2019年四川中考数学试卷含答案

合集下载

四川省乐山市2019中考数学试卷(解析版)

四川省乐山市2019中考数学试卷(解析版)

2019年四川省乐山市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.-3的绝对值是()A. 3B. −3C. 13D. −132.下列四个图形中,可以由图通过平移得到的是()A. B. C. D.3.小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是()A. 15B. 14C. 13D. 124.-a一定是()A. 正数B. 负数C. 0D. 以上选项都不正确5.如图,直线a∥b,点B在a上,且AB⊥BC.若∠1=35°,那么∠2等于()A. 45∘B. 50∘C. 55∘D. 60∘6.不等式组{2x−6<3xx+25−x−14≥0的解集在数轴上表示正确的是()A. B.C. D.7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A. 1,11B. 7,53C. 7,61D. 6,508.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A. 16B. 13C. 15D. 149.如图,在边长为√3的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A. √3−1B. 1C. 12D. √3210.如图,抛物线y=14x2-4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A. 3B. √412C. 72D. 4二、填空题(本大题共6小题,共18.0分)11.-12的相反数是______.12.某地某天早晨的气温是-2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是______℃.13.若3m=9n=2.则3m+2n=______.14.如图,在△ABC中,∠B=30°,AC=2,cos C=35.则AB边的长为______.15.如图,点P是双曲线C:y=4x(x>0)上的一点,过点P作x轴的垂线交直线AB:y=12x-2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是______.16.如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD的周长是______.三、解答题(本大题共10小题,共102.0分)17.计算:(1)-1-(2019-π)0+2sin30°.218.如图,点A、B在数轴上,它们对应的数分别为-2,x,且点A、B到原点的距离x+1相等.求x的值.19.如图,线段AC、BD相交于点E,AE=DE,BE=CE.求证:∠B=∠C.20. 化简:x 2−2x+1x 2−1÷x 2−xx+1.21. 如图,已知过点B (1,0)的直线l 1与直线l 2:y =2x +4相交于点P (-1,a ).(1)求直线l 1的解析式;(2)求四边形PAOC 的面积.22. 某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有______名男生,______名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是______;(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.23.已知关于x的一元二次方程x2-(k+4)x+4k=0.(1)求证:无论k为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x1、x2,满足1x1+1x2=34,求k的值;(3)若Rt△ABC的斜边为5,另外两条边的长恰好是方程的两个根x1、x2,求Rt△ABC 的内切圆半径.24.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.25.在△ABC中,已知D是BC边的中点,G是△ABC的重心,过G点的直线分别交AB、AC于点E、F.(1)如图1,当EF∥BC时,求证:BEAE +CFAF=1;(2)如图2,当EF和BC不平行,且点E、F分别在线段AB、AC上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E在AB的延长线上或点F在AC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.26.如图,已知抛物线y=a(x+2)(x-6)与x轴相交于A、B两点,与y轴交于C点,.设抛物线的顶点为M,对称轴交x轴于点N.且tan∠CAB=32(1)求抛物线的解析式;(2)P为抛物线的对称轴上一点,Q(n,0)为x轴上一点,且PQ⊥PC.①当点P在线段MN(含端点)上运动时,求n的变化范围;②当n取最大值时,求点P到线段CQ的距离;③当n取最大值时,将线段CQ向上平移t个单位长度,使得线段CQ与抛物线有两个交点,求t的取值范围.答案和解析1.【答案】A【解析】解:|-3|=-(-3)=3.故选:A.根据一个负数的绝对值等于它的相反数得出.考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】D【解析】解:∵只有D的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:D.根据平移的性质解答即可.本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.【答案】C【解析】解:在-1,0,1,2,3,4这六个数中,满足不等式x+1<2的有-1、0这两个,所以满足不等式x+1<2的概率是=,故选:C.找到满足不等式x+1<2的结果数,再根据概率公式计算可得.本题主要考查概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.4.【答案】D【解析】解:-a中a的符号无法确定,故-a的符号无法确定.故选:D.利用正数与负数定义分析得出答案.此题主要考查了正数和负数,正确理解正负数的定义是解题关键.解:∵a∥b,∠1=35°,∴∠BAC=∠1=35°.∵AB⊥BC,∴∠2=∠BCA=90°-∠BAC=55°.故选:C.先根据∠1=35°,a∥b求出∠BAC的度数,再由AB⊥BC即可得出答案.本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.6.【答案】B【解析】解:,解①得:x>-6,解②得:x≤13,故不等式组的解集为:-6<x≤13,在数轴上表示为:.故选:B.分别解不等式进而得出不等式组的解集,进而得出答案.此题主要考查了解一元一次不等式组,正确解不等式是解题关键.7.【答案】B【解析】解:设有x人,物价为y,可得:,解得:,故选:B.设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.解:如图,设BC=x,则CE=1-x易证△ABC∽△FEC∴===解得x=∴阴影部分面积为:S△ABC=××1=故选:A.如图,易证△ABC∽△FEC,可设BC=x,只需求出BC即可.本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答9.【答案】A【解析】解:在Rt△ABE中,∠B=30°,AB=,∴BE=.根据折叠性质可得BF=2BE=3.∴CF=3-.∵AD∥CF,∴△ADG∽△FCG.∴.设CG=x,则,解得x=-1.故选:A.先利用30°直角三角形的性质,求出BE,再根据折叠性质求得BF,从而得到CF长,最后根据△ADG∽△FCG得出与CG有关的比例式,即可求解CG长.本题主要考查了菱形的性质、相似三角形的判定和性质、折叠的性质,解题的关键是找到与CG相关的三角形,利用相似知识求解.10.【答案】C【解析】解:连接BP,如图,当y=0时,x2-4=0,解得x1=4,x2=-4,则A(-4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.连接BP,如图,先解方程x2-4=0得A(-4,0),B(4,0),再判断OQ为△ABP 的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.11.【答案】12【解析】解:的相反数是,故答案为:.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.【答案】-3【解析】解:-2+6-7=-3,故答案为:-3由题意列出算式进行计算求解即可.本题主要考查有理数的加减法,正确列出算式是解题的关键.13.【答案】4【解析】解:∵3m=32n=2,∴3m+2n=3m•32n=2×2=4,故答案为:4根据幂的乘方与积的乘方进行解答即可.此题考查幂的乘方与积的乘方,关键是根据幂的乘方与积的乘方解答.14.【答案】165【解析】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,COSC=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15.【答案】3【解析】解:∵PQ⊥x轴,∴设P(x,),则Q(x,x-2),∴PQ=-x+2,∴S△POQ=(-+2)•x=-(x-2)2+3,∵-<0,∴△POQ面积有最大值,最大值是3,故答案为3.设P(x,),则Q(x,x-2),得到PQ=-x+2,根据三角形面积公式得到S△POQ=-(x-2)2+3,根据二次函数的性质即可求得最大值.本题考查了一次函数图象上点的坐标特征,二次函数的性质,反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.【答案】10+2√3【解析】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×=2,BC=5,AD=7-4=3,当EF平移到点F与点D重合时,如右图所示,∵∠EFB=60°,∴∠DEC=60°,∵DE=CE=2,∴△DEC为等边三角形,∴CD=2.∴四边形ABCD的周长是:AB+BC+AD+CD=2+5+3+2=10+2,故答案为:10+2.根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】解:原式=2−1+2×12,=2-1+1,=2.【解析】根据实数的混合计算解答即可.此题考查实数的运算,关键是根据实数的混合计算解答.18.【答案】解:根据题意得:xx+1=2,去分母,得x=2(x+1),去括号,得x=2x+2,解得x=-2经检验,x=-2是原方程的解.【解析】根据题意得出分式方程解答即可.此题考查解分式方程,关键是根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答.19.【答案】证明:在△AEB和△DEC中,∵{AE=DE∠AEB=∠DEC BE=CE∴△AEB≌△DEC,∴∠B=∠C.【解析】根据AE=DE,∠AEB=∠DEC,BE=CE,证出△AEB≌△DEC,即可得出∠B=∠C.此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.20.【答案】解:原式=(x−1)2(x+1)(x−1)÷x(x−1)x+1,=(x−1)(x+1)×x+1x(x−1), =1x .【解析】首先将分式的分子与分母分解因式,进而约分得出答案.此题主要考查了分式的乘除运算,正确分解因式是解题关键.21.【答案】解:(1)∵点P (-1,a )在直线l 2:y =2x +4上,∴2×(-1)+4=a ,即a =2,则P 的坐标为(-1,2),设直线l 1的解析式为:y =kx +b (k ≠0),那么{−k +b =2k+b=0,解得:{b =1k=−1.∴l 1的解析式为:y =-x +1.(2)∵直线l 1与y 轴相交于点C ,∴C 的坐标为(0,1),又∵直线l 2与x 轴相交于点A ,∴A 点的坐标为(-2,0),则AB =3,而S 四边形PAOC =S △PAB -S △BOC ,∴S 四边形PAOC =12×3×2−12×1×1=52.【解析】(1)由点P (-1,a )在直线l 2上,利用一次函数图象上点的坐标特征,即可求出a 值,再利用点P 的坐标和点B 的坐标可求直线l 1的解析式;(2)根据面积差可得结论.本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征和三角形的面积,在函数的图象上的点,就一定满足函数解析式.并利用数形结合的思想解决问题.22.【答案】40 40 27【解析】解:(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人)故答案为40,40;(2)女生成绩27的人数最多,所以众数为27,故答案为27;(3)(人),七年级720名学生中成绩为优秀的学生人数大约是396人.(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人);(2)女生成绩27的人数最多,所以众数为27;(3)(人).此题同时考查了条形统计图,考查了利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、认真分析、认真研究统计图,只有这样才能作出正确的判断,准确地解决问题.23.【答案】(1)证明:∵△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,∴无论k为任何实数时,此方程总有两个实数根;(2)解:由题意得:x1+x2=k+4,x1•x2=4k,∵1 x1+1x2=34,∴x1+x2 x1⋅x2=34,即k+44k =34,解得:k=2;(3)解:解方程x2-(k+4)x+4k=0得:x1=4,x2=k,根据题意得:42+k2=52,即k=3,设直角三角形ABC的内切圆半径为r,如图,由切线长定理可得:(3-r)+(4-r)=5,∴直角三角形ABC的内切圆半径r=3+4−52=1.【解析】(1)根据根的判别式△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,即可得到结论;(2)由题意得到x1+x2=k+4,x1•x2=4k,代入,解方程即可得到结论;(3)解方程x2-(k+4)x+4k=0得到x1=4,x2=k,根据题意根据勾股定理列方程得到k=3,设直角三角形ABC的内切圆半径为r,根据切线长定理即可得到结论.本题考查了三角形的内切圆和内心,切线的性质,一元二次方程根的判别式,一元二次方程根与系数的关系,熟练掌握切线长定理是解题的关键.24.【答案】(1)证明:如图,连结OB,则OP=OB,∴∠OBP=∠OPB=∠CPA,AB=AC,∴∠ACB=∠ABC,而OA⊥l,即∠OAC=90°,∴∠ACB+∠CPA=90°,即∠ABP+∠OBP=90°,∴∠ABO=90°,OB⊥AB,故AB是⊙O的切线;(2)解:由(1)知:∠ABO=90°,而OA=5,OB=OP=3,由勾股定理,得:AB=4,过O作OD⊥PB于D,则PD=DB,∵∠OPD=∠CPA,∠ODP=∠CAP=90°,∴△ODP∽△CAP,∴PD PA =OPCP,又∵AC=AB=4,AP=OA-OP=2,∴PC=√AC2+AP2=2√5,∴PD=OP⋅PACP =35√5,∴BP=2PD=65√5.【解析】(1)连接OB,由AB=AC得∠ABC=∠ACB,由OP=OB得∠OPB=∠OBP,由OA⊥l得∠OAC=90°,则∠ACB+∠APC=90°,而∠APC=∠OPB=∠OBP,所以∠OBP+∠ABC=90°,即∠OBA=90°,于是根据切线的判定定理得到直线AB是⊙O的切线;(2)根据勾股定理求得AB=4,PC=2,过O作OD⊥PB于D,则PD=DB,通过证得△ODP∽△CAP,得到,求得PD,即可求得PB.本题考查了切线的判定和性质,勾股定理的应用研究三角形相似的判定和性质,熟练掌握性质定理是解题的关键.25.【答案】(1)证明:∵G是△ABC重心,∴DG AG =12,又∵EF∥BC,∴BE AE =DGAG=12,CFAF=DGAG=12,则BEAE +CFAF=12+12=1;(2)解:(1)中结论成立,理由如下:如图2,过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,则△BME∽△ANE,△CMF∽△ANF,BE AE =BMAN,CFAF=CMAN,∴BE AE +CFAF=BMAN+CMAN=BM+CMAN,又∵BM+CM=BM+CD+DM,而D是BC的中点,即BD=CD,∴BM+CM=BM+BD+DM=D M+DM=2DM,∴BE AE +CFAF=2DMAN,又∵DMAN =DGAG=12,∴BE AE +CFAF=2×12=1,故结论成立;(3)解:(1)中结论不成立,理由如下:当F点与C点重合时,E为AB中点,BE=AE,点F在AC的延长线上时,BE>AE,∴BE AE >1,则BEAE+CFAF>1,同理:当点E在AB的延长线上时,BEAE +CFAF>1,∴结论不成立.【解析】(1)根据三角形重心定理和平行线分线段成比例解答即可;(2)过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,得出△BME∽△ANE,△CMF∽△ANF,得出比例式解答即可;(3)分两种情况:当F点与C点重合时,E为AB中点,BE=AE;点F在AC的延长线上时,BE>AE,得出,则,同理:当点E在AB的延长线上时,,即可得出结论.此题是相似三角形综合题,考查了相似三角形的判定与性质、三角形重心定理、平行线分线段成比例定理等知识;本题综合性强,熟练掌握三角形的重心定理和平行线分线段成比例定理,证明三角形相似是解题的关键.26.【答案】解:(1)根据题意得:A(-2,0),B(6,0),在Rt△AOC中,∵tan∠CAO=COAO =32,且OA=2,得CO=3,∴C(0,3),将C点坐标代入y=a(x+2)(x-6)得:a=−14,抛物线解析式为:y=−14(x+2)(x−6);整理得:y=-14x2+x+3故抛物线解析式为:得:y=-14x2+x+3;(2)①由(1)知,抛物线的对称轴为:x =2,顶点M (2,4),设P 点坐标为(2,m )(其中0≤m ≤4),则PC 2=22+(m -3)2,PQ 2=m 2+(n -2)2,CQ 2=32+n 2,∵PQ ⊥PC ,∴在Rt △PCQ 中,由勾股定理得:PC 2+PQ 2=CQ 2,即22+(m -3)2+m 2+(n -2)2=32+n 2,整理得:n =12(m 2−3m +4)=12(m −32)2+78(0≤m ≤4),∴当m =32时,n 取得最小值为78;当m =4时,n 取得最大值为4,所以,78≤n ≤4;②由①知:当n 取最大值4时,m =4,∴P (2,4),Q (4,0),则PC =√5,PQ =2√5,CQ =5,设点P 到线段CQ 距离为h ,由S △PCQ =12CQ ⋅ℎ=12PC ⋅PQ ,得:ℎ=PC⋅PQ CQ =2,故点P 到线段CQ 距离为2;③由②可知:当n 取最大值4时,Q (4,0),∴线段CQ 的解析式为:y =−34x +3,设线段CQ 向上平移t 个单位长度后的解析式为:y =−34x +3+t ,当线段CQ 向上平移,使点Q 恰好在抛物线上时,线段CQ 与抛物线有两个交点,此时对应的点Q '的纵坐标为:−14(4+2)(4−6)=3,将Q '(4,3)代入y =−34x +3+t 得:t =3,当线段CQ 继续向上平移,线段CQ 与抛物线只有一个交点时,联解{y =−14(x +2)(x −6)y =−34x +3+t 得:−14(x +2)(x −6)=−34x +3+t ,化简得:x 2-7x +4t =0,由△=49-16t =0,得t =4916,∴当线段CQ 与抛物线有两个交点时,3≤t <4916.【解析】(1)由函数解析式,可以求出点A 、B 的坐标分别为(-2,0),(6,0),在Rt △OAC 中由tan ∠CAB=,可以求出点C 的坐标为(0,3),进而可以求出抛物线的解析式;(2)①抛物线的对称轴为:x=2,顶点M (2,4),在Rt △PCQ 中,由勾股定理得:PC 2+PQ 2=CQ 2,把三角形三边长用点P ,Q 的坐标表达出来,整理得:,利用0≤m≤4,求出n 的取值范围;②由,得:,求出点P 到线段CQ 距离为2;③设线段CQ 向上平移t 个单位长度后的解析式为:,联立抛物线方程,可求出x 2-7x+4t=0,由△=49-16t=0,得, ∴当线段CQ 与抛物线有两个交点时,主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,处理问题和解决问题.。

四川省成都市2019年中考数学试卷(Word版、解析版)

四川省成都市2019年中考数学试卷(Word版、解析版)

2019年四川省成都市中考数学试卷一、选择题(本大题共10小题,共30.0分)1. 比-3大5的数是( )A. −15B. −8C. 2D. 82. 如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A. B.C. D.3. 2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M 87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为( )A. 5500×104B. 55×106C. 5.5×107D. 5.5×1084. 在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为( )A. (2,3)B. (−6,3)C. (−2,7)D. (−2.−1)5. 将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为( )A. 10∘B. 15∘C. 20∘D.30∘6. 下列计算正确的是( )A. 5ab −3a =2bB. (−3a 2b)2=6a 4b 2C. (a −1)2=a 2−1D. 2a 2b ÷b =2a 27. 分式方程x−5x−1+2x =1的解为( )A. x =−1B. x =1C. x =2D. x =−28. 某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是( )A. 42件B. 45件C. 46件D. 50件9. 如图,正五边形ABCDE 内接于⊙O ,P 为DE⏜上的一点(点P 不与点D 重命),则∠CPD 的度数为( )A. 30∘B. 36∘C. 60∘D. 72∘10.如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是()A. c<0B. b2−4ac<0C. a−b+c<0D. 图象的对称轴是直线x=3二、填空题(本大题共9小题,共36.0分)11.若m+1与-2互为相反数,则m的值为______.12.如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为______.13.已知一次函数y=(k-3)x+1的图象经过第一、二、四象限,则k的取值范围是______.14.如图,▱ABCD的对角线AC与BD相交于点O,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AO,AB于点M,N;②以点O为圆心,以AM长为半径作弧,交OC于点M';③以点M'为圆心,以MN长为半径作弧,在∠COB内部交前面的弧于点N';④过点N'作射线ON'交BC于点E.若AB=8,则线段OE的长为______.15.估算:√37.7≈______(结果精确到1)16.已知x1,x2是关于x的一元二次方程x2+2x+k-1=0的两个实数根,且x12+x22-x1x2=13,则k的值为______.17.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概,则盒子中原有的白球的个数为______率为5718.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为______.19.如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点为“整点”,已知点A的坐标为(5,0),点B在x轴的上方,△OAB的面积为15,则△OAB2内部(不含边界)的整点的个数为______.三、计算题(本大题共1小题,共6.0分)20. 先化简,再求值:(1-4x+3)÷x 2−2x+12x+6,其中x =√2+1.四、解答题(本大题共8小题,共78.0分)21. (1)计算:(π-2)0-2cos30°-√16+|1-√3|. (2)解不等式组:{3(x −2)≤4x −5,①5x−24<1+12x .②22. 随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.23.2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)24.如图,在平面直角坐标系xOy中,一次函数y=1x+5和y=-2x的图象相交于点2A,反比例函数y=k的图象经过点A.x(1)求反比例函数的表达式;(2)设一次函数y =12x +5的图象与反比例函数y =kx 的图象的另一个交点为B ,连接OB ,求△ABO 的面积.25. 如图,AB 为⊙O 的直径,C ,D 为圆上的两点,OC ∥BD ,弦AD ,BC 相交于点E .(1)求证:AC⏜=CD ⏜; (2)若CE =1,EB =3,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P ,过点P 作PQ ∥CB 交⊙O于F ,Q 两点(点F 在线段PQ 上),求PQ 的长.26. 随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系.(1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?27. 如图1,在△ABC 中,AB =AC =20,tan B =34,点D 为BC 边上的动点(点D 不与点B ,C 重合).以D 为顶点作∠ADE =∠B ,射线DE 交AC 边于点E ,过点A 作AF ⊥AD 交射线DE 于点F ,连接CF .(1)求证:△ABD ∽△DCE ;(2)当DE ∥AB 时(如图2),求AE 的长;(3)点D 在BC 边上运动的过程中,是否存在某个位置,使得DF =CF ?若存在,求出此时BD 的长;若不存在,请说明理由.28.如图,抛物线y=ax2+bx+c经过点A(-2,5),与x轴相交于B(-1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.答案和解析1.【答案】C【解析】解:-3+5=2.故选:C.比-3大5的数是-3+5,根据有理数的加法法则即可求解.本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.2.【答案】B【解析】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【答案】C【解析】解:科学记数法表示:5500万=55000000=5.5×107故选:C.根据科学记数法的表示形式即可本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.【答案】A【解析】解:点(-2,3)向右平移4个单位长度后得到的点的坐标为(2,3).故选:A.把点(-2,3)的横坐标加4,纵坐标不变得到点(-2,3)平移后的对应点的坐标.本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.5.【答案】B【解析】解:∵AB∥CD,∴∠1=∠ADC=30°,又∵等腰直角三角形ADE中,∠ADE=45°,∴∠1=45°-30°=15°,故选:B.根据平行线的性质,即可得出∠1=∠ADC=30°,再根据等腰直角三角形ADE中,∠ADE=45°,即可得到∠1=45°-30°=15°.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.6.【答案】D【解析】解:A选项,5ab与3b不属于同类项,不能合并,选项错误,B选项,积的乘方(-3a2b)2=(-3)2a4b2=9a4b2,选项错误,C选项,完全平方公式(a-1)2=a2-2a+1,选项错误D选项,单项式除法,计算正确故选:D.注意到A选项中,5ab与3b不属于同类项,不能合并;B选项为积的乘方,C选项为完全平方公式,D选项为单项式除法,运用相应的公式进行计算即可.此题主要考查整式的混合运算,熟记整式的各个公式并掌握计算的步骤是解题的关键.7.【答案】A【解析】解:方程两边同时乘以x(x-1)得,x(x-5)+2(x-1)=x(x-1),解得x=-1,把x=-1代入原方程的分母均不为0,故x=-1是原方程的解.故选:A.先把整式方程化为分式方程求出x的值,再代入最简公分母进行检验即可.此题主要考查了解分式方程,注意,解分式方程时需要验根.8.【答案】C【解析】解:将数据从小到大排列为:42,45,46,50,50,∴中位数为46,故选:C.将数据从小到大排列,根据中位数的定义求解即可.本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,9.【答案】B【解析】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】D【解析】解:A.由于二次函数y=ax2+bx+c的图象与y轴交于正半轴,所以c>0,故A错误;B.二次函数y=ax2+bx+c的图象与x轴由2个交点,所以b2-4ac>0,故B错误;C.当x=-1时,y<0,即a-b+c<0,故C错误;D.因为A(1,0),B(5,0),所以对称轴为直线x==3,故D正确.故选:D.二次函数y=ax2+bx+c(a≠0)①常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).②抛物线与x轴交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.11.【答案】1【解析】解:根据题意得:m+1-2=0,解得:m=1,故答案为:1.根据“m+1与-2互为相反数”,得到关于m的一元一次方程,解之即可.本题考查了解一元一次方程和相反数,正确掌握相反数的定义和一元一次方程的解法是解题的关键.12.【答案】9【解析】解:∵AB=AC,∴∠B=∠C,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE=9,故答案为:9.利用等腰三角形的性质和题目的已知条件证得△BAD≌△CAE后即可求得CE的长.本题考查了等腰三角形的性质,解题的关键是利用已知和隐含条件证得三角形全等.13.【答案】k<3【解析】解:y=(k-3)x+1的图象经过第一、二、四象限,∴k-3<0,∴k<3;故答案为k<3;根据y=kx+b,k<0,b>0时,函数图象经过第一、二、四象限,则有k-3<0即可求解;本题考查一次函数图象与系数的关系;熟练掌握一次函数y=kx+b,k与b对函数图象的影响是解题的关键.14.【答案】4【解析】解:由作法得∠COE=∠OAB,∴OE∥AB,∵四边形ABCD为平行四边形,∴OC=OA,∴CE=BE,∴OE为△ABC的中位线,∴OE=AB=×8=4.故答案为4.利用作法得到∠COE=∠OAB,则OE∥AB,利用平行四边形的性质判断OE为△ABC的中位线,从而得到OE的长.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的性质.15.【答案】6【解析】解:∵,∴,∴≈6.故答案为:6根据二次根式的性质解答即可.本题主要考查了无理数的估算,熟练掌握二次根式的性质是解答本题的关键.16.【答案】-2【解析】解:根据题意得:x1+x2=-2,x1x2=k-1,+-x1x2=-3x1x2=4-3(k-1)=13,k=-2,故答案为:-2.根据“x1,x2是关于x的一元二次方程x2+2x+k-1=0的两个实数根,且x12+x22-x1x2=13”,结合根与系数的关系,列出关于k的一元一次方程,解之即可.本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.17.【答案】20【解析】解:设盒子中原有的白球的个数为x个,根据题意得:=,解得:x=20,经检验:x=20是原分式方程的解;∴盒子中原有的白球的个数为20个.故答案为:20;设盒子中原有的白球的个数为x个,根据题意列出分式方程,解此分式方程即可求得答案.此题考查了概率公式的应用、分式方程的应用.用到的知识点为:概率=所求情况数与总情况数之比.18.【答案】√3【解析】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,∵AB∥A′B′,AB=A′B′,AB=CD,AB∥CD,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是矩形,∠B′A′C=30°,∴B′C=,A′C=,∴A'C+B'C的最小值为,故答案为:.根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,推出四边形A′B′CD是矩形,∠B′A′C=30°,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,菱形的性质,矩形的判定和性质,解直角三角形,平移的性质,正确的理解题意是解题的关键.19.【答案】4或5或6【解析】解:设B(m,n),∵点A的坐标为(5,0),∴OA=5,∵△OAB的面积=5•n=,∴n=3,结合图象可以找到其中的一种情况:(以一种为例)当2<m<3时,有6个整数点;当3<m<时,有5个整数点;当m=3时,有4个整数点;可知有6个或5个或4个整数点;故答案为4或5或6;根据面积求出B点的纵坐标是3,结合平面直角坐标系,多画些图可以观察到整数点的情况;本题考查三角形的面积与平面直角坐标系中点的关系;能够结合图象,多作图是解题的关键.20.【答案】解:原式=(x+3x+3−4x+3)×2(x+3)(x−1)2=x−1x+3×2(x+3)(x−1)2=2x−1将x =√2+1代入原式=√2+1−1=√2 【解析】可先对进行通分,可化为,再利用除法法则进行计算即可 此题主要考查了方程解的定义和分式的运算,把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.21.【答案】解:(1)原式=1-2×√32-4+√3-1, =1-√3-4+√3-1,=-4.(2){3(x −2)≤4x −5,①5x−24<1+12x .② 由①得,x ≥-1,由②得,x <2,所以,不等式组的解集是-1≤x <2.【解析】(1)本题涉及零指数幂、平方根、绝对值、特殊角的三角函数4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. (2)先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.【答案】解:(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90-24-18-12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇=48°,形圆心角的度数是:360°×1290即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;=560(人),(3)2100×2490答:该校对在线阅读最感兴趣的学生有560人.【解析】(1)根据在线答题的人数和所占的百分比即可求得本次调查的人数,然后再求出在线听课的人数,即可将条形统计图补充完整;(2)根据统计图中的数据可以求得扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)根据统计图中的数据可以求得该校对在线阅读最感兴趣的学生人数.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】解:作CE⊥AB于E,则四边形CDBE为矩形,∴CE=AB=20,CD=BE,在Rt△ADB中,∠ADB=45°,∴AB=DB=20,在Rt△ACE中,tan∠ACE=AE,CE∴AE=CE•tan∠ACE≈20×0.70=14,∴CD=BE=AB-AE=6,答:起点拱门CD的高度约为6米.【解析】作CE⊥AB于E,根据矩形的性质得到CE=AB=20,CD=BE,根据正切的定义求出AE,结合图形计算即可.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.24.【答案】解:(1)由{y =12x +5y =−2x 得{y =4x=−2, ∴A (-2,4),∵反比例函数y =k x 的图象经过点A ,∴k =-2×4=-8, ∴反比例函数的表达式是y =-8x ;(2)解{y =−8x y =12x +5得{y =4x=−2或{y =1x=−8, ∴B (-8,1),由直线AB 的解析式为y =12x +5得到直线与x 轴的交点为(-10,0),∴S △AOB =12×10×4-12×10×1=15. 【解析】(1)联立方程求得A 的坐标,然后根据待定系数法即可求得;(2)联立方程求得交点B 的坐标,进而求得直线与x 轴的交点,然后利用三角形面积公式求得即可.本题考查了一次函数和反比例函数的交点问题,通过方程组求得交点坐标是解题的关键.25.【答案】证明:(1)∵OC =OB∴∠OBC =∠OCB∵OC ∥BD∴∠OCB =∠CBD∴∠OBC =∠CBD∴AC⏜=CD ⏜ (2)连接AC ,∵CE=1,EB=3,∴BC=4∵AC⏜=CD⏜∴∠CAD=∠ABC,且∠ACB=∠ACB ∴△ACE∽△BCA∴AC CE =CBAC∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB=√AC2+BC2=2√5∴⊙O的半径为√5(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA=∠BCO=∠CBO,且∠CPB=∠CPA∴△APC∽△CPB∴PA PC =PCPB=ACBC=24=12∴PC=2PA,PC2=PA•PB ∴4PA2=PA×(PA+2√5)∴PA=2√53∴PO =5√53 ∵PQ ∥BC ∴∠CBA =∠BPQ ,且∠PHO =∠ACB =90°∴△PHO ∽△BCA∴AC OH =BC PH =AB PO即2OH =4PH =√55√53=65 ∴PH =103,OH =53∴HQ =√OQ 2−OH 2=2√53∴PQ =PH +HQ =10+2√53 【解析】(1)由等腰三角形的性质和平行线的性质可得∠OBC=∠CBD ,即可证=; (2)通过证明△ACE ∽△BCA ,可得,可得AC=2,由勾股定理可求AB 的长,即可求⊙O 的半径;(3)过点O 作OH ⊥FQ 于点H ,连接OQ ,通过证明△APC ∽△CPB ,可得,可求PA=,即可求PO 的长,通过证明△PHO ∽△BCA ,可求PH ,OH 的长,由勾股定理可求HQ 的长,即可求PQ 的长.本题考查了切线的性质,圆的有关知识,相似三角形的判定和性质,勾股定理,求出PA 的长是本题的关键.26.【答案】解:(1)设函数的解析式为:y =kx +b (k ≠0),由图象可得, {5k +b =5000k+b=7000,解得,{b =7500k=−500,∴y 与x 之间的关系式:y =-500x +7500;(2)设销售收入为w 万元,根据题意得,w =yp =(-500x +7500)(12x +12),即w=-250(x-7)2+16000,∴当x=7时,w有最大值为16000,此时y=-500×7+7500=4000(元)答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元.【解析】(1)根据函数图象上的两点坐标,用待定系数法求出函数的解析式便可;(2)设销售收入为w万元,根据销售收入=销售单价×销售数量和p=x+,列出w与x的函数关系式,再根据函数性质求得结果.本题是一次函数的应用与二次函数的应用的综合题,主要考查了一次函数的实际应用,二次函数的实际应用,待定系数法求函数解析式,求二次函数的最值.关键是正确列出函数解析式.27.【答案】(1)证明:∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE.(2)解:如图2中,作AM⊥BC于M.=3k,在Rt△ABM中,设BM=4k,则AM=BM•tan B=4k×34由勾股定理,得到AB2=AM2+BM2,∴202=(3k)2+(4k)2,∴k=4或-4(舍弃),∵AB=AC,AM⊥BC,∴BC=2BM=2•4k=32,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD ∽△CBA , ∴AB CB =DBAB , ∴DB =AB 2CB =20232=252, ∵DE ∥AB , ∴AE AC =BDBC ,∴AE =AC⋅BD BC =20×25232=12516.(3)点D 在BC 边上运动的过程中,存在某个位置,使得DF =CF .理由:作FH ⊥BC 于H ,AM ⊥BC 于M ,AN ⊥FH 于N .则∠NHM =∠AMH =∠ANH =90°,∴四边形AMHN 为矩形,∴∠MAN =90°,MH =AN , ∵AB =AC ,AM ⊥BC , ∴BM =CM =12BC =12×32=16, 在Rt △ABM 中,由勾股定理,得AM =√AB 2−BM 2=√202−162=12, ∵AN ⊥FH ,AM ⊥BC , ∴∠ANF =90°=∠AMD , ∵∠DAF =90°=∠MAN , ∴∠NAF =∠MAD , ∴△AFN ∽△ADM ,∴AN AM =AFAD =tan ∠ADF =tan B =34, ∴AN =34AM =34×12=9, ∴CH =CM -MH =CM -AN =16-9=7,当DF =CF 时,由点D 不与点C 重合,可知△DFC 为等腰三角形, ∵FH ⊥DC ,∴CD =2CH =14,∴BD =BC -CD =32-14=18,∴点D 在BC 边上运动的过程中,存在某个位置,使得DF =CF ,此时BD =18. 【解析】(1)根据两角对应相等的两个三角形相似证明即可. (2)解直角三角形求出BC ,由△ABD ∽△CBA ,推出=,可得DB===,由DE ∥AB ,推出=,求出AE 即可.(3)点D 在BC 边上运动的过程中,存在某个位置,使得DF=CF .作FH ⊥BC 于H ,AM ⊥BC 于M ,AN ⊥FH 于N .则∠NHM=∠AMH=∠ANH=90°,由△AFN ∽△ADM ,可得==tan ∠ADF=tanB=,推出AN=AM=×12=9,推出CH=CM-MH=CM-AN=16-9=7,再利用等腰三角形的性质,求出CD 即可解决问题.本题属于相似形综合题,考查了新三角形的判定和性质,解直角三角形,锐角三角函数等,等腰三角形的判定和性质知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题. 28.【答案】解:(1)由题意得:{4a −2b +c =5,a −b +c =09a +3b +c =0,解得{a =1b =−2c =−3,∴抛物线的函数表达式为y =x 2-2x -3.(2)∵抛物线与x 轴交于B (-1,0),C (3,0), ∴BC =4,抛物线的对称轴为直线x =1,如图,设抛物线的对称轴与x 轴交于点H ,则H 点的坐标为(1,0),BH =2, 由翻折得C ′B =CB =4,在Rt △BHC ′中,由勾股定理,得C ′H =√C′B 2−BH 2=√42−22=2√3,∴点C′的坐标为(1,2√3),tan∠C′BH=C′HBH =2√32=√3,∴∠C′BH=60°,由翻折得∠DBH=12∠C′BH=30°,在Rt△BHD中,DH=BH•tan∠DBH=2•tan30°=2√33,∴点D的坐标为(1,2√33).(3)取(2)中的点C′,D,连接CC′,∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形.分类讨论如下:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.∵△PCQ,△C′CB为等边三角形,∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°,∴∠BCQ=∠C′CP,∴△BCQ≌△C′CP(SAS),∴BQ=C′P.∵点Q在抛物线的对称轴上,∴BQ=CQ ,∴C′P=CQ=CP,又∵BC′=BC,∴BP垂直平分CC′,由翻折可知BD垂直平分CC′,∴点D在直线BP上,设直线BP的函数表达式为y=kx+b,则{0=−k+b2√33=k+b,解得{k=√33b=√33,∴直线BP的函数表达式为y=√33x+√33.②当点P在x轴的下方时,点Q在x轴下方.∵△PCQ,△C′CB为等边三角形,∴CP=CQ,BC=CC′,∠CC′B=∠QCP=∠C′CB=60°.∴∠BCP=∠C′CQ,∴△BCP≌△C′CQ(SAS),∴∠CBP=∠CC′Q,∵BC′=CC′,C′H⊥BC,∴∠CC′Q=12∠CC′B=30°.∴∠CBP=30°,设BP与y轴相交于点E,在Rt△BOE中,OE=OB•tan∠CBP=OB•tan30°=1×√33=√33,∴点E的坐标为(0,-√33).设直线BP的函数表达式为y=mx+n,则{0=−m+n−√33=n,解得{m=−√33n=−√33,∴直线BP的函数表达式为y=-√33x−√33.综上所述,直线BP的函数表达式为y=√33x+√33或y=−√33x−√33.【解析】(1)根据待定系数法,把点A(-2,5),B(-1,0),C(3,0)的坐标代入y=ax2+bx+c得到方程组求解即可;(2)设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2,由翻折得C′B=CB=4,求出C′H的长,可得∠C′BH=60°,求出DH的长,则D坐标可求;(3)由题意可知△C′CB为等边三角形,分两种情况讨论:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.证出△BCQ≌△C′CP,可得BP垂直平分CC′,则D点在直线BP上,可求出直线BP的解析式,②当点P在x轴的下方时,点Q在x轴下方.同理可求出另一直线解析式.本题考查了二次函数的综合题,涉及的知识点有:待定系数法求二次函数解析式,待定系数法求一次函数解析式,轴对称的性质,全等三角形的判定和性质,等边三角形的判定与性质,锐角三角函数等知识,综合性较强,有一定的难度.。

