t =50﹣v 2t∵QN =AN∴AQ =AN =(50﹣v 2t )∴MQ =AQ ﹣AM =(50﹣v 2t )﹣(﹣v 1t +30)=+(v 1﹣v 2)t∵MQ 的长度不随t 的变化而变化∴v 1﹣v 2=0 ∴=.【点评】本题主要考查了数轴,确定MQ 长度不变的条件是本题解题的关键.。

河南省新乡市河南师范大学附属中学联考2024-2025学年九年级上学期11月期中数学试题(含答案)

河南省新乡市河南师范大学附属中学联考2024-2025学年九年级上学期11月期中数学试题(含答案)

2024-2025学年第一学期九年级期中考试数学试卷一、选择题(每小题3分,共30分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.已知的半径为,圆心O 到直线l 的距离为,则直线l 与的位置关系是( )A .相离 B .相交C .相切D .无法判断3.一元二次方程经过配方变形为,则k 的值是( )A .B .C .1D .74.如图,A 、B 、C 为圆O 上的三点,,则的度数是( )A .B .C .D .5.关于二次函数,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象的顶点坐标为C .与x 轴交于点和D .当时,y 随着x 的增大而减小6.如图,是由绕点O 顺时针旋转后得到的图形,若点D 恰好落在AB 上,且,则的度数是( )A .B .C .D .7.如果关于x 的一元二次方程有实数根,则a 的取值范围是()O e 5cm 4cm O e 2430x x -+=2(2)x k -=3-7-78AOB ∠=︒ACB ∠35︒36︒37︒39︒2(1)9y x =+-(1,9)-(2,0)-(4,0)1x <-ODC △OAB △40︒105AOC ∠=︒C ∠55︒45︒42︒40︒20x x a +-=A .B .C .D .8.如图,已知的半径为5,弦AB 的长为8,P 是AB 的延长线上一点,,则OP 等于()A . B .C.D .9.已知二次函数(m 为常数),当时,函数值y 的最小值为,则m 的值是( )A .或B .或C .2或D .2或10.如图1,动点P 从菱形ABCD 的点A 出发,沿边匀速运动,运动到点C时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为( )图1图2A .2 B .3 C D .二、填空题(每小题3分,共15分)11.把抛物线先向右平移1个单位再向上平移1个单位,所得到抛物线的解析式为________________.12.某种植物的主干长出若干个分支,每个支干又长出同样个数的小分支,主干、支干、小分支的总数是241,设每个支干长出小分支的个数是x ,则可列方程为________________。

广东省汕头市潮南区峡山街道联考2024-2025学年上学期期中考试九年级数学试题(含答案)

广东省汕头市潮南区峡山街道联考2024-2025学年上学期期中考试九年级数学试题(含答案)

2024~2025学年度第一学期九年级期中考试数学试卷(S )说明:1、本卷满分120分;2、考试时间120分钟;3、答案请写在答题卷上.一、选择题(每小题3分,共30分)1.关于的一元二次方程(为实数)根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定2.已知二次函数,当时,随增大而增大,则实数的取值范围是( )A. B. C. D.3.下列四幅图案是四所大学校徽的主体标识,其中是中心对称图形的是( )A. B.C. D.4.二次函数图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限5.是一元二次方程的一个根,则代数式的值是( )A. B.2017 C. D.20256.某商品原价200元,连续两次降价后售价为148元,下列所列方程正确的是( )A. B.C. D.7.如图,是一个中心对称图形,为对称中心,若,,,则的长为( )B.D.48.若直角三角形的两边长分别是方程的两根,则该直角三角形的面积是( )A.6B.12C.12D.6x 220x kx --=k 2(1)y a x =-0x >y x a 0a >1a >1a ≠1a <2(1)2y x =-++m 220x x ++=2222021m m +-2017-2025-%a 2200(1%)148a +=()22001%148a -=200(12%)148a -=2200(1%)148a -=A 90C ∠=︒60BAC ∠=︒1BC =CC '27120x x -+=9.已知抛物线,则当时,函数的最大值为( )A. B. C.0 D.210.如图,抛物线经过正方形的三个顶点,,,点在轴上,则的值为( )A. B. C. D.二、填空题(每小题3分,共15分)11.已知关于的方程有一个根1,那么__________.12.若二次函数的图象与轴有且只有一个交点,则的值为________.13.如图,在正方形中,,E 为的中点,连接,将绕点按逆时针方向旋转得到,连接,则的长为_________.14.在平面直角坐标系中,将抛物线先绕原点旋转,再向下平移5个单位,所得到的抛物线的顶点坐标是_________.15.观察下列图形规律:当_________时,图形“”的个数是“”的个数的2倍.三、解答题(一)(每小题7分,共21分)16.用配方法解一元二次方程:17.如图,在中,,点、点分别为、的中点,连结,将绕点旋转得到.试判断四边形的形状,并说明理由.221y xx =--03x ≤≤2-1-2y axc =+OABC A B C B y a c 1-2-3-4-x 20ax bx c ++=a b c ++=2(1)42y a x x a =--+x a ABCD 4AB =AB DE DAE △D 90︒DCF △EF EF 221y xx =+-180︒n =∆∙2213x x+=ABC △2AB BC =D E AB AC DE ADE △E 180︒CFE ∆BCFD18.已知开口向上的抛物线经过点.(1)确定此拋物线的解析式;(2)当取何值时,有最小值,并求出这个最小值.四、解答题(二)(每小题9分,共27分)19.如图,在边长均为1个单位长度的小正方形组成的网格中,点,点,点均为格点(每个小正方形的顶点叫做格点).【实践与操作】(1)作点关于点的对称点;(2)连接,将线段绕点顺时针旋转得点对应点,画出旋转后的线段;【应用与计算】(3)连接,求出四边形的面积.20.如图,二次函数(为常数)的图象的对称轴为直线.(1)求的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式。

海南省海口市琼山区海南中学2024-2025学年九年级上学期期中考试数学试题[含答案]

海南省海口市琼山区海南中学2024-2025学年九年级上学期期中考试数学试题[含答案]

