随机信号处理笔记之匹配滤波器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 随机信号处理笔记:匹配滤波器
1 随机信号处理笔记:匹配滤波器
1.1 线性滤波器输出端信噪比
1.2 匹配滤波器的传输函数和冲激响应
1.2.1 复函数的施瓦兹不等式
1.2.2 传输函数求解
1.3 匹配滤波器的性质
1.3.1 匹配滤波器的最大峰值信噪比
1.3.2 匹配滤波器的幅频特性相频特性
1.3.3 匹配滤波器的物理可实现性
1.3.4 输出信号和噪声
1.3.5 匹配滤波器的时延适应性
1.3.6 匹配滤波器的频移不适应性
1.3.7 输出信号频谱与输入信号频谱关系
1.4 匹配滤波器的信号处理SNR增益
1.4.1 matlab仿真匹配滤波增益
1.4.1.1 理论值:
1.4.1.2 仿真图片:
1.4.1.3 匹配滤波增益:
1.4.1.4 仿真程序:
引言
无线电设备在传输信号时必定伴有噪声。
通常,用信号和噪声的功率之比
表征噪声对信号传输的影响。
匹配滤波器理论至今仍是信号检测理论的重要组成部分。
匹配滤波器(matched filter):白噪声背景中,按照最大信噪比准则,获得最大输出信噪比的线性滤波器。
1.1 线性滤波器输出端信噪比
噪声是零均值的高斯平稳白噪声。
其功率谱密度为常量,即:
噪声的自相关函数:
信号的频谱为:
经过该线性滤波器后,输出信号:
输出噪声的功率谱密度:
进而,输出噪声的平均功率为:
最后可得到线性滤波器输出端的瞬时信噪比公式:
输出信号的瞬时功率
输出噪声的平均功率
假设,在时刻,线性滤波器输出端输出最大信噪比。
此时有:
输出信号的瞬时功率
输出噪声的平均功率
1.2 匹配滤波器的传输函数和冲激响应
由式(8)可知,线性滤波器输出的峰值信噪比随系统传输函数
变化而变化。
为寻求最佳的传输函数,需要利用复函数的施瓦茨(Schwartz)不等式求解。
1.2.1 复函数的施瓦兹不等式
假设和都是实变量的复函数,则有如下不等式成立:
当且仅当,不等式取等号。
(为常数)
1.2.2 传输函数求解
令,则有:
将式(8)利用施瓦茨不等式改写为:
根据巴塞瓦尔能量定理,有:
其中,:信号输入能量。
最终得到如下关系式:
故,线性滤波器的输出最大信噪比为:。
(是白噪声的单边功率谱密度)
然后根据不等式取等号的条件,得到线性系统的传输函数:
注:转化过程应用了复函数运算重要的性质:复函数乘积的共轭等于各自共轭的乘积。
即:(A、B均为复数)
进而利用傅里叶反变换得到线性系统的冲激函数:
对于实函数来说,
匹配滤波器的冲激响应是输入信号关于纵轴镜像对称后,再沿时间轴向右平移。
1.3 匹配滤波器的性质
1.3.1 匹配滤波器的最大峰值信噪比
在所有的线性滤波器中,匹配滤波器能给出最大的峰值信噪比
,只取决于输入信号的能量和白噪声的单边功率谱密度。
与输入信号的形状和噪声分布规律无关。
当白噪声的单边功率谱密度确定时,提高信噪比的唯一办法是提高输入信号的能量。
输入信号能量,因此增大输入信号能量的方法有:
令
输入信号的自相关函数:
故,输出信号与输入信号的自相关函数有如下关系:
由此,匹配滤波器可以看作是输入信号的自相关函数的相关器。
1.3.5 匹配滤波器的时延适应性
假设,输入信号有时间延迟,则输入信号为:。
时延输入信号对应的频谱为:
对应的传输函数为:
设,是输入信号输出最大信噪比的时刻,是输入信号输出最大信噪比的时刻。
令,则。
因此,对于时延信号来说,原信号的匹配滤波器能对其进行匹配滤波,只是最大信噪比出现的时刻延迟。
1.3.6 匹配滤波器的频移不适应性
设,频移量为的信号频谱为:
对应的匹配滤波器的传输函数为:
与不相等,因此不能进行很好地匹配滤波。
这种现象在雷达中称作“多普勒敏感现象”
1.3.7 输出信号频谱与输入信号频谱关系
1.4 匹配滤波器的信号处理SNR增益
结论:
匹配滤波器处理的信噪比增益信号的有效时宽压缩比
信号的带宽压缩比
信号的有效时宽带宽积在雷达信号处理中有如下的结论:
1. 雷达的信号处理SNR增益=雷达接收机的带宽(信号带宽)相参处理总
有效时宽
2. 相参处理总有效时宽内SNR增益=脉冲内匹配滤波SNR增益+脉冲间相干
处理处理SNR增益(这里的“+”主要是引用了分贝(dB)的概念,如果不用分
贝的概念,此处应改为“”)
以脉冲雷达为例简单介绍几个相关概念:
假设雷达接收机处理的脉冲个数为,发射信号带宽为。
1. 信号的总时宽,也即相参处理时间(CPI)=;
2. 信号的有效总时宽=;
3. 相参处理总增益=;
4. 脉冲内匹配滤波增益=;
5. 脉冲间相干处理增益=;
1.4.1 matlab仿真匹配滤波增益
以伪随机相位编码脉冲雷达为例进行仿真,具体仿真参数如下:
参数数值
m序列长度63
码频10MHz
占空比10%
带宽10MHz
处理脉冲个数10
目标距离100m
注:关于“m序列”的相关知识,可以去阅读我之前写的博文,标题为:matlab生成m序列的方法。
1.4.1.1 理论值:
1. 总信号处理SNR增益=;(
)
2. 脉冲内匹配滤波SNR增益=;
3. 脉冲间相干处理增益=。
注:这里仅做脉冲内匹配滤波的仿真。
更详细的仿真可以参考我上传的资源,里面有详细的实验报告和仿真代码,这里就不再赘述。
(资源链接:https:///download/qq_43045275/1
2386580)
1.4.1.2 仿真图片:
1.4.1.3 匹配滤波增益:
由此可知,仿真得到的信噪比增益和理论值基本吻合。
1.4.1.4 仿真程序:。