2019年四川省南充市中考数学试卷(word版,含答案解析)

2019年四川省南充市中考数学试卷(word版,含答案解析)

2019年四川省南充市中考数学试卷(word版,含答案解析)2019年四川省南充市中考数学试卷副标题题号⼀⼆三四总分得分⼀、选择题(本⼤题共10⼩题,共30.0分)1.如果6a=1,那么a的值为()A. 6B. 16C. ?6 D. ?162.下列各式计算正确的是()A. x+x2=x3B. (x2)3=x5C. x6÷x2=x3D. x?x2=x33.如图是⼀个⼏何体的表⾯展开图,这个⼏何体是()A.B.C.D.4.在2019年南充市初中毕业升学体育与健康考试中,某校九年级(1)班体育委员对本班50名同学参加球类⾃选项⽬做了统计,制作出扇形统计图(如图),则该班选考乒乓球⼈数⽐⽻⽑球⼈数多()A. 5⼈B. 10⼈C. 15⼈D. 20⼈5.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A. 8B. 11C. 16D. 176.关于x的⼀元⼀次⽅程2x a?2+m=4的解为x=1,则a+m的值为()A. 9B. 8C. 5D. 47.如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平⾏四边形,则图中阴影部分的⾯积为()A. 6πB. 3√3πC. 2√3πD. 2π8.关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为()A. ?5B. ?5≤aC. ?5D. ?5≤a≤?39.如图,正⽅形MNCB在宽为2的矩形纸⽚⼀端,对折正⽅形MNCB得到折痕AE,再翻折纸⽚,使AB与AD重合,以下结论错误的是()A. AH2=10+2√5B. CDBC =√5?12C. BC2=CD?EHD. sin∠AHD=√5+1510.抛物线y=ax2+bx+c(a,b,c是常数),a>0,顶点坐标为(12,m),给出下列结论:①若点(n,y1)与(32?2n,y2)在该抛物线上,当n<12时,则y1的⼀元⼆次⽅程ax2?bx+c?m+1=0⽆实数解,那么()A. ①正确,②正确B. ①正确,②错误C. ①错误,②正确D. ①错误,②错误⼆、填空题(本⼤题共6⼩题,共18.0分)11.原价为a元的书包,现按8折出售,则售价为______元.12.如图,以正⽅形ABCD的AB边向外作正六边形ABEFGH,连接DH,则∠ADH=______度.13.计算:x2x?1+11?x=______.14.质量/kg 1.0 1.2 1.4 1.6 1.8 2.0频数/只561621121204010则500只鸡质量的中位数为______.15.在平⾯直⾓坐标系xOy中,点A(3m,2n)在直线y=?x+1上,点B(m,n)在双曲线y=kx上,则k的取值范围为______.16.如图,矩形硬纸⽚ABCD的顶点A在y轴的正半轴及原点上滑动,顶点B在x轴的正半轴及原点上滑动,点E为AB的中点,AB=24,BC=5.给出下列结论:①点A从点O出发,到点B运动⾄点O为⽌,点E经过的路径长为12π;②△OAB 的⾯积最⼤值为144;③当OD最⼤时,点D的坐标为(25√2626,125√2626).其中正确的结论是______.(填写序号)三、计算题(本⼤题共1⼩题,共8.0分)17.双曲线y=kx(k为常数,且k≠0)与直线y=?2x+b,交于A(?12m,m?2),B(1,n)两点.(1)求k与b的值;(2)如图,直线AB交x轴于点C,交y轴于点D,若点E为CD的中点,求△BOE的⾯积.四、解答题(本⼤题共8⼩题,共64.0分)18.计算:(1?π)0+|√2?√3|?√12+(√2)?1.19.如图,点O是线段AB的中点,OD//BC且OD=BC.(1)求证:△AOD≌△OBC;(2)若∠ADO=35°,求∠DOC的度数.20.现有四张完全相同的不透明卡⽚,其正⾯分别写有数字?2,?1,0,2,把这四张卡⽚背⾯朝上洗匀后放在桌⾯上.(1)随机的取⼀张卡⽚,求抽取的卡⽚上的数字为负数的概率.(2)先随机抽取⼀张卡⽚,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取⼀张卡⽚,其上的数字作为点A的纵坐标,试⽤画树状图或列表的⽅法求出点A在直线y=2x上的概率.21.已知关于x的⼀元⼆次⽅程x2+(2m?1)x+m2?3=0有实数根.(1)求实数m的取值范围;(2)当m=2时,⽅程的根为x1,x2,求代数式(x12+2x1)(x22+4x2+2)的值.22.如图,在△ABC中,以AC为直径的⊙O交AB于点D,连接CD,∠BCD=∠A.(1)求证:BC是⊙O的切线;(2)若BC=5,BD=3,求点O到CD的距离.23. 在“我为祖国点赞“征⽂活动中,学校计划对获得⼀,⼆等奖的学⽣分别奖励⼀⽀钢笔,⼀本笔记本.已知购买2⽀钢笔和3个笔记本共38元,购买4⽀钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30⽀时,每增加1⽀,单价降低0.1元;超过50⽀,均按购买50⽀的单价售,笔记本⼀律按原价销售.学校计划奖励⼀、⼆等奖学⽣共计100⼈,其中⼀等奖的⼈数不少于30⼈,且不超过60⼈,这次奖励⼀等奖学⽣多少⼈时,购买奖品总⾦额最少,最少为多少元?24. 如图,在正⽅形ABCD 中,点E 是AB 边上⼀点,以DE为边作正⽅形DEFG ,DF 与BC 交于点M ,延长EM 交GF 于点H ,EF 与CB 交于点N ,连接CG . (1)求证:CD ⊥CG ;(2)若tan∠MEN =13,求MNEM 的值;(3)已知正⽅形ABCD 的边长为1,点E 在运动过程中,EM 的长能否为12?请说明理由.25. 如图,抛物线y =ax 2+bx +c 与x 轴交于点A(?1,0),点B(?3,0),且OB =OC .(1)求抛物线的解析式;(2)点P 在抛物线上,且∠POB =∠ACB ,求点P 的坐标;(3)抛物线上两点M ,N ,点M 的横坐标为m ,点N 的横坐标为m +4.点D 是抛物线上M ,N 之间的动点,过点D 作y 轴的平⾏线交MN 于点E .①求DE 的最⼤值;②点D 关于点E 的对称点为F ,当m 为何值时,四边形MDNF 为矩形.答案和解析1.【答案】B【解析】解:∵6a=1,∴a=1.6故选:B.直接利⽤倒数的定义得出答案.此题主要考查了倒数,正确把握倒数的定义是解题关键.2.【答案】D【解析】解:A、x+x2,⽆法计算,故此选项错误;B、(x2)3=x6,故此选项错误;C、x6÷x2=x4,故此选项错误;D、x?x2=x3,故此选项正确;故选:D.直接利⽤合并同类项法则以及同底数幂的乘除运算法则分别计算得出答案.此题主要考查了合并同类项以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.【答案】C【解析】解:由平⾯图形的折叠及三棱柱的展开图的特征可知,这个⼏何体是三棱柱.故选:C.由平⾯图形的折叠及三棱柱的展开图的特征作答.考查了⼏何体的展开图,解题时勿忘记三棱柱的特征.4.【答案】B【解析】解:∵选考乒乓球⼈数为50×40%=20⼈,=10⼈,选考⽻⽑球⼈数为50×72°360°∴选考乒乓球⼈数⽐⽻⽑球⼈数多20?10=10⼈,故选:B.先根据扇形统计图中的数据,求出选考乒乓球⼈数和⽻⽑球⼈数,即可得出结论.此题主要考查了扇形统计图的应⽤,求出选考乒乓球⼈数和⽻⽑球⼈数是解本题的关键.5.【答案】B【解析】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.根据线段垂直平分线的性质得AE=BE,然后利⽤等线段代换即可得到△ACE的周长= AC+BC,再把BC=6,AC=5代⼊计算即可.本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意⼀点,到线段两端点的距离相等.6.【答案】C【解析】【分析】根据⼀元⼀次⽅程的概念和其解的概念解答即可.此题考查⼀元⼀次⽅程的定义,关键是根据⼀元⼀次⽅程的概念和其解的概念解答.【解答】解:因为关于x的⼀元⼀次⽅程2x a?2+m=4的解为x=1,可得:a?2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选:C.7.【答案】A【解析】解:连接OB,∵四边形OABC是平⾏四边形,∴AB=OC,∴AB=OA=OB,∴△AOB是等边三⾓形,∴∠AOB=60°,∵OC//AB,∴S△AOB=S△ABC,∴图中阴影部分的⾯积=S扇形AOB =60?π×36360=6π,故选:A.连接OB,根据平⾏四边形的性质得到AB=OC,推出△AOB是等边三⾓形,得到∠AOB= 60°,根据扇形的⾯积公式即可得到结论.本题考查的是扇形⾯积的计算,平⾏四边形的性质,掌握扇形的⾯积公式是解题的关键.8.【答案】C【解析】【分析】本题考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.⾸先解不等式求得不等式的解集,然后根据不等式只有两个正整数解即可得到⼀个关于a的不等式组,求得a的值.【解答】解:解不等式2x+a≤1得:x≤1?a2,不等式有两个正整数解,⼀定是1和2,根据题意得:2≤1?a2<3,解得:?5故选:C.9.【答案】A【解析】解:在Rt△AEB中,AB=√AE2+BE2=√22+12=√5,∵AB//DH,BH//AD,∴四边形ABHD是平⾏四边形,∵AB=AD,∴四边形ABHD是菱形,∴AD=AB=√5,∴CD=AD=AD=√5?1,∴CDBC =√5?12,故选项B正确,∵BC2=4,CD?EH=(√5?1)(√5+1)=4,∴BC2=CD?EH,故选项C正确,∵四边形ABHD是菱形,∴∠AHD=∠AHB,∴sin∠AHD=sin∠AHB=AEAH =√22+(√5+1)2=√5+15,故选项D正确,故选:A.⾸先证明四边形ABHD是菱形,利⽤勾股定理求出AB,AD,CD,EH,AH,⼀⼀判断即可解决问题.本题考查翻折变换,矩形的性质,解直⾓三⾓形,菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】A【解析】解:①∵顶点坐标为(12,m),n<12,∴点(n,y1)关于抛物线的对称轴x=12的对称点为(1?n,y1),∴点(1?n,y1)与(322n,y2)在该抛物线上,∵(1?n)?(32?2n)=n?12<0,∴1?n<322n,∵a>0,∴当x>12时,y随x的增⼤⽽增⼤,∴y1②把(12,m)代⼊y=ax2+bx+c中,得m=14a+12b+c,∴⼀元⼆次⽅程ax2?bx+c?m+1=0中,△=b2?4ac+4am?4a=b2?4ac+4a(14a+12b+c)?4a=(a+b)2?4a<0,∴⼀元⼆次⽅程ax2?bx+c?m+1=0⽆实数解,故此⼩题正确;故选:A.①根据⼆次函数的增减性进⾏判断便可;②先把顶点坐标代⼊抛物线的解析式,求得m,再把m代⼊⼀元⼆次⽅程ax2?bx+c?m+1=0的根的判别式中计算,判断其正负便可判断正误.本题主要考查了⼆次函数图象与⼆次函数的系数的关系,第①⼩题,关键是通过抛物线的对称性把两点坐标变换到对称轴的⼀边来,再通过⼆次函数的增减性进⾏⽐较,第②⼩题关键是判断⼀元⼆次⽅程根的判别式的正负.11.【答案】45a【解析】解:依题意可得,售价为810a=45a,故答案为45a.列代数式注意:①仔细辨别词义.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平⽅的差(或平⽅差)”与“差的平⽅”的词义区分.②分清数量关系.要正确列代数式,只有分清数量之间的关系.本题考查了列代数式,能根据题意列出代数式是解题的关键.12.【答案】15【解析】解:∵四边形ABCD是正⽅形,∴AB=AD,∠BAD=90°,在正六边形ABEFGH中,∵AB=AH,∠BAH=120°,∴AH=AD,∠HAD=360°?90°?120°=150°,∴∠ADH=∠AHD=12(180°?150°)=15°,故答案为:15.根据正⽅形的性质得到AB=AD,∠BAD=90°,在正六边形ABEFGH中,求得AB=AH,∠BAH=120°,于是得到AH=AD,∠HAD=360°?90°?120°=150°,根据等腰三⾓形的性质即可得到结论.本题考查了正多边形和圆,多边形的内⾓与外⾓,等腰三⾓形的判定和性质,正确的识别图形是解题的关键.13.【答案】x+1【解析】解:原式=x2x?1?1x?1=(x+1)(x?1)x?1=x+1.故答案为:x+1原式变形后,利⽤同分母分式的减法法则计算即可得到结果.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.【答案】1.4kg【解析】解:500个数据的中位数是第250、251个数据的平均数,∵第250和251个数据分别为1.4、1.4,∴这组数据的中位数为1.4+1.42=1.4(kg),故答案为:1.4kg.根据中位数的概念求解可得.本题主要考查中位数,将⼀组数据按照从⼩到⼤(或从⼤到⼩)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.【答案】k≤124且k≠0【解析】解:∵点A(3m,2n)在直线y =?x +1上,∴2n =?3m +1,即n =?3m+12,∴B(m,3m+12),∵点B 在双曲线y =kx 上,∴k =m ?3m+12=?32(m ?16)2+124,∵?32<0,∴k 有最⼤值为124,∴k 的取值范围为k ≤124,∵k ≠0,故答案为k ≤124且k ≠0.根据⼀次函数图象上点的特征求得n =3m+12,即可得到B(m,3m+12),根据反⽐例函数图象上点的特征得到k 关于m 的函数,根据⼆次函数的性质即可求得k 的取值范围.本题考查了⼀次函数图象上点的坐标特征,反⽐例函数图象上点的坐标特征,⼆次函数的性质,图象上点的坐标适合解析式是解题的关键. 16.【答案】②③【解析】解:∵点E 为AB 的中点,AB =24,∴OE =12AB =12,∴AB 的中点E 的运动轨迹是以点O 为圆⼼,12为半径的⼀段圆弧,∵∠AOB =90°,∴点E 经过的路径长为90×12×π180=6π,故①错误;当△OAB 的⾯积最⼤时,因为AB =24,所以△OAB 为等腰直⾓三⾓形,即OA =OB ,∵E 为AB 的中点,∴OE ⊥AB ,OE =12AB =12,∴S △AOB =12×24×12=144,故②正确;如图,当O 、E 、D 三点共线时,OD 最⼤,过点D 作DF ⊥y 轴于点F ,∵AD =BC =5,AE =12AB =12,∴DE =√AD 2+AE 2=√52+122=13,∴OD =DE +OE =13+12=25,设DF =x ,∴OF =√OD 2?DF 2=√252?x 2,∵四边形ABCD 是矩形,∴∠DAB =90°,∴∠DFA =∠AOB ,∴∠DAF =∠ABO ,∴△DFA∽△AOB ∴DF OA =DA AB ,∴x OA=524,∴OA =24x 5,∵E 为AB 的中点,∠AOB =90°,∴AE =OE ,∴∠AOE =∠OAE ,∴△DFO∽△BOA ,∴OD AB =OFOA ,∴25√252?x 224x 5,解得x =25√2626,x =?25√2626舍去,∴OF =125√2626,∴D(25√2626,125√2626).故③正确.故答案为:②③.①由条件可知AB =24,则AB 的中点E 的运动轨迹是圆弧,最后根据弧长公式即可计算出点E 所经过的路径长;②当△OAB 的⾯积最⼤时,因为AB =24,所以△OAB 为等腰直⾓三⾓形,即OA =OB ,可求出最⼤⾯积为144;③当O 、E 、D 三点共线时,OD 最⼤,过点D 作DF ⊥y 轴于点F ,可求出OD =25,证明△DFA∽△AOB 和△DFO∽△BOA ,可求出DF 长,则D 点坐标可求出.本题考查四边形综合题、直⾓形的性质、矩形的性质、相似三⾓形的判定和性质等知识.解题的关键是学会添加常⽤辅助线,构造相似三⾓形解决问题,属于中考压轴题.17.【答案】解:(1)∵点A(?12m,m ?2),B(1,n)在直线y =?2x +b 上,∴{m +b =m ?22+b =n,解得:{b =?2n =?2,∴B(1,?2),代⼊反⽐例函数解析式y =kx ,∴?2=k1,∴k=?2.(2)∵直线AB的解析式为y=?2x?2,令x=0,解得y=?2,令y=0,解得x=?1,∴C(?1,0),D(0,?2),∵点E为CD的中点,2,?1),∴S△BOE=S△ODE+S△ODB=12OD?(x B?x E)=12×2×(1+12)=32.【解析】(1)将A、B两点的坐标代⼊⼀次函数解析式可得b和n的值,则求出点B(1,?2),代⼊反⽐例函数解析式可求出k的值.(2)先求出点C、D两点的坐标,再求出E点坐标,则S△BOE=S△ODE+S△ODB=12OD?(x B?x E),可求出△BOE的⾯积.本题考查了反⽐例函数与⼀次函数的交点问题,三⾓形的⾯积,熟练掌握待定系数法是解题的关键.18.【答案】解:原式=1+√3?√2?2√3+√2=1?√3.【解析】根据实数的混合计算解答即可.此题考查⼆次根式的混合计算,关键是根据实数的混合计算解答.19.【答案】(1)证明:∵点O是线段AB的中点,∴AO=BO,∵OD//BC,∴∠AOD=∠OBC,在△AOD与△OBC中,{AO=BO∠AOD=∠OBC OD=BC,∴△AOD≌△OBC(SAS);(2)解:∵△AOD≌△OBC,∴∠ADO=∠OCB=35°,∵OD//BC,∴∠DOC=∠OCB=35°.【解析】(1)根据线段中点的定义得到AO=BO,根据平⾏线的性质得到∠AOD=∠OBC,根据全等三⾓形的判定定理即可得到结论;(2)根据全等三⾓形的性质和平⾏线的性质即可得到结论.本题考查了全等三⾓形的判定和性质,平⾏线的性质,熟练掌握全等三⾓形的判定和性质是解题的关键.20.【答案】解:(1)随机的取⼀张卡⽚,抽取的卡⽚上的数字为负数的概率为2 4=12;(2)画树状图如图所⽰:共有16个可能的结果,点A在直线y=2x上的结果有2个,∴点A在直线y=2x上的概率为216=18.【解析】此题主要考查了树状图法求概率、概率公式、⼀次函数图象上点的坐标特征,正确列举出所有可能是解题关键.(1)由概率公式即可得出结果;(2)直接利⽤树状图法列举出所有可能进⽽得出答案.21.【答案】解:(1)由题意△≥0,∴(2m?1)2?4(m2?3)≥0,∴m≤134.(2)当m=2时,⽅程为x2+3x+1=0,∴x1+x2=?3,x1x2=1,∵⽅程的根为x1,x2,∴x12+3x1+1=0,x22+3x2+1=0,∴(x12+2x1)(x22+4x2+2)=(x12+2x1+x1?x1)(x22+3x2+x2+2)=(?1?x1)(?1+x2+2)=(?1?x1)(x2+1)=?x2?x1x2?1?x1=?x2?x1?2=3?2=1.【解析】(1)根据△≥0,解不等式即可;(2)将m=2代⼊原⽅程可得:x2+3x+1=0,计算两根和与两根积,化简所求式⼦,可得结论.本题考查了根与系数的关系以及⼀元⼆次⽅程的解,根的判别式等知识,牢记“两根之和等于?ba ,两根之积等于ca”是解题的关键.22.【答案】(1)证明:∵AC是⊙O的直径,∴∠ADC=90°,∴∠A+∠ACD=90°,∵∠BCD=∠A,∴∠ACD+∠BCD=90°,∴∠ACB=90°,∴BC是⊙O的切线;(2)解:过O作OH⊥CD于H,∵∠BDC=∠ACB=90°,∠B=∠B,∴△ACB∽△CDB,∴BCBD =ABBC,∴53=AB5,∴AB =253,∴AD =163,∵OH ⊥CD ,∴CH =DH ,∵AO =OC ,∴OH =12AD =83,∴点O 到CD 的距离是83.【解析】本题考查了切线的判定和性质,圆周⾓定理,相似三⾓形的判定和性质,垂径定理,三⾓形的中位线的性质,正确的识别图形是解题的关键.(1)根据圆周⾓定理得到∠ADC =90°,得到∠A +∠ACD =90°,求得∠ACB =90°,于是得到结论;(2)过O 作OH ⊥CD 于H ,根据相似三⾓形的性质得到AB =253,根据垂径定理得到CH =DH ,根据三⾓形的中位线的性质即可得到结论.23.【答案】解:(1)钢笔、笔记本的单价分别为x 、y 元,根据题意得,{2x +3y =384x +5y =70,解得:{x =10y =6,答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a 元,购买数量为b 元,⽀付钢笔和笔记本的总⾦额w 元,①当30≤b ≤50时,a =10?0.1(b ?30)=?0.1b+13,w =b(?0.1b +13)+6(100?b)=?0.1b 2+7b +600=?0.1(b ?35)2+722.5,∵当b =30时,w =720,当b =50时,w =700,∴当30≤b ≤50时,700≤w ≤722.5;②当50∴当30≤b ≤60时,w 的最⼩值为700元,∴这次奖励⼀等奖学⽣50⼈时,购买奖品总⾦额最少,最少为700元.【解析】(1)钢笔、笔记本的单价分别为x 、y 元,根据题意列⽅程组即可得到结论;(2)设钢笔的单价为a 元,购买数量为b 元,⽀付钢笔和笔记本的总⾦额w 元,①当30≤b ≤50时,求得w =?0.1(b ?35)2+722.5,于是得到700≤w ≤722.5;②当50本题考查了⼆次函数的应⽤,⼆元⼀次⽅程组的应⽤,正确的理解题意求出⼆次函数的解析式是解题的关键.24.【答案】(1)证明:∵四边形ABCD 和四边形DEFG 是正⽅形,∴∠A =∠ADC =∠EDG =90°,AD =CD ,DE =DG ,∴∠ADE =∠CDG ,在△ADE 和△CDG 中,{AD =CD∠ADE =∠CDGDE =DG,∴△ADE≌△CDG(SAS),∴∠A =∠DCG =90°,∴CD ⊥CG ;(2)解:∵四边形DEFG 是正⽅形,∴EF =GF ,∠EFM =∠GFM =45°,在△EFM 和△GFM 中{EF =GF∠EFM =∠GFMMF =MF ,∴△EFM≌△GFM(SAS),∴EM =GM ,∠MEF =∠MGF ,在△EFH 和△GFN 中,{∠EFH =∠GFNEF =GF∠MEF =∠MGF ,∴△EFH≌△GFN(ASA),∴HF =NF ,∵tan∠MEN =13=HF EF,∴GF =EF =3HF =3NF ,∴GH =2HF ,作NP//GF 交EM 于P ,则△PMN∽△HMG ,△PEN∽△HEF ,∴PNGH =MNGM ,PN HF=EN EF=23,∴PN =23HF ,∴MN EM=MN GM=PN GH=23HF 2HF=13;(3)EM 的长不可能为12,理由:假设EM 的长为12,∵点E 是AB 边上⼀点,且∠EDG =∠ADC =90°,∴点G 在BC 的延长线上,同(2)的⽅法得,EM =GM =12,∴GM =12,在Rt △BEM 中,EM 是斜边,∴BM <12,∵正⽅形ABCD 的边长为1,∴BC =1,∴CM >12,∴CM >GM ,∴点G 在正⽅形ABCD 的边BC 上,与“点G 在BC 的延长线上”相⽭盾,∴假设错误,即:EM 的长不可能为12.【解析】(1)由正⽅形的性质得出∠A =∠ADC =∠EDG =90°,AD =CD ,DE =DG ,即∠ADE =∠CDG ,由SAS 证明△ADE≌△CDG 得出∠A =∠DCG =90°,即可得出结论; (2)先证明△EFM≌△GFM 得出EM =GM ,∠MEF =∠MGF ,在证明△EFH≌△GFN 得出HF =NF ,由三⾓函数得出GF =EF =3HF =3NF ,得出GH =2HF ,作NP//GF 交EM 于P ,则△PMN∽△HMG ,△PEN∽△HEF ,得出PNGH =MNGM ,PN HF=EN EF=23,PN =23HF ,即可得出结果;(3)假设EM =12,先判断出点G 在BC 的延长线上,同(2)的⽅法得,EM =GM =12,得出GM =12,再判断出BM <12,得出CM >12,进⽽得出CM >GM ,即可得出结论.此题是相似形综合题,主要考查了全等三⾓形的判定和性质,相似三⾓形的判定和性质,构造出相似三⾓形是解本题的关键,⽤反证法说明EM 不可能为12是解本题的难度.25.【答案】解:(1)∵抛物线与x 轴交于点A(?1,0),点B(?3,0)∴设交点式y =a(x +1)(x +3)∵OC =OB =3,点C 在y 轴负半轴∴C(0,?3)把点C 代⼊抛物线解析式得:3a =?3∴a =?1∴抛物线解析式为y =?(x +1)(x +3)=?x 2?4x ?3(2)如图1,过点A 作AG ⊥BC 于点G ,过点P 作PH ⊥x 轴于点H ∴∠AGB =∠AGC =∠PHO =90°∵∠ACB =∠POB∴△ACG∽△POH∴AG PH =CGOH∴AG CG =PHOH∵OB =OC =3,∠BOC =90°∴∠ABC =45°,BC =√OB 2+OC 2=3√2 ∴△ABG 是等腰直⾓三⾓形√22AB =√2 ∴CG =BC ?BG =3√2?√2=2√2 ∴PH OH =AG CG =12 ∴OH =2PH 设P(p,?p 2?4p ?3)①当p∴?p =2(p 2+4p +3) 解得:p 1=9√334,p 2=9+√334∴P(9√334,9√338)或(?9+√334,?9+√338) ②当?30时,点P 在AB 之间或在点C 右侧,横纵坐标异号∴p =2(p 2+4p +3) 解得:p 1=?2,p 2=?32 ∴P(?2,1)或(?32,34) 综上所述,点P 的坐标为(9√334,9√338)、(?9+√334,?9+√338)、(?2,1)或(?32,34).(3)①如图2,∵x =m +4时,y =?(m +4)2?4(m +4)?3=?m 2?12m ?35∴M(m,?m 2?4m ?3),N(m +4,?m 2?12m ?35)设直线MN 解析式为y =kx +n∴{km +n =?m 2?4m ?3k(m +4)+n =?m 2?12m ?35 解得:{k =?2m ?8n =m 2+4m ?3∴直线MN :y =(?2m ?8)x +m 2+4m ?3 设D(d,?d 2?4d ?3)(m∴x E =x D =d ,E(d,(?2m ?8)d +m 2+4m ?3) ∴DE =?d 2?4d ?3?[(?2m ?8)d +m 2+4m ?3]=?d 2+(2m +4)d ?m 24m =[d (m +2)]2+4∴当d =m +2时,DE 的最⼤值为4.②如图3,∵D 、F 关于点E 对称∵四边形MDNF 是矩形∴MN =DF ,且MN 与DF 互相平分∴DE =12MN ,E 为MN 中点∴x D =x E =m +m +42=m +2 由①得当d =m +2时,DE =4∴MN =2DE =8∴(m +4?m)2+[?m 2?12m ?35?(?m 2?4m ?3)]2=82 解得:m 1=?4?√32,m 2=?4+√32∴m 的值为?4?√32或?4+√32时,四边形MDNF 为矩形.【解析】(1)已知抛物线与x 轴两交点坐标,可设交点式y =a(x +1)(x +3);由OC =OB =3得C(0,?3),代⼊交点式即求得a =?1.(2)由∠POB =∠ACB 联想到构造相似三⾓形,因为求点P 坐标⼀般会作x 轴垂线PH 得Rt△POH,故可过点A在BC边上作垂线AG,构造△ACG∽△POH.利⽤点A、B、C坐标求得AG、CG的长,由相似三⾓形对应边成⽐例推出PHOH =AGCG=12.设点P横坐标为p,则OH与PH都能⽤p表⽰,但需按P横纵坐标的正负性进⾏分类讨论.得到⽤p表⽰OH与PH并代⼊OH=2PH计算即求得p 的值,进⽽求点P坐标.(3)①⽤m表⽰M、N横纵坐标,把m当常数求直线MN的解析式.设D横坐标为d,把x=d代⼊直线MN解析式得点E纵坐标,D与E纵坐标相减即得到⽤m、d表⽰的DE的长,把m当常数,对未知数d进⾏配⽅,即得到当d=m+2时,DE取得最⼤值.②由矩形MDNF得MN=DF且MN与DF互相平分,所以E为MN中点,得到点D、E 横坐标为m+2.由①得d=m+2时,DE=4,所以MN=8.⽤两点间距离公式⽤m表⽰MN的长,即列得⽅程求m的值.本题考查了求⼆次函数解析式,求⼆次函数最⼤值,等腰三⾓形的性质,相似三⾓形的判定和性质,⼀元⼆次⽅程的解法,⼆元⼀次⽅程组的解法,矩形的性质.第(3)题没有图要先根据题意画草图帮助思考,设计较多字母运算时抓住其中的常量和变量来分析和计算.。