海南中学2024-2025学年度第一学期九年级期中考试数学一、选择题(本大题满分36分,每小题3分)(在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑.)1.2024-的倒数是( )A .2024B .2024-C .12024D .12024-2.若代数式1x +的值为3,则x 等于( )A .4B .4-C .2D .2-3.10月8日,海南日报全媒体记者从海南省旅游和文化广电体育厅获悉,2024年国庆假期(10月1日至7日),全省共接待游客413.32万人次,将4133200用科学记数法表示为( )A .541.33210´B .64.133210´C .24133210´D .70.4133210´4.某班的5名同学1分钟跳绳的成绩(单位:次)分别为:179,130,192,158,141.这组数据的中位数是( )A .130B .158C .160D .1925.下列美术字中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.下列计算正确的是( )A .2352a a a +=B .44a a a ¸=C .4312⋅=a a aD .()326a a -=-7.下列数中,能使不等式516x -<成立的x 的值为( )A .1B .2C .3D .48.若m 2=,则估计m 的值所在范围是( )A .1m 2<<B .2m 3<<C .3m 4<<D .4m 5<<<9.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为(0,2).以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90°,得到矩形OA B C ¢¢¢,则点B ¢的坐标为( )A .()4,2--B .()4,2-C .()2,4D .()4,210.如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若146Ð=°,那么2Ð的度数是( )A .46°B .76°C .104°D .114°11.如图,AB 是半圆O 的直径,C 为半圆O 上一点,以点B 为圆心,适当长为半径画弧,交BA 于点M ,交BC 于点N ,分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在ABC Ð的内部相交于点D ,画射线BD ,连接AC .若50CAB Ð=°,则CBD Ð的度数是( )A .30°B .25°C .20°D .15°12.如图,在矩形ABCD 中,2AB =,BC =E 是BC 的中点,将ABE V 沿直线AE 翻折,点B 落在点F 处,连结CF ,则cos ECF Ð的值为( )A .23B C D 二、填空题(本大题满分12分,每小题3分)13.因式分解:22x x -= .14.已知点()12,A y 和点()21,B y -是一次函数21y x =-+图象上的点,则1y2y ;(填“<”或“>”或“=”)15.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB ,CD =1,则BE 的长是 .16.如图,在菱形ABCD 中,60ABC Ð=°,6AB =,AC 是一条对角线,E 是AC 上一点,过点E 作EF AB ^,垂足为F ,连接DE .若CE AF =,则CE 的长为 ,DE 的长为 .三、解答题(本大题满分72分)17.计算:(201tan 602-æö-°+-ç÷èø;(2)先化简,再求值:()()()222x x x x --+-,其中2x =-.18.我国古代数学著作《增删算法统宗》中记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托;折回索子去量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.问竿和绳索的长分别是多少尺?19.为了提高某城区居民的生活质量,政府将改造城区配套设施,并随机向某居民小区发放调查问卷(1人只能投1票),共有休闲设施,儿童设施,娱乐设施,健身设施4种选项,一共调查了a人,其调查结果如下:如图,为根据调查结果绘制的扇形统计图(左上)和条形统计图(右上),请根据统计图回答下面的问题:(1)调查总人数a=______人;(2)扇形统计图中,“娱乐”所占的圆心角是______°(3)若该城区共有10万居民,则其中愿意改造“休闲设施”的约有______人(4)改造完成后,该政府部门向甲、乙两小区下发满意度调查问卷,其结果(分数)如下:项目小区休闲儿童娱乐健身甲7798乙8879若以1:1:1:1进行考核,______小区满意度(分数)更高;若以1:1:2:1进行考核,______小区满意度(分数)更高.20.如图,为了测量某电子厂的高度,小明用高1.8m的测量仪EF测得顶端A的仰角为45°,小军在小明的前面5m处用高1.5m的测量仪CD测得顶端A的仰角为53°.(参考数据,sin534 5°»,cos5335°»,tan5343°»)(1)AEM Ð=______度,ACN Ð=______度,MN =______米;(2)电子厂AB 的高度为多少米?21.如图1,已知抛物线23y ax bx =+-与x 轴交于A (−2,0)、()6,0B 两点,与y 轴交于点C ,N 为抛物线的顶点,P 为抛物线上的一个动点.(1)求抛物线的表达式;(2)求四边形ACNB 的面积;(3)在抛物线上是否存在点P ,使PCB V 是直角三角形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.(4)如图2,点P 在直线BC 下方的抛物线上,连接AP 交BC 于点M ,PM AM 是否有最大值?若有,请求出PM AM的最大值;若没有,请说明理由.22.在矩形ABCD 中,AD nAB =,E ,F 分别在AB ,BC 上.(1)若1n =,AF D E ^.①如图1,求证:AED BFA ≌△△;②如图2,点G 为CB 延长线上一点,DE 的延长线交AG 于H ,若AH AD =,求证:AG AE BG =+;(2)如图3,若E 为AB 的中点,ADE EDF Ð=Ð.求CF BF的值(结果用含n 的式子表示).1.D【分析】本题考查了倒数的定义,解题的关键是熟练掌握定义进行解题.根据乘积为1的两个数互为倒数求解即可.【详解】解:2024-的倒数是12024-.故选:D .2.C【分析】此题考查了解一元一次方程.根据代数式1x +的值为3列方程计算即可.【详解】解:∵代数式1x +的值为3,∴13x +=,解得2x =,故选:C .3.B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中1||10a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将4133200用科学记数法表示为64.133210´.故选:B .4.B【分析】本题考查了中位数,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.据此求解即可.【详解】解:从小到大排序为130,141,158,179,192,最中间的数是158,∴中位数是158,故选:B .5.D【分析】中心对称图形的定义:旋转180°后能够与原图形完全重合即是中心对称图形,轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,根据定义即可判断出答案.【详解】解:选项A 是轴对称图形,不是中心对称图形,故A 不符合题意;选项B 是轴对称图形,不是中心对称图形,故B 不符合题意;选项C 是轴对称图形,不是中心对称图形,故C 不符合题意;选项D是轴对称图形,也是中心对称图形,故D符合题意;故选:D【点睛】本题考查了轴对称图形,中心对称图形,熟记两种图形的特点并准确判断是解题的关键.6.D【分析】本题考查了同底数幂的加法、乘除以及乘方的相关知识.根据同底数幂的加法、乘除法以及乘方的运算法则计算,即可求解.【详解】解:A、23a a,不是同类项,故本选项不符合题意;B、434a a a a¸=¹,故本选项不符合题意;C、43712a a a a⋅=¹,故本选项不符合题意;D、()326a a-=-,故本选项符合题意;故选:D.7.A【分析】本题考查了解不等式,不等式的解,熟练掌握解不等式是解题的关键.解不等式,得到75x<,以此判断即可.【详解】解:∵516x-<,∴75x<.∴符合题意的是A故选A.8.C【分析】先由二次根式性质得56<<,再根据不等式性质得324<-<.【详解】因为,56<<,所以,324<<,即3m4<<故选C【点睛】本题考核知识点:估计无理数的大小. 解题关键点:熟记二次根式和不等式的性质. 9.C【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===°,∠,由旋转的性质可得42OA OA A B AB ¢¢¢====,,90OA B ¢¢Ð=°,据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2,∴42OA OC ==,,∵四边形OABC 是矩形,∴290AB OC ABC ===°,∠,∵将矩形OABC 绕点O 顺时针旋转90°,得到矩形OA B C ¢¢¢,∴42OA OA A B AB ¢¢¢====,,90OA B ¢¢Ð=°,∴A B y ¢¢^轴,∴点B ¢的坐标为()2,4,故选:C .10.C【分析】此题主要考查了平行线的性质.直接利用已知角的度数结合平行线的性质得出答案.【详解】解:∵将一块含有30°的直角三角板的顶点放在直尺的一边上,146Ð=°, ∴180462104330°-°-°=°Ð=Ð=,故选:C .11.C【分析】本题主要考查尺规作图,圆周角定理,熟练掌握角平分线的作图步骤以及圆周角定理是解答本题的关键.由圆周角定理得到90ACB Ð=°,由直角三角形的性质得到40ABC Ð=°,根据角平分线的定义即可求得答案.【详解】解:AB Q 是半圆O 的直径,90ACB \Ð=°,50CAB Ð=°Q ,905040ABC \Ð=°-°=°,由题意得,BD 为ABC Ð的平分线,1202CBD ABD ABC \Ð=Ð=Ð=°.故选:C .12.C【分析】根据折叠的性质得到∠AEB=∠AEF ,再根据点E 是BC 中点可得EF=EC ,可得∠EFC=∠ECF ,从而推出∠ECF=∠AEB ,求出cos AEB Ð即可得到结果.【详解】解:由折叠可得:AB=AF=2,BE=EF ,∠AEB=∠AEF ,∵点E 是BC 中点,BC =,∴,∴∠EFC=∠ECF ,3=,∵∠BEF=∠AEB+∠AEF=∠EFC+∠ECF ,∴∠ECF=∠AEB ,∴cos ECF Ð=cos AEB Ð=BE AE =故选C.【点睛】本题考查了矩形的性质和折叠的性质,以及余弦的定义,解题的关键是利用折叠的性质得到∠ECF=∠AEB.13.x (x -2)【分析】直接利用提公因式法分解因式即可.【详解】解:()222x x x x -=-,故答案为:()2x x -.【点睛】题目主要考查利用提公因式法分解因式,熟练掌握运算法则是解题关键.14.<【分析】根据一次函数的增减性求解即可.【详解】解:∵一次函数解析式为21y x =-+,20k =-<,∴该一次函数的函数值随x 的增大而减小,∵21>-,∴12y y <,故答案为:<.