四川省成都市2019年中考数学试题试题及答案

四川省成都市2019年中考数学试题试题及答案

2019年成都中考数学试题全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分,考试时间120分钟A 卷(共100分) 第I 卷(选择题,共30分)一.选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求) 1.比-3大5的数是( )A.-15B.-8C.2D.8 【解析】此题考查有理数的加减,-3+5=2,故选C2.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A. B. C. D.【解析】此题考查立体几何里三视图的左视图,三视图的左视图,应从左面看,故选B 3.2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年.将数据5500万用科学计数法表示为( )5500×104 B.55×106 C.5.5×107 D.5.5×108【解析】此题考查科学记数法(较大数),将一个较大数写成na 10⨯的形式,其中101<≤a ,n 为正整数,故选C4.在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为( ) A.(2,3) B.(-6,3) C.(-2,7) D.(-2,-1)【解析】此题考查科学记数法(较大数),一个点向右平移之后的点的坐标,纵坐标不变,横坐标加4,故选A5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=30°,则∠2的度数为( )A.10°B.15°C.20°D.30°【解析】此题考查平行线的性质(两直线平行内错角相等)以及等腰直角三角形的性质,故选B6.下列计算正确的是( )A.b b ab 235=-B.242263b a b a =-)( C.1)1(22-=-a a D.2222a b b a =÷ 【解析】此题考查正式的运算,A 选项明显错误,B 选项正确结果为249b a ,C 选项122+-a a ,故选D7. 分式方程1215=+--xx x 的解为( ) 8.A.1-=xB.1=xC.2=xD.2-=x 【解析】此题考查分式方程的求解.选A8.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50则这组数据的中位数是( )A.42件B.45件C.46件D.50件【解析】此题考查数据统计相关概念中中位数的概念,中位数表示将这列数按从小到大排列后,最中间的一个数或者最中间的两个数的平均值,故选C 。

四川省乐山市2019年中考数学试题(含解析)和答案

四川省乐山市2019年中考数学试题(含解析)和答案

2019年四川省乐山市中考数学试卷注:请使用office word软件打开,wps word会导致公式错乱一、选择题(本大题共10小题,共30.0分)1.-3的绝对值是()A. 3B.C.D.2.下列四个图形中,可以由图通过平移得到的是()A. B. C. D.3.小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是()A. B. C. D.4.-a一定是()A. 正数B. 负数C. 0D. 以上选项都不正确5.如图,直线a∥b,点B在a上,且AB⊥BC.若∠1=35°,那么∠2等于()A. B. C. D.6.不等式组的解集在数轴上表示正确的是()A. B.C. D.7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A. 1,11B. 7,53C. 7,61D. 6,508.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.9.如图,在边长为的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A. B. 1 C. D.10.如图,抛物线y=x2-4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A. 3B.C.D. 4二、填空题(本大题共6小题,共18.0分)11.-的相反数是______.12.某地某天早晨的气温是-2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是______℃.13.若3m=9n=2.则3m+2n=______.14.如图,在△ABC中,∠B=30°,AC=2,cos C=.则AB边的长为______.15.如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x-2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是______.16.如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD 的周长是______.三、解答题(本大题共10小题,共102.0分)17.计算:()-1-(2019-π)0+2sin30°.18.如图,点A、B在数轴上,它们对应的数分别为-2,,且点A、B到原点的距离相等.求x的值.19.如图,线段AC、BD相交于点E,AE=DE,BE=CE.求证:∠B=∠C.20.化简:÷.21.如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(-1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积.22.某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有______名男生,______名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是______;(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.23.已知关于x的一元二次方程x2-(k+4)x+4k=0.(1)求证:无论k为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x1、x2,满足+=,求k的值;(3)若Rt△ABC的斜边为5,另外两条边的长恰好是方程的两个根x1、x2,求Rt△ABC 的内切圆半径.24.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.25.在△ABC中,已知D是BC边的中点,G是△ABC的重心,过G点的直线分别交AB、AC于点E、F.(1)如图1,当EF∥BC时,求证:+=1;(2)如图2,当EF和BC不平行,且点E、F分别在线段AB、AC上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E在AB的延长线上或点F在AC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.26.如图,已知抛物线y=a(x+2)(x-6)与x轴相交于A、B两点,与y轴交于C点,且tan∠CAB=.设抛物线的顶点为M,对称轴交x轴于点N.(1)求抛物线的解析式;(2)P为抛物线的对称轴上一点,Q(n,0)为x轴上一点,且PQ⊥PC.①当点P在线段MN(含端点)上运动时,求n的变化范围;②当n取最大值时,求点P到线段CQ的距离;③当n取最大值时,将线段CQ向上平移t个单位长度,使得线段CQ与抛物线有两个交点,求t的取值范围.答案和解析1.【答案】A【解析】解:|-3|=-(-3)=3.故选:A.根据一个负数的绝对值等于它的相反数得出.考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】D【解析】解:∵只有D的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:D.根据平移的性质解答即可.本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.【答案】C【解析】解:在-1,0,1,2,3,4这六个数中,满足不等式x+1<2的有-1、0这两个,所以满足不等式x+1<2的概率是=,故选:C.找到满足不等式x+1<2的结果数,再根据概率公式计算可得.本题主要考查概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.4.【答案】D【解析】解:-a中a的符号无法确定,故-a的符号无法确定.故选:D.利用正数与负数定义分析得出答案.此题主要考查了正数和负数,正确理解正负数的定义是解题关键.5.【答案】C【解析】解:∵a∥b,∠1=35°,∴∠BAC=∠1=35°.∵AB⊥BC,∴∠2=∠BCA=90°-∠BAC=55°.故选:C.先根据∠1=35°,a∥b求出∠BAC的度数,再由AB⊥BC即可得出答案.本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.6.【答案】B【解析】解:,解①得:x>-6,解②得:x≤13,故不等式组的解集为:-6<x≤13,在数轴上表示为:.故选:B.分别解不等式进而得出不等式组的解集,进而得出答案.此题主要考查了解一元一次不等式组,正确解不等式是解题关键.7.【答案】B【解析】解:设有x人,物价为y,可得:,解得:,故选:B.设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.【答案】A【解析】解:如图,设BC=x,则CE=1-x易证△ABC∽△FEC∴===解得x=∴阴影部分面积为:S△ABC=××1=故选:A.如图,易证△ABC∽△FEC,可设BC=x,只需求出BC即可.本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答9.【答案】A【解析】解:在Rt△ABE中,∠B=30°,AB=,∴BE=.根据折叠性质可得BF=2BE=3.∴CF=3-.∵AD∥CF,∴△ADG∽△FCG.∴.设CG=x,则,解得x=-1.故选:A.先利用30°直角三角形的性质,求出BE,再根据折叠性质求得BF,从而得到CF长,最后根据△ADG∽△FCG得出与CG有关的比例式,即可求解CG长.本题主要考查了菱形的性质、相似三角形的判定和性质、折叠的性质,解题的关键是找到与CG相关的三角形,利用相似知识求解.10.【答案】C【解析】解:连接BP,如图,当y=0时,x2-4=0,解得x1=4,x2=-4,则A(-4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.连接BP,如图,先解方程x2-4=0得A(-4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.11.【答案】【解析】解:的相反数是,故答案为:.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.【答案】-3【解析】解:-2+6-7=-3,故答案为:-3由题意列出算式进行计算求解即可.本题主要考查有理数的加减法,正确列出算式是解题的关键.13.【答案】4【解析】解:∵3m=32n=2,∴3m+2n=3m•32n=2×2=4,故答案为:4根据幂的乘方与积的乘方进行解答即可.此题考查幂的乘方与积的乘方,关键是根据幂的乘方与积的乘方解答.14.【答案】【解析】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,COSC=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15.【答案】3【解析】解:∵PQ⊥x轴,∴设P(x,),则Q(x,x-2),∴PQ=-x+2,∴S△POQ=(-+2)•x=-(x-2)2+3,∵-<0,∴△POQ面积有最大值,最大值是3,故答案为3.设P(x,),则Q(x,x-2),得到PQ=-x+2,根据三角形面积公式得到S△POQ=-(x-2)2+3,根据二次函数的性质即可求得最大值.本题考查了一次函数图象上点的坐标特征,二次函数的性质,反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.【答案】【解析】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×=2,BC=5,AD=7-4=3,当EF平移到点F与点D重合时,如右图所示,∵∠EFB=60°,∴∠DEC=60°,∵DE=CE=2,∴△DEC为等边三角形,∴CD=2.∴四边形ABCD的周长是:AB+BC+AD+CD=2+5+3+2=10+2,故答案为:10+2.根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】解:原式=,=2-1+1,=2.【解析】根据实数的混合计算解答即可.此题考查实数的运算,关键是根据实数的混合计算解答.18.【答案】解:根据题意得:,去分母,得x=2(x+1),去括号,得x=2x+2,解得x=-2经检验,x=-2是原方程的解.【解析】根据题意得出分式方程解答即可.此题考查解分式方程,关键是根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答.19.【答案】证明:在△AEB和△DEC中,∵∴△AEB≌△DEC,∴∠B=∠C.【解析】根据AE=DE,∠AEB=∠DEC,BE=CE,证出△AEB≌△DEC,即可得出∠B=∠C.此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.20.【答案】解:原式=÷,=×,=.【解析】首先将分式的分子与分母分解因式,进而约分得出答案.此题主要考查了分式的乘除运算,正确分解因式是解题关键.21.【答案】解:(1)∵点P(-1,a)在直线l2:y=2x+4上,∴2×(-1)+4=a,即a=2,则P的坐标为(-1,2),设直线l1的解析式为:y=kx+b(k≠0),那么,解得:.∴l1的解析式为:y=-x+1.(2)∵直线l1与y轴相交于点C,∴C的坐标为(0,1),又∵直线l2与x轴相交于点A,∴A点的坐标为(-2,0),则AB=3,而S四边形PAOC=S△PAB-S△BOC,∴S四边形PAOC=.【解析】(1)由点P(-1,a)在直线l2上,利用一次函数图象上点的坐标特征,即可求出a值,再利用点P的坐标和点B的坐标可求直线l1的解析式;(2)根据面积差可得结论.本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征和三角形的面积,在函数的图象上的点,就一定满足函数解析式.并利用数形结合的思想解决问题.22.【答案】40 40 27【解析】解:(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人)故答案为40,40;(2)女生成绩27的人数最多,所以众数为27,故答案为27;(3)(人),七年级720名学生中成绩为优秀的学生人数大约是396人.(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人);(2)女生成绩27的人数最多,所以众数为27;(3)(人).此题同时考查了条形统计图,考查了利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、认真分析、认真研究统计图,只有这样才能作出正确的判断,准确地解决问题.23.【答案】(1)证明:∵△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,∴无论k为任何实数时,此方程总有两个实数根;(2)解:由题意得:x1+x2=k+4,x1•x2=4k,∵,∴,即,解得:k=2;(3)解:解方程x2-(k+4)x+4k=0得:x1=4,x2=k,根据题意得:42+k2=52,即k=3,设直角三角形ABC的内切圆半径为r,如图,由切线长定理可得:(3-r)+(4-r)=5,∴直角三角形ABC的内切圆半径r=.【解析】(1)根据根的判别式△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,即可得到结论;(2)由题意得到x1+x2=k+4,x1•x2=4k,代入,解方程即可得到结论;(3)解方程x2-(k+4)x+4k=0得到x1=4,x2=k,根据题意根据勾股定理列方程得到k=3,设直角三角形ABC的内切圆半径为r,根据切线长定理即可得到结论.本题考查了三角形的内切圆和内心,切线的性质,一元二次方程根的判别式,一元二次方程根与系数的关系,熟练掌握切线长定理是解题的关键.24.【答案】(1)证明:如图,连结OB,则OP=OB,∴∠OBP=∠OPB=∠CPA,AB=AC,∴∠ACB=∠ABC,而OA⊥l,即∠OAC=90°,∴∠ACB+∠CPA=90°,即∠ABP+∠OBP=90°,∴∠ABO=90°,OB⊥AB,故AB是⊙O的切线;(2)解:由(1)知:∠ABO=90°,而OA=5,OB=OP=3,由勾股定理,得:AB=4,过O作OD⊥PB于D,则PD=DB,∵∠OPD=∠CPA,∠ODP=∠CAP=90°,∴△ODP∽△CAP,∴,又∵AC=AB=4,AP=OA-OP=2,∴,∴,∴.【解析】(1)连接OB,由AB=AC得∠ABC=∠ACB,由OP=OB得∠OPB=∠OBP,由OA⊥l得∠OAC=90°,则∠ACB+∠APC=90°,而∠APC=∠OPB=∠OBP,所以∠OBP+∠ABC=90°,即∠OBA=90°,于是根据切线的判定定理得到直线AB是⊙O的切线;(2)根据勾股定理求得AB=4,PC=2,过O作OD⊥PB于D,则PD=DB,通过证得△ODP∽△CAP,得到,求得PD,即可求得PB.本题考查了切线的判定和性质,勾股定理的应用研究三角形相似的判定和性质,熟练掌握性质定理是解题的关键.25.【答案】(1)证明:∵G是△ABC重心,∴,又∵EF∥BC,∴,,则;(2)解:(1)中结论成立,理由如下:如图2,过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,则△BME∽△ANE,△CMF∽△ANF,,,∴,又∵BM+CM=BM+CD+DM,而D是BC的中点,即BD=CD,∴BM+CM=BM+BD+DM=DM+DM=2DM,∴,又∵,∴,故结论成立;(3)解:(1)中结论不成立,理由如下:当F点与C点重合时,E为AB中点,BE=AE,点F在AC的延长线上时,BE>AE,∴,则,同理:当点E在AB的延长线上时,,∴结论不成立.【解析】(1)根据三角形重心定理和平行线分线段成比例解答即可;(2)过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,得出△BME∽△ANE,△CMF∽△ANF,得出比例式解答即可;(3)分两种情况:当F点与C点重合时,E为AB中点,BE=AE;点F在AC的延长线上时,BE>AE,得出,则,同理:当点E在AB的延长线上时,,即可得出结论.此题是相似三角形综合题,考查了相似三角形的判定与性质、三角形重心定理、平行线分线段成比例定理等知识;本题综合性强,熟练掌握三角形的重心定理和平行线分线段成比例定理,证明三角形相似是解题的关键.26.【答案】解:(1)根据题意得:A(-2,0),B(6,0),在Rt△AOC中,∵,且OA=2,得CO=3,∴C(0,3),将C点坐标代入y=a (x+2)(x-6)得:,抛物线解析式为:;整理得:y=-故抛物线解析式为:得:y=-;(2)①由(1)知,抛物线的对称轴为:x=2,顶点M(2,4),设P点坐标为(2,m)(其中0≤m≤4),则PC2=22+(m-3)2,PQ2=m2+(n-2)2,CQ2=32+n2,∵PQ⊥PC,∴在Rt△PCQ中,由勾股定理得:PC2+PQ2=CQ2,即22+(m-3)2+m2+(n-2)2=32+n2,整理得:=(0≤m≤4),∴当时,n取得最小值为;当m=4时,n取得最大值为4,所以,;②由①知:当n取最大值4时,m=4,∴P(2,4),Q(4,0),则,,CQ=5,设点P到线段CQ距离为h,由,得:,故点P到线段CQ距离为2;③由②可知:当n取最大值4时,Q(4,0),∴线段CQ的解析式为:,设线段CQ向上平移t个单位长度后的解析式为:,当线段CQ向上平移,使点Q恰好在抛物线上时,线段CQ与抛物线有两个交点,此时对应的点Q'的纵坐标为:,将Q'(4,3)代入得:t=3,当线段CQ继续向上平移,线段CQ与抛物线只有一个交点时,联解得:,化简得:x2-7x+4t=0,由△=49-16t=0,得,∴当线段CQ与抛物线有两个交点时,.【解析】(1)由函数解析式,可以求出点A、B的坐标分别为(-2,0),(6,0),在Rt△OAC中由tan∠CAB=,可以求出点C的坐标为(0,3),进而可以求出抛物线的解析式;(2)①抛物线的对称轴为:x=2,顶点M(2,4),在Rt△PCQ中,由勾股定理得:PC2+PQ2=CQ2,把三角形三边长用点P,Q的坐标表达出来,整理得:,利用0≤m≤4,求出n的取值范围;②由,得:,求出点P到线段CQ距离为2;③设线段CQ向上平移t个单位长度后的解析式为:,联立抛物线方程,可求出x2-7x+4t=0,由△=49-16t=0,得,∴当线段CQ与抛物线有两个交点时,主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,处理问题和解决问题.。

2019年四川省绵阳市中考数学试题(含答案)

2019年四川省绵阳市中考数学试题(含答案)

2019年四川省绵阳市中考数学试题(含答案)2019年四川省绵阳市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.若√a=2,则a的值为()A。

-4B。

4C。

-2D。

√22.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A。

0.2×10^-3B。

0.2×10^-4C。

2×10^-3D。

2×10^-43.对如图的对称性表述,正确的是()A。

轴对称图形B。

中心对称图形C。

既是轴对称图形又是中心对称图形D。

既不是轴对称图形又不是中心对称图形4.下列几何体中,主视图是三角形的是()A。

B。

C。

D。

5.如图,在平面直角坐标系中,四边形OABC为菱形,AB=BC=2,(OA,OC)∠AOC=60°,则对角线交点E的坐标为()A。

(2,√3)B。

(√3,2)C。

(√3,3)D。

(3,√3)6.已知x是整数,当|x-√30|取最小值时,x的值是()A。

5B。

6C。

7D。

87.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A。

极差是6B。

众数是7C。

中位数是5D。

方差是88.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A。

ab^2B。

a+b/2C。

a^2b^3D。

a^2+b^39.红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A。

3种B。

4种C。

5种D。

6种10.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)^2=()A。

四川省成都市2019中考数学试卷(版、解析版)

四川省成都市2019中考数学试卷(版、解析版)

2019年四川省成都市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 比-3大5的数是( )A. −15B. −8C. 2D. 82. 如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A.B.C.D.3. 2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M 87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为( )A. 5500×104B. 55×106C. 5.5×107D. 5.5×1084. 在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为( )A. (2,3)B. (−6,3)C. (−2,7)D. (−2.−1)5. 将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为( )A. 10∘B. 15∘C. 20∘D. 30∘6. 下列计算正确的是( )A. 5ab −3a =2bB. (−3a 2b)2=6a 4b 2C. (a −1)2=a 2−1D. 2a 2b ÷b =2a 27. 分式方程x−5x−1+2x =1的解为( )A. x =−1B. x =1C. x =2D. x =−28. 某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是( )A. 42件B. 45件C. 46件D. 50件9. 如图,正五边形ABCDE 内接于⊙O ,P 为DE⏜上的一点(点P 不与点D 重命),则∠CPD 的度数为( )A. 30∘B. 36∘C. 60∘D. 72∘10. 如图,二次函数y =ax 2+bx +c 的图象经过点A (1,0),B (5,0),下列说法正确的是( )A. c <0B. b 2−4ac <0C. a −b +c <0D. 图象的对称轴是直线x =3二、填空题(本大题共9小题,共36.0分)11. 若m +1与-2互为相反数,则m 的值为______.12. 如图,在△ABC 中,AB =AC ,点D ,E 都在边BC 上,∠BAD =∠CAE ,若BD =9,则CE 的长为______.13. 已知一次函数y =(k -3)x +1的图象经过第一、二、四象限,则k 的取值范围是______.14. 如图,▱ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,以AM 长为半径作弧,交OC 于点M ';③以点M '为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ';④过点N '作射线ON '交BC 于点E .若AB =8,则线段OE 的长为______.15. 估算:√37.7≈______(结果精确到1)16. 已知x 1,x 2是关于x 的一元二次方程x 2+2x +k -1=0的两个实数根,且x 12+x 22-x 1x 2=13,则k 的值为______.17. 一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为______ 18. 如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD沿射线BD 的方向平移得到△A 'B 'D ',分别连接A 'C ,A 'D ,B 'C ,则A 'C +B 'C 的最小值为______.19. 如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点为“整点”,已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为152,则△OAB 内部(不含边界)的整点的个数为______.三、计算题(本大题共1小题,共6.0分) 20. 先化简,再求值:(1-4x+3)÷x 2−2x+12x+6,其中x =√2+1.四、解答题(本大题共8小题,共78.0分)21. (1)计算:(π-2)0-2cos30°-√16+|1-√3|. (2)解不等式组:{3(x −2)≤4x −5,①5x−24<1+12x .②22. 随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.23. 2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A 处,测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度AB =20米,求起点拱门CD 的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)24. 如图,在平面直角坐标系xOy 中,一次函数y =12x +5和y =-2x 的图象相交于点A ,反比例函数y =kx 的图象经过点A . (1)求反比例函数的表达式;(2)设一次函数y =12x +5的图象与反比例函数y =kx 的图象的另一个交点为B ,连接OB ,求△ABO 的面积.25. 如图,AB 为⊙O 的直径,C ,D 为圆上的两点,OC ∥BD ,弦AD ,BC 相交于点E .(1)求证:AC⏜=CD ⏜; (2)若CE =1,EB =3,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P ,过点P 作PQ ∥CB 交⊙O 于F ,Q 两点(点F 在线段PQ 上),求PQ 的长.26. 随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系. (1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?27. 如图1,在△ABC 中,AB =AC =20,tan B =34,点D 为BC 边上的动点(点D 不与点B ,C 重合).以D 为顶点作∠ADE =∠B ,射线DE 交AC 边于点E ,过点A 作AF ⊥AD交射线DE 于点F ,连接CF . (1)求证:△ABD ∽△DCE ;(2)当DE ∥AB 时(如图2),求AE 的长;(3)点D 在BC 边上运动的过程中,是否存在某个位置,使得DF =CF ?若存在,求出此时BD 的长;若不存在,请说明理由.28.如图,抛物线y=ax2+bx+c经过点A(-2,5),与x轴相交于B(-1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ 为等边三角形时,求直线BP的函数表达式.答案和解析1.【答案】C【解析】解:-3+5=2.故选:C.比-3大5的数是-3+5,根据有理数的加法法则即可求解.本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.2.【答案】B【解析】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【答案】C【解析】解:科学记数法表示:5500万=55000000=5.5×107故选:C.根据科学记数法的表示形式即可本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.【答案】A【解析】解:点(-2,3)向右平移4个单位长度后得到的点的坐标为(2,3).故选:A.把点(-2,3)的横坐标加4,纵坐标不变得到点(-2,3)平移后的对应点的坐标.本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.5.【答案】B【解析】解:∵AB∥CD,∴∠1=∠ADC=30°,又∵等腰直角三角形ADE中,∠ADE=45°,∴∠1=45°-30°=15°,故选:B.根据平行线的性质,即可得出∠1=∠ADC=30°,再根据等腰直角三角形ADE 中,∠ADE=45°,即可得到∠1=45°-30°=15°.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.6.【答案】D【解析】解:A选项,5ab与3b不属于同类项,不能合并,选项错误,B选项,积的乘方(-3a2b)2=(-3)2a4b2=9a4b2,选项错误,C选项,完全平方公式(a-1)2=a2-2a+1,选项错误D选项,单项式除法,计算正确故选:D.注意到A选项中,5ab与3b不属于同类项,不能合并;B选项为积的乘方,C 选项为完全平方公式,D选项为单项式除法,运用相应的公式进行计算即可.此题主要考查整式的混合运算,熟记整式的各个公式并掌握计算的步骤是解题的关键.7.【答案】A【解析】解:方程两边同时乘以x(x-1)得,x(x-5)+2(x-1)=x(x-1),解得x=-1,把x=-1代入原方程的分母均不为0,故x=-1是原方程的解.故选:A.先把整式方程化为分式方程求出x的值,再代入最简公分母进行检验即可.此题主要考查了解分式方程,注意,解分式方程时需要验根.8.【答案】C【解析】解:将数据从小到大排列为:42,45,46,50,50,∴中位数为46,故选:C.将数据从小到大排列,根据中位数的定义求解即可.本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,9.【答案】B【解析】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】D【解析】解:A.由于二次函数y=ax2+bx+c的图象与y轴交于正半轴,所以c>0,故A 错误;B.二次函数y=ax2+bx+c的图象与x轴由2个交点,所以b2-4ac>0,故B错误;C.当x=-1时,y<0,即a-b+c<0,故C错误;D.因为A(1,0),B(5,0),所以对称轴为直线x==3,故D正确.故选:D.二次函数y=ax2+bx+c(a≠0)①常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).②抛物线与x轴交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.11.【答案】1【解析】解:根据题意得:m+1-2=0,解得:m=1,故答案为:1.根据“m+1与-2互为相反数”,得到关于m的一元一次方程,解之即可.本题考查了解一元一次方程和相反数,正确掌握相反数的定义和一元一次方程的解法是解题的关键.12.【答案】9【解析】解:∵AB=AC,∴∠B=∠C,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE=9,故答案为:9.利用等腰三角形的性质和题目的已知条件证得△BAD≌△CAE后即可求得CE 的长.本题考查了等腰三角形的性质,解题的关键是利用已知和隐含条件证得三角形全等.13.【答案】k<3【解析】解:y=(k-3)x+1的图象经过第一、二、四象限,∴k-3<0,∴k<3;故答案为k<3;根据y=kx+b,k<0,b>0时,函数图象经过第一、二、四象限,则有k-3<0即可求解;本题考查一次函数图象与系数的关系;熟练掌握一次函数y=kx+b,k与b对函数图象的影响是解题的关键.14.【答案】4【解析】解:由作法得∠COE=∠OAB,∴OE∥AB,∵四边形ABCD为平行四边形,∴OC=OA,∴CE=BE,∴OE为△ABC的中位线,∴OE=AB=×8=4.故答案为4.利用作法得到∠COE=∠OAB,则OE∥AB,利用平行四边形的性质判断OE为△ABC的中位线,从而得到OE的长.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的性质.15.【答案】6【解析】解:∵,∴,∴≈6.故答案为:6根据二次根式的性质解答即可.本题主要考查了无理数的估算,熟练掌握二次根式的性质是解答本题的关键.16.【答案】-2【解析】解:根据题意得:x1+x2=-2,x1x2=k-1,+-x1x2=-3x1x2=4-3(k-1)=13,k=-2,故答案为:-2.根据“x1,x2是关于x的一元二次方程x2+2x+k-1=0的两个实数根,且x12+x22-x1x2=13”,结合根与系数的关系,列出关于k的一元一次方程,解之即可.本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.17.【答案】20【解析】解:设盒子中原有的白球的个数为x个,根据题意得:=,解得:x=20,经检验:x=20是原分式方程的解;∴盒子中原有的白球的个数为20个.故答案为:20;设盒子中原有的白球的个数为x个,根据题意列出分式方程,解此分式方程即可求得答案.此题考查了概率公式的应用、分式方程的应用.用到的知识点为:概率=所求情况数与总情况数之比.18.【答案】√3【解析】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,∵AB∥A′B′,AB=A′B′,AB=CD,AB∥CD,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是矩形,∠B′A′C=30°,∴B′C=,A′C=,∴A'C+B'C的最小值为,故答案为:.根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,推出四边形A′B′CD是矩形,∠B′A′C=30°,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,菱形的性质,矩形的判定和性质,解直角三角形,平移的性质,正确的理解题意是解题的关键.19.【答案】4或5或6【解析】解:设B (m ,n ),∵点A 的坐标为(5,0),∴OA=5,∵△OAB 的面积=5•n=,∴n=3,结合图象可以找到其中的一种情况:(以一种为例)当2<m <3时,有6个整数点;当3<m <时,有5个整数点;当m=3时,有4个整数点;可知有6个或5个或4个整数点;故答案为4或5或6;根据面积求出B 点的纵坐标是3,结合平面直角坐标系,多画些图可以观察到整数点的情况;本题考查三角形的面积与平面直角坐标系中点的关系;能够结合图象,多作图是解题的关键.20.【答案】解:原式=(x+3x+3−4x+3)×2(x+3)(x−1)2=x−1x+3×2(x+3)(x−1)2=2x−1将x =√2+1代入原式=√2+1−1=√2【解析】可先对进行通分,可化为,再利用除法法则进行计算即可此题主要考查了方程解的定义和分式的运算,把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.21.【答案】解:(1)原式=1-2×√32-4+√3-1, =1-√3-4+√3-1,=-4.(2){3(x −2)≤4x −5,①5x−24<1+12x .② 由①得,x ≥-1,由②得,x <2,所以,不等式组的解集是-1≤x <2.【解析】(1)本题涉及零指数幂、平方根、绝对值、特殊角的三角函数4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.【答案】解:(1)本次调查的学生总人数为:18÷20%=90, 在线听课的人数为:90-24-18-12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×1290=48°, 即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×2490=560(人), 答:该校对在线阅读最感兴趣的学生有560人.【解析】(1)根据在线答题的人数和所占的百分比即可求得本次调查的人数,然后再求出在线听课的人数,即可将条形统计图补充完整;(2)根据统计图中的数据可以求得扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)根据统计图中的数据可以求得该校对在线阅读最感兴趣的学生人数. 本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】解:作CE ⊥AB 于E ,则四边形CDBE 为矩形,∴CE =AB =20,CD =BE ,在Rt △ADB 中,∠ADB =45°,∴AB =DB =20,在Rt △ACE 中,tan ∠ACE =AE CE , ∴AE =CE •tan ∠ACE ≈20×0.70=14,∴CD =BE =AB -AE =6,答:起点拱门CD 的高度约为6米.【解析】作CE ⊥AB 于E ,根据矩形的性质得到CE=AB=20,CD=BE ,根据正切的定义求出AE ,结合图形计算即可.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.24.【答案】解:(1)由{y =12x +5y =−2x得{y =4x=−2, ∴A (-2,4), ∵反比例函数y =kx 的图象经过点A ,∴k =-2×4=-8, ∴反比例函数的表达式是y =-8x ;(2)解{y =−8x y =12x +5得{y =4x=−2或{y =1x=−8, ∴B (-8,1),由直线AB 的解析式为y =12x +5得到直线与x 轴的交点为(-10,0),∴S △AOB =12×10×4-12×10×1=15. 【解析】(1)联立方程求得A 的坐标,然后根据待定系数法即可求得;(2)联立方程求得交点B的坐标,进而求得直线与x轴的交点,然后利用三角形面积公式求得即可.本题考查了一次函数和反比例函数的交点问题,通过方程组求得交点坐标是解题的关键.25.【答案】证明:(1)∵OC=OB∴∠OBC=∠OCB∵OC∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴AC⏜=CD⏜(2)连接AC,∵CE=1,EB=3,∴BC=4∵AC⏜=CD⏜∴∠CAD=∠ABC,且∠ACB=∠ACB∴△ACE∽△BCA∴AC CE =CBAC∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB=√AC2+BC2=2√5∴⊙O的半径为√5(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA =∠BCO =∠CBO ,且∠CPB =∠CPA∴△APC ∽△CPB ∴PA PC =PC PB =AC BC =24=12 ∴PC =2PA ,PC 2=PA •PB∴4PA 2=PA ×(PA +2√5)∴PA =2√53∴PO =5√53 ∵PQ ∥BC∴∠CBA =∠BPQ ,且∠PHO =∠ACB =90°∴△PHO ∽△BCA∴AC OH =BC PH =AB PO即2OH =4PH =2√55√53=65 ∴PH =103,OH =53∴HQ =√OQ 2−OH 2=2√53∴PQ =PH +HQ =10+2√53 【解析】(1)由等腰三角形的性质和平行线的性质可得∠OBC=∠CBD ,即可证=;(2)通过证明△ACE ∽△BCA ,可得,可得AC=2,由勾股定理可求AB 的长,即可求⊙O 的半径;(3)过点O 作OH ⊥FQ 于点H ,连接OQ ,通过证明△APC ∽△CPB ,可得,可求PA=,即可求PO 的长,通过证明△PHO ∽△BCA ,可求PH ,OH 的长,由勾股定理可求HQ 的长,即可求PQ 的长.本题考查了切线的性质,圆的有关知识,相似三角形的判定和性质,勾股定理,求出PA 的长是本题的关键.26.【答案】解:(1)设函数的解析式为:y =kx +b (k ≠0),由图象可得, {5k +b =5000k+b=7000,解得,{b =7500k=−500,∴y 与x 之间的关系式:y =-500x +7500;(2)设销售收入为w 万元,根据题意得,w =yp =(-500x +7500)(12x +12), 即w =-250(x -7)2+16000,∴当x =7时,w 有最大值为16000,此时y =-500×7+7500=4000(元) 答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元.【解析】(1)根据函数图象上的两点坐标,用待定系数法求出函数的解析式便可;(2)设销售收入为w 万元,根据销售收入=销售单价×销售数量和p=x+,列出w 与x 的函数关系式,再根据函数性质求得结果.本题是一次函数的应用与二次函数的应用的综合题,主要考查了一次函数的实际应用,二次函数的实际应用,待定系数法求函数解析式,求二次函数的最值.关键是正确列出函数解析式.27.【答案】(1)证明:∵AB =AC , ∴∠B =∠ACB ,∵∠ADE +∠CDE =∠B +∠BAD ,∠ADE =∠B ,∴∠BAD =∠CDE ,∴△BAD ∽△DCE .(2)解:如图2中,作AM ⊥BC 于M .在Rt △ABM 中,设BM =4k ,则AM =BM •tan B =4k ×34=3k , 由勾股定理,得到AB 2=AM 2+BM 2,∴202=(3k )2+(4k )2,∴k =4或-4(舍弃),∵AB =AC ,AM ⊥BC ,∴BC =2BM =2•4k =32,∵DE ∥AB ,∴∠BAD =∠ADE ,∵∠ADE =∠B ,∠B =∠ACB ,∴∠BAD =∠ACB ,∵∠ABD =∠CBA ,∴△ABD ∽△CBA , ∴AB CB =DB AB , ∴DB =AB 2CB =20232=252, ∵DE ∥AB ,∴AE AC =BDBC , ∴AE =AC⋅BD BC =20×25232=12516.(3)点D 在BC 边上运动的过程中,存在某个位置,使得DF =CF .理由:作FH ⊥BC 于H ,AM ⊥BC 于M ,AN ⊥FH 于N .则∠NHM =∠AMH =∠ANH =90°,∴四边形AMHN 为矩形,∴∠MAN =90°,MH =AN ,∵AB =AC ,AM ⊥BC ,∴BM =CM =12BC =12×32=16, 在Rt △ABM 中,由勾股定理,得AM =√AB 2−BM 2=√202−162=12,∵AN ⊥FH ,AM ⊥BC ,∴∠ANF =90°=∠AMD , ∵∠DAF =90°=∠MAN , ∴∠NAF =∠MAD ,∴△AFN ∽△ADM ,∴AN AM =AF AD =tan ∠ADF =tan B =34,∴AN =34AM =34×12=9, ∴CH =CM -MH =CM -AN =16-9=7,当DF =CF 时,由点D 不与点C 重合,可知△DFC 为等腰三角形,∵FH ⊥DC ,∴CD =2CH =14,∴BD =BC -CD =32-14=18,∴点D 在BC 边上运动的过程中,存在某个位置,使得DF =CF ,此时BD =18.【解析】(1)根据两角对应相等的两个三角形相似证明即可.(2)解直角三角形求出BC ,由△ABD ∽△CBA ,推出=,可得DB===,由DE ∥AB ,推出=,求出AE 即可. (3)点D 在BC 边上运动的过程中,存在某个位置,使得DF=CF .作FH ⊥BC 于H ,AM ⊥BC 于M ,AN ⊥FH 于N .则∠NHM=∠AMH=∠ANH=90°,由△AFN ∽△ADM ,可得==tan ∠ADF=tanB=,推出AN=AM=×12=9,推出CH=CM-MH=CM-AN=16-9=7,再利用等腰三角形的性质,求出CD 即可解决问题.本题属于相似形综合题,考查了新三角形的判定和性质,解直角三角形,锐角三角函数等,等腰三角形的判定和性质知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.28.【答案】解:(1)由题意得:{4a −2b +c =5,a −b +c =09a +3b +c =0,解得{a =1b =−2c =−3,∴抛物线的函数表达式为y =x 2-2x -3.(2)∵抛物线与x 轴交于B (-1,0),C (3,0),∴BC =4,抛物线的对称轴为直线x =1,如图,设抛物线的对称轴与x 轴交于点H ,则H 点的坐标为(1,0),BH =2, 由翻折得C ′B =CB =4,在Rt △BHC ′中,由勾股定理,得C ′H =√C′B 2−BH 2=√42−22=2√3,∴点C′的坐标为(1,2√3),tan∠C′BH=C′HBH =2√32=√3,∴∠C′BH=60°,由翻折得∠DBH=12∠C′BH=30°,在Rt△BHD中,DH=BH•tan∠DBH=2•tan30°=2√33,∴点D的坐标为(1,2√33).(3)取(2)中的点C′,D,连接CC′,∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形.分类讨论如下:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.∵△PCQ,△C′CB为等边三角形,∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°,∴∠BCQ=∠C′CP,∴△BCQ≌△C′CP(SAS),∴BQ=C′P.∵点Q在抛物线的对称轴上,∴BQ=CQ,∴C′P=CQ=CP,又∵BC′=BC,∴BP垂直平分CC′,由翻折可知BD垂直平分CC′,∴点D在直线BP上,设直线BP的函数表达式为y=kx+b,则{0=−k+b2√33=k+b,解得{k=√33b=√33,∴直线BP的函数表达式为y=√33x+√33.②当点P在x轴的下方时,点Q在x轴下方.∵△PCQ,△C′CB为等边三角形,∴CP=CQ,BC=CC′,∠CC′B=∠QCP=∠C′CB=60°.∴∠BCP=∠C′CQ,∴△BCP≌△C′CQ(SAS),∴∠CBP=∠CC′Q,∵BC′=CC′,C′H⊥BC,∴∠CC′Q=12∠CC′B=30°.∴∠CBP=30°,设BP与y轴相交于点E,在Rt△BOE中,OE=OB•tan∠CBP=OB•tan30°=1×√33=√33,∴点E的坐标为(0,-√33).设直线BP的函数表达式为y=mx+n,则{0=−m+n−√33=n,解得{m=−√33n=−√33,∴直线BP的函数表达式为y=-√33x−√33.综上所述,直线BP的函数表达式为y=√33x+√33或y=−√33x−√33.【解析】(1)根据待定系数法,把点A(-2,5),B(-1,0),C(3,0)的坐标代入y=ax2+bx+c得到方程组求解即可;(2)设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2,由翻折得C′B=CB=4,求出C′H的长,可得∠C′BH=60°,求出DH的长,则D坐标可求;(3)由题意可知△C′CB为等边三角形,分两种情况讨论:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.证出△BCQ≌△C′CP,可得BP垂直平分CC′,则D点在直线BP上,可求出直线BP的解析式,②当点P在x轴的下方时,点Q在x轴下方.同理可求出另一直线解析式.本题考查了二次函数的综合题,涉及的知识点有:待定系数法求二次函数解析式,待定系数法求一次函数解析式,轴对称的性质,全等三角形的判定和性质,等边三角形的判定与性质,锐角三角函数等知识,综合性较强,有一定的难度.。

2019年四川省达州市中考数学试题(word版,含解析)

2019年四川省达州市中考数学试题(word版,含解析)

2019年四川省达州市中考数学试卷一、单项选择题(每小题3分,共30分)1.(3分)﹣2019的绝对值是()A.2019B.﹣2019C.D.﹣2.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,轴对称图形是()A.B.C.D.3.(3分)下列计算正确的是()A.a2+a3=a5B.a8÷a4=a4C.(﹣2ab)2=﹣4a2b2D.(a+b)2=a2+b24.(3分)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.5.(3分)一组数据1,2,1,4的方差为()A.1B.1.5C.2D.2.56.(3分)下列判断正确的是()A.<0.5B.若ab=0,则a=b=0C.=D.3a可以表示边长为a的等边三角形的周长7.(3分)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=91008.(3分)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是()A.5B.﹣C.D.9.(3分)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.10.(3分)矩形OABC在平面直角坐标系中的位置如图所示,已知B(2,2),点A在x 轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作PD⊥PC,交x轴于点D.下列结论:①OA=BC=2;②当点D运动到OA的中点处时,PC2+PD2=7;③在运动过程中,∠CDP是一个定值;④当△ODP为等腰三角形时,点D的坐标为(,0).其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.(3分)2018年,中国贸易进出口总额为4.62万亿美元(美国约为4.278万亿美元),同比增长12.6%,占全球贸易总额的11.75%,贸易总额连续两年全球第一!数据4.62万亿用科学记数法表示为.12.(3分)如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为.13.(3分)如图所示,点C位于点A、B之间(不与A、B重合),点C表示1﹣2x,则x 的取值范围是.14.(3分)如图,▱ABCD的对角线AC、BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为.15.(3分)如图,A、B两点在反比例函数y=的图象上,C、D两点在反比例函数y=的图象上,AC⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=4,EF=3,则k2﹣k1=.16.(3分)如图,抛物线y=﹣x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点;②若点M(﹣2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y=﹣(x+1)2+m;④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为+.其中正确判断的序号是.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5分)计算:(π﹣3.14)0﹣()﹣2+﹣.18.(7分)先化简:(﹣)÷,再选取一个适当的x的值代入求值.19.(7分)随机抽取某小吃店一周的营业额(单位:元)如下表:星期一星期二星期三星期四星期五星期六星期日合计540680640640780111010705460(1)分析数据,填空:这组数据的平均数是元,中位数是元,众数是元.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么?答(填“合适”或“不合适”):.②选择一个你认为最合适的数据估算这个小吃店一个月的营业额.20.(7分)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.21.(7分)端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?22.(8分)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.23.(8分)渠县賨人谷是国家AAAA级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为川东“小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD,想法测出了尾部C看头顶B 的仰角为40°,从前脚落地点D看上嘴尖A的仰角刚好60°,CB=5m,CD=2.7m.景区管理员告诉同学们,上嘴尖到地面的距离是3m.于是,他们很快就算出了AB的长.你也算算?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84.≈1.41,≈1.73)24.(11分)箭头四角形模型规律如图1,延长CO交AB于点D,则∠BOC=∠1+∠B=∠A+∠C+∠B.因为凹四边形ABOC形似箭头,其四角具有“∠BOC=∠A+∠B+∠C”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,∠A+∠B+∠C+∠D+∠E+∠F=.②如图3,∠ABE、∠ACE的2等分线(即角平分线)BF、CF交于点F,已知∠BEC=120°,∠BAC=50°,则∠BFC=.③如图4,BO i、CO i分别为∠ABO、∠ACO的2019等分线(i=1,2,3, (2017)2018).它们的交点从上到下依次为O1、O2、O3、…、O2018.已知∠BOC=m°,∠BAC =n°,则∠BO1000C=度.(2)拓展应用:如图5,在四边形ABCD中,BC=CD,∠BCD=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:四边形OBCD是菱形.25.(12分)如图1,已知抛物线y=﹣x2+bx+c过点A(1,0),B(﹣3,0).(1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段P A 交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m﹣n的最大值.2019年四川省达州市中考数学试卷参考答案与试题解析一、单项选择题(每小题3分,共30分)1.(3分)﹣2019的绝对值是()A.2019B.﹣2019C.D.﹣【分析】直接利用绝对值的定义进而得出答案.【解答】解:﹣2019的绝对值是:2009.故选:A.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,轴对称图形是()A.B.C.D.【分析】根据轴对称图形的概念进而判断求解.【解答】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.(3分)下列计算正确的是()A.a2+a3=a5B.a8÷a4=a4C.(﹣2ab)2=﹣4a2b2D.(a+b)2=a2+b2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、a8÷a4=a4,故此选项正确;C、(﹣2ab)2=4a2b2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.4.(3分)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.【解答】解:从左面看可得到从左到右分别是3,1个正方形.故选:B.【点评】本题考查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.5.(3分)一组数据1,2,1,4的方差为()A.1B.1.5C.2D.2.5【分析】先求得这组数据平均值,再根据方差公式,计算即可【解答】解:平均数为==2方差S2=[(1﹣2)2+(2﹣2)2+(1﹣2)2+(4﹣2)2]=故选:B.【点评】此题主要考查方差的计算公式,熟记方差的计算公式:S2=×[(x1﹣)2+(x2﹣)2+…+(x n﹣1﹣)2+(x n﹣)2]是解题的关键6.(3分)下列判断正确的是()A.<0.5B.若ab=0,则a=b=0C.=D.3a可以表示边长为a的等边三角形的周长【分析】根据实数的大小比较法则、二次根式的乘除法法则、列代数式的一般步骤判断即可.【解答】解:A、2<<3,∴<<1,本选项错误;B、若ab=0,则a=0或b=0或a=b=0,本选项错误;C、当a≥0,b>0时,=,本选项错误;D、3a可以表示边长为a的等边三角形的周长,本选项正确;故选:D.【点评】本题考查的是二次根式的乘除法、实数的大小比较、列代数式,掌握二次根式的乘除法法则、实数的大小比较法则是解题的关键.7.(3分)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=9100【分析】分别表示出5月,6月的营业额进而得出等式即可.【解答】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:2500+2500(1+x)+2500(1+x)2=9100.故选:D.【点评】此题主要考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.8.(3分)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是()A.5B.﹣C.D.【分析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2019除以3,根据余数的情况确定出与a2019相同的数即可得解.【解答】解:∵a1=5,a2===﹣,a3===,a4===5,…∴数列以5,﹣,三个数依次不断循环,∵2019÷3=673,∴a2019=a3=,故选:D.【点评】本题是对数字变化规律的考查,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.9.(3分)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.【分析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.【解答】解:当0≤t≤2时,S==,即S与t是二次函数关系,有最小值(0,0),开口向上,当2<t≤4时,S=﹣=,即S与t是二次函数关系,开口向下,由上可得,选项C符合题意,故选:C.【点评】本题考查动点问题的函数过图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.(3分)矩形OABC在平面直角坐标系中的位置如图所示,已知B(2,2),点A在x 轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作PD⊥PC,交x轴于点D.下列结论:①OA=BC=2;②当点D运动到OA的中点处时,PC2+PD2=7;③在运动过程中,∠CDP是一个定值;④当△ODP为等腰三角形时,点D的坐标为(,0).其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】①根据矩形的性质即可得到OA=BC=2;故①正确;②由点D为OA的中点,得到OD=OA=,根据勾股定理即可得到PC2+PD2=CD2=OC2+OD2=22+()2=7,故②正确;③如图,过点P作PF⊥OA于F,FP的延长线交BC于E,PE=a,则PF=EF﹣PE=2﹣a,根据三角函数的定义得到BE=PE=a,求得CE=BC﹣BE=2﹣a=(2﹣a),根据相似三角形的性质得到FD=,根据三角函数的定义得到∠PDC=60°,故③正确;④当△ODP为等腰三角形时,Ⅰ、OD=PD,解直角三角形得到OD=OC=,Ⅱ、OP=OD,根据等腰三角形的性质和四边形的内角和得到∠OCP=105°>90°,故不合题意舍去;Ⅲ、OP=PD,根据等腰三角形的性质和四边形的内角和得到∠OCP=105°>90°,故不合题意舍去;于是得到当△ODP为等腰三角形时,点D的坐标为(,0).故④正确.【解答】解:①∵四边形OABC是矩形,B(2,2),∴OA=BC=2;故①正确;②∵点D为OA的中点,∴OD=OA=,∴PC2+PD2=CD2=OC2+OD2=22+()2=7,故②正确;③如图,过点P作PF⊥OA于F,FP的延长线交BC于E,∴PE⊥BC,四边形OFEC是矩形,∴EF=OC=2,设PE=a,则PF=EF﹣PE=2﹣a,在Rt△BEP中,tan∠CBO===,∴BE=PE=a,∴CE=BC﹣BE=2﹣a=(2﹣a),∵PD⊥PC,∴∠CPE+∠FPD=90°,∵∠CPE+∠PCE=90°,∴∠FPD=∠ECP,∵∠CEP=∠PFD=90°,∴△CEP∽△PFD,∴=,∴=,∴FD=,∴tan∠PDC===,∴∠PDC=60°,故③正确;④∵B(2,2),四边形OABC是矩形,∴OA=2,AB=2,∵tan∠AOB==,∴∠AOB=30°,当△ODP为等腰三角形时,Ⅰ、OD=PD,∴∠DOP=∠DPO=30°,∴∠ODP=60°,∴∠ODC=60°,∴OD=OC=,Ⅱ、OP=OD,∴∠ODP=∠OPD=75°,∵∠COD=∠CPD=90°,∴∠OCP=105°>90°,故不合题意舍去;Ⅲ、OP=PD,∴∠POD=∠PDO=30°,∴∠OCP=150°>90°故不合题意舍去,∴当△ODP为等腰三角形时,点D的坐标为(,0).故④正确,故选:D.【点评】此题主要考查了矩形的性质,锐角三角函数的定义,相似三角形的判定和性质,勾股定理,等腰三角形的性质,构造出相似三角形表示出CP和PD是解本题的关键.二、填空题(每小题3分,共18分)11.(3分)2018年,中国贸易进出口总额为4.62万亿美元(美国约为4.278万亿美元),同比增长12.6%,占全球贸易总额的11.75%,贸易总额连续两年全球第一!数据4.62万亿用科学记数法表示为 4.62×1012.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4.62万亿=4.62×1012,故答案为:4.62×1012【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为.【分析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.【解答】解:因为随机闭合开关S1,S2,S3中的两个,有3种方法,其中有2种能够让灯泡发光所以P(灯泡发光)=.故本题答案为:.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(3分)如图所示,点C位于点A、B之间(不与A、B重合),点C表示1﹣2x,则x 的取值范围是﹣<x<0.【分析】根据题意列出不等式组,求出解集即可确定出x的范围.【解答】解:根据题意得:1<1﹣2x<2,解得:﹣<x<0,则x的范围是﹣<x<0,故答案为:﹣<x<0【点评】此题考查了解一元一次不等式组,以及数轴,熟练掌握运算法则是解本题的关键.14.(3分)如图,▱ABCD的对角线AC、BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为16.【分析】根据平行四边形的性质可得BO=DO=BD,进而可得OE是△ABC的中位线,由三角形中位线定理得出BC=2OE,再根据平行四边形的性质可得AB=CD,从而可得△BCD的周长=△BEO的周长×2.【解答】解:∵▱ABCD的对角线AC、BD相交于点O,∴BO=DO=BD,BD=2OB,∴O为BD中点,∵点E是AB的中点,∴AB=2BE,BC=2OE,∵四边形ABCD是平行四边形,∴AB=CD,∴CD=2BE.∵△BEO的周长为8,∴OB+OE+BE=8,∴BD+BC+CD=2OB+2OE+2BE=2(OB+OE+BE)=16,∴△BCD的周长是16,故答案为16.【点评】此题考查了平行四边形的性质,三角形中位线定理以及线段中点的定义.关键是掌握平行四边形的性质:①边:平行四边形的对边平行且相等.②角:平行四边形的对角相等;③对角线:平行四边形的对角线互相平分.15.(3分)如图,A、B两点在反比例函数y=的图象上,C、D两点在反比例函数y=的图象上,AC⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=4,EF=3,则k2﹣k1=4.【分析】设出A(a,),C(a,),B(b,),D(b,),由坐标转化线段长,从而可求出结果等于4.【解答】解:设A(a,),C(a,),B(b,),D(b,),则CA=﹣=2,∴,得a=同理:BD=,得b=又∵a﹣b=3∴﹣=3解得:k2﹣k1=4【点评】本题考查反比例函数上点的坐标关系,根据坐标转化线段长是解题关键.16.(3分)如图,抛物线y=﹣x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点;②若点M(﹣2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y=﹣(x+1)2+m;④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为+.其中正确判断的序号是①③④.【分析】①把y=m+2代入y=﹣x2+2x+m+1中,判断所得一元二次方程的根的情况便可得判断正确;②根据二次函数的性质进行判断;③根据平移的公式求出平移后的解析式便可;④因BC边一定,只要其他三边和最小便可,作点B关于y轴的对称点B′,作C点关于x轴的对称点C′,连接B′C′,与x轴、y轴分别交于D、E点,求出B′C′便是其他三边和的最小值.【解答】解:①把y=m+2代入y=﹣x2+2x+m+1中,得x2﹣2x+1=0,∵△=4﹣4=0,∴此方程两个相等的实数根,则抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点,故此小题结论正确;②∵抛物线的对称轴为x=1,∴点P(2,y3)关于x=1的对称点为P′(0,y3),∵a=﹣1<0,∴当x<1时,y随x增大而减小,又∵﹣2<0<,点M(﹣2,y1)、点N (,y2)、点P′(0,y3)在该函数图象上,∴y2<y3<y1,故此小题结论错误;③将该抛物线向左平移2个单位,再向下平移2个单位,抛物线的解析式为:y=﹣(x+2)2+2(x+2)x+m+1﹣2,即y=﹣(x+1)2+m,故此小题结论正确;④当m=1时,抛物线的解析式为:y=﹣x2+2x+2,∴A(0,2),C(2,2),B(1,3),作点B关于y轴的对称点B′(﹣1,3),作C点关于x轴的对称点C′(2,﹣2),连接B′C′,与x轴、y轴分别交于D、E点,如图,则BE+ED+CD+BC=B′E+ED+C′D+BC=B′C′+BC,根据两点之间线段最短,知B′C′最短,而BC的长度一定,∴此时,四边形BCDE周长=B′C′+BC最小,为:,故此小题结论正确;故答案为:①③④.【点评】本题考查二次函数的应用、二次函数的图象与性质、二次函数与坐标轴的交点、求线段和的最小值等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5分)计算:(π﹣3.14)0﹣()﹣2+﹣.【分析】直接利用零指数幂的性质以及负指数幂的性质和立方根的性质分别化简得出答案.【解答】解:原式=1﹣4+3﹣2=﹣2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(7分)先化简:(﹣)÷,再选取一个适当的x的值代入求值.【分析】先对括号里的分式进行整理,,,两式相减进行通分即可进行化简,再代入适当的值即可.【解答】解:化简得,原式===﹣取x=1得,原式=﹣=﹣【点评】此题主要考查分式的化简求值,掌握运用分式的通分技巧及分解因式是解题的关键.19.(7分)随机抽取某小吃店一周的营业额(单位:元)如下表:星期一星期二星期三星期四星期五星期六星期日合计540680640640780111010705460(1)分析数据,填空:这组数据的平均数是780元,中位数是680元,众数是640元.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么?答(填“合适”或“不合适”):不合适.②选择一个你认为最合适的数据估算这个小吃店一个月的营业额.【分析】(1)根据平均数的定义、中位数的定义、众数的定义进行解答即可;(2)①从极端值对平均数的影响作出判断即可;②可用该店本周一到周日的日均营业额估计当月营业额.【解答】解:(1)这组数据的平均数==780(元);按照从小到大排列为540、640、640、680、780、1070、1110,中位数为680元,众数为640元;故答案为:780,680,640;(2)①因为在周一至周日的营业额中周六、日的营业额明显高于其他五天的营业额,所以去掉周六、日的营业额对平均数的影响较大,故用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合适;故答案为:不合适;②用该店本周一到周日的日均营业额估计当月营业额,当月的营业额为30×780=23400(元).【点评】本题主要考查了众数、平均数、中位数及样本估计总体,解题的关键是掌握算术平均数的定义与样本估计总体思想的运用.20.(7分)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.【分析】(1)利用基本作图,先画出CD平分∠ACB,然后作DE⊥BC于E;(2)利用CD平分∠ACB得到∠BCD=45°,再判断△CDE为等腰直角三角形,所以DE=CE,然后证明△BDE∽△BAC,从而利用相似比计算出DE.【解答】解:(1)如图,DE为所作;(2)∵CD平分∠ACB,∴∠BCD=∠ACB=45°,∵DE⊥BC,∴△CDE为等腰直角三角形,∴DE=CE,∵DE∥AC,∴△BDE∽△BAC,∴=,即=,∴DE=.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21.(7分)端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?【分析】设这种粽子的标价是x元/个,则节后的价格是0.6x元/个,根据数量=总价÷单价结合两次一共购买了27个,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设这种粽子的标价是x元/个,则节后的价格是0.6x元/个,依题意,得:+=27,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:这种粽子的标价是8元/个.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8分)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.【分析】(1)连接OD,根据角平分线的定义得到∠BAD=∠CAD,求得=,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,于是得到DF与⊙O相切;(2)根据相似三角形的判定和性质即可得到结论.【解答】解:(1)DF与⊙O相切,理由:连接OD,∵∠BAC的平分线交⊙O于点D,∴∠BAD=∠CAD,∴=,∴OD⊥BC,∵DF∥BC,∴OD⊥DF,∴DF与⊙O相切;(2)∵∠BAD=∠CAD,∠ADB=∠C,∴△ABD∽△AEC,∴,∴=,∴BD=.【点评】本题主要考查的是直线与圆的位置关系,相似三角形的性质和判定、等腰三角形的性质、切线的判定,证得∠BAD=∠DAC是解题的关键.23.(8分)渠县賨人谷是国家AAAA级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为川东“小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD,想法测出了尾部C看头顶B 的仰角为40°,从前脚落地点D看上嘴尖A的仰角刚好60°,CB=5m,CD=2.7m.景区管理员告诉同学们,上嘴尖到地面的距离是3m.于是,他们很快就算出了AB的长.你也算算?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84.≈1.41,≈1.73)【分析】作BF⊥CE于F,根据正弦的定义求出BF,利用余弦的定义求出CF,利用正切的定义求出DE,结合图形计算即可.【解答】解:作BF⊥CE于F,在Rt△BFC中,BF=BC•sin∠BCF≈3.20,CF=BC•cos∠BCF≈3.85,在Rt△ADE中,DE===≈1.73,∴BH=BF﹣HF=0.20,AH=EF=CD+DE﹣CF=0.58,由勾股定理得,AB=≈0.6(m),答:AB的长约为0.6m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.24.(11分)箭头四角形模型规律如图1,延长CO交AB于点D,则∠BOC=∠1+∠B=∠A+∠C+∠B.因为凹四边形ABOC形似箭头,其四角具有“∠BOC=∠A+∠B+∠C”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,∠A+∠B+∠C+∠D+∠E+∠F=2α.②如图3,∠ABE、∠ACE的2等分线(即角平分线)BF、CF交于点F,已知∠BEC=120°,∠BAC=50°,则∠BFC=85°.③如图4,BO i、CO i分别为∠ABO、∠ACO的2019等分线(i=1,2,3, (2017)2018).它们的交点从上到下依次为O1、O2、O3、…、O2018.已知∠BOC=m°,∠BAC =n°,则∠BO1000C=(m+n)度.(2)拓展应用:如图5,在四边形ABCD中,BC=CD,∠BCD=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:四边形OBCD是菱形.【分析】(1)①由∠A+∠B+∠C=∠BOC=α,∠D+∠E+∠F=∠DOE=α可得答案;②由∠BEC=∠EBF+∠ECF+∠F,∠F=∠ABF+∠ACF+∠A且∠EBF=∠ABF,∠ECF =∠ACF知∠BEC=∠F﹣∠A+∠F,从而得∠F=,代入计算可得;③由∠BOC=∠OBO1000+∠OCO1000+∠BO1000C=(∠ABO+∠ACO)+∠BO1000C,∠BO1000C=∠ABO1000+∠ACO1000+∠BAC=(∠ABO+∠ACO)+∠BAC知∠ABO+∠ACO=(∠BO1000C﹣∠BAC),代入∠BOC=(∠ABO+∠ACO)+∠BO1000C 得∠BOC=×(∠BO1000C﹣∠BAC)+∠BO1000C,据此得出∠BO1000C=(∠BOC+∠BAC)=∠BOC+∠BAC,代入可得答案;(2)由∠OAB=∠OBA,∠OAD=∠ODA知∠BOD=∠BAD+∠ABO+∠ADO=2∠BAD,结合∠BCD=2∠BAD得∠BCD=∠BOD,连接OC,根据全等三角形的判定和性质以及菱形的判定解答即可.【解答】解:(1)①如图2,在凹四边形ABOC中,∠A+∠B+∠C=∠BOC=α,在凹四边形DOEF中,∠D+∠E+∠F=∠DOE=α,∴∠A+∠B+∠C+∠D+∠E+∠F=2α;②如图3,∵∠BEC=∠EBF+∠ECF+∠F,∠F=∠ABF+∠ACF+∠A,且∠EBF=∠ABF,∠ECF =∠ACF,∴∠BEC=∠F﹣∠A+∠F,∴∠F=,∵∠BEC=120°,∠BAC=50°,∴∠F=85°;③如图3,由题意知∠ABO1000=∠ABO,∠OBO1000=∠ABO,∠ACO1000=∠ACO,∠OCO1000=∠ACO,∴∠BOC=∠OBO1000+∠OCO1000+∠BO1000C=(∠ABO+∠ACO)+∠BO1000C,∠BO1000C=∠ABO1000+∠ACO1000+∠BAC=(∠ABO+∠ACO)+∠BAC,则∠ABO+∠ACO=(∠BO1000C﹣∠BAC),代入∠BOC=(∠ABO+∠ACO)+∠BO1000C得∠BOC=×(∠BO1000C ﹣∠BAC)+∠BO1000C,解得:∠BO1000C=(∠BOC+∠BAC)=∠BOC+∠BAC,∵∠BOC=m°,∠BAC=n°,∴∠BO1000C=m°+n°;故答案为:①2α;②85°;③(m+n);(2)如图5,连接OC,∵OA=OB=OD,∴∠OAB=∠OBA,∠OAD=∠ODA,∴∠BOD=∠BAD+∠ABO+∠ADO=2∠BAD,∵∠BCD=2∠BAD,∴∠BCD=∠BOD,∵BC=CD,OA=OB=OD,OC是公共边,∴△OBC≌△ODC(SSS),∴∠BOC=∠DOC,∠BCO=∠DCO,∵∠BOD=∠BOC+∠DOC,∠BCD=∠BCO+∠DCO,∴∠BOC=∠BOD,∠BCO=∠BCD,又∠BOD=∠BCD,∴∠BOC=∠BCO,∴BO=BC,又OB=OD,BC=CD,∴OB=BC=CD=DO,∴四边形OBCD是菱形.【点评】本题主要考查四边形的综合问题,解题的关键是掌握“箭头四角形”的性质∠BOC=∠A+∠B+∠C及其运用,全等三角形的判定与性质、菱形的判定等知识点.25.(12分)如图1,已知抛物线y=﹣x2+bx+c过点A(1,0),B(﹣3,0).(1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段P A 交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m﹣n的最大值.【分析】(1)利用待定系数法,将A,B的坐标代入y=﹣x2+bx+c即可求得二次函数的解析式;(2)设抛物线对称轴与x轴交于点H,在Rt△CHO中,可求得tan∠COH=4,推出∠ACO=∠CDO,可证△AOC∽△ACD,利用相似三角形的性质可求出AD的长度,进一步可求出点D的坐标,由对称性可直接求出另一种情况;(3)设P(a,﹣a2﹣2a+3),P(a,﹣a2﹣2a+3),A(1,0)代入y=kx+b,求出直线P A的解析式,求出点N的坐标,由S△BPM=S△BP A﹣S四边形BMNO﹣S△AON,S△EMN=S△EBO ﹣S四边形BMNO,可推出S△BPM﹣S△EMN=S△BP A﹣S△EBO﹣S△AON,再用含a的代数式表示出来,最终可用函数的思想来求出其最大值.【解答】解:(1)由题意把点(1,0),(﹣3,0)代入y=﹣x2+bx+c,。