【点睛】本题主要考查了一次函数的函数值比较大小,熟知一次函数的增减性是解题的关键.15.6【分析】根据垂径定理求出AD ,根据勾股定理列式求出OD ,根据三角形中位线定理计算即可.【详解】∵半径OC 垂直于弦AB ,∴AD=DB=12,在Rt △AOD 中,OA 2=(OC-CD )2+AD 2,即OA 2=(OA-1)2+)2,解得,OA=4∴OD=OC-CD=3,∵AO=OE ,AD=DB ,∴BE=2OD=6,故答案为6.【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.16. 2 【分析】本题考查了菱形的性质,等边三角形的判定与性质,勾股定理等知识.连接BD 交AC 于点H ,先判断ABC V ,ACD V 都是等边三角形,得出60EAF Ð=°,6AC AB ==,132AH CH AC ===,利用含30°的直角三角形的性质可得出22AE AF CE ==,进而求出CE ,HE ,然后利用勾股定理求解即可.【详解】解:连接BD 交AC 于点H ,∵菱形ABCD 中,60ABC Ð=°,6AB =,∴AB BC CD AD ===,60ADC ABC Ð=Ð=°,BD AC ^,∴ABC V ,ACD V 都是等边三角形,∴60EAF Ð=°,6AC AB ==,132AH CH AC ===,∵EF AB ^,∴30AEF Ð=°,∴2AE AF =,又CE AF =,∴2AE CE =,∴2CE =,∴1HE CH CE =-=,在Rt CDH △中,22227DH CD CH =-=,∴DE ==故答案为:2;17.5(2)24x -+,8【分析】(1)根据负整数指数幂、零次幂,特殊角的三角形函数值,和二次根式的混合运算法则运算即可;(2)先根据整式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】(1(201tan 602-æö+-°+-ç÷èø14=5=+;(2)解:()()()222x x x x --+-()2224x x x =---2224x x x =--+24x =-+,当2x =-时,原式()2248=-´-+=.【点睛】本题考查了特殊角的三角形函数值,二次根式的混合运算,负整数指数幂,零次幂,整式的化简求值,掌握相关知识是解题的关键.18.绳索长为20尺,竿长15尺.【分析】设绳索长x 尺,则竿长为()5x -尺,根据将绳索对半折后再去量竿,就比竿短5尺,列方程求解即可.【详解】解∶设绳索长x 尺,则竿长为()5x -尺.根据题意可得,()1552x x =--解得20x =20515--(尺),答:绳索长为20尺,竿长15尺.【点睛】本题考查一元一次方程的应用,理解题意,解设恰当未知数,找等量关系,列出方程是解题的关键.19.(1)100(2)108(3)1.7万(4)乙;甲【分析】(1)根据健身的人数和所占的百分比即可求出总人数;(2)根据“休闲”的占比,进一步计算即可求解;(3)根据样本估计总体的方法求解即可;(4)根据加权平均数的计算方法求解即可.【详解】(1)解:4040%100a =¸=(人),调查总人数100a =人;故答案为:100;(2)解:10017134030---=(人),∴30360108100´°=°,故答案为:108;(3)解:17100000100%17000100´´=(人)∴愿意改造“休闲设施”的约有1.7万人;故答案为:1.7万;(4)解:若以1:1:1:1进行考核,甲小区得分为()177987.754´+++=,乙小区得分为()1887984´+++=,∴若以1:1:1:1进行考核,乙小区满意度(分数)更高;若以1:1:2:1进行考核,甲小区得分为1121779885555´+´+´+´=,乙小区得分为112188797.85555´+´+´+´=,∴若以1:1:2:1进行考核,甲小区满意度(分数)更高;故答案为:乙;甲.【点睛】本题考查条形统计图、扇形统计图,加权平均数,样本估计总体等知识,理解两个统计图中数量之间的关系是正确解答的关键.20.(1)45;53;0.3(2)电子厂AB 的高度为22.7米.【分析】本题考查了与仰角有关的解直角三角形的应用,矩形的判定与性质.(1)先证明四边形EFDG 、EFBM 、CDBN 是矩形,据此即可求得相关数据;(2)设m GM x =,表示()5m EM x =+,然后在Rt AEM △以及Rt ACN △中,利用三角函数,用x 表示出AM 和AN ,运用线段和差关系,求出15.9m x =,进一步计算即可作答.【详解】(1)解:如图:延长DC 交EM 于一点G ,∵90MEF EFB CDF Ð=Ð=Ð=°,∴四边形EFDG 是矩形,∵90MEF EFB B Ð=Ð=Ð=°,∴四边形EFBM 是矩形,同理得四边形CDBN 是矩形,依题意,得 1.8m 1.5m ,===EF MB CD ,4553AEM ACN Ð=°Ð=°,,∴()1.8 1.5m 0.3m CG =-=,5m FD EG ==,∴0.3m CG MN ==,故答案为:45;53;0.3;(2)解:设m GM x =,则()5m EM x =+,在Rt tan AM AEM AEM EMÐ=V ,∴1EM AM ´=,即()5m AM x =+,在Rt tan AN ACN ACN CN Ð=V ,,∴4tan 533CN x AN °==,即4m 3AN x =,∴()450.33MN AN AM x x =-=-+=,∴15.9m x =,∴()15.9520.9m AM =+=,∴()20.9 1.822.7m AB AM EF AM MB =+=+=+=.答:电子厂AB 的高度为22.7米.21.(1)2134y x x =--;(2)18(3)点P 的坐标为()4,5-或()10,32-;(4)PM AM 的最大值为916.【分析】(1)用待定系数法求函数的解析式即可;(2)先求直线BC 的解析式为3y kx =-,过N 点作NG y ∥轴交BC 于点G ,可得()2,2G -,利用三角形的面积公式即可求得面积;(3)分两种情况讨论,①当90PCB Ð=°时,②当90PBC Ð=°时,求得直线PC 的解析式,联立求解即可;(4)过点A 作AN y ∥轴交直线BC 于点N ,过P 点作P Gy ∥轴交BC 于点G ,则AN PG ∥,有MPG MAN V V ∽,可得PM PG AM AN =,设21,34P m m m æö--ç÷èø,则1,32G m m æö-ç÷èø,分别求出PG ,AN 的长,则有()21931616PM m AM =--+,即可求得答案.【详解】(1)解:将点A (−2,0)、()6,0B 代入23y ax bx =+-,得:423036630a b a b --=ìí+-=î,解得:141a b ì=ïíï=-î,∴函数的解析式为2134y x x =--;(2)解:∵()221132444y x x x =--=--,∴抛物线的顶点()2,4N -,当0x =时,=3y -,∴C (0,−3),设直线BC 的解析式为3y kx =-,把()6,0B 代入3y kx =-,得:630k -=,解得:12k =.直线BC 的解析式为132y x =-,过N 点作NG y ∥轴交BC 于点G ,如下图:∵()2,4N -,∴()2,2G -,∴四边形ACNB 的面积ABC BCNS S +=VV1122B C AB OC NG x x =⋅⋅+⋅⋅-11832622=´´+´´126=+18=;(3)解:存在点P ,使PCB V 是直角三角形,理由如下:①当90PCB Ð=°时,设PC 交x 轴于点D ,∵90DCO OCB CBO Ð=°-Ð=Ð,∴DCO CBO ∽△△,∴OD OC OC OB =,即336OD =,∴32OD =,∴3,02D æö-ç÷èø,同理直线PC 的解析式为23y x =--,联立,得213234x x x --=--,解得0x =(舍去)或4x =-,当4x =-时,()2435y =-´--=,∴点P 的坐标为()4,5-;②当90PBC Ð=°时,过点B 作直线CD 的平行线,设此直线的解析式为2y x n =-+,则026n =-´+,解得12n =,∴此直线的解析式为212y x =-+,联立,得2132124x x x --=-+,解得6x =(舍去)或10x =-,当10x =-时,()2101232y =-´-+=,∴点P 的坐标为()10,32-;∴点P 的坐标为()4,5-或()10,32-;(4)解:过点A 作AN y ∥轴交直线BC 于点N ,过P 点作P Gy ∥轴交BC 于点G ,如图,则AN PG ∥,∴MPG MAN V V ∽,∴PM PG AM AN=,设21,34P m m m æö--ç÷èø,则1,32G m m æö-ç÷èø,∴221113332442PG m m m m m =--++=-+,∵()20A -,,∴()2,4N --,∴4AN =,∴()22131942341616m m PM PG m AM AN -+===--+,当3m =时,PM AM 的最大值为916,此时153,4P æö-ç÷èø.【点睛】本题主要考查二次函数的图象及性质,涉及待定系数法确定函数关系式、勾股定理、相似三角形的判定和性质、二次函数最值,解题的关键是熟悉二次函数的性质以及分类讨论思想.22.(1)①见解析;②见解析(2)241C BFn F =-.【分析】(1)①由“ASA ”可证ADE BAF △≌△;②过点A 作AF HD ^交BC 于点F ,由等腰三角形的性质和平行线的性质可得HAF AFG DAF Ð=Ð=Ð,可得AG FG =,即可得结论;(2)过点E 作EH DF ^于H ,连接EF ,由角平分线的性质可得AE EH BE ==,由“HL ”可证Rt Rt BEF HEF ≌△△,可得BF FH =,由勾股定理可求解.【详解】(1)证明:①Q 四边形ABCD 是矩形,AD AB =,\四边形ABCD 是正方形,AD AB \=,90DAB ABC Ð=°=Ð,90DAF BAF Ð+Ð=°∴,AF DE ^Q ,90DAF ADE \Ð+Ð=°,ADE BAF \Ð=Ð,且AD AB =,90DAE ABF Ð=Ð=°,()ASA ADE BAF \V V ≌;②如图,过点A 作AF HD ^交BC 于点F ,由(1)可知AE BF =,AH AD =Q ,AF HD ^,HAF DAF \Ð=Ð,∵AD BC ∥,DAF AFG \Ð=Ð,HAF AFG \Ð=Ð,AG GF \=,AG GB BF GB AE \=+=+;(2)解:如图,过点E 作EH DF ^于H ,连接EF ,E Q 为AB 的中点,12AE BE AB \==,ADE EDF Ð=ÐQ ,EA AD ^,EH DF ^,AE EH \=,()Rt Rt HL AED HED \≌△△,\AD DH nAB ==,BE EH \=,EF EF =,()Rt Rt HL BEF HEF \≌△△,BF FH \=,设BF x FH ==,则FC BC BF nAB x =-=-,222DF FC CD =+Q ,()()222nAB x nAB x AB \+=-+,4AB x BF n \==,2414n FC AB n-\=,\241C BFn F =-.【点睛】本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.。

天津市静海区2024-2025学年上学期九年级期中数学考试卷

天津市静海区2024-2025学年上学期九年级期中数学考试卷

天津市静海区2024-2025学年上学期九年级期中数学考试卷一、单选题1.若2(3)50m x mx -+-=是关于x 的一元二次方程,则m 的值为()A .3m ≠B .3m =C .3m ≥D .0m ≠2.中国古典园林讲究“造景”的艺术,而窗棂()líng 是园林重要的“造景”工具之一,如图①,是苏州园林内的一种窗棂,图②是这种窗棂中的部分图案,该图案是由1个正六边形和6个全等的等边三角形组成的;下列关于该图案对称性的说法,正确的是()A .既是轴对称图形又是中心对称图形B .是轴对称图形但不是中心对称图形C .是中心对称图形但不是轴对称图形D .既不是轴对称图形也不是中心对称图形3.若一元二次方程2440mx x ++=没有实数根,则m 的取值范围是()A .1m <B .1m <-C .1m ≥-D .1m >4.用配方法解方程2810x x -+=,下列变形正确的是().A .2(4)3x -=B .2(4)15x -=C .2(4)7x -=D .2(4)3x -=-5.电影《志愿军》不仅讲述了中国人民志愿军抗美援朝的故事,更是通过鲜活生动的人物塑造,让观众体会到历史事件背后的人性和情感,一上映就获得全国人民的追捧.某地第一天票房约3亿元,若以后每天票房按相同的增长率增长,三天后票房收入累计达18亿元,若把增长率记作x ,则方程可以列为()A .()3118x +=B .()23118x +=C .()233118x +=+D .()()23313118x x +++=+6.函数22y x =-先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A .22(1)2y x =--+B .22(1)2y x =---C .22(1)2y x =-++D .22(1)2y x =-+-7.如图,在Rt ABC △中,已知9030BAC C ∠=︒∠=︒,,将ABC V 绕点A 顺时针旋转70︒得到AB C ''△,则CAC '∠的度数是()A .60︒B .70︒C .80︒D .90︒8.如图,在平面直角坐标系中,若ABC V 与111A B C △关于点E 成中心对称,则对称中心点E 的坐标是()A .(3,1)-B .(3,0)C .(2,1)-D .(2,0)9.对于二次函数2144y x x =-+-,下列说法正确的是()A .当0x >,y 随x 的增大而增大B .图像与x 轴有两个交点C .图像的顶点坐标为(2,7)--D .当2x =时,y 有最大值3-10.二次函数23324y x ⎛⎫=-+ ⎪⎝⎭的图象()13x ≤≤如图所示,则该函数在所给自变量的取值范围内,函数值y 的取值范围是()A .1y ≥B .13y ≤≤C .334y ≤≤D .03≤≤y 11.某水利工程公司开挖的池塘,截面呈抛物线形,蓄水之后在图中建立平面直角坐标系,并标出相关数据(单位:m ),某学习小组探究之后得出如下结论,其中正确的为()A .水面宽度为30mB .抛物线的解析式为1²525y x =-C .最大水深为3.2mD .若池塘中水面的宽度减少为原来的一半,则最大水深减少为原来的1312.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m ,另三边用竹篱笆围成,篱笆总长35m ,围成长方形的养鸡场四周不能有空隙.有下列结论:①要围成养鸡场的面积为2150m ,则养鸡场的宽为7.5m ;②围成养鸡场的面积能达到2200m ;③围成养鸡场的最大面积为21225m 8其中,正确结论的个数是()A .0个B .1个C .2个D .3个二、填空题13.把方程223x x =-化为一般形式是.14.一元二次方程260x x m -+=有两个实数根1x ,2x .若12x =,则2x 的值为15.若点(),1A a -关于原点对称的点为()5,B b ,则点(),C a b 关于y 轴对称的点D 的坐标为.16.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是2305h t t =-.小球运动到最高点所需的时间是s .17.如图,正方形ABCD 中,点E 在DC 边上,2DE =,1EC =,把线段AE 绕点A 旋转,使点E 落在直线BC 上的F 点,则F ,C 两点间的距离为.18.已知二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)的图象如图所示,小明得出了以下结论:①0abc <,②24b ac >,③420a b c ++>,④当1x <-时,y 随x 的增大而增大,⑤若方程2ax bx c k ++=有两个不相等的实数根,则k 的取值范围是5k <,其中结论正确的个数为.(填序号)三、解答题19.解方程:(1)2213x x +=(配方法);(2)2(3)3x x x -=+(公式法);(3)22(3)8x -=;(4)(8)(1)12x x ++=-.20.如图,在平面直角坐标系中,已知ABC V 的三个顶点的坐标分别为(5,4)A ,(0,3)B ,(2,1)C .(1)画出ABC V 关于原点成中心对称的111A B C △,并写出点1C 的坐标;(2)画出将111A B C △绕点1C 按顺时针方向旋转90︒所得到的221A B C △,并求出221A B C △的面积.21.已知关于x 的方程220x ax a ++-=.(1)若该方程的一个根为2,求a 的值及该方程的另一根.(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.(3)若方程的两根互为倒数,求a 的值.22.天津素称“月季之乡”.花虹园区在长为10米,宽为8米的矩形土地上修建同样宽度的两条道路(互相垂直),其余部分种植月季花球盆栽,并使种植花卉的总面积为63平方米,修建方案如图所示.(1)利用你所学的有关图形运动的知识,求道路的宽度;(2)某盆栽供应商的进货价为每盆30元,销售价为每盆60元,花节期间平均每天可以售出20盆.花节落幕后降价出售,经市场调查发现:如果每盆降价3元,那么平均每天就可多出售6盆.设每盆降价x 元.①降价后每盆的利润是__________元;每天卖出__________盆;(用含的代数式表示)②供应商想要达到每天750元的盈利,同时让购买者得到实惠,求每盆应降价多少元?23.如图,已知抛物线2y x bx c =++经过(1,0)A -、(3,0)B 两点.(1)求抛物线的解析式和顶点坐标;(2)点P 为抛物线上一点,若10PAB S = ,求出此时点P 的坐标.24.如图,在ABC V 中,点E 在BC 边上,AE AB =,将线段AC 绕A 点旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若63ABC ∠=︒,25ACB ∠=︒,求FGC ∠的度数.25.素材一:秦、汉时期是中国古代桥梁的创建发展时期,此时期创造了以砖石为材料主体的拱券结构,为后来拱桥的出现创造了先决条件.如图(1)是位于某市中心的一座大桥,已知该桥的桥拱呈抛物线形.在正常水位时测得桥拱处水面宽度OB 为40米,桥拱最高点到水面的距离为10米.素材二:在正常水位时,一艘货船在水面上航行,已知货船的宽DE 为16米,露出水面的高DG 为7米.四边形DEFG 为矩形,OD BE =.现以点O 为原点,以OB 所在直线为x 轴建立如图(2)所示的平面直角坐标系,将桥拱抽象为一条抛物线.(1)求此抛物线的解析式.(2)这艘货船能否安全过桥?(3)受天气影响,水位上升0.5米,若货船露出水面的高度不变,此时该货船能否安全过桥?。