2019年四川省绵阳市中考数学试卷(解析版)

2019年四川省绵阳市中考数学试卷(解析版)

2019年四川省绵阳市中考数学试卷(解析版)一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项符合题目要求.1.(3分)若2,则a的值为()A.-4 B.4 C.-2 D.【解答】解:若2,则a=4,故选:B.2.(3分)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A.0.2×10-3B.0.2×10-4C.2×10-3D.2×10-4【解答】解:将数0.0002用科学记数法表示为2×10-4,故选:D.3.(3分)对如图的对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形【解答】解:如图所示:是中心对称图形.故选:B.4.(3分)下列几何体中,主视图是三角形的是()A.B.C.D.【解答】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.5.(3分)如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,) B.(,2) C.(,3) D.(3,)【解答】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴30°,∠F AE=60°,∵A(4,0),∴OA=4,∴2,∴,EF,∴OF=AO-AF=4-1=3,∴.故选:D.6.(3分)已知x是整数,当|x|取最小值时,x的值是()A.5 B.6 C.7 D.8【解答】解:∵,∴5,且与最接近的整数是5,∴当|x|取最小值时,x的值是5,故选:A.7.(3分)帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6 B.众数是7 C.中位数是5 D.方差是8【解答】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.A.极差=11-3=8,结论错误,故A不符合题意;B.众数为5,7,11,3,9,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C 不符合题意;D.平均数是(5+7+11+3+9)÷5=7,方差S2[(5-7)2+(7-7)2+(11-7)2+(3-7)2+(9-7)2]=8.结论正确,故D符合题意;故选:D.8.(3分)已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A.ab2B.a+b2C.a2b3D.a2+b3【解答】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.9.(3分)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种【解答】解:设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.10.(3分)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)2=()A.B.C.D.【解答】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ-5sinθ=5,∴cosθ-sinθ,∴(sinθ-cosθ)2.11.(3分)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a-c>0;③a+2b+4c>0;④4,正确的个数是()A.1 B.2 C.3 D.4【解答】解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴,∴1,当时,b>-3a,∵当x=2时,y=4a+2b+c=0,∴b=-2ac,∴-2ac>-3a,∴2a-c>0,故②正确;③∵,∴2a+b>0,∵c>0,4c>0,∴a+2b+4c>0,④∵,∴2a+b>0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>-4ab,∵a>0,b<0,∴ab<0,dengx∴,即,故④正确.故选:D.12.(3分)如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E 是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC分别交EF、EG于点H、K.若BG,∠FEG=45°,则HK=()A.B.C.D.【解答】解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG,∴AG,∵AB∥DC,∴△CEK∽△AGK,∴,∴,∴,∵CK+AK=3,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG,∴EG,∵,∴EK,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴,∴设HE=3x,HKx,∵△HEK∽△HCE,∴,∴,解得:x,∴HK,故选:B.二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上.13.(3分)因式分解:m2n+2mn2+n3=n(m+n)2.【解答】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.14.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=【解答】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1∠ABD,∵BE是∠BDC的平分线,∴∠2∠CDB,∴∠1+∠2=90°,故答案为:90°.15.(3分)单项式x-|a-1|y与2xy是同类项,则a b=1.【解答】解:由题意知-|a-1|0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.16.(3分)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为10km/h.【解答】解:设江水的流速为x km/h,根据题意可得:,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.17.(3分)在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是75或25.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sin B=10,BD=AB•cos B=10;在Rt△ACD中,AD=10,AC=5,∴BC=BD+CD=15或BC=BD-CD=5,∴S△ABC BC•AD=75或25.故答案为:75或25.18.(3分)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=.【解答】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′HBE′,在Rt△BCH中,CH,∴CE′,故答案为:.三、解答题:本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤19.(16分)(1)计算:2|()-1|-2tan30°-(π-2019)0;(2)先化简,再求值:(,其中a,b=2.【解答】解:(1)2|()-1|-2tan30°-(π-2019)02-211=1;(2)原式,当a,b=2时,原式.20.(11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.【解答】解:(1)80~90的频数为36×50%=18,则80~85的频数为18-11=7,95~100的频数为36-(4+18+9)=5,补全图形如下:扇形统计图中扇形D对应的圆心角度数为360°50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12,所以抽取的学生恰好是一名男生和一名女生的概率为.21.(11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?【解答】解:设甲、乙两种客房每间现有定价分别是x元、y元,根据题意,得:,解得,答:甲、乙两种客房每间现有定价分别是300元、200元;(2)设当每间房间定价为x元,m=x(20)-80×20,∴当x=200时,m取得最大值,此时m=2400,答:当每间房间定价为200元时,乙种风格客房每天的利润m最大,最大利润是2400元.22.(11分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y(m≠0且m≠3)的图象在第一象限交于点A、B,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4C D.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.【解答】解:(1)将点A(4,1)代入y,得,m2-3m=4,解得,m1=4,m2=-1,∴m的值为4或-1;反比例函数解析式为:y;(2)∵BD⊥y轴,AE⊥y轴,∴∠CDB=∠CEA=90°,∴△CDB∽△CEA,∴,∵CE=4CD,∴AE=4BD,∵A(4,1),∴AE=4,∴BD=1,∴x B=1,∴y B4,∴B(1,4),将A(4,1),B(1,4)代入y=kx+b,得,,解得,k=-1,b=5,∴y AB=-x+5,设直线AB与x轴交点为F,当x=0时,y=5;当y=0时x=5,∴C(0,5),F(5,0),则OC=OF=5,∴△OCF为等腰直角三角形,∴CFOC=5,则当OM垂直CF于M时,由垂线段最知可知,OM有最小值,即OMCF.23.(11分)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.【解答】证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.24.(12分)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PEP A的最小值.【解答】解:(1)将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y=a(x-1)2-2,∵OA=1,∴点A的坐标为(-1,0),代入抛物线的解析式得,4a-2=0,∴,∴抛物线的解析式为y,即y.令y=0,解得x1=-1,x2=3,∴B(3,0),∴AB=OA+OB=4,∵△ABD的面积为5,∴5,∴y D,代入抛物线解析式得,,解得x1=-2,x2=4,∴D(4,),设直线AD的解析式为y=kx+b,∴,解得:,∴直线AD的解析式为y.(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),∴,∴S△ACE=S△AME-S△CME,,∴当a时,△ACE的面积有最大值,最大值是,此时E点坐标为().(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F作FH⊥AE于点H,交轴于点P,∵E(),OA=1,∴AG=1,EG,∴,∵∠AGE=∠AHP=90°∴sin,∴,∵E、F关于x轴对称,∴PE=PF,∴PEAP=FP+HP=FH,此时FH最小,∵EF,∠AEG=∠HEF,∴,∴.∴PEP A的最小值是3.25.(14分)如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE 的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴∠DEF=90°,∴△DEF是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DF A,∴△DOE∽△DAF,∴,∴t,又∵∠AEF=∠ADG,∠EAF=∠DAG,∴△AEF∽△ADG,∴,∴,又∵AE=OA+OE=2t,∴,∴EG=AE-AG,当点H恰好落在线段BC上∠DFH=∠DFE+∠HFE=45°+45°=90°,∴△ADF∽△BFH,∴,∵AF∥CD,∴,∴,∴,解得:t1,t2(舍去),∴EG=EH;(3)过点F作FK⊥AC于点K,由(2)得EG,∵DE=EF,∠DEF=90°,∴∠DEO=∠EFK,∴△DOE≌△EKF(AAS),∴FK=OE=t,∴S.。

2019年四川省三市中考数学试题(3套,55页,含答案)

2019年四川省三市中考数学试题(3套,55页,含答案)

眉山市2019年初中学业水平暨高中阶段学校招生考试数学试卷解析版注意事项:1.本试卷分A卷和B卷两部分,A卷共100分,B卷共20分,满分120分,考试时间120分钟;2.答题前,务必将自已的姓名、准考证号填写在答题卡规定的位置上;3.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号;答非选择题时,必须使用0.5毫火米黑色签字笔,将答案书写在答题卡规定的位置上;所有题目必须在答题卡上作答,在试题卷上答题无效;4.不允许使用计算器进行运算,凡无精确度要求的题目,结果均保留准确值;5.凡作图题或辅助线均用签字笔画图.A卷(共100分)第Ⅰ卷选择题(共36分)一、选择题:本大题共12个小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一项是正确的,请把答题卡相应题目的正确选项涂黑.1.下列四个数中,是负数是()A.|-3| B.﹣(﹣3)C.(﹣3)2D.﹣32.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.1.2×109个B.12×109个C.1.2×1010个D.1.2×1011个3.如图是由6个完全相同的小正方体组成的立体图形,它的左视图是()第3题图A B CD4.下列运算正确的是( )A .2x 2y +3xy =5x 3y 2B .(﹣2ab 2)3=﹣6a 3b 6C .(3a +b )2=9a 2+b 2D . (3a+b ) (3a ﹣b )=9a 2﹣b 25.如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,∠B =300,∠ADC =700,则∠C 的度数是( )A .500B .600C .700D .8006.函数y =12-+x x 中自变量x 的取值范围是( ) A . x ≥﹣2且x ≠1 B . x ≥﹣2C . x ≠1D .﹣2≤x <17.化简(a ﹣ab 2)÷a b a -的结果是( )A .a ﹣bB .a +bC .ba -1D .ba +1 8.某班七个兴趣小组人数如下:5,6,6,x,7,8,9.已知这组数据的平均数是7,则这组数据的中位数是( ) A .6B .6.5C .7D .89.如图,一束光线从点A (4,4)出发,经y 轴上的点C 反射后经过点B (1,0).则点C 的坐标是( ) A .(0,21) B .(0,54) C .(0,1) D .(0,2)10.如图,⊙O 的直径AB垂直于弦CD ,垂足是点E ,∠CAO =22.50,OC =6.则CD的长为( ) A .62B .32C .6D .12ABC第5题图第9题图B第10题图CD第11题图D11. 如图,在矩形ABCD 中,AB =6, B C =8.过对角线交点O 作EF ⊥AC 交AD 于点E ,交BC 于点F.则DE 的长是( ) A .1B .47 C .2 D .512 12. 如图,在菱形ABCD 中,已知AB =4,∠ABC =600,∠EAF =600,点E 在CB 的延长线上,点F 在DC 的延长线上,有下列结论:①BE =CF; ②∠EAB =∠CEF; ③△ABE ∽△EFC ④若∠BAC =150.则点F 到BC 的距离为23﹣2.A .1个B .2个C .3个D .4个第Ⅱ部分 (非选择题 共64分)二、填空题: 本大题共6小题,每小题3分,共18分.请将正确答案直接填写在答题卡相应位置上.13.分解因式:3a 3﹣6a 2+3a = .14.设a 、b 是方程x 2+x ﹣2019=0的两个实数根,则(a ﹣1)( b ﹣1)的值为 .15.已知关于x 、y 的方程组⎩⎨⎧+=+-=+45212k y x k y x 的解满足x +y =5,则k 的值为 .16.如图,在Rt △ABC 中,∠B =900,AB =5,BC =12,将△ABC 绕点A 逆时针旋转得到△ADE ,使得点D 落在AC 上,则tan ∠ECD 的值为 .17.如图,在Rt △AOB 中,OA =OB =42,⊙O 的半径为2, 点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则线段PQ 长的最小值为______________. 18.如图,反比例函数y =xk(x >0)的图象经过矩形OABC 对角线的交点M ,分别交AB 、BC 于点D 、E ,若四边形ODBC 的面积为12.则k 的值为 .三、解答题:(本大题共6个小题,共46分,请把解答过程写在答题卡相应的位置上.AD CE第16题图第17题图ABOPQ第18题图19.(本小题满分6分)计算:(﹣31)-2﹣(4﹣3)0+6sin450﹣18.20.(本小题满分6分)解不等式组:⎪⎩⎪⎨⎧->-≥+253)1(572x x x x21.(本小题满分8分)如图, 在四边形ABCD 中,AB ∥DC ,点E 是CD 的中点,AE =BE.求证:∠D =∠C.22.(本小题满分8分)如图,在岷江的右岸边有一高楼AB ,左岸边有一坡度i=1∶2的山坡CF ,点C 与点B 在同一水平面上,CF 与AB 在同一平面内.某数学兴趣小组为了测量楼AB 的高度,在坡底C 处测得楼顶A 的仰角为450,然后沿坡面CF 上行了205米到达点D 处,此时在D 处测得楼顶A 的仰角为300ABCED第21题图23.(本题小满分9分)某中学举行铅笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图请结合图中相关信息解答下列问题:(1)扇形统计图中三等奖所在扇形的圆心角的度数是_______________度; (2)请将条形统计图补全; (3)获得一等奖的同学中有来自41七年级,有41来自九年级,其他同学均来自八年级.现准备从获得一等奖的同沉寂中任选2人参加市级铅笔书法大赛.请通过列表或画树状图的方法求所选出的2人中既有八年级同学又有九年级同学的概率.24.(本小题满分9分)在我市“青山绿水”行动中,某社区计划对面积为3600m 2的区域获奖人数条形统计图一等奖 二等奖 三等奖 参与奖 奖项获奖人数扇形统计图一等奖二等奖 三等奖参与奖 40%进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积600 m 2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两个工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用是0.5万元.社区要使这次绿化的总费用不走超过40万元,则至少应安排乙工程队绿化多少天?B 卷(共20分)四、解答题:本大题2个小题,共20分,请把解答过程写在答题卡相应的位置上. 25.(本小题满分9分)如图,正方形ABCD 中,AE 平分∠CAB ,交BC 于点E ,过点C 作CF ⊥AE,交AE 的延长线于点G ,交AB 的延长线于点F.(1)求证:BE =BF ;(2)如图2,连接BG 、BD ,求证:BG 平分∠DBF ; (3)如图3,连接DG 交AC 于点M ,求DMAE的值.26.(本小题满分11分)如图1,在平面直角坐标系中,抛物线y =﹣94x 2+bx+c 经过点A (﹣5,0)和点B (1,0).(1)求抛物线的解析式及顶点D 的坐标;(2)点P 是抛物线上A 、D 之间的一点,过点P 作PE ⊥x 轴于点E ,PG ⊥y 轴,交抛物线于点G.过点G 作GF ⊥x 轴于点F.当矩形PEFG 的周长最大时,求点P 的横坐标;BFCDGE图2BFCDG E图1BFC DGE 图3M(3)如图2,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作∠DMN =∠DBA , MN 交线段AD 于点N ,是否存在这样点M ,使得△DMN 为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由.第Ⅰ卷 选择题(共36分)一、选择题:本大题共12个小题,每小题3分,共36分.1. D2. C3. D4. D5. C6. A7. B8. C9. B 10. A 11. B 12. B 二、填空题:本大题共6个小题,每小题3分,共18分.13. 3a (a -1)2 14. -2017 15. 2 16. 2317. 23 18. 4三、解答题:本大题共6个小题,共46分. 19. (本小题满分6分) 解:原式=9-1+6×22-32 …………………………………………………………………4分=9-1+32-32 ……………………………………………………………………5分=8 …………………………………………………………………………………6分 20. (本小题满分6分)解:解不等式①得:x ≤4, …………………………………………………………………………2分解不等式②得:x >-1, …………………………………………………………………4分 所以不等式组的解集为:-1<x ≤4, ………………………………………………………………6分21. (本小题满分8分)证明:∵AE =BE ∴∠EAB =∠EBA , ………………………………………………………1分 ∵DC ∥AB ∴∠DEA =∠EBA, ∠CEB =∠EBA, ∴∠DEA =∠CEB, …………………………………………………………………4分 在△DEA 和△CEB 中⎪⎩⎪⎨⎧=∠=∠=BE AE CEB DEA CE DE∴△DEA ≌△CEB(SAS) …………………………………………………………………7分∴∠D =∠C, …………………………………………………………………………8分22. (本小题满分8分)解:在Rt △DEC 中,∵i =DE ∶EC =1∶2, 且DE 2+EC 2=DC 2,∴ DE 2+(2 DE )2=(205)2,解得:DE =20m ,EC =40m , ………………2分过点D 作DG ⊥AB 于点G ,过点C 作CH ⊥DG 于点H, ………………………………………3分 则四边形DEBG 、DECH 、BCHG 都是矩形∵∠ACB =450, AB ⊥BC, ∴AB =BC, ……………………………………………………4分 设AB =BC =x m ,则AG =(x -20)m ,DG =(x +40)m , 在Rt △ADG 中, ∵DGAG=tan ∠ADG, ∴4020+-x x =33, 解得:x =50+303.……………………………………………………7分答:楼AB 的高度为(50+303)米 ……………………………………………………8分23. (本小题满分9分)解:(1)1080,……………………2分(2)如图所示. ……………………4分(3)七年级一等奖人数:4×41=1,九年级一等奖人数:4×41=1,八年级一等奖人数为2.…………………………………7分由图可知共有12种等可能的结果,其中选出的两名同学既有八年级又有九年级的结果共有4种,获奖人数条形统计图奖项画树状图如下:开始七八1八2九八1 八2 九 七九八2 八1 七九 七八1 八2∴ P(既有八年级又有九年级同学) =124=31. …………………………………………………9分24 (本小题满分9分)解:(1)设乙队每天能完成的绿化面积为xm 2,则甲队每天能完成的绿化面积为2xm 2,根据题意得:62600600=-xx …………………………………………………………………2分 解得:x =50 …………………………………………………………………3分经检验:x =50就原方程的解,则2 x =100.答:甲队每天能完成的绿化面积为100m 2, 乙队每天能完成的绿化面积为50m 2. …………………4分(2)设甲工程队施工a 天,乙工程队施工b 天刚好完成绿化任务,由题意得: 100a +50b =3600,则a =3621272+-=-b b ……………………………………………6分 根据题意得:1.2×272b-+0.5b ≤40…………………………………………………………7分解得:b ≥32 …………………………………………………………8分 答:至少应安排乙工程队绿化32天. …………………………………………………………9分B 卷(共20分)四、解答题:本大题2个小题,共20分, 25. (本小题满分9分)(1)证明:在正方形ABCD 中,∠ABC =900, AB =BC,∴∠EAB+∠AEB =900,∵AG ⊥CF, ∴∠BCF+∠CEG =900,。

四川省绵阳市2019年中考[数学]考试真题与答案解析

四川省绵阳市2019年中考[数学]考试真题与答案解析

四川省绵阳市2019年中考[数学]考试真题与答案解析一、选择题本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求。