广东省东莞市东华初级中学2024-2025学年九年级上学期11月期中考试数学试题

广东省东莞市东华初级中学2024-2025学年九年级上学期11月期中考试数学试题

广东省东莞市东华初级中学2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.下面的图形中,是中心对称图形的是()A .B .C .D .2.用配方法解一元二次方程x 2﹣6x ﹣1=0时,下列变形正确的是()A .(x ﹣3)2=1B .(x ﹣3)2=10C .(x +3)2=1D .(x +3)2=103.已知关于x 的一元二次方程22210x x a -+-=有一个根为0x =,则a 的值为()A .0B .1±C .1D .1-4.下列一元二次方程没有实数根的是()A .2230x x --=B .2210x x ++=C .2 20x -=D .230x x ++=5.某超市1月份营业额为90万元.1月、2月、3月总营业额为144万元,设平均每月营业额增长率为x ,则下面所列方程正确的是()A .()2901144x +=B .()2901144x -=C .()9012144x +=D .()()290190114490x x +++-=6.抛物线2y x =是由某抛物线向左平移2个单位长度,再向下平移1个单位长度得到,此抛物线的解析式是()A .()221y x =++B .()221y x =-+C .()221y x =+-D .()221y x =--7.点()()()1122333,1,,5,,P y P y P y --均在二次函数()21y x c =--+的图象上,则1y ,2y ,3y 的大小关系是()A .231y y y >>B .213y y y >=C .132y y y =>D .123y y y =>8.如图,在Rt ABC △中,90ACB ∠=︒,5AC =,12BC =,将ABC V 绕点B 顺时针旋转60︒,得到BDE V ,连接DC 交AB 于点F ,则ACF △与BDF V 的周长之和为()A .44B .43C .42D .419.如图,在ΔA 中,108BAC ∠=︒,将ΔA 绕点A 按逆时针方向旋转得到AB C ''∆.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为()A .18︒B .20︒C .24︒D .28︒10.已知二次函数y =ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的对称轴是直线x =1,其图象的一部分如图所示,下列说法中:①abc <0;②2a+b =0;③当﹣1<x <3时,y >0;④a ﹣b+c <0;⑤2c ﹣3b >0.其中正确结论的个数是()A .2B .3C .4D .5二、填空题11.若点(),1P m 关于原点的对称点()2,Q n -,那么m n +=.12.一元二次方程22x x =的根是.13.已知1x ,2x 是方程2310x x -+=的两根,则代数式12121x x x x ++的值为.14.已知抛物线y =ax 2+x+c 与x 轴交点的横坐标为﹣1,则a+c =.15.如图,将ABC V 绕点(0,1)C -旋转180︒得到A B C ''△,设点A 的坐标为(,)a b ,则点A '的坐标为.三、解答题16.解方程:2470x x --=.17.如图,正方形ABCD 中,M 是对角线BD 上的一个动点(不与B 、D 重合),连接CM ,将CM 绕点C 顺时针旋转90°到CN ,连接MN ,DN ,求证:BM =DN .18.如图,四边形ABCD 的两条对角线AC ,B 互相垂直,垂足为O 点,且10AC BD +=,若四边形ABCD 有最大面积,则求出此时的AC 与B 的长及这个最大的面积.19.已知关于x 的方程()23220x k x k -+++=(1)求证:方程总有两个实数根(2)若方程有一个小于1的正根,求实数k 的取值范围20.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x 元(x 为正整数),每月的销售量为y 条.(1)求y 与x 的函数关系式;(2)设该网店每月获得的利润为w 元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?21.综合与实践【主题】三角点阵前n 行的点数计算【素材】如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点,⋯⋯,第n 行有n 个点,⋯⋯,如果要用试验的方法,由上而下地逐行相加其点数,容易发现,前n 行的点数和是123(2)(1)n n n ++++-+-+ ,可以发现2[123(2)(1)][123(2)(1)][(1)(2)321]n n n n n n n n n ++++-+-+=++++-+-+++-+-++++ ,把两个中括号中的第一项相加,第二项相加,……,第n 项相加,上式等号的右边变形为这n 个小括号都等于1n +,整个式子等于(1)n n +,于是得到()()()11232112n n n n n ++++-+-+=+ .这就是说,三角点阵中前n 行的点数和是()112n n +.【实践探索】请你根据上述材料回答下列问题:(1)三角点阵中前n 行的点数和能是600吗?如果能,求出n ;如果不能,请说明道理.【拓展探索】(2)如果把图中的三角点阵中各行的点数依次换成2,4,6,…,2n ,…,请探究出前n 行的点数和满足的规律.(3)在(2)的条件下,这个三角点阵中前n 行的点数和能是600吗?如果能,求出n ;如果不能,请说明道理.22.如图,在ABC V 中,90ACB ∠=︒.将ABC V 绕点A 顺时针旋转m ︒得到()180ADE CAB m ∠<︒<︒ .CE 与AB 交于点F .(1)求证:AEC ABD ∠=∠.(2)设ABC n ∠=︒,直接写出当m 、n 满足什么条件时,BCF V 是等腰三角形.23.已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.。

广东省惠州市2024-2025九年级上册期中考试数学试卷

广东省惠州市2024-2025九年级上册期中考试数学试卷

广东省惠州市2024-2025九年级上学期期中考试数学试卷(满分120分,完卷时间120分钟)班级___________ 座号___________ 姓名___________ 一、选择题:本大题共10小题,每小题3分,共30分.1.下列属于一元二次方程的是()A.xx2+2xx−yy=0B.xx2+4xx+1=0C.xx3+5xx=0D.xx2+xx=1xx 2.下列各点在抛物线yy=3xx2上的是()A.(3,1) B.(1,-3) C.(1,3) D.(-1,-3) 3.将抛物线yy=xx2向左平移3个单位长度,再向上平移5个单位长度,得到的抛物线表达式为()A.yy=(xx+3)2+5 B.yy=(xx+3)2−5C.yy=(xx−3)2+5D.yy=(xx−3)2−54.一元二次方程xx2−2xx−1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法判断5.已知一元二次方程 (xx-2)2=1的两个根分别是等腰三角形ABC的底边长和腰长,则△ABC 的周长为()A.5B.7或5 C.7 D.66.对于二次函数yy=−2(xx+4)2−7的图象,下列说法正确的是()A.图象与y轴交点的坐标是(0,7)B.对称轴是直线x=4C.顶点坐标为(-4,-7)D.当x<-4时,y随x的增大而减小7.关于二次函数yy=−2(xx−1)2+5下列说法正确的是()A.有最大值1 B.有最小值1 C.有最大值5 D.有最小值58.如图,有一块长10 m、宽8 m的矩形试验地,要开辟3条等宽小路,要使种植面积为50 m2,求小路的宽可列方程为()A.(10−2xx)(8−xx)=50B.(10−xx)(8−2xx)=50C.(10+2xx)(8+xx)=50D.(10+xx)(8+2xx)=509.已知方程x2-b x-4=0的两个根为xx1 ,xx2,若两个根互为相反数,则该方程的两个根为()A.±4 B.±3 C.±2 D.±110.如图,抛物线yy=aaxx2+bbxx+cc(aa≠0)与x轴交与点A(-1,0)和B,与y轴交于点C,下列结论:①abc>0;②2a+b<0;③4a-2b+c>0;④3a+c>0.其中正确的结论个数有()A.1个B.2个C.3个D.4个二、填空题:本大题共5小题,每小题3分,共15分.11.函数yy=√xx−3中自变量x的取值范围是____________.12.已知AA(1,yy1),BB(−2,yy2)在抛物线y=(xx+1)2+2上,则yy1____ yy213.某厂一月份生产某机器100台,三月份生产144台,设每月的平均增长率为x,则可列方程为_____________________.14.二次函数yy=aaxx2+bbxx+cc(a≠0)的图象如图所示,则aaxx2+bbxx+cc=0的两个根为____________.15.设a是方程2xx2+x−1=0的一个根,则3−4aa2−2aa的值为=____________.xy x=1-1OxyCBA O1第8题图第14题图三、解答题(一):本大题共3小题,每小题8分,共24分. 16.解方程:(1)x2-4x-1=0 (2)x(x-1)=2x-217.若xx1,xx2是方程xx2+4xx−3=0的两个根,求下列各式的值:(1)xx12+xx22(2)1xx1+1xx218.某种服装平均每天可销售20件,每件赢利44元,若每件降价1元,则每天可多销售5件,如果每天要赢利1600元,每件应降价多少元?四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知关于x的一元二次方程xx2+mmxx+2mm−7=0.(1)求证:该方程总有两个不相等的实数根(2)已知方程的一个根为x=2,求m值及方程的另一根.20.二次函数的图象与y轴交于点(0,1),对称轴是直线x=-1,函数最大值为3.(1)求顶点坐标;(2)求该二次函数的解析式.21.如图,直线yy =xx −2和抛物线yy =xx 2−2xx 相交于点A 和点B.(1)求点A 和点B 的坐标(2)直接写出不等式 xx 2−2xx >xx −2的解集.五、解答题(三):本大题共2小题,每小题12分,共24分.22.如图,抛物线yy =aaxx 2+bbxx +c 过点A(0,3),B(1,0),C(-1,8),顶点为M.(1)求该二次函数的解析式; (2)求顶点M 的坐标;(3)x 轴上是否存在一点P ,使得PA +PM 的值最小?若点P 存在, 求出点P 的坐标.23.如图,抛物线yy =12xx 2+xx −32与x 轴相交于A 、B 两点,顶点P.(1)求A 、B 的坐标;(2)在抛物线是否存在点E ,使得△ABP 的面积等于△ABE 的面积?若存在,求出符合条件的点E 的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F ,使得以A 、B 、P 、F 为顶点的四边形为平行四边形?直接写出所有符合条件的点F 的坐标.xyABOyBAOPx yA B O CM广东省惠州市2024-2025九年级上学期期中考试数学试卷答案一、选择题(本大题共10小题,每小题3分,共30分) 1-5 BCAAC 6-10 CCACC二、填空题(本大题共5小题,每小题3分,共15分) 11. 3≥x 12.> 13. 100(1+x )2=144 14. x 1=-1,x 2=3 15. 1三、解答题(一)(本大题共3小题,每小题8分,共24分) 16.(1)x 2-4x -1=0 解:xx 2−4xx =1xx 2−4xx +4=1+4....................1分(x -2)2=5....................2分 x -2=±√5....................x -2=√5或xx −2=−5...................3分 x 1=2+√5,x 2=2-√5....................4分 (2)x (x -1)=2x -2 解: ....................1分 ....................2分 ...................3分....................4分17. 解(1)∵a =1,b =4,c =-3,且x 1,x 2是方程的两个根∴ x 1+x 2=a b =-14=-4. 31321−=−==⋅ac x x ...................3分 22)3(2)4(2)(2212212221=−×−−=−+=+x x x x x x ....................4分(2)由(1)得x 1+x 2=-4 321−=⋅x x ..................5分 ∴343411211221=−−=+=+x x x x x x ..................8分18.解:设每件应降价x 元,根据题意得....................2分(44-x )(20+5x )=1600....................5分解得x 1=36,x 2=4....................6分2,102010)2)(1(023222122===−=−=−−=+−−=−x x x x x x x x x x x 或答:每件应降价36元或4元....................8分四、解答题(二)(本大题共3小题,每小题9分,共27分) 19.(1)证明:12)4(12168288)72(14472,,122222+−=++−=+−=−××−=−=∆∴−===m m m m m m m ac b m c m b a ....................1分的实数根。

江苏省盐城市盐城经济技术开发区2024-2025学年九年级上学期11月期中考试数学试题(含答案)