1.﹣3的相反数是( )A.﹣3B.﹣C.D.32.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有( )A.2条B.4条C.6条D.8条3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G 手机全球总发货量突破690万台.将690万用科学记数法表示为( )A.0.69×107B.69×105C.6.9×105D.6.9×1064.下列四个图形中,不能作为正方体的展开图的是( )A.B.C.D.5.若有意义,则a的取值范围是( )A.a≥1B.a≤1C.a≥0D.a≤﹣16.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )A.160钱B.155钱C.150钱D.145钱7.如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE 交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=( )A.1B.2C.3D.48.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( )A.B.C.D.9.在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE =72°,则∠ACD=( )A.16°B.28°C.44°D.45°10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( )A.1.2小时B.1.6小时C.1.8小时D.2小时11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A.4米B.5米C.2米D.7米12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′=( )A.B.2C.D.二、填空题本大题共6小题,每小题4分,共24分.将答案填写在答题卡相应的横线上.13.因式分解:x3y﹣4xy3= .14.平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为 .15.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn = .16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是 万元.(利润=销售额﹣种植成本)17.如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC 的距离的最小值为 .18.若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m 的取值范围是 三、解答题本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19.(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.(2)先化简,再求值:(x+2+)÷,其中x=﹣1.20.4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?21.为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:A加工厂74757575737778727675B加工厂78747873747574747575(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?22.如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.23.如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.24.如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD 的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.25.如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.(1)求BC,CD;(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.①将△AHI沿AC翻折得△AH′I,是否存在时刻t,使点H′恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.答案解析一.选择题1-5 DBDDA6-10 CBACC 11-12 BA二.填空题13.xy(x+2y)(x﹣2y).14.(﹣3,3).15.0或8.16.解:设甲种火龙果种植x亩,乙钟火龙果种植(100﹣x)亩,此项目获得利润w,甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:,解得:50≤x≤60,此项目获得利润w=1.1x+1.4(100﹣x)=140﹣0.3x,当x=50时,w的最大值为140﹣15=125万元.17.3﹣2.18.≤m≤6.三.解答题19.(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.(2)先化简,再求值:(x+2+)÷,其中x=﹣1.解:(1)原式=3﹣+2×﹣×2﹣1=3﹣+﹣2﹣1=0;(2)原式=(+)÷=•=,当x=﹣1时,原式===1﹣.20.解:(1)甲书店:y=0.8x,乙书店:y=.(2)令0.8x=0.6x+40,解得:x=200,当x<200时,选择甲书店更省钱,当x=200,甲乙书店所需费用相同,当x>200,选择乙书店更省钱.21.解:(1)把这些数从小到大排列,最中间的数是第5和第6个数的平均数,则中位数是=75(克);因为75出现了4次,出现的次数最多,所以众数是75克;平均数是:(74+75+75+75+73+77+78+72+76+75)=75(克);(2)根据题意得:100×=30(个),答:质量为75克的鸡腿有30个;(3)选B加工厂的鸡腿.∵A、B平均值一样,B的方差比A的方差小,B更稳定,∴选B加工厂的鸡腿.22.(1)证明:∵∠BAC=∠CEB,∠CEB=∠DCA,∴∠BAC=∠DCA,∴AB∥CD;(2)证明:连接EO并延长交⊙O于G,连接CG,如图1所示:则EG为⊙O的直径,∴∠ECG=90°,∵OC=OG,∴∠OCG=∠EGC,∵∠EAC=∠EGC,∠EAC=∠DCE,∴∠DCE=∠EGC=∠OCG,∵∠OCG+∠OCE=∠ECG=90°,∴∠DCE+∠OCE=90°,即∠DCO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(3)解:在Rt△ADC中,由勾股定理得:AC===10,∴cos∠ACD===,∵CD是⊙O的切线,AB∥CD,∴∠ABC=∠ACD=∠CAB,∴BC=AC=10,AB=2BC•cos∠ABC=2×10×=12,过点B作BG⊥AC于C,如图2所示:设GC=x,则AG=10﹣x,由勾股定理得:AB2﹣AG2=BG2=BC2﹣GC2,即:122﹣(10﹣x)2=102﹣x2,解得:x=,∴GC=,∴BG===,∴tan∠ACB===.23.解:(1)当m=1时,点A(﹣3,1),∵点A在反比例函数y=的图象上,∴k=﹣3×1=﹣3,∴反比例函数的解析式为y=﹣;∵点B(n,2)在反比例函数y=﹣图象上,∴2n=﹣3,∴n=﹣,设直线AB的解析式为y=ax+b,则,∴,∴直线AB的解析式为y=x+3;(2)如图,过点A作AM⊥x轴于M,过点B作BN⊥x轴于N,过点A作AF⊥BN于F,交BE于G,则四边形AMNF是矩形,∴FN=AM,AF=MN,∵A(﹣3,m),B(n,2),∴BF=2﹣m,∵AE=2﹣m,∴BF=AE,在△AEG和△BFG中,,∴△AEG≌Rt△BFG(AAS),∴AG=BG,EG=FG,∴BE=BG+EG=AG+FG=AF,∵点A(﹣3,m),B(n,2)在反比例函数y=的图象上,∴k=﹣3m=2n,∴m=﹣n,∴BF=BN﹣FN=BN﹣AM=2﹣m=2+n,MN=n﹣(﹣3)=n+3,∴BE=AF=n+3,∵∠AEM+∠MAE=90°,∠AEM+∠BEN=90°,∴∠MAE=∠NEB,∵∠AME=∠ENB=90°,∴△AME∽△ENB,∴====,∴ME=BN=,在Rt△AME中,AM=m,AE=2﹣m,根据勾股定理得,AM2+ME2=AE2,∴m2+()2=(2﹣m)2,∴m=,∴k=﹣3m=﹣,∴反比例函数的解析式为y=﹣.24.解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(0,1),B(,0),设直线AB的解析式为y=kx+m,∴,解得,∴直线AB的解析式为y=﹣x+1,∵点F的横坐标为,∴F点纵坐标为﹣+1=﹣,∴F点的坐标为(,﹣),又∵点A在抛物线上,∴c=1,对称轴为:x=﹣,∴b=﹣2a,∴解析式化为:y=ax2﹣2ax+1,∵四边形DBFE为平行四边形.∴BD=EF,∴﹣3a+1=a﹣8a+1﹣(﹣),解得a=﹣1,∴抛物线的解析式为y=﹣x2+2x+1;(2)设P(n,﹣n2+2n+1),作PP'⊥x轴交AC于点P',则P'(n,﹣n+1),∴PP'=﹣n2+n,S△ABP=OB•PP'=﹣n=﹣+,∴当n=时,△ABP的面积最大为,此时P(,).(3)∵,∴x=0或x=,∴C(,﹣),设Q(,m),①当AQ为对角线时,∴R(﹣),∵R在抛物线y=+4上,∴m+=﹣+4,解得m=﹣,∴Q,R;②当AR为对角线时,∴R(),∵R在抛物线y=+4上,∴m﹣+4,解得m=﹣10,∴Q(,﹣10),R().综上所述,Q,R;或Q(,﹣10),R ().25.解:(1)∵⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6,∴BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,设CP=CQ=a,则BC=6+a,CD=4+a,∵四边形ABCD是矩形,∴∠BCD=90°,∴BC2+CD2=BD2,即(6+a)2+(4+a)2=102,解得:a=2,∴BC=6+2=8,CD=4+2=6;(2)①存在时刻t=s,使点H′恰好落在边BC上;理由如下:如图1所示:由折叠的性质得:∠AH'I=∠AHI,AH'=AH=3t,∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∠BCD=90°,OA=OC=AC,OB=OD=BD,AC=BD,∴AC=BD===10,OA=OD=5,∴∠ADO=∠OAD,∵HI∥BD,∴∠AHI=∠ADO,∴∠AH'I=∠AHI=∠ADO=∠OAD=∠ACH',∴△AIH'∽△AH'C,∴=,∴AH'2=AI×AC,∵HI∥BD,∴△AIH∽△AOD,∴=,即=,解得:AI=t,∴(3t)2=t×10,解得:t=,即存在时刻t=s,使点H′恰好落在边BC上;②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,如图2所示:则OM∥CD∥PN,∠OMH=∠HNP=90°,OM是△ACD的中位线,∴OM=CD=3,∵△OFH是等边三角形,∴OF=FH,∠OHF=∠HOF=60°,∴∠FHP=∠HPO=30°,∴FH=FP=OF,HP=OH,∴DF是梯形OMNP的中位线,∴DN=DM=4,∵∠MHO+∠MOH=∠MHO+∠NHP=90°,∴∠MOH=∠NHP,∴△OMH∽△HNP,∴==,∴HN=OM=3,∴DH=HN﹣DN=3﹣4,∴AH=AD﹣DH=12﹣3,∴t==4﹣,即当△OFH为正三角形时,t的值为(4﹣)s.。

2019年四川省雅安市中考数学试题及参考答案(word解析版)

2019年四川省雅安市中考数学试题及参考答案(word解析版)

2019年四川省雅安市初中毕业、升学考试数学试卷(全卷满分120分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.﹣2019的倒数是()A.﹣2019 B.2019 C.﹣D.2.32的结果等于()A.9 B.﹣9 C.5 D.63.如图是下面哪个图形的俯视图()A.B.C.D.4.不等式组的解集为()A.6≤x<8 B.6<x≤8 C.2≤x<4 D.2<x≤85.已知一组数据5,4,x,3,9的平均数为5,则这组数据的中位数是()A.3 B.4 C.5 D.66.下列计算中,正确的是()A.a4+a4=a8B.a4•a4=2a4C.(a3)4•a2=a14 D.(2x2y)3÷6x3y2=x3y7.若a:b=3:4,且a+b=14,则2a﹣b的值是()A.4 B.2 C.20 D.148.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△A1B1C1相似的是()A.B.C.D.9.在平面直角坐标系中,对于二次函数y=(x﹣2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到10.如图,在四边形ABCD中,AB=CD,AC、BD是对角线,E、F、G、H分别是AD、BD、BC、AC的中点,连接EF、FG、GH、HE,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形11.如图,已知⊙O的内接六边形ABCDEF的边心距OM=2,则该圆的内接正三角形ACE的面积为()A.2 B.4 C.6D.412.如图,在平面直角坐标系中,直线l1:y=x+1与直线l2:y=x交于点A1,过A1作x轴的垂线,垂足为B1,过B1作l2的平行线交l1于A2,过A2作x轴的垂线,垂足为B2,过B2作l2的平行线交l1于A3,过A3作x轴的垂线,垂足为B3…按此规律,则点A n的纵坐标为()A.()n B.()n+1 C.()n﹣1+D.二、填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.13.在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinA=.14.化简x2﹣(x+2)(x﹣2)的结果是.15.如图,△ABC内接于⊙O,BD是⊙O的直径,∠CBD=21°,则∠A的度数为.16.在两个暗盒中,各自装有编号为1,2,3的三个球,球除编号外无其它区别,则在两个暗盒中各取一个球,两球上的编号的积为偶数的概率为.17.已知函数y=的图象如图所示,若直线y=x+m与该图象恰有三个不同的交点,则m的取值范围为.三、解答题(本大题共7小题,满分69分,解答应写出文字说明、证明过程或演算步骤)18.(10分)(1)计算:|﹣2|+﹣20190﹣2sin30°(2)先化简,再求值:(﹣)÷,其中a=1.19.(9分)某校为了解本校学生对课后服务情况的评价,随机抽取了部分学生进行调查,根据调查结果制成了如下不完整的统计图.根据统计图:(1)求该校被调查的学生总数及评价为“满意”的人数;(2)补全折线统计图;(3)根据调查结果,若要在全校学生中随机抽1名学生,估计该学生的评价为“非常满意”或“满意”的概率是多少?20.(9分)某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为a件(a≥30),设销售完50件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w的最小值.21.(10分)如图,▱ABCD的对角线AC、BD相交于点O,EF经过O,分别交AB、CD于点E、F,EF的延长线交CB的延长线于M.(1)求证:OE=OF;(2)若AD=4,AB=6,BM=1,求BE的长.22.(9分)如图,在平面直角坐标系中,一次函数y=﹣x+m的图象与反比例函数y=(x>0)的图象交于A、B两点,已知A(2,4)(1)求一次函数和反比例函数的解析式;(2)求B点的坐标;(3)连接AO、BO,求△AOB的面积.23.(10分)如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.24.(12分)已知二次函数y=ax2(a≠0)的图象过点(2,﹣1),点P(P与O不重合)是图象上的一点,直线l过点(0,1)且平行于x轴.PM⊥l于点M,点F(0,﹣1).(1)求二次函数的解析式;(2)求证:点P在线段MF的中垂线上;(3)设直线PF交二次函数的图象于另一点Q,QN⊥l于点N,线段MF的中垂线交l于点R,求的值;(4)试判断点R与以线段PQ为直径的圆的位置关系.参考答案与解析一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.﹣2019的倒数是()A.﹣2019 B.2019 C.﹣D.【知识考点】倒数.【思路分析】直接利用倒数的定义得出答案.【解题过程】解:﹣2019的倒数是:﹣.故选:C.【总结归纳】此题主要考查了倒数,正确把握倒数的定义是解题关键.2.32的结果等于()A.9 B.﹣9 C.5 D.6【知识考点】有理数的乘方.【思路分析】根据乘方的意义可得:32=3×3=9;【解题过程】解:32=3×3=9;故选:A.【总结归纳】本题考查有理数的乘方;熟练掌握乘方的运算法则是解题的关键.3.如图是下面哪个图形的俯视图()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】根据各选项的俯视图进行判断即可.【解题过程】解:A.球的俯视图为一个圆(不含圆心),不合题意;B.圆柱的俯视图为一个圆(不含圆心),不合题意;C.圆台的俯视图为两个同心圆,不合题意;D.圆锥的俯视图为一个圆(含圆心),符合题意;故选:D.【总结归纳】本题主要考查了简单几何体的三视图,俯视图是从上往下看得到的平面图形.4.不等式组的解集为()A.6≤x<8 B.6<x≤8 C.2≤x<4 D.2<x≤8【知识考点】解一元一次不等式组.【思路分析】分别解出两不等式的解集,再求其公共解.【解题过程】解:由①得x>6,由②得x≤8,∴不等式组的解集为6<x≤8,故选:B.【总结归纳】本题考查了解一元一次方程组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.已知一组数据5,4,x,3,9的平均数为5,则这组数据的中位数是()A.3 B.4 C.5 D.6【知识考点】算术平均数;中位数.【思路分析】先根据平均数的定义求出x的值,再把这组数据从小到大排列,然后求出最中间两个数的平均数即可.【解题过程】解:∵5,4,x,3,9的平均数为5,∴(5+4+x+3+9)÷5=5,解得:x=4,把这组数据从小到大排列为:3,4,4,5,9,则这组数据的中位数是4;故选:B.【总结归纳】此题考查了平均数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,关键是求出x的值.6.下列计算中,正确的是()A.a4+a4=a8B.a4•a4=2a4C.(a3)4•a2=a14 D.(2x2y)3÷6x3y2=x3y【知识考点】整式的混合运算.【思路分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【解题过程】解:A、a4+a4=2a4,故此选项错误;B、a4•a4=a8,故此选项错误;C、(a3)4•a2=a14 ,正确;D、(2x2y)3÷6x3y2=8x6y3÷6x3y2=x3y,故此选项错误;故选:C.【总结归纳】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.7.若a:b=3:4,且a+b=14,则2a﹣b的值是()A.4 B.2 C.20 D.14【知识考点】比例的性质.【思路分析】根据比例的性质得到3b=4a,结合a+b=14求得a、b的值,代入求值即可.【解题过程】解:由a:b=3:4知3b=4a,所以b=.所以由a+b=14得到:a+=14,解得a=6.所以b=8.所以2a﹣b=2×6﹣8=4.故选:A.【总结归纳】考查了比例的性质,内项之积等于外项之积.若=,则ad=bc.8.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△A1B1C1相似的是()A.B.C.D.【知识考点】相似三角形的判定.【思路分析】根据相似三角形的判定方法一一判断即可.【解题过程】解:因为△A1B1C1中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,故选:B.【总结归纳】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.9.在平面直角坐标系中,对于二次函数y=(x﹣2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到【知识考点】二次函数的性质;二次函数图象与几何变换;二次函数的最值.【思路分析】根据题目中的函数解析式,可以判断各个选项中的说法是否正确.【解题过程】解:二次函数y=(x﹣2)2+1,a=1>0,∴该函数的图象开口向上,对称轴为直线x=2,顶点为(2,1),当x=2时,y有最小值1,当x>2时,y的值随x值的增大而增大,当x<2时,y的值随x值的增大而减小;故选项A、B的说法正确,C的说法错误;根据平移的规律,y=x2的图象向右平移2个单位长度得到y=(x﹣2)2,再向上平移1个单位长度得到y=(x﹣2)2+1;故选项D的说法正确,故选:C.【总结归纳】本题考查二次函数的性质、二次函数的最值,二次函数图象与几何变换,解答本题的关键是明确题意,利用二次函数的性质解答.10.如图,在四边形ABCD中,AB=CD,AC、BD是对角线,E、F、G、H分别是AD、BD、BC、AC的中点,连接EF、FG、GH、HE,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形【知识考点】平行四边形的判定;菱形的判定;矩形的判定;正方形的判定;中点四边形.【思路分析】根据三角形的中位线定理可得,EH平行且等于CD的一半,FG平行且等于CD的一半,根据等量代换和平行于同一条直线的两直线平行,得到EH和FG平行且相等,所以EFGH为平行四边形,又因为EF等于AB的一半且AB=CD,所以得到所证四边形的邻边EH与EF相等,所以四边形EFGH为菱形.【解题过程】解:∵E、F、G、H分别是AD、BD、BC、AC的中点,∴在△ADC中,EH为△ADC的中位线,所以EH∥CD且EH=CD;同理FG∥CD且FG=CD,同理可得EF=AB,则EH∥FG且EH=FG,∴四边形EFGH为平行四边形,又AB=CD,所以EF=EH,∴四边形EFGH为菱形.故选:C.【总结归纳】此题考查学生灵活运用三角形的中位线定理,平行四边形的判断及菱形的判断进行证明,是一道综合题.11.如图,已知⊙O的内接六边形ABCDEF的边心距OM=2,则该圆的内接正三角形ACE的面积为()A.2 B.4 C.6D.4【知识考点】等边三角形的判定;三角形的外接圆与外心;正多边形和圆.【思路分析】连接OC、OB,过O作ON⊥CE于N,证出△COB是等边三角形,根据锐角三角函数的定义求解即可.【解题过程】解:如图所示,连接OC、OB,过O作ON⊥CE于N,∵多边形ABCDEF是正六边形,∴∠COB=60°,∵OC=OB,∴△COB是等边三角形,∴∠OCM=60°,∴OM=OC•sin∠OCM,∴OC==(cm).∵∠OCN=30°,∴ON=OC=,CN=2,∴CE=2CN=4,∴该圆的内接正三角形ACE的面积=3×=4,故选:D.【总结归纳】本题考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OC是解决问题的关键.12.如图,在平面直角坐标系中,直线l1:y=x+1与直线l2:y=x交于点A1,过A1作x轴的垂线,垂足为B1,过B1作l2的平行线交l1于A2,过A2作x轴的垂线,垂足为B2,过B2作l2的平行线交l1于A3,过A3作x轴的垂线,垂足为B3…按此规律,则点A n的纵坐标为()A.()n B.()n+1 C.()n﹣1+D.【知识考点】规律型:点的坐标;两条直线相交或平行问题.【思路分析】联立直线l1与直线l2的表达式并解得:x=,y=,故A1(,),依次求出:点A2的纵坐标为、A3的纵坐标为,即可求解.【解题过程】解:联立直线l1与直线l2的表达式并解得:x=,y=,故A1(,);则点B1(,0),则直线B1A2的表达式为:y=x+b,将点B1坐标代入上式并解得:直线B1A2的表达式为:y3=x﹣,将表达式y3与直线l1的表达式联立并解得:x=,y=,即点A2的纵坐标为;同理可得A3的纵坐标为,…按此规律,则点A n的纵坐标为()n,故选:A.【总结归纳】本题考查了两直线的交点,要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.二、填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.13.在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinA=.【知识考点】锐角三角函数的定义.【思路分析】根据正弦的定义解答.【解题过程】解:在Rt△ABC中,sinA==,故答案为:.【总结归纳】本题考查的是锐角三角函数的定义,锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.14.化简x2﹣(x+2)(x﹣2)的结果是.【知识考点】平方差公式.【思路分析】先根据平方差公式化简,再合并同类项即可.【解题过程】解:x2﹣(x+2)(x﹣2)=x2﹣x2+4=4.故答案为:4.【总结归纳】本题主要考查了平方差公式,熟记公式是解答本题的关键.15.如图,△ABC内接于⊙O,BD是⊙O的直径,∠CBD=21°,则∠A的度数为.【知识考点】圆周角定理;三角形的外接圆与外心.【思路分析】直接利用圆周角定理得出∠BCD=90°,进而得出答案.【解题过程】解:∵△ABC内接于⊙O,BD是⊙O的直径,∴∠BCD=90°,∵∠CBD=21°,∴∠A=∠D=90°﹣21°=69°.故答案为:69°【总结归纳】此题主要考查了三角形的外接圆与外心,正确掌握圆周角定理是解题关键.16.在两个暗盒中,各自装有编号为1,2,3的三个球,球除编号外无其它区别,则在两个暗盒中各取一个球,两球上的编号的积为偶数的概率为.【知识考点】列表法与树状图法.【思路分析】画树状图展示所有9种等可能的结果数,找出两球上的编号的积为偶数的结果数,然后根据概率公式求解.【解题过程】解:画树状图为:共有9种等可能的结果数,其中两球上的编号的积为偶数的结果数为5,所以两球上的编号的积为偶数的概率=.故答案为.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.17.已知函数y=的图象如图所示,若直线y=x+m与该图象恰有三个不同的交点,则m的取值范围为.【知识考点】一次函数图象与系数的关系;一次函数图象上点的坐标特征;二次函数的性质.【思路分析】直线与y=﹣x有一个交点,与y=﹣x2+2x有两个交点,则有m>0,x+m=﹣x2+2x 时,△=1﹣4m>0,即可求解.【解题过程】解:直线y=x+m与该图象恰有三个不同的交点,则直线与y=﹣x有一个交点,∴m>0,∵与y=﹣x2+2x有两个交点,∴x+m=﹣x2+2x,△=1﹣4m>0,∴m<,∴0<m<;故答案为0<m<.【总结归纳】本题考查二次函数与一次函数的图象及性质;能够根据条件,数形结合的进行分析,可以确定m的范围.三、解答题(本大题共7小题,满分69分,解答应写出文字说明、证明过程或演算步骤)18.(10分)(1)计算:|﹣2|+﹣20190﹣2sin30°(2)先化简,再求值:(﹣)÷,其中a=1.【知识考点】实数的运算;分式的化简求值;零指数幂;特殊角的三角函数值.【思路分析】(1)根据绝对值、零指数幂和特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解题过程】解:(1)|﹣2|+﹣20190﹣2sin30°=2+3﹣1﹣2×=2+3﹣1﹣1=3;(2)(﹣)÷=[]=()==,当a=1时,原式=.【总结归纳】本题考查分式的化简求值、零指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.19.(9分)某校为了解本校学生对课后服务情况的评价,随机抽取了部分学生进行调查,根据调查结果制成了如下不完整的统计图.根据统计图:(1)求该校被调查的学生总数及评价为“满意”的人数;(2)补全折线统计图;(3)根据调查结果,若要在全校学生中随机抽1名学生,估计该学生的评价为“非常满意”或“满意”的概率是多少?【知识考点】扇形统计图;折线统计图;利用频率估计概率.【思路分析】(1)首先求得总人数,然后根据百分比求得人数即可;(2)根据(1)补全折线统计图即可;(3)利用概率公式求解即可.【解题过程】解:(1)由折线统计图知“非常满意”9人,由扇形统计图知“非常满意”占15%,所以被调查学生总数为9÷15%=60(人),所以“满意”的人数为60﹣(9+21+3)=27(人);(2)如图:(3)所求概率为=.【总结归纳】本题考查了统计图及概率公式的知识,能够从统计图中整理出进一步解题的有关信息是解答本题的关键,难度不大.20.(9分)某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为a件(a≥30),设销售完50件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w的最小值.【知识考点】分式方程的应用;一次函数的应用.【思路分析】(1)根据用360元购进甲种商品的件数与用180元购进乙种商品的件数相同列出方程,解方程即可;(2)根据总利润=甲种商品一件的利润×甲种商品的件数+乙种商品一件的利润×乙种商品的件数列出w与a之间的函数关系式,再根据一次函数的性质即可求出w的最小值.【解题过程】解:(1)依题意可得方程:=,解得x=60,经检验x=60是方程的根,∴x+60=120元,答:甲、乙两种商品的进价分别是120元,60元;(2)∵销售甲种商品为a件(a≥30),∴销售乙种商品为(50﹣a)件,根据题意得:w=(200﹣120)a+(100﹣60)(50﹣a)=40a+2000(a≥30),∵40>0,∴w的值随a值的增大而增大,∴当a=30时,w最小值=40×30+2000=3200(元).【总结归纳】本题考查了分式方程的应用,一次函数的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.21.(10分)如图,▱ABCD的对角线AC、BD相交于点O,EF经过O,分别交AB、CD于点E、F,EF的延长线交CB的延长线于M.(1)求证:OE=OF;(2)若AD=4,AB=6,BM=1,求BE的长.【知识考点】全等三角形的判定与性质;平行四边形的性质;相似三角形的判定与性质.【思路分析】(1)根据平行四边形的性质得到OA=OC,AB∥CD,证明△AOE≌△COF,根据全等三角形的性质证明结论;(2)过点O作ON∥BC交AB于N,根据相似三角形的性质分别求出ON、BN,证明△ONE∽△MBE,根据相似三角形的性质列式计算即可.【解题过程】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,BC=AD,∴∠OAE=∠OVF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF;(2)解:过点O作ON∥BC交AB于N,则△AON∽△ACB,∵OA=OC,∴ON=BC=2,BN=AB=3,∵ON∥BC,∴△ONE∽△MBE,∴=,即=,解得,BE=1.【总结归纳】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的判定定理和性质定理、全等三角形的判定定理和性质定理是解题的关键.22.(9分)如图,在平面直角坐标系中,一次函数y=﹣x+m的图象与反比例函数y=(x>0)的图象交于A、B两点,已知A(2,4)(1)求一次函数和反比例函数的解析式;(2)求B点的坐标;(3)连接AO、BO,求△AOB的面积.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)由点A的坐标利用一次函数、反比例函数图象上点的坐标特征即可得出反比例函数解析式;(2)联立方程,解方程组即可求得;(3)求出直线与y轴的交点坐标后,即可求出S△AOD和S△BOD,继而求出△AOB的面积.【解题过程】解:(1)将A(2,4)代入y=﹣x+m与y=(x>0)中得4=﹣2+m,4=,∴m=6,k=8,∴一次函数的解析式为y=﹣x+6,反比例函数的解析式为y=;(2)解方程组得或,∴B(4,2);(3)设直线y=﹣x+6与x轴,y轴交于C,D点,易得D(0,6),∴OD=6,∴S△AOB=S△DOB﹣S△AOD=×6×4﹣×6×2=6.【总结归纳】本题考查了反比例函数与一次函数的交点问题、待定系数法求一次函数和反比例函数解析式以及三角形的面积,解题的关键是:根据点的坐标利用待定系数法求出函数解析式;利用分割图形求面积法求出△AOB的面积.23.(10分)如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.【知识考点】圆周角定理;切线的判定与性质.【思路分析】(1)连接OC,AC,根据平行线的性质得到∠1=∠ACB,由圆周角定理得到∠1=∠ACB=90°,根据线段垂直平分线的性质得到DB=DC,求得∠DBE=∠DCE,根据切线的性质得到∠DBO=90°,求得OC⊥DC,于是得到结论;(2)解直角三角形即可得到结论.【解题过程】(1)证明:连接OC,AC,∵OE∥AC,∴∠1=∠ACB,∵AB是⊙O的直径,∴∠1=∠ACB=90°,∴OD⊥BC,由垂径定理得OD垂直平分BC,∴DB=DC,∴∠DBE=∠DCE,又∵OC=OB,∴∠OBE=∠OCE,即∠DBO=∠OCD,∵DB为⊙O的切线,OB是半径,∴∠DBO=90°,∴∠OCD=∠DBO=90°,即OC⊥DC,∵OC是⊙O的半径,∴DC是⊙O的切线;(2)解:在Rt△ABC中,∠ABC=30°,∴∠3=60°,又OA=OC,∴△AOC是等边三角形,∴∠COF=60°,在Rt△COF中,tan∠COF=,∴CF=4.【总结归纳】本题考查了切线的判定和性质,垂径定理,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.24.(12分)已知二次函数y=ax2(a≠0)的图象过点(2,﹣1),点P(P与O不重合)是图象上的一点,直线l过点(0,1)且平行于x轴.PM⊥l于点M,点F(0,﹣1).(1)求二次函数的解析式;(2)求证:点P在线段MF的中垂线上;(3)设直线PF交二次函数的图象于另一点Q,QN⊥l于点N,线段MF的中垂线交l于点R,求的值;(4)试判断点R与以线段PQ为直径的圆的位置关系.【知识考点】二次函数综合题.【思路分析】(1)把点(2,﹣1)代入函数表达式,即可求解;(2)y1=﹣x12,即x12=﹣4y1,PM=|1﹣y1|,又PF===|y1﹣1|=PM,即可求解;(3)证明△PMR≌△PFR(SAS)、Rt△RFQ≌Rt△RNQ(HL),即RN=FR,即MR=FR=RN,即可求解;(4)在△PQR中,由(3)知PR平分∠MRF,QR平分∠FRN,则∠PRQ=(∠MRF+∠FRN)=90°,即可求解.【解题过程】解:(1)∵y=ax2(a≠0)的图象过点(2,﹣1),∴﹣1=a×22,即a=,∴y=﹣x2;(2)设二次函数的图象上的点P(x1,y1),则M(x1,1),y1=﹣x12,即x12=﹣4y1,PM=|1﹣y1|,又PF===|y1﹣1|=PM,即PF=PM,∴点P在线段MF的中垂线上;(3)连接RF,∵R在线段MF的中垂线上,∴MR=FR,又∵PM=PF,PR=PR,∴△PMR≌△PFR(SAS),∴∠PFR=∠PMR=90°,∴RF⊥PF,连接RQ,又在Rt△RFQ和Rt△RNQ中,∵Q在y=﹣x2的图象上,由(2)结论知∴QF=QN,∵RQ=RQ,∴Rt△RFQ≌Rt△RNQ(HL),即RN=FR,即MR=FR=RN,∴=1;(4)在△PQR中,由(3)知PR平分∠MRF,QR平分∠FRN,∴∠PRQ=(∠MRF+∠FRN)=90°,∴点R在以线段PQ为直径的圆上.【总结归纳】本题考查的是二次函数综合运用,涉及到三角形全等、中垂线、圆的基本知识等,其中(3),证明△PMR≌△PFR(SAS)、Rt△RFQ≌Rt△RNQ(HL)是本题解题的关键.。

2019年四川省眉山市中考数学真题(答案+解析)

2019年四川省眉山市中考数学真题(答案+解析)