江苏省盐城市盐城经济技术开发区2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024年秋学期九年级数学期中考试试卷一、选择题(每题3分,计24分)1. 下列方程是一元二次方程的是( )A. 3x 2-6x +2B. ax 2-bx +c =0C.D. x 2=02. 用配方法解方程,配方正确是()A. B. C. D. 3. 如图,已知四边形是的内接四边形,且,那么等于( )A B. C. D. 4. 一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A. 12B. 9C. 15D. 12或155.如图,小球从口往下落,在每个交叉口都有向左或向右两种可能,且可能性相同,则小球最终从口落出的概率为( )A. B. C. D.6.电影(长津湖》讲述了一段波澜壮阔的历史,一上映就获得全国人民的追捧,某地第一天票房约亿元,三天后票房收入累计达亿元,若把增长率记作( )A .;B .;C .;D .7.如图,是的直径,圆上的点D 与点C ,E 分布在直线的两侧,,则( )的.212x x +=2240x x --=()213x -=()214x -=()215x -=()213x +=ABCD O e 120ABC ∠=︒AOC ∠125︒120︒110︒100︒A G 18161412310x ()3110x +=()23110x +=()233110x ++=()()23313110x x ++++=AB O e 50BCD ∠=︒AED =∠A .B .C .D .8.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点与之间的距离为,双翼的弧与弧的长都为,且与闸机侧立面夹角.当双翼收起时,可以通过闸机的物体的最大宽度为( )A .B .C .D .二、填空题(每题3分,计30分)9.一组数据19,15,10,x ,4,它的中位数是13,则这组数据的平均数是 .10.已知一元二次方程的其中一个根为,则的值为 .11.关于的一元二次方程有两个实数根,那么的取值范围是 .12.已知,如图,是的弦,,点在弦上,连结并延长交于点,,则的度数是 .14.设m 、n 为关于x 的方程x 2+4x ﹣2023=0的两个实数根,则m 2+5m +n = .60︒50︒45︒40︒A B 10cm AP BQ 12π30PCA BDQ ︒∠=∠=72cm 10cm 10cm 82cm 250ax bx +-=2x =1632a b +-x ()22114x m x m +-=-m AB AD O e 30B ∠=︒C AB CO O e D 35D ∠=︒BAD ∠15.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为170cm ,方差为acm 2.第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是170cm ,此时全班同学身高的方差为bcm 2,那么a 与b 的大小关系是a b .(填“<”,“>”或“=”)D=_______°.18.如图,在矩形ABCD 中,AB=3,⊙O 与边BC ,CD 相切,现有一条过点B 的直线与⊙O 相切于点E ,连接BE ,△ABE 恰为等边三角形,则⊙O 的半径为.第17题 第18题三、解答题(共9题,计96分)19.解方程:(1);(2);20.“秋风响,蟹脚痒”,正是食蟹好时节.某蟹农在今年五月中旬向自家蟹塘投放蟹苗1200只,为赶在食蟹旺季前上市销售,该蟹农于九月中旬在蟹塘中随机试捕了4次,获得如下数据:(1)、四次试捕中平均每只蟹的质量为____________;(2)、若蟹苗的成活率为,试估计蟹塘中蟹的总质量为_______;(3)、若第3次试捕的蟹的质量(单位:g )分别为:166,170,172,a ,169,167.①____________;②求第3次试捕所得蟹的质量数据的方差.21.唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮航行模式之先导.如图,某桨轮船数量/只平均每只蟹的质量/g 第1次试捕4166第2次试捕4167第3次试捕6168第4次试捕6170()24190x --=2250x x --=g 75%kg =a的轮子被水面截得的弦AB 长8m ,设圆心为O ,OC ⊥AB 交水面AB 于点D ,轮子的吃水深度CD 为2m ,求该桨轮船的轮子直径.22.已知,内接于,为的直径,点为优弧的中点.(1)如图1,连接,求证:;(2)如图2,过点作,垂足为.若,求的半径.23.已知关于的一元二次方程.求证:无论取何值,方程总有两个不相等的实数根.ABC V O e AC O e D BC OD DO BC ⊥D DE AC ⊥E 38AE BC ==,O e x 22(3)10x m x m ++-+=m(2)已知关于 x 的方程﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,求 m 的值;(3)若关于 x 的方程 a +bx+1=0(a 、b 是常数,a >0)是“邻根方程”,令 t =8a-,试求 t 的最大值.25.小明大学毕业后和同学创业,合伙开了一家网店,暑期销售原创设计的手绘图案T 恤衫.已知每件T 恤衫的成本价为60元,当销售价为100元时,每天能售出20件;经过一段时间销售发现,当销售价每降低1元时,每天就能多售出2件.(1)若降价8元,则每天销售T 恤衫的利润为多少元?(2)小明希望每天获得的利润达到1050元并且优惠最大,则每件T 恤衫的销售价应该定为多少?26.如图,是直角三角形的外接圆,直径,过C 点作的切线,与延长线交于点D ,M 为的中点,连接,,且与相交于点N .(1)求证:与相切;(2)当时,在的圆上取点F ,使,补全图形,并求点F 到直线的距离.27.(1)如图1,四边形ABCD 为⊙O 的内接四边形,AC 为⊙O 的直径,则∠B =∠D = 度,∠BAD +∠BCD = 度.(2)如果⊙O 的内接四边形ABCD 的对角线AC 不是⊙O 的直径,如图2,求证:圆内接四边形的对角互补.知识运用(3)如图3,等腰三角形ABC 的腰AB 是⊙O 的直径,底边和另一条腰分别与⊙O 交于点 D ,E ,F 是线段CE 的中点,连接DF ,求证:DF 是⊙O 的切线.2x 2x 2b O e ABC 4AC =O e AB CD BM OM BC OM BM O e 60A ∠=︒O e 15ABF ∠=︒AB参考答案1-4DCBC 5-8CDDD9.12.2 10.7 11.12. 13.86 14.2019 15.>16.b>-3 17.3018.19.(1),(2),20.(1)168(2)(3)①164 ②721.解:设半径为rm,则OA =OC =rm ,∴OD =(r ﹣2)m .∵AB =8m ,OC ⊥AB ,∴AD =4m .在Rt △ODA 中有OA 2=OD 2+AD 2,即r 2=(r ﹣2)2+4,解得r =5m则该桨轮船的轮子直径为10m .22.(1)(1)证明:如下图,延长交于,∵点为优弧的中点,∴,12m ≤65︒112x =-252x =11x =21x =151200DO BC F D BC »»BD CD =∴,即;(2)23.证明:一元二次方程中,a =2,,,,一元二次方程总有两个不相等的实数根.24.(1)不是邻根方程;是邻根方程(2)或(3)25.(1)解:由题意得,每天销售T 恤衫的利润为:(元).答:降价8元,则每天销售T 恤衫的利润为1152元.(2)解:设此时每件T 恤衫降价x 元,由题意得,,整理得,解得或.又∵优惠最大,∴.∴此时售价为(元).答:小明希望每天获得的利润达到1050元并且优惠最大,则每件T 恤衫的销售价应该定为75元.26.(1)根据题意可得,根据直径所对的圆周角是直角,得出,进而得出,证明,得出,即可得证;(2)DF BC ⊥DO BC ⊥256()22310x m x m ++-+=3b m =+1c m =-+24b ac∴∆=-()()23421m m =+-⨯⨯-+26988m m m=+++-2217m m =-+()22116m m =-++()21160m =-+>∴()22310x m x m ++-+=260x x --=2210x -=0m =2m =-4t =最大值()()10086020281152--⨯+⨯=()()100602021050x x --+=2301250x x -+=5x =25x =25x =1002575-=OM AD ∥90ABC ∠=︒OM BC ⊥OBM OCM V V ≌90OBM ∠=︒21-27.(1)∵四边形ABCD为⊙O的内接四边形,AC为⊙O的直径,∴∠B=∠D=90度,∵∠BAD+∠BCD+∠B+∠D=360°∴∠BAD+∠BCD=360°−∠B−∠D=180°故答案为:90,180(2)证明:如图,连接AO并延长,交⊙O于点E,连接BE,DE.由(1)可知,∠ABE=90°,∠ADE=90°,∴∠ABE+∠ADE=180°∴∠BAD+∠BED=180°∵∠BED=∠C,∠CDE=∠CBE∴∠BAD+∠C=180°,∠ABC+∠ADC=180°即圆内接四边形的对角互补(3)证明:连接OD,DE,如图所示.∵OB=OD,∴∠B=∠ODB∵AB=AC,∴∠B=∠C∴∠ODB=∠C∴OD∥AC∵四边形ABDE是圆内接四边形,∴∠B+∠AED=180°∵∠DEC+∠AED=180°,∴∠B=∠DEC∴∠C=∠DEC∴DC=DE∵F是线段CE的中点,∴DF⊥AC∴DF⊥OD∵OD是⊙O的半径,∴DF是⊙O的切线。