2019年四川省眉山市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一项是正确的.1.下列四个数中,是负数的是()A.|﹣3| B.﹣(﹣3)C.(﹣3)2 D.﹣【答案】D【解析】|﹣3|=3,﹣(﹣3)=3,(﹣3)2=9,∴四个数中,负数是﹣.故选:D.2.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.1.2×109个B.12×109个C.1.2×1010个D.1.2×1011个【答案】C【解析】120亿个用科学记数法可表示为:1.2×1010个.故选:C.3.如图是由6个完全相同的小正方体组成的立体图形,它的左视图是()A.B.C.D.【答案】D【解析】左视图有2层3列,第一层有3个正方形,第二层有一个正方形;每列上正方形的分布从左到右分别是2,1,1个.故选:D.4.下列运算正确的是()A.2x2y+3xy=5x3y2B.(﹣2ab2)3=﹣6a3b6C.(3a+b)2=9a2+b2D.(3a+b)(3a﹣b)=9a2﹣b2【答案】D【解析】A.2x2y和3xy不是同类项,故不能合并,故选项A不合题意;B.(﹣2ab2)3=﹣8a3b6,故选项B不合题意;C.(3a+b)2=9a2+6ab+b2,故选项C不合题意;D.(3a+b)(3a﹣b)=9a2﹣b2,故选项D符合题意.故选:D.5.如图,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠C 的度数是()A.50°B.60°C.70°D.80°【答案】C【解析】∵∠B=30°,∠ADC=70°∴∠BAD=∠ADC﹣∠B=70°﹣30°=40°∵AD平分∠BAC∴∠BAC=2∠BAD=80°∴∠C=180°﹣∠B﹣∠BAC=180°﹣30°﹣80°=70°故选:C.6.函数y=中自变量x的取值范围是()A.x≥﹣2且x≠1 B.x≥﹣2 C.x≠1 D.﹣2≤x<1【答案】A【解析】根据二次根式有意义,分式有意义得:x+2≥0且x﹣1≠0,解得:x≥﹣2且x≠1.故选:A.7.化简(a﹣)÷的结果是()A.a﹣b B.a+b C.D.【答案】B【解析】原式=×=×=a+b.8.某班七个兴趣小组人数如下:5,6,6,x,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是()A.6 B.6.5 C.7 D.8【答案】C【解析】∵5,6,6,x,7,8,9,这组数据的平均数是7,∴x=7×7﹣(5+6+6+7+8+9)=9,∴这组数据从小到大排列为:5,6,6,7,8,9,9则最中间为7,即这组数据的中位数是7.故选:C.9.如图,一束光线从点A(4,4)出发,经y轴上的点C反射后经过点B(1,0),则点C 的坐标是()A.(0,)B.(0,)C.(0,1)D.(0,2)【答案】B【解析】如图所示,延长AC交x轴于点D.∵这束光线从点A(4,4)出发,经y轴上的点C反射后经过点B(1,0),∴设C(0,c),由反射定律可知,∴∠OCB=∠OCD∵CO⊥DB于O∴∠COD=∠BOC∴在△COD和△COB中∴△COD≌△COB(ASA)∴OD=OB=1∴D(﹣1,0)设直线AD的解析式为y=kx+b,则将点A(4,4),点D(﹣1,0)代入得∴∴直线AD为y=∴点C坐标为(0,).故选:B.10.如图,⊙O的直径AB垂直于弦CD,垂足是点E,∠CAO=22.5°,OC=6,则CD的长为()A.6B.3C.6 D.12【答案】A【解析】∵CD⊥AB,∴CE=DE,∵∠BOC=2∠A=2×22.5°=45°,∴△OCE为等腰直角三角形,∴CE=OC=×6=3,∴CD=2CE=6.故选:A.11.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是()A.1 B.C.2 D.【答案】B【解析】连接CE,如图所示:∵四边形ABCD是菱形,∴∠ADC=90°,CD=AB=6,AD=BC=8,OA=OC,∵EF⊥AC,∴AE=CE,设DE=x,则CE=AE=8﹣x,在Rt△CDE中,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即DE=;故选:B.12.如图,在菱形ABCD中,已知AB=4,∠ABC=60°,∠EAF=60°,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∽△EFC;④若∠BAE=15°,则点F到BC的距离为2﹣2.则其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】∵四边形ABCD是菱形,∴AB=BC,∠ACB=∠ACD,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF,△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠ACD=∠ACB=60°,∴∠ABE=∠ACF,在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴AE=AF,BE=CF.故①正确;∵∠EAF=60°,∴△AEF是等边三角形,∴∠AEF=60°,∵∠AEB+∠CEF=∠AEB+∠EAB=60°,∴∠EAB=∠CEF,故②正确;∵∠ACD=∠ACB=60°,∴∠ECF=60°,∵∠AEB<60°,∴△ABE和△EFC不会相似,故③不正确;过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在Rt△AGB中,∵∠ABC=60°,AB=4,∴BG=2,AG=2,在Rt△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴∠ABE=∠ACF=120°,EB=CF=2﹣2,∴∠FCE=60°,在Rt△CHF中,∵∠CFH=30°,CF=2﹣2,∴CH=﹣1.∴FH=(﹣1)=3﹣.∴点F到BC的距离为3﹣,故④不正确.综上,正确结论的个数是2个,故选:B.二、填空题:本大题共6个小题,每小题3分,共18分.13.分解因式:3a3﹣6a2+3a=3a(a﹣1)2.【解析】3a3﹣6a2+3a=3a(a2﹣2a+1)=3a(a﹣1)2.故答案为:3a(a﹣1)2.14.设a、b是方程x2+x﹣2019=0的两个实数根,则(a﹣1)(b﹣1)的值为﹣2017.【解析】∵a、b是方程x2+x﹣2019=0的两个实数根,∴a+b=﹣1,ab=﹣2019,∴(a﹣1)(b﹣1)=ab﹣(a+b)+1=﹣2019+1+1=﹣2017.故答案为:﹣2017.15.已知关于x,y的方程组的解满足x+y=5,则k的值为2.【解析】,②×2﹣①,得3x=9k+9,解得x=3k+3,把x=3k+3代入①,得3k+3+2y=k﹣1,解得y=﹣k﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:216.如图,在Rt△ABC中,∠B=90°,AB=5,BC=12,将△ABC绕点A逆时针旋转得到△ADE,使得点D落在AC上,则tan∠ECD的值为.【解析】在Rt△ABC中,由勾股定理可得AC=13.根据旋转性质可得AE=13,AD=5,DE=12,∴CD=8.在Rt△CED中,tan∠ECD==.故答案为.17.如图,在Rt△AOB中,OA=OB=4.⊙O的半径为2,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ长的最小值为2.【解析】连接OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=4,∴AB=OA=8,∴OP==4,∴PQ==2.故答案为2.18.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB,BC于点D、E.若四边形ODBE的面积为12,则k的值为4.【解析】由题意得:E、M、D位于反比例函数图象上,则S△OCE=|k|,S△OAD=|k|,=|k|,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S▱ONMG=4|k|,又∵M为矩形ABCO对角线的交点,则S矩形ABCO=4S▱ONMG由于函数图象在第一象限,∴k>0,则++12=4k,∴k=4.三、解答题:本大题共6个小题,共46分.请把解答过程写在答题卡相应的位置上.19.(6分)计算:(﹣)﹣2﹣(4﹣)0+6sin45°﹣.解:原式=9﹣1+6×﹣3=9﹣1+3﹣3=8.20.(6分)解不等式组:解:,解①得:x≤4,解②得x>﹣1,则不等式组的解集为﹣1<x≤4.21.(8分)如图,在四边形ABCD中,AB∥DC,点E是CD的中点,AE=BE.求证:∠D=∠C.证明:∵AE=BE,∴∠EAB=∠EBA,∵AB∥DC,∴∠DEA=∠EAB,∠CEB=∠EBA,∴∠DEA=∠CEB,∵点E是CD的中点,∴DE=CE,在△ADE和△BCE中,,∴△ADE≌△BCE(SAS),∴∠D=∠C.22.(8分)如图,在岷江的右岸边有一高楼AB,左岸边有一坡度i=1:2的山坡CF,点C 与点B在同一水平面上,CF与AB在同一平面内.某数学兴趣小组为了测量楼AB的高度,在坡底C处测得楼顶A的仰角为45°,然后沿坡面CF上行了20米到达点D处,此时在D处测得楼顶A的仰角为30°,求楼AB的高度.解:在Rt△DEC中,∵i==,DE2+EC2=CD2,CD=20,∴DE2+(2DE)2=(20)2,解得:DE=20(m),∴EC=40m,过点D作DG⊥AB于G,过点C作CH⊥DG于H,如图所示:则四边形DEBG、四边形DECH、四边形BCHG都是矩形,∵∠ACB=45°,AB⊥BC,∴AB=BC,设AB=BC=x m,则AG=(x﹣20)m,DG=(x+40)m,在Rt△ADG中,∵=tan∠ADG,∴=,解得:x=50+30.答:楼AB的高度为(50+30)米.23.(9分)某中学举行钢笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图.请结合图中相关信息解答下列问题:(1)扇形统计图中三等奖所在扇形的圆心角的度数是108度;(2)请将条形统计图补全;(3)获得一等奖的同学中有来自七年级,有来自九年级,其他同学均来自八年级.现准备从获得一等奖的同学中任选2人参加市级钢笔书法大赛,请通过列表或画树状图的方法求所选出的2人中既有八年级同学又有九年级同学的概率.解:(1)∵被调查的总人数为16÷40%=40(人),∴扇形统计图中三等奖所在扇形的圆心角的度数是360°×=108°,故答案为:108;(2)一等奖人数为40﹣(8+12+16)=4(人),补全图形如下:(3)一等奖中七年级人数为4×=1(人),九年级人数为4×=1(人),则八年级的有2人,画树状图如下:由树状图知,共有12种等可能结果,其中所选出的2人中既有八年级同学又有九年级同学的有4种结果,所以所选出的2人中既有八年级同学又有九年级同学的概率为=.24.(9分)在我市“青山绿水”行动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?解:(1)设乙工程队每天能完成绿化的面积是x m2,根据题意得:﹣=6,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=200(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设甲工程队施工a天,乙工程队施工b天刚好完成绿化任务,由题意得:100a+50b=3600,则a==﹣b+36,根据题意得:1.2×+0.5b≤40,解得:b≥32,答:至少应安排乙工程队绿化32天.四、解答题:本大题共2个小题,共20分,请把解答过程写在答题卡相应的位置上.25.(9分)如图1,在正方形ABCD中,AE平分∠CAB,交BC于点E,过点C作CF⊥AE,交AE的延长线于点G,交AB的延长线于点F.(1)求证:BE=BF;(2)如图2,连接BG、BD,求证:BG平分∠DBF;(3)如图3,连接DG交AC于点M,求的值.(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∴∠EAB+AEB=90°,∵AG⊥CF,∴∠FCB+∠CEG=90°,∵∠AEB=∠CEG,∴∠EAB=∠FCB,在△ABE和△CBF中,,∴△ABE≌△CBF(ASA),∴BE=BF;(2)证明:∵四边形ABCD是正方形,∴∠ABD=∠CAB=45°,∵AE平分∠CAB,∴∠CAG=∠F AG=22.5°,在△AGC和△AGF中,,∴△AGC≌△AGF(ASA),∴CG=GF,∵∠CBF=90°,∴GB=GC=GF,∴∠GBF=∠GFB=90°﹣∠FCB=90°﹣∠GAF=90°﹣22.5°=67.5°,∴∠DBG=180°﹣∠ABD﹣∠GBF=180°﹣45°﹣67.5°=67.5°,∴∠DBG=∠GBF,∴BG平分∠DBF;(3)解:连接BG,如图3所示:∵四边形ABCD是正方形,∴DC=AB,∠DCA=∠ACB=45°,∠DCB=90°,∴AC=DC,∵∠DCG=∠DCB+∠BCF=∠DCB+∠GAF=90°+22.5°=112.5°,∠ABG=180°﹣∠GBF=180°﹣67.5°=112.5°,∴∠DCG=∠ABG,在△DCG和△ABG中,,∴△DCG≌△ABG(SAS),∴∠CDG=∠GAB=22.5°,∴∠CDG=∠CAG,∵∠DCM=∠ACE=45°,∴△DCM∽△ACE,∴==.26.(11分)如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣5,0)和点B(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;(3)如图2,连接AD、BD,点M在线段AB上(不与A、B重合),作∠DMN=∠DBA,MN交线段AD于点N,是否存在这样点M,使得△DMN为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由.解:(1)抛物线的表达式为:y=﹣(x+5)(x﹣1)=﹣x2﹣x+,则点D(﹣2,4);(2)设点P(m,﹣m2﹣m+),则PE=﹣m2﹣m+,PG=2(﹣2﹣m)=﹣4﹣2m,矩形PEFG的周长=2(PE+PG)=2(﹣m2﹣m+﹣4﹣2m)=﹣(m+)2+,∵﹣<0,故当m=﹣时,矩形PEFG周长最大,此时,点P的横坐标为﹣;(3)∵∠DMN=∠DBA,∠BMD+∠BDM=180°﹣∠ADB,∠NMA+∠DMB=180°﹣∠DMN,∴∠NMA=∠MDB,∴△BDM∽△AMN,,而AB=6,AD=BD=5,①当MN=DM时,∴△BDM≌△AMN,即:AM=BD=5,则AN=MB=1;②当NM=DN时,则∠NDM=∠NMD,∴△AMD∽△ADB,∴AD2=AB×AM,即:25=6×AM,则AM=,而,即=,解得:AN=;③当DN=DM时,∵∠DMN>∠DAB,而∠DAB=∠DMN,∴∠DNM>∠DMN,∴DN≠DM;故AN=1或.。

2019年四川省绵阳市中考数学试卷和答案(含解析)

2019年四川省绵阳市中考数学试卷和答案(含解析)

2019年四川省绵阳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项符合题目要求.1.(3分)若=2,则a的值为()A.﹣4B.4C.﹣2D.2.(3分)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A.0.2×10﹣3B.0.2×10﹣4C.2×10﹣3D.2×10﹣4 3.(3分)不考虑颜色,对如图的对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形4.(3分)下列几何体中,主视图是三角形的是()A.B.C.D.5.(3分)如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)6.(3分)已知x是整数,当|x﹣|取最小值时,x的值是()A.5B.6C.7D.87.(3分)帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6B.众数是7C.中位数是5D.方差是8 8.(3分)已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A.ab2B.a+b2C.a2b3D.a2+b3 9.(3分)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种10.(3分)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ﹣cosθ)2=()A.B.C.D.11.(3分)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc <0;②2a﹣c>0;③a+2b+4c>0;④+<﹣4,正确的个数是()A.1B.2C.3D.412.(3分)如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC分别交EF、EG于点H、K.若BG=,∠FEG=45°,则HK=()A.B.C.D.二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上.13.(3分)因式分解:m2n+2mn2+n3=.14.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=.15.(3分)单项式x﹣|a﹣1|y与2x y是同类项,则a b=.16.(3分)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为km/h.17.(3分)在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是.18.(3分)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=.三、解答题:本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤19.(16分)(1)计算:2+|(﹣)﹣1|﹣2tan30°﹣(π﹣2019)0;(2)先化简,再求值:(﹣)÷,其中a=,b=2﹣.20.(11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.21.(11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?22.(11分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0且m≠3)的图象在第一象限交于点A、B,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.23.(11分)如图,AB是⊙O的直径,点C为的中点,CF为⊙O 的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.24.(12分)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA =1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA 的最小值.25.(14分)如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF 翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.2019年四川省绵阳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项符合题目要求.1.(3分)若=2,则a的值为()A.﹣4B.4C.﹣2D.【分析】根据算术平方根的概念可得.【解答】解:若=2,则a=4,故选:B.2.(3分)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A.0.2×10﹣3B.0.2×10﹣4C.2×10﹣3D.2×10﹣4【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数0.0002用科学记数法表示为2×10﹣4,故选:D.3.(3分)不考虑颜色,对如图的对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形【分析】直接利用中心对称图形的性质得出答案.【解答】解:如图所示:是中心对称图形.故选:B.4.(3分)下列几何体中,主视图是三角形的是()A.B.C.D.【分析】主视图是从找到从正面看所得到的图形,注意要把所看到的棱都表示到图中.【解答】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.5.(3分)如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)【分析】过点E作EF⊥x轴于点F,由直角三角形的性质求出EF 长和OF长即可.【解答】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO﹣AF=4﹣1=3,∴.故选:D.6.(3分)已知x是整数,当|x﹣|取最小值时,x的值是()A.5B.6C.7D.8【分析】根据绝对值的意义,由与最接近的整数是5,可得结论.【解答】解:∵,∴5<,且与最接近的整数是5,∴当|x﹣|取最小值时,x的值是5,故选:A.7.(3分)帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6B.众数是7C.中位数是5D.方差是8【分析】根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.【解答】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.A.极差=11﹣3=8,结论错误,故A不符合题意;B.数据5,7,11,3,9没有重复出现的数字时,这组数据没有众数,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C不符合题意;D.平均数是(5+7+11+3+9)÷5=7,方差S2=[(5﹣7)2+(7﹣7)2+(11﹣7)2+(3﹣7)2+(9﹣7)2]=8.结论正确,故D符合题意.故选:D.8.(3分)已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A.ab2B.a+b2C.a2b3D.a2+b3【分析】将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.【解答】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.9.(3分)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种【分析】设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据“购进甲乙商品不超过4200元的资金、两种商品均售完所获利润大于750元”列出关于x的不等式组,解之求得整数x的值即可得出答案.【解答】解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.10.(3分)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ﹣cosθ)2=()A.B.C.D.【分析】根据正方形的面积公式可得大正方形的边长为5,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.【解答】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ﹣5sinθ=5,∴cosθ﹣sinθ=,∴(sinθ﹣cosθ)2=.故选:A.11.(3分)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc <0;②2a﹣c>0;③a+2b+4c>0;④+<﹣4,正确的个数是()A.1B.2C.3D.4【分析】二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b 同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).【解答】解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴<﹣<,∴1<﹣<,当﹣<时,b>﹣3a,∵当x=2时,y=4a+2b+c=0,∴b=﹣2a﹣c,∴﹣2a﹣c>﹣3a,∴2a﹣c>0,故②正确;③当x=时,y的值为a+b+c,给a+b+c乘以4,即可化为a+2b+4c,∵抛物线的对称轴在1<﹣<,∴x=关于对称轴对称点的横坐标在和之间,由图象可知在和2之间y为负值,2和之间y为正值,∴a+2b+4c与0的关系不能确定,故③错误;④∵﹣,∴2a+b<0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>﹣4ab,∵a>0,b<0,∴ab<0,∴,即,故④正确.故选:C.12.(3分)如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC分别交EF、EG于点H、K.若BG=,∠FEG=45°,则HK=()A.B.C.D.【分析】根据等腰直角三角形的性质得到AC=3,根据相似三角形的性质得到==,求得CK=,过E作EM⊥AB 于M,则四边形ADEM是矩形,得到EM=AD=3,AM=DE=2,由勾股定理得到EG==,求得EK=,根据相似三角形的性质得到==,设HE=3x,HK=x,再由相似三角形的性质列方程即可得到结论.【解答】解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG=,∴AG=,∵AB∥DC,∴△CEK∽△AGK,∴==,∴==,∴==,∵CK+AK=3,∴CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG=,∴EG==,∵=,∴EK=,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴==,∴设HE=3x,HK=x,∵△HEK∽△HCE,∴=,∴=,解得:x=,∴HK=,故选:B.二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上.13.(3分)因式分解:m2n+2mn2+n3=n(m+n)2.【分析】首先提取公因式n,再利用完全平方公式分解因式得出答案.【解答】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.14.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=90°.【分析】根据平行线的性质可得∠ABD+∠CDB=180°,再根据角平分线的定义可得∠1=∠ABD,∠2=∠CDB,进而可得结论.【解答】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1=∠ABD,∵DE是∠BDC的平分线,∴∠2=∠CDB,∴∠1+∠2=90°,故答案为:90°.15.(3分)单项式x﹣|a﹣1|y与2x y是同类项,则a b=1.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,结合二次根式的性质可求出a,b的值,再代入代数式计算即可.【解答】解:由题意知﹣|a﹣1|=≥0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.16.(3分)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为10km/h.【分析】直接利用顺水速=静水速+水速,逆水速=静水速﹣水速,进而得出等式求出答案.【解答】解:设江水的流速为xkm/h,根据题意可得:=,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.17.(3分)在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是75或25.【分析】过点A作AD⊥BC,垂足为D,通过解直角三角形及勾股定理可求出AD,BD,CD的长,进而可得出BC的长,再利用三角形的面积公式可求出△ABC的面积.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sinB=10,BD=AB•cosB=10;在Rt△ACD中,AD=10,AC=5,∴CD==5,∴BC=BD+CD=15或BC=BD﹣CD=5,∴S△ABC=BC•AD=75或25.故答案为:75或25.18.(3分)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=.【分析】如图,连接CE′,根据等腰三角形的性质得到AB=BC =2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.【解答】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=BE′=,在Rt△BCH中,CH==,∴CE′=+,故答案为:.三、解答题:本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤19.(16分)(1)计算:2+|(﹣)﹣1|﹣2tan30°﹣(π﹣2019)0;(2)先化简,再求值:(﹣)÷,其中a=,b=2﹣.【分析】(1)根据二次根式的性质、负整数指数幂、零指数幂的运算法则、特殊角的三角函数值计算;(2)根据分式的混合运算法则把原式化简,代入计算即可.【解答】解:(1)2+|(﹣)﹣1|﹣2tan30°﹣(π﹣2019)0=+2﹣2×﹣1=+2﹣﹣1=1;(2)原式=×﹣×=﹣﹣=﹣=﹣,当a=,b=2﹣时,原式=﹣=﹣.20.(11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.【分析】(1)由B组百分比求得其人数,据此可得80~85的频数,再根据各组频数之和等于总人数可得最后一组频数,从而补全图形,再用360°乘以对应比例可得答案;(2)画树状图展示所有20种等可能的结果数,找出抽取的学生恰好是一名男生和一名女生的结果数,然后根据概率公式求解.【解答】解:(1)80~90的频数为36×50%=18,则80~85的频数为18﹣11=7,95~100的频数为36﹣(4+18+9)=5,补全图形如下:扇形统计图中扇形D对应的圆心角度数为360°×=50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12,所以抽取的学生恰好是一名男生和一名女生的概率为=.21.(11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到m关于乙种房价的函数关系式,然后根据二次函数的性质即可解答本题.【解答】解:设甲、乙两种客房每间现有定价分别是x元、y元,根据题意,得:,解得,答:甲、乙两种客房每间现有定价分别是300元、200元;(2)设每天的定价增加了a个20元,则有2a个房间空闲,根据题意有:m=(20﹣2a)(200+20a﹣80)=﹣40a2+160a+2400=﹣40(a﹣2)2+2560,∵﹣40<0,∴当a=2时,m取得最大值,最大值为2560,此时房间的定价为200+2×20=240元.答:当每间房间定价为240元时,乙种风格客房每天的利润m最大,最大利润是2560元.22.(11分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0且m≠3)的图象在第一象限交于点A、B,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.【分析】(1)将点A(4,1)代入y=,即可求出m的值,进一步可求出反比例函数解析式;(2)先证△CDB∽△CEA,由CE=4CD可求出BD的长度,可进一步求出点B的坐标,以及直线AC的解析式,直线AC与坐标轴交点的坐标,可证直线AC与坐标轴所围成和三角形为等腰直角三角形,利用垂线段最短可求出OM长度的最小值.【解答】解:(1)将点A(4,1)代入y=,得,m2﹣3m=4,解得,m1=4,m2=﹣1,∴m的值为4或﹣1;反比例函数解析式为:y=;(2)∵BD⊥y轴,AE⊥y轴,∴∠CDB=∠CEA=90°,∴△CDB∽△CEA,∴,∵CE=4CD,∴AE=4BD,∵A(4,1),∴AE=4,∴BD=1,∴x B=1,∴y B==4,∴B(1,4),将A(4,1),B(1,4)代入y=kx+b,得,,解得,k=﹣1,b=5,∴y AB=﹣x+5,设直线AB与x轴交点为F,当x=0时,y=5;当y=0时x=5,∴C(0,5),F(5,0),则OC=OF=5,∴△OCF为等腰直角三角形,∴CF=OC=5,则当OM垂直CF于M时,由垂线段最知可知,OM有最小值,即OM=CF=.23.(11分)如图,AB是⊙O的直径,点C为的中点,CF为⊙O 的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.【分析】(1)根据AAS证明:△BFG≌△CDG;(2)解法一:连接OF,设⊙O的半径为r,由CF=BD列出关于r的勾股方程就能求解;解法二:如图,作辅助线,构建角平分线和全等三角形,证明Rt △AHC≌Rt△AEC(HL),得AE=AH,再证明Rt△CDH≌Rt △CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC ∽△BCA,列比例式可得BC的长,就是BF的长.解法三:连接OC,根据垂径定理和三角形的中位线定理可得OH =1,证明△COE≌△BOH,并利用勾股定理可得结论.【解答】证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)解法一:如图,连接OF,设⊙O的半径为r,Rt△ADB中,BD2=AB2﹣AD2,即BD2=(2r)2﹣22,Rt△OEF中,OF2=OE2+EF2,即EF2=r2﹣(r﹣2)2,∵,∴,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣22=4[r2﹣(r﹣2)2],解得:r=1(舍)或3,∴BF2=EF2+BE2=32﹣(3﹣2)2+22=12,∴BF=2;解法二:如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.解法三:如图,连接OC,交BD于H,∵C是的中点,∴OC⊥BD,∴DH=BH,∵OA=OB,∴OH=AD=1,∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90°,∴△COE≌△BOH(AAS),∴OH=OE=1,∴CE=EF==2,∴BF===2.24.(12分)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA =1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA 的最小值.【分析】(1)先写出平移后的抛物线解析式,经过点A(﹣1,0),可求得a的值,由△ABD的面积为5可求出点D的纵坐标,代入抛物线解析式求出横坐标,由A、D的坐标可求出一次函数解析式;(2)作EM∥y轴交AD于M,如图,利用三角形面积公式,由S=S△AME﹣S△CME构建二次函数,利用二次函数的性质即可解△ACE决问题;(3)作E关于x轴的对称点F,过点F作FH⊥AE于点H,交x 轴于点P,则∠BAE=∠HAP=∠HFE,利用锐角三角函数的定义可得出EP+AP=FP+HP,此时FH最小,求出最小值即可.【解答】解:(1)将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y=a(x﹣1)2﹣2,∵OA=1,∴点A的坐标为(﹣1,0),代入抛物线的解析式得,4a﹣2=0,∴,∴抛物线的解析式为y=,即y=.令y=0,解得x1=﹣1,x2=3,∴B(3,0),∴AB=OA+OB=4,∵△ABD的面积为5,∴=5,∴y D=,代入抛物线解析式得,,解得x1=﹣2,x2=4,∴D(4,),设直线AD的解析式为y=kx+b,∴,解得:,∴直线AD的解析式为y=.(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),∴=,∴S△ACE=S△AME﹣S△CME===,=,∴当a=时,△ACE的面积有最大值,最大值是,此时E点坐标为().(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F 作FH⊥AE于点H,交x轴于点P,∵E(),OA=1,∴AG=1+=,EG=,∴,∵∠AGE=∠AHP=90°∴sin,∴,∵E、F关于x轴对称,∴PE=PF,∴PE+AP=FP+HP=FH,此时FH最小,∵EF=,∠AEG=∠HEF,∴=,∴.∴PE+PA的最小值是3.25.(14分)如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF 翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.【分析】(1)由正方形的性质可得∠DAC=∠CAB=45°,根据圆周角定理得∠FDE=∠DFE=45°,则结论得证;(2)设OE=t,连接OD,证明△DOE∽△DAF可得AF=,证明△AEF∽△ADG可得AG=,可表示EG的长,由AF ∥CD得比例线段,求出t的值,代入EG的表达式可求EH 的值;(3)由(2)知EG=,过点F作FK⊥AC于点K,根据即可求解.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴∠DEF=90°,∴△DEF是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DFA,∴△DOE∽△DAF,∴,∴t,又∵∠AEF=∠ADG,∠EAF=∠DAG,∴△AEF∽△ADG,∴,∴,又∵AE=OA+OE=2+t,∴,∴EG=AE﹣AG=,当点H恰好落在线段BC上∠DFH=∠DFE+∠HFE=45°+45°=90°,∴△ADF∽△BFH,∴,∵AF∥CD,∴,∴,∴,解得:t 1=,t2=﹣(舍去),∴EG=EH=;(3)过点F作FK⊥AC于点K,由(2)得EG=,∵DE=EF,∠DEF=90°,∴∠DEO=∠EFK,∴△DOE≌△EKF(AAS),∴FK=OE=t,∴S=.。

2019年四川省巴中市中考数学真题(答案+解析)

2019年四川省巴中市中考数学真题(答案+解析)