2024-2025学年九年级数学上学期期中测试卷(冀教版,九上全部)(考试版A4)

2024-2025学年九年级数学上学期期中测试卷(冀教版,九上全部)(考试版A4)

2024-2025学年九年级数学上学期期中模拟卷(冀教版)(满分120分,时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:冀教版九年级上册。

5.难度系数:0.65。

第Ⅰ卷一、选择题(本大题共16个小题,共38分,1~6小题每题3分,7~16小题每题2分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.在某市体育中考期间,在运动技能测试“排球垫球”项目中,某市直中学有8位学生的垫球数分别为39,53,55,48,52,53,48,48.这组数据的中位数和众数分别是()A .50,48B .52,48C .52,53D .48,482.甲、乙、丙、丁四名同学参加科技知识竞赛,他们平时测验成绩的平均分相同,方差分别是21.7S =甲,2 2.4S =乙,20.5S =丙,24S =丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁3.若38m n =,则m n n +的值是( )A .118B .311C .113D .8114.如图,河坝横断面迎水坡AB 的坡度是,坝高BC =,则坡面AB 的长度是( )A .B .6mC .D .9m5.如图,AB 为O e 的直径,点C ,D 在圆上,若64D Ð=°,则BAC Ð的度数为( )A .64°B .34°C .26°D .24°6.将方程21010x x -=+利用配方法转化为()25x c -=的形式,则c 的值为( )A .24B .25C .26D .1007.下表是小明填写的综合实践活动报告的部分内容,请你借助小明的测量数据,计算河流的宽度AB .题目测量河流宽度AB目标示意图测量数据1.5m BC =,10m BD =, 1.8mDE =则AB =( )m A .20B .30C .40D .508.已知菱形OABC 在平面直角坐标系中如图放置,点C 在x 轴上,若点A 的坐标为(3,4),经过点A 的双曲线交BC 于点D ,则OAD △的面积为( )A .8B .9C .10D .129.如图,在由小正方形组成的网格中,小正方形的边长均为1,点A ,B ,O 都在小正方形的顶点上,则AOBÐ的正弦值是( )A B C .13D .1210.如图,直线y kx =与双曲线my x =相交于点A 和B ,已知点A 的坐标为()4,1,则不等式m kx x³的解集为( )A .4x ³B .04x <£C .4x ³或4x £-D .4x ³或40x -£<11.如图,A 、B 、C 、D 均为圆周上十二等分点,若用直尺测量弦CD 长时,发现C 点、D 点分别与刻度1和4对齐,则A 、B 两点的距离是( )A .B .C .D .612.在矩形ABCD 中,已知45AB AD ==,,点E 为BC 上一点,连接AE 并延长交DC 的延长线于点F ,连接DE ,若2DEC BAE Ð=Ð,则EF 的长为( )A .B .C .3D .513.关于x 的方程22240x mx m -+-=的两个根1x ,2x 满足1223x x =+,且12x x >,则m 的值为( )A .3-B .1C .3D .914.如图,当反比例函数()0ky x x=>的图象L 将矩形ABCD 的内部(不含边界)的横、纵坐标都为整数的点分成数量相等的两部分,则k 的取值范围为( )A .1215k <<B .1014k <<C .410k <<D .1516k <<15.某数学兴趣小组借助无人机测量一条河流的宽度BC .如图,无人机在P 处测得正前方河流的点B 处的俯角DPB a Ð=,点C 处的俯角45DPC Ð=o ,点A ,B ,C 在同一条水平直线上.若45m AP =,tan 3a =,则河流的宽度BC 为( )A .30mB .25mC .20mD .15m16.如图,已知A ,B ,C 为O e 上的三点,且2120AC BC ACB ==Ð=°,.点P 从点A 出发,沿着逆时针方向运动到点B ,连接CP 与弦AB 相交于点D ,当ACD V 为直角三角形时,弧AP 的长为( )A .2pB .12πC .23p 或12πD .2p 或43p第Ⅱ卷二、填空题(本大题共3个小题,共10分;17小题2分,18~19小题各4分,每空2分,答案写在答题卡上)17.如图,在O e 中,AM 是O e 的直径,8AM =,点B 是 AM 的中点,点C 在弦AB 上,且AC =D 在 AB 上,且CD OB ∥,则CD 的长为.18.如图①所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ED DC--运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s ,设P ,Q 同时出发t 秒时,BPQ V 的面积为2cm y .已知y 与t 的函数关系图象如图②(曲线OM 为抛物线的一部分),则:(1)cos ABE Ð= ;(2)当t = 时,ABE QBP ∽△△.19.如图,点(3,0)A ,(0,4)B ,连接AB ,点D 为x 轴上点A 左侧的一点,点E ,F 分别为线段AB ,线段BO上的点,点B ,D 关于直线EF 对称.(1)若DE AO ^,则四边形BEDF 的形状是 ;(2)当AD 最长时,点F 的坐标为 .三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)解方程:(1)22125x x -+=;(2)()()3222x x x +=+.21.(本小题满分9分)某校九年级男生进行了“引体向上”测试,每班随机抽取的人数相同,成绩分为“优秀”“良好”“及格”“不及格”四个等级,其中相应等级的得分分别为10分、8分、6分、4分.小聪将九(1)班和九(2)班的成绩整理并绘制了如图所示的不完整的统计图表.班级平均数众数中位数方差九(1)班7.6——8 3.84九(2)班8.410—— 3.84请你根据所给的信息解答下列问题:(1)请补充完成条形图和统计分析表;(2)若九(2)班少统计了一个学生“优秀”的成绩,则此次统计的数据中不受影响的是______(选填“平均数”“众数”“中位数”);(3)请你从两个方面分析出哪个班的男生“引体向上”成绩更好些.22.(本小题满分9分)如图,ABCD Y 中,点E 是AD 的中点,连接CE 并延长交BA 的延长线于点F .(1)求证:AF AB =;(2)点G 是线段AF 上一点,满足,FCG FCD CG Ð=Ð交AD 于点H .①求证:AH CH DH GH ×=×;②若2,6AG FG ==,求GH 的长.23.(本小题满分10分)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A 的仰角、俯角均为15°,摄像头高度160cm OA =,识别的最远水平距离150cm OB =.(1)如图2,张亮站在摄像头前水平距离100cm 的点G 处,恰好能被识别(头的顶部在仰角线AD ), 求张亮的身高约是多少厘米;(2)夕夕身高136cm ,头部高度为18cm ,踮起脚尖可以增高3cm ,此时夕夕能被识别吗?请计算说明.(精确到0.1cm ,参考数据:sin150.26cos150.97°»°»,,tan150.27°»)24.(本小题满分10分)如图1,一汤碗的截面是以AB 为直径的半圆O (碗体厚度忽略不计),放置于水平桌面MN 上,碗中装有一些液体(图中阴影部分),其中液面截线∥CD MN .已知液面截线CD 宽8cm ,液体的最大深度为2cm .(1)求汤碗直径AB 的长;(2)如图2,在同一截面内,将汤碗(半圆O )沿桌面MN 向右作无滑动的滚动,使液体流出一部分后停止,再次测得液面截线CD 减少了2cm .①上述操作后,水面高度下降了多少?②通过计算比较半径12AB 和流出部分液体后劣弧 CD 的长度哪个更长.(参考数据:3tan 374°=)25.(本小题满分12分)如图,已知在平面直角坐标系中,矩形ABCD 的边AB x ∥轴,AD y ∥轴,点A 的坐标为(2,1),43AB AD ==,.(1)求直线BD 的解析式;(2)已知双曲线()0ky k x =>与折线ABC 的交点为E ,与折线ADC 的交点为F .①连接CE ,当3BCE S =V 时,求该双曲线的解析式,并求出此时点F 的坐标;②若双曲线()0ky k x =>与矩形ABCD 各边和对角线BD 的交点个数为3,请求k 的取值范围.26.(本小题满分13分)在ABC V 中,45A Ð=°,AC =D 为AB 边上一动点,45CDF Ð=°,DF 交BC 边于F .探究:如图1,若AC BC =,(1)当ACD V 与BDF V 全等时,求AD 的长;(2)当CDF V 为等腰三角形时,求CF 的长.延伸:如图2,若90DCF Ð=°,E 为BD 上一点,且45DEF Ð=°,(3)小东经过研究发现:“当点D 在AB 边上运动时,DE 的长度不变,是个定值.”你认为小东的结论是否正确,如果正确,请求出这个定值;如不正确,说明理由(4)若BF =sin B 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上学期期中考试数学试卷
友情提示:
亲爱的同学,你好!今天是展示你才能的时候了,只要你仔细审题、认真答题,
把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力!
一、细心填一填:(每小题2分,共20分)
1.若二次根式1
2-
x有意义,则x的取值必须满足的条件是___________________.
2.一元二次方程0
2
3
22=
-
-x
x的二次项系数是___一次项系数是___常数项是______.
3.若b<0,化简3
ab
-的结果是 .
4.⑴2
2___)
(
9
6+
=
+
+x
x
x⑵计算:=
⨯100
2
1
_____________.
5.已知2是方程0
6
2=
-
+kx
x的一个根,则另一个根是______,k的值是________.
6.已知△ABC是等边三角形,O为△ABC的三条中线的交点,△ABC以O为旋转中心,
按顺时针方向至少旋转________与原来的三角形重合.
7.若点P(m,2)与点Q(3,n)关于X轴对称,则m=__________,n=______________.
8.已知圆锥的半径是5cm,母线长是13cm,则圆锥的侧面积为____________.
9.两圆的半径分别为3cm和4cm,圆心距为5cm,则两圆的位置关系为______.
10.如图,一条公路的转弯处是一段圆弧(图中的AB弧),
点O是这段弧的圆心,AB=120m,C是AB弧是一点,
OC⊥AB于D,CD=20m,则该弯路的半径为.
二、精心选一选:(每小题2分,共20分)
11.下列二次根式中,是最简二次根式的个数有()
A 1个
B 2个
C 3个
D 4个
12.一元二次方程0
9
2=
-
x的根是( )
A、x=3
B、x=4
C、x
1
=3,x
2
=-3 D、x
1
=3,x
2
=-3
13.计算:)2
7
)(
2
7
(-
+的结果是( )
A、5
3 B、5 C、5 D、5
-
14.将方程0
9
8
2=
+
+x
x左边变成完全平方式后,方程是()
A、25
)4
(2=
+
x B、7
)4
(2=
+
x C、9
)4
(2-
=
+
x D、7
)4
(2-
=
+
x
15.下列图案都是由字母“m”经过变形、组合而成的.其中不是中心对称图形的是()
16)
A B C D.
3
2
17.在等边三角形,平行四边形,矩形,菱形,正方形,圆,正五边形,正六边形中,
是中心对称图形但不是轴对称图形的有()
A 1个
B 2个
C 3个
D 4个
18.关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值是()
A、任意实数
B、m≠1
C、m≠-1
D、m>-1
19. 如图,A、B、C是圆O上的三个点,若∠AOC=100°则∠ABC的度数是()
A 80°
B 130°
C 200°
D 150°
20.如图,在△ABC中,∠C=90°,BC=3,AC=4,则它的内切圆半径是()
A.
2
3B.
3
2
C.2 D.1
三、认真答一答:(共60分)
21. 计算(8分)
(1)
1
4(2)3)2
22.解方程(8分)
(1) 2430
x x
--= (2) 2
(3)2(3)0
x x x
-+-=
23.如图,已知△ABC和点O,画出与△ABC关于点O对称的△C
B
A'
'
'.(5分)
O
A
B
C
D
E
F
D
C
B
A
O
7
4
A
F
C
B
24. 四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图所示,如
果AF=4,AB=7,(6分) 求:(1)指出旋转中心和旋转角度 (2)求DE 的长度
(3)BE 与DF 的位置关系如何?
25.如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上的两点,并且AC=BD 。

求证:OC=OD 。

(8分)
26.如图,已知AB 为⊙O 的直径,CE 切⊙O 于C 点,过B 点的直线BD 交直线CE 于D 点,如果BC 平分∠ABD 。

求证:BD ⊥CE 。

(8分)
27.莆田国货商场销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元。

为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。

经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件。

要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少?(8分)
28. “国运兴衰,系于教育”图中给出了我国从1998─2002年每年教育经费投入的情况.(9分)
(1)由图可见,1998─2002年的五年内,我国教育经费投入呈现出_______趋势;
(2)根据图中所给数据,求我国从1998年到2002年教育经费的年平均数; (3)如果我国的教育经费从2002年的
5480亿元,增加到2004年7891
亿元,那么这两年的教育经费平均年增长率为多少?(结果精确到0.01
)。

相关文档
最新文档