2019年四川省巴中市中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一个选项是正确的)1.下列四个算式中,正确的是()A.a+a=2a B.a5÷a4=2a C.(a5)4=a9D.a5﹣a4=a【答案】A【解析】A.a+a=2a,故本选项正确;B.a5÷a4=a,故本选项错误;C.(a5)4=a20,故本选项错误;D.a5﹣a4,不能合并,故本选项错误.故选:A.2.在平面直角坐标系中,已知点A(﹣4,3)与点B关于原点对称,则点B的坐标为()A.(﹣4,﹣3)B.(4,3)C.(4,﹣3)D.(﹣4,3)【答案】C【解析】∵点A(﹣4,3),点A与点B关于原点对称,∴点B(4,﹣3).故选:C.3.企业家陈某,在家乡投资9300万元,建立产业园区2万余亩.将9300万元用科学记数法表示为()A.93×108元B.9.3×108元C.9.3×107元D.0.93×108元【答案】C【解析】将9300万元用科学记数法表示为:9.3×107元.故选:C.4.如图是由一些小立方体与圆锥组合成的立体图形,它的主视图是()A.B.C.D.【答案】C【解析】如图所示,它的主视图是:.故选:C.5.已知关于x、y的二元一次方程组的解是,则a+b的值是()A.1 B.2 C.﹣1 D.0【答案】B【解析】将代入得:,∴a+b=2;故选:B.6.下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是矩形C.对角线互相垂直的矩形是正方形D.四边相等的平行四边形是正方形【答案】C【解析】A.对角线相等的平行四边形是矩形,所以A选项错误;B.对角线相等的平行四边形是矩形,所以B选项错误;C.对角线互相垂直的矩形是正方形,所以C选项正确;D.四边相等的菱形是正方形,所以D选项错误.故选:C.7.如图所示,是巴中某校对学生到校方式的情况统计图.若该校骑自行车到校的学生有200人,则步行到校的学生有()A.120人B.160人C.125人D.180人【答案】B【解析】学生总数:200÷25%=800(人),步行到校的学生:800×20%=160(人),故选:B.8.如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A.2:3 B.3:2 C.9:4 D.4:9【答案】D【解析】设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.9.如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是()A.15πB.30πC.45πD.60π【答案】D【解析】圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π,故选:D.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b ﹣c>0,④a+b+c<0.其中正确的是()A.①④B.②④C.②③D.①②③④【答案】A【解析】①∵抛物线与x轴由两个交点,∴b2﹣4ac>0,即b2>4ac,所以①正确;②由二次函数图象可知,a<0,b<0,c>0,∴abc>0,故②错误;③∵对称轴:直线x=﹣=﹣1,∴b=2a,∴2a+b﹣c=4a﹣c,∵a<0,4a<0,c>0,﹣c<0,∴2a+b﹣c=4a﹣c<0,故③错误;④∵对称轴为直线x=﹣1,抛物线与x轴一个交点﹣3<x1<﹣2,∴抛物线与x轴另一个交点0<x2<1,当x=1时,y=a+b+c<0,故④正确.故选:A.二、填空题(本大题共5个小题,每小题4分,共20分)11.函数y=的自变量x的取值范围x≥1,且x≠3.【解析】根据题意得:,解得x≥1,且x≠3,即:自变量x取值范围是x≥1,且x≠3.12.如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为.【解析】根据题意,得:=a,解得:a=5,则这组数据为4、5、5、3、8,其平均数是5,所以这组数据的方差为×[(4﹣5)2+(5﹣5)2+(5﹣5)2+(3﹣5)2+(8﹣5)2]=,故答案为:.13.如图,反比例函数y=(x>0)经过A、B两点,过点A作AC⊥y轴于点C,过点B 作BD⊥y轴于点D,过点B作BE⊥x轴于点E,连结AD,已知AC=1、BE=1、S矩形BDOE=4.则S△ACD=.【解析】过点A作AH⊥x轴于点H,交BD于点F,则四边形ACOH和四边形ACDF均为矩形,如图:∵S矩形BDOE=4,反比例函数y=(x>0)经过B点,∴k=4,∴S矩形ACOH=4,∵AC=1,∴OC=4÷1=4,∴CD=OC﹣OD=OC﹣BE=4﹣1=3,∴S矩形ACDF=1×3=3,∴S△ACD=,故答案为:.14.若关于x的分式方程+=2m有增根,则m的值为1.【解析】方程两边都乘x﹣2,得x﹣2m=2m(x﹣2),∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=1,故m的值是1,故答案为1.15.如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP =10.则S△ABP+S△BPC=24+16.【解析】如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=BP2+×PP'×AP=24+16,故答案为:24+16.三、解答题(本大题共11个小题,共90分)16.(5分)计算(﹣)2+(3﹣π)0+|﹣2|+2sin60°﹣.解:原式=.17.(5分)已知实数x、y满足+y2﹣4y+4=0,求代数式•÷的值.解:•÷=••=,∵+y2﹣4y+4=0,∴+(y﹣2)2=0,∴x=3,y=2,∴原式==.18.(8分)如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.①求证:EC=BD;②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.①证明:∵∠ACB=90°,∴∠ACE+∠BCD=90°.∵∠ACE+∠CAE=90°,∴∠CAE=∠BCD.在△AEC与△BCD中,∴△CAE≌△BCD(AAS).∴EC=BD;②解:由①知:BD=CE=a,CD=AE=b,∴S梯形AEDB=(a+b)(a+b)=a2+ab+b2.又∵S梯形AEDB=S△AEC+S△BCD+S△ABC=ab+ab+c2=ab+c2.∴a2+ab+b2=ab+c2.整理,得a2+b2=c2.19.(8分)△ABC在边长为l的正方形网格中如图所示.①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1的坐标.②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.③在②的条件下求出点B经过的路径长.解:①如图,△A1B1C为所作,点A1的坐标为(3,﹣3);②如图,△A2B2C为所作;③OB==,点B经过的路径长==π.20.(8分)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?解:①设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得:=,解得x=90,经检验,x=90符合题意,∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y件,则乙种物品购进(55﹣y)件,由题意得:5000≤100y+90(55﹣y)≤5050,解得5≤y≤10,∴共有6种选购方案.21.(10分)如图表示的是某班部分同学衣服上口袋的数目.①从图中给出的信息得到学生衣服上口袋数目的中位数为4,众数为4.②根据如图信息,在给出的图表中绘制频数条形统计图,由此估计该班学生衣服上口袋数目为5≤x<7的概率.解:①由图可知,学生衣服上口袋的数目分别为:3,4,2,6,5,5,3,1,4,2,4,6,10,7,1,4,5,6,2,10,3.按从小到大的顺序排列为:1,1,2,2,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,10,10.故中位数为4,众数为4,故答案为4,4.(2)条形图如图所示:估计该班学生衣服上口袋数目为5≤x<7的概率==.22.(8分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且x12+x22+x1x2﹣17=0,求m的值.解:①根据题意得:△=(2m+1)2﹣4(m2﹣1)>0,解得:m,②根据题意得:x1+x2=﹣(2m+1),x1x2=m2﹣1,x12+x22+x1x2﹣17=﹣x1x2﹣17=(2m+1)2﹣(m2﹣1)﹣17=0,解得:m1=,m2=﹣3(不合题意,舍去),∴m的值为.23.(8分)某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D位于南偏东65°方向,另测得BC=414m,AB=300m,求出点D到AB的距离.(参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)解:如图,过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,在Rt△ADE中,∠AED=90°,∵tan∠DAE=,∴AE==,∴BE=300﹣,又BF=DE=x,∴CF=414﹣x,在Rt△CDF中,∠DFC=90°,∠DCF=45°,∴DF=CF=414﹣x,又BE=CF,即:300﹣=414﹣x,解得:x=214,故:点D到AB的距离是214m.24.(8分)如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与反比例函数y2=(k2≠0,x>0)的图象交于点A(m,8)与点B(4,2).①求一次函数与反比例函数的解析式.②根据图象说明,当x为何值时,k1x+b﹣<0.解:①把点B(4,2)代入反比例函数y2=(k2≠0,x>0)得,k2=4×2=8,∴反比例函数的解析式为y2=,将点A(m,8)代入y2得,8=,解得m=1,∴A(1,8),将A、B的坐标代入y1=k1x+b(k1、b为常数,k1≠0)得,解得,∴一次函数的解析式为y1=﹣2x+10;②由图象可知:当0<x<1或x>4时,y1<y2,即k1x+b﹣<0.25.(10分)如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.解:①过点O作OG⊥CD,垂足为G,在菱形ABCD中,AC是对角线,则AC平分∠BCD,∵OH⊥BC,OG⊥CD,∴OH=OG,∴OH、OG都为圆的半径,即DC是⊙O的切线;②∵AC=4MC且AC=8,∴OC=2MC=4,MC=OM=2,∴OH=2,在直角三角形OHC中,HO=CO,∴∠OCH=30°,∠COH=60°,∴HC=,S阴影=S△OCH﹣S扇形OHM=CH•OH﹣OH2=2﹣;③作M关于BD的对称点N,连接HN交BD于点P,∵PM=NP,∴PH+PM=PH+PN=HN,此时PH+PM最小,∵ON=OM=OH,∠MOH=60°,∴∠MNH=30°,∴∠MNH=∠HCM,∴HN=HC=2,即:PH+PM的最小值为2,在Rt△NPO中,OP=ON tan30°=,在Rt△COD中,OD=OC tan30°=,则PD=OP+OD=2.26.(12分)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.①求抛物线的解析式.②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.解:①∵点B、C在直线为y=x+n上,∴B(﹣n,0)、C(0,n),∵点A(1,0)在抛物线上,∴,∴a=﹣1,b=6,∴抛物线解析式:y=﹣x2+6x﹣5;②由题意,得,PB=4﹣t,BE=2t,由①知,∠OBC=45°,∴点P到BC的高h为BP sin45°=(4﹣t),∴S△PBE=BE•h==,当t=2时,△PBE的面积最大,最大值为2;③由①知,BC所在直线为:y=x﹣5,∴点A到直线BC的距离d=2,过点N作x轴的垂线交直线BC于点P,交x轴于点H.设N(m,﹣m2+6m﹣5),则H(m,0)、P(m,m﹣5),易证△PQN为等腰直角三角形,即NQ=PQ=2,∴PN=4,Ⅰ.NH+HP=4,∴﹣m2+6m﹣5﹣(m﹣5)=4解得m1=1,m2=4,∵点A、M、N、Q为顶点的四边形是平行四边形,∴m=4;Ⅱ.NH+HP=4,∴m﹣5﹣(﹣m2+6m﹣5)=4解得m1=,m2=,∵点A、M、N、Q为顶点的四边形是平行四边形,m>5,∴m=,Ⅲ.NH﹣HP=4,∴﹣(﹣m2+6m﹣5)﹣[﹣(m﹣5)]=4,解得m1=,m2=,∵点A、M、N、Q为顶点的四边形是平行四边形,m<0,∴m=,综上所述,若点A、M、N、Q为顶点的四边形是平行四边形,点N的横坐标为:4或或.。

2019年四川省绵阳市中考数学试卷(含答案与解析)

2019年四川省绵阳市中考数学试卷(含答案与解析)

绝密★启用前四川省绵阳市2019年高中阶段学校招生暨初中学业水平考试数学本试卷满分140分,考试时间120分钟.第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若2a=,则A的值为()A.4-B.4C.2-D.22.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.000 2米.将数0.000 2用科学记数法表示为()A.30.210-⨯B.40.210-⨯C.3210-⨯D.4210-⨯3.对右图的对称性表述,正确的是 ()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形4.下列几何体中,主视图是三角形的是()A B C D5.如图,在平面直角坐标系中,四边形OABC为菱形,(0,0)O,(4,0)A,60AOC∠=︒,则对角线交点E的坐标为()A.(2,3)B.(3,2)C.(3,3)D.(3,3)6.已知x是整数,当|0|3x-取最小值时,x的值是()A.5B.6C.7D.87.帅帅收集了南街米粉店2019年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6B.众数是7C.中位数是5D.方差是88.已知4m a=,8n b=,其中m,n为正整数,则262m n+=()A.2ab B.2a b+C.23a b D.23a b+9.红星商店计划用不超过4 200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件.据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种10.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则2(sin cos)θθ-=()A.15B.5C.35D.9511.如图,二次函数2(0)y ax bx c a=++>的图象与x轴交于两点1(,0)x,(2,0),其中101x<<.下列四个结论:①0abc<;②20a c->;③240a b c++>;④44a bb a+-<,正确的个数是()A.1B.2C.3D.4毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共28页)数学试卷第2页(共28页)数学试卷 第3页(共28页) 数学试卷 第4页(共28页)12.如图,在四边形ABCD 中,AB DC ∥,90ADC ∠=︒,5AB =,3CD AD ==,点E 是线段CD 的三等分点,且靠近点C ,FEG ∠的两边与线段AB 分别交于点F ,G ,连接AC分别交EF ,EG 于点H ,K .若32BG =,45FEG ∠=︒,则HK =( )A .22B .52C .322D .132第Ⅱ卷(非选择题 共104分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 13.因式分解:2232m n mn n ++= .14.如图,AB CD ∥,ABD ∠的平分线与BDC ∠的平分线交于点E ,则12∠+∠= .15.单项式1||a xy --与12b xy -是同类项,则ba = .16.一艘轮船在静水中的最大航速为30 km /h ,它以最大航速沿江顺流航行120 km 所用时间,与以最大航速逆流航行60 km 所用时间相同,则江水的流速为 km /h . 17.在ABC △中,若45B ∠=︒,102AB =,55AC =,则ABC △的面积是 . 18.如图,ABC △,BDE △都是等腰直角三角形,BA BC =,BD BE =,4AC =,22DE =.将BDE △绕点B 逆时针方向旋转后得BD E ''△,当点E ′恰好落在线段AD ′上时,则CE '= .三、解答题(本大题共7小题,共86分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分16分) (1)计算:212|1|22tan30(π2019)32⎛⎫+---︒-- ⎪⎝⎭;(2)先化简,再求值:221ab a ba b b a ⎛⎫-÷ ⎪-+-⎝⎭,其中2a =,22b =-.20.(本小题满分11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人”选拔赛.现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图.部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D 对应的圆心角度数;(2)成绩在D 区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.21.(本小题满分11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8 500元;若甲、乙两种风格客房均有10间入住,一天营业额为5 000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润w 最大,最大利润是多少元?数学试卷 第5页(共28页) 数学试卷 第6页(共28页)22.(本小题满分11分)如图,一次函数(0)y kx b k =+≠的图象与反比例函数23m my x-=(0m ≠且3m ≠)的图象在第一象限交于点A ,B ,且该一次函数的图象与y 轴正半轴交于点C ,过A ,B 分别作y 轴的垂线,垂足分别为E ,D .已知(4,1)A ,4CE CD =. (1)求m 的值和反比例函数的解析式;(2)若点M 为一次函数图象上的动点,求OM 长度的最小值.23.(本小题满分11分)如图,AB 是O e 的直径,点C 为»BD的中点,CF 为O e 的弦,且CF AB ⊥,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF . (1)求证:BFG CDG △≌△; (2)若2AD BE ==,求BF 的长.24.(本小题满分12分)在平面直角坐标系中,将二次函数2(0)y ax a =>的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A ,B (点A 在点B 的左侧),1OA =,经过点A 的一次函数(0)y kx b k =+≠的图象与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD △的面积为5. (1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求ACE △面积的最大值,并求出此时点E 的坐标;(3)若点P 为x 轴上任意一点,在(2)的结论下,求35PE PA +的最小值.备用图25.(本小题满分14分)如图,在以点O 为中心的正方形ABCD 中,4AD =,连接AC ,动点E 从点O 出发沿O C →以每秒1个单位长度的速度匀速运动,到达点C 停止.在运动过程中,ADE△的外接圆交AB 于点F ,连接DF 交AC 于点G ,连接EF ,将EFG △沿EF 翻折,得到EFH △.(1)求证:DEF △是等腰直角三角形;(2)如图2,当点H 恰好落在线段BC 上时,求EH 的长;(3)设点E 运动的时间为t 秒,EFG △的面积为S ,求S 关于时间t 的关系式.图1图2图3-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷第7页(共28页)数学试卷第8页(共28页)数学试卷 第9页(共28页) 数学试卷 第10页(共28页)四川省绵阳市2019年高中阶段学校招生暨初中学业水平考试数学答案解析第Ⅰ卷一、选择题2.【答案】D【解析】解:将数0.000 2用科学记数法表示为4210-⨯,故选:D . 【考点】科学记数法表示数. 3.【答案】B【解析】解:如图所示:是中心对称图形.故选:B . 【考点】轴对称图形的概念,中心对称图形的概念. 4.【答案】C【解析】解:A 、正方体的主视图是正方形,故此选项错误;B 、圆柱的主视图是长方形,故此选项错误;C 、圆锥的主视图是三角形,故此选项正确;D 、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C . 【考点】简单几何体的三视图. 5.【答案】D【解析】解:过点E 作EF x ⊥轴于点F , ∵四边形OABC 为菱形,60AOC ∠=︒,∴1302AOE AOC ∠=∠=︒,60FAE ∠=︒,∵()4,0A , ∴4OA =,∴114222AEAO ==⨯=,∴112AF AE ==,EF ===∴413OF AO AF =-=-=,∴E .故选:D .【考点】菱形的性质,特殊角的锐角三角函数. 6.【答案】A∴55,∴当|x 取最小值时,x 的值是5,故选:A .【考点】绝对值的概念,估算无理数.7.【答案】D【解析】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9. A .极差1138=-=,结论错误,故A 不符合题意; B .众数为5,7,11,3,9,结论错误,故B 不符合题意;C .这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C 不符合题意;D .平均数是571139()57++++÷=,方差2222221577711[()()()()7379785()]S =-+-+-+-+-=. 结论正确,故D 符合题意; 故选:D .【考点】计算统计量. 8.【答案】A数学试卷 第11页(共28页) 数学试卷 第12页(共28页)【解析】解:∵4,8m a n b ==, ∴2626222m n m n +=⨯232()2()2m n =g 248m n =g 2(48)m n =g2ab =,故选:A .【考点】同底数的幂的乘法. 9.【答案】C【解析】解:设该店购进甲种商品x 件,则购进乙种商品(50)x -件,根据题意,得:60+100(50)42001020(50)750x x x x -⎧⎨+-⎩≤>,解得:2025x ≤<, ∵x 为整数,∴2021222324x =,,,,, ∴该店进货方案有5种, 故选:C .【考点】列不等式组解应用题,不等式组的整数解. 10.【答案】A【解析】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为小正方形的边长为5,∴5θθ-=,∴cos sin 5θθ-=,∴21sin co (s 5)θθ-=.故选:A .【考点】正方形的性质,勾股定理,解方程组,求锐角三角函数值. 11.【答案】C【解析】解:①∵抛物线开口向上, ∴0a >,∵抛物线对称轴在y 轴的右侧, ∴0b <,∵抛物线与y 轴的交点在x 轴上方, ∴0c >,∴0abc <,所以①正确;②∵图象与x 轴交于两点1,0,()()2,0x ,其中101x <<, ∴2021222b a ++-<<, ∴3122b a -<<,当322b a -<时,3b a ->,∵当2x =时,420y a b c =++=, ∴122b ac =--, ∴1232a c a --->, ∴20a c ->,故②正确; ③∵12ba-<, ∴20a b +>, ∵0c >,40c >,∴240a b c ++>, 故③正确; ④∵12ba-<, ∴20a b +>, ∴22)0(a b +>,22440a b ab ++>,数学试卷 第13页(共28页) 数学试卷 第14页(共28页)2244a b ab +->,∵0a >,0b <, ∴0ab <, ∴2244a b ab +-<,即44a bb a+-<, 故④正确. 故选:D .【考点】二次函数的图象性质. 12.【答案】B【解析】解:∵90ADC ∠=︒,3CD AD ==,∴AC = ∵5AB =,32BG =, ∴72AG =, ∵AB DC ∥, ∴CEK AGK △∽△,∴CE CK EKAG AK KG ==, ∴172CK EKAK KG ==,∴27CK EK AK KG ==,∵CK AK +=∴CK =, 过E 作EM AB ⊥于M , 则四边形ADEM 是矩形, ∴3EM AD ==,2AM DE ==,∴32MG =,∴EG ==∵2EK KG =, ∴EK =∵45HEK KCE ∠=∠=︒,EHK CHE ∠=∠, ∴HEKHCE △∽△,∴HE HK ==, ∴设3HE x =,HK =, ∵HEK HCE :△△,∴EH HKHC EH=,=,解得:6x =,∴HK =故选:B .【考点】等腰直角三角形的性质,全等三角形的判定及性质,三角形的中位线定理,平行线分线段成比例.第Ⅱ卷二.填空题13.【答案】2()n m n + 【解析】解:2232m n mn n ++222()n m mn n =++2()n m n =+.故答案为:2()n m n +.数学试卷 第15页(共28页) 数学试卷 第16页(共28页)【考点】因式分解. 14.【答案】90︒【解析】解:∵AB CD ∥, ∴180ABD CDB ∠+∠=︒, ∵BE 是ABD ∠的平分线, ∴112ABD ∠=∠, ∵BE 是BDC ∠的平分线,∴122CDB ∠=∠, ∴1290∠+∠=︒, 故答案为:90︒.【考点】平行线的性质,角平分线的性质. 15.【答案】1【解析】解:由题意知1||10a b --=-≥, ∴1a =,1b =, 则1(11)ab ==, 故答案为:1.【考点】同类项的概念,非负数的和. 16.【答案】10【解析】解:设江水的流速为x km /h ,根据题意可得:120603030x x=+-, 解得:10x =,经检验得:10x =是原方程的根, 答:江水的流速为10 km /h . 故答案为:10.【考点】列分式方程解应用题. 17.【答案】75或25【解析】解:过点A 作AD BC ⊥,垂足为D ,如图所示. 在Rt ABD △中,sin 10AD AB B ==g ,cos 10BD AB B ==g ;在Rt ACD △中,10AD =,55AC =, ∴225CD AC AD =-=,∴15BC BD CD =+=或5BC BD CD =-=, ∴1752ABC S BC AD ==g △或25. 故答案为:75或25.【考点】锐角三角函数,勾股定理,求三角形的面积. 18.【答案】26+ 【解析】解:如图,连接CE ′,∵ABC △、BDE △都是等腰直角三角形,BA BC =,BD BE =,4AC =,22DE =, ∴22AB BC ==,2BD BE ==,∵将BDE △绕点B 逆时针方向旋转后得BD E ''△, ∴2D B BE BD '='==,90D BE ∠''=',D BD ABE ∠'=∠', ∴ABD CBE ∠'=∠', ∴()SAS ABD CBE ''△≌△, ∴45D CE B ∠'=∠'=︒, 过B 作BH CE ⊥'于H , 在Rt BHE '△中,22BH E H BE ''===, 在Rt BCH △中,226CH BC BH =-=, ∴26CE '=+, 故答案为:26+.【考点】旋转的性质,全等三角形的判定及性质,勾股定理. 三、解答题19.【答案】解:(1)1021222tan30(π2019)32-︒⎛⎫+---- ⎪⎝⎭21=+--21=+-= 1(2)原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b ab a b b a b-=--++()bb a b=-+1a b=-+当a2b=,原式12==-.【解析】解:(1)11(π2019)2-︒⎛⎫----⎪⎝⎭21=+--2133=+--= 1(2)原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b ab a b b a b-=--++()bb a b=-+1a b=-+当a2b=,原式12==-.【解析】(1)根据二次根式的性质、负整数指数幂、零指数幂的运算法则、特殊角的三角函数值计算;(2)根据分式的混合运算法则把原式化简,代入计算即可.本题考查的是分式的化简求值、实数的运算,掌握分式的混合运算法则、分式的通分、约分法则、实数的混合运算法则是解题的关键.【考点】实数的综合运算,分式的化简求值.20.【答案】解:(1)80~90的频数为3650%18⨯=,则80~85的频数为18117-=,95~100的频数为36415)89(-++=,补全图形如下:扇形统计图中扇形D对应的圆心角度数为53605036⨯=︒︒;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12,所以抽取的学生恰好是一名男生和一名女生的概率为123205=.【解析】(1)由B组百分比求得其人数,据此可得80~85的频数,再根据各组频数之和等于总人数可得最后一组频数,从而补全图形,再用360︒乘以对应比例可得答案;(2)画树状图展示所有20种等可能的结果数,找出抽取的学生恰好是一名男生和一名女生的结果数,然后根据概率公式求解.【考点】统计知识的综合运用,概率的求解.21.【答案】解:设甲、乙两种客房每间现有定价分别是x元、y元,根据题意,得1520850010105000x yx y+=⎧⎨+=⎩,数学试卷第17页(共28页)数学试卷第18页(共28页)数学试卷 第19页(共28页) 数学试卷 第20页(共28页)解得300200x y =⎧⎨=⎩,答:甲、乙两种客房每间现有定价分别是300元、200元; (2)设当每间房间定价为x 元,220012028020(200)24002010x w x x -⎛⎫=-⨯-⨯=--+ ⎪⎝⎭,∴当200x =时,w 取得最大值,此时2400w =,答:当每间房间定价为200元时,乙种风格客房每天的利润w 最大,最大利润是2 400元. 【解析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到w 关于乙种房价的函数关系式,然后根据二次函数的性质即可解答本题.【考点】列方程组解应用题,二次函数的应用.22.【答案】解:(1)将点()4,1A 代入23m my x -=,得,234m m -=, 解得,14m =,21m =-,∴m 的值为4或1-;反比例函数解析式为:4y x=; (2)∵BD y ⊥轴,AE y ⊥轴, ∴90CDB CEA ∠=∠=︒, ∴CDB CEA △∽△, ∴CD BDCE AE=, ∵4CE CD =, ∴4AE BD =, ∵()4,1A , ∴4AE =, ∴1BD =, ∴1B x =, ∴44B y x==, ∴()1,4B ,将()4,1A ,()1,4B 代入y kx b =+, 得,y kx b =+, 解得,1k =-,5b =, ∴5AB y x =-+,设直线AB 与x 轴交点为F , 当0x =时,5y =;当0y =时5x =, ∴()0,5C ,()5,0F , 则5OC OF ==,∴OCF △为等腰直角三角形,∴252CF OC ==,则当OM 垂直CF 于M 时,由垂线段最知可知,OM 有最小值,即1522OM CF ==.【解析】(1)将点()4,1A 代入23m my x-=,即可求出m 的值,进一步可求出反比例函数解析式;(2)先证CDB CEA △∽△,由4CE CD =可求出BD 的长度,可进一步求出点B 的坐标,以及直线AC 的解析式,直线AC 与坐标轴交点的坐标,可证直线AC 与坐标轴所围成和三角形为等腰直角三角形,利用垂线段最短可求出OM 长度的最小值. 【考点】一次函数和反比例函数的性质,相似三角形的判定和性质,勾股定理.23.【答案】证明:(1)∵C 是»BC 的中点, ∴»»CDBC =, ∵AB 是O e 的直径,且CF AB ⊥,∴»»BC BF =, ∴»»CDBF =, ∴CD BF =,在BFG △和CDG △中,∵F CDG FGB DGC BF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AAS BFG CDG △≌△;(2)如图,过C 作CH AD ⊥于H ,连接AC 、BC ,∵»»CDBC =, ∴HAC BAC ∠=∠, ∵CE AB ⊥, ∴CH CE =, ∵AC AC =,∴Rt Rt (H )L AHC AEC △≌△, ∴AE AH =,∵CH CE =,CD CB =, ∴Rt Rt (H )L CDH CBE △≌△,∴2DH BE ==, ∴224AE AH ==+=, ∴426AB =+=, ∵AB 是O e 的直径, ∴90ACB ∠=︒, ∴90ACB BEC ∠=∠=︒, ∵EBC ABC ∠=∠, ∴BEC BCA △∽△, ∴BC BEAB BC=, ∴26212BC AB BE ==⨯=g ,∴BF BC ==【解析】(1)根据AAS 证明:BFG CDG △≌△;(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt Rt (H )L AHC AEC △≌△,得AE AH =,再证明Rt Rt (H )L CDH CBE △≌△,得2DH BE ==,计算AE 和AB 的长,证明BEC BCA △∽△,列比例式可得BC 的长,就是BF 的长.【考点】圆的相关性质,垂直平分线的性质,角平分线的性质,全等三角形的判定及性质,勾股定理.24.【答案】解:(1)将二次函数2(0)y ax a =>的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为2)1(2y a x =--, ∵1OA =,∴点A 的坐标为()1,0-,代入抛物线的解析式得,420a -=, ∴12a =, ∴抛物线的解析式为21(1)22y x =--,即21322y x x =--. 令0y =,解得11x =-,23x =, ∴()3,0B ,∴4AB OA OB =+=, ∵ABD △的面积为5, ∴152D ABD S AB y ==g △, ∴52D y =,代入抛物线解析式得,2513222x x =--,解得12x =-,24x =,∴54,2D ⎛⎫⎪⎝⎭,设直线AD 的解析式为y kx b =+,∴5420k b k b ⎧+=⎪⎨⎪-+=⎩,解得:1212k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AD 的解析式为1122y x =+. (2)过点E 作EM y ∥轴交AD 于M ,如图,设213,22E a a a ⎛⎫-- ⎪⎝⎭,则11,22M a a ⎛⎫+ ⎪⎝⎭,∴221113132222222EM a a a a a =+-++=-++, ∴()22111311213422224ACEAME CME S S S EM a a a a ⎛⎫=-=⨯=-++⨯=--- ⎪⎝⎭g △△△,213254216a ⎛⎫=--+ ⎪⎝⎭,∴当32a =时,ACE △的面积有最大值,最大值是2516,此时E 点坐标为315,28⎛⎫- ⎪⎝⎭. (3)作E 关于x 轴的对称点F ,连接EF 交x 轴于点G ,过点F 作FH ⊥AE 于点H ,交轴于点P ,∵315,28E ⎛⎫- ⎪⎝⎭,1OA =,∴35122AG =+=,∴5421538AG EG ==, ∵90AGE AHP ∠=∠=︒ ∴3sin 5PH EG EAG AP AE ∠===, ∴35PH AP =, ∵E 、F 关于x 轴对称,∴PE PF =,∴35PE AP FP HP FH +=+=,此时FH 最小, ∵1515284EF =⨯=,AEG HEF ∠=∠,∴4sin sin 5AG FH AEG HEF AE EF ∠=∠===,∴415354FH =⨯=.∴35PE PA +的最小值是3.【解析】(1)先写出平移后的抛物线解析式,经过点0()1,A -,可求得A 的值,由ABD △的面积为5可求出点D 的纵坐标,代入抛物线解析式求出横坐标,由A 、D 的坐标可求出一次函数解析式;(2)作EM y ∥轴交AD 于M ,如图,利用三角形面积公式,由ACE AME CME S S S =-△△△构建二次函数,利用二次函数的性质即可解决问题;(3)作E 关于x 轴的对称点F ,过点F 作FH AE ⊥于点H ,交轴于点P ,则BAE HAP HFE ∠=∠=∠,利用锐角三角函数的定义可得出35EP AP FP HP +=+,此时FH 最小,求出最小值即可.【考点】二次函数的图象及其性质,图象的平移变换,勾股定理,锐角三角函数的运用,数形结合思想.25.【答案】(1)证明:∵四边形ABCD 是正方形,∴45DAC CAB ∠=∠=︒,∴FDE CAB ∠=∠,DFE DAC ∠=∠,∴45FDE DFE ∠=∠=︒, ∴90DEF ∠=︒,∴DEF △是等腰直角三角形; (2)设OE t =,连接OD , ∴90DOE DAF ∠=∠=︒, ∵OED DFA ∠=∠, ∴DOE DAF △∽△,∴2OE OD AF AD ==,∴AF =,又∵AEF ADG ∠=∠,EAF DAG ∠=∠,∴AEF ADG △∽△, ∴AE AFAD AG=,∴AG AE AD AF ==g g ,又∵AE OA OE t =+=,∴AG =,∴2EG AE AG =-=,当点H 恰好落在线段BC 上454590DFH DFE HFE ∠=∠+∠=︒+︒=︒, ∴ADF BFH △∽△,∴FH FB FD AD ==∵AF CD ∥,∴4FG AF DG CD ==,∴FG DF =,∴44=,解得:1t =2t 舍去),∴2EG EH ===; (3)过点F 作FK AC ⊥于点K ,由(2)得2EG , ∵DE EF =,90DEF ∠=︒, ∴DEO EFK ∠=∠, ∴()AAS DOE EKF △≌△, ∴FK OE t ==,∴312EFG S EG FK =g △.【解析】(1)由正方形的性质可得45DAC CAB ∠=∠=︒,根据圆周角定理得45FDE DFE ∠=∠=︒,则结论得证;(2)设OE t =,连接OD ,证明DOE DAF △∽△可得AF =,证明AEF ADG △∽△可得AG =,可表示EG 的长,由AF CD ∥得比例线段FG AFDG CD =,求出t 的值,代入EG 的表达式可求EH 的值;(3)由(2)知2EG =,过点F 作FK AC ⊥于点K ,根据12EFG S EG FK =g △即可求解.【考点】正方形的性质,等腰直角三角形的性质,圆周角定理,全等三角形的判定及性质,相似三角形的判断及性质,勾股定理,方程思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档