相似图形及成比例线段(含答案)

合集下载

初中数学中考复习考点知识与题型专题讲解33 相似形(解析版)

初中数学中考复习考点知识与题型专题讲解33 相似形(解析版)

初中数学中考复习考点知识与题型专题讲解专题33相似形【知识要点】考点知识一相似图形及比例线段相似图形:在数学上,我们把形状相同的图形称为相似图形.相似多边形:若两个边数相同的多边形,它们的对应角相等、对应边成比例,则这两个多边形叫做相似多边形。

特征:对应角相等,对应边成比例。

比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段。

考点知识二相似三角形相似图形的概念:形状相同的图形叫做相似图形。

相似图形的概念:对应角相等、对应边成比例的两个三角形叫做相似三角形。

相似用符号“∽”,读作“相似于”。

相似比的概念:相似三角形对应边的比叫做相似比相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.判定方法(五):斜边和任意一条直角边成比例的两个直角三角形相似。

相似三角形的性质:1.相似三角形的对应角相等,对应边的比相等;2.相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比.3.相似三角形的面积比等于相似比的平方.相似三角形与实际应用:关键:巧妙利用相似三角形性质,构建相似三角形求解。

考点知识三位似位似图形定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:1.位似图形是相似图形的一种特殊形式。

2.位似图形的对应顶点的连线所在直线相交与一点,位似图形的对应边互相平行或者共线。

位似中心的位置:形内、形外、形上。

2022秋九年级数学上册 第23章 图形的相似 23.1成比例线段1成比例线段课件华东师大版

2022秋九年级数学上册 第23章 图形的相似 23.1成比例线段1成比例线段课件华东师大版
(3)a=1.1 cm,b=2.2 cm,c=3.3 cm,d=5.5 cm. _______不__是__成__比__例__线__段___________________
5.【中考·陇南】已知 a2=b3 (a≠0,b≠0),下列变形错误的 是( B )
A.
ab=23
B.2a=3b
C.
ba=32
D.3a=2b
2.对于给定的四条线段a、b、c、d,如果其中两条线段的 长度之比等于另外两条线段的长度之比,如 ab=dc (或a:b=c:d),那么,这四条线段叫做成比例线段,
简称比例线段,此时也称这四条线段成比例.
3.比例的基本性质:如果 =bc,那么__ab_=__dc___.
ab=dc
,那么__a_d_=__b_c_.如果ad
5-1 A. 2
3- 5 C. 2
5+1 B. 2
3+ 5 D. 2
【点拨】∵ BACB=AABC ,∴AB2=BC×AC.又∵AC=1,
AB=AC-BC,∴(1-BC)2=BC,解得BC= 3± 5.
又∵BC<AC=1,∴BC= 3- 5.故选C.
2
2
【答案】C
12.已知三条线段的长度分别是2 cm, 2 cm,4 cm.如果再
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/42022/3/42022/3/43/4/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/42022/3/4March 4, 2022 4、享受阅读快乐,提高生活质量。2022/3/42022/3/42022/3/42022/3/4

初中数学相似三角形题型归类——成比例线段专项练习2(附答案详解)

初中数学相似三角形题型归类——成比例线段专项练习2(附答案详解)
15.已知点 P 是线段 AB 的一个黄金分割点,且 AB 6cm , AP BP ,那么 AP __________ cm . 16.已知点 P 是线段 AB 上的黄金分割点,AP BP ,AB 4 ,那么 AP __________. 17.点 C 是靠近点 B 的线段 AB 的黄金分割点,若 AB 10cm ,则 AC __________ cm .(结果保留根号)
初中数学相似三角形题型归类——成比例线段专项练习 2(附答案详解)
1.已知线段 a 2cm , b 8cm ,它们的比例中项 c 是( )
A. 4cm
B. 4cm
C.16cm
D. 16cm
2.下列各组线段(单位:cm)中,成比例线段的是( )
A.1、2、2、3
B.1、2、3、4
C.1、2、2、4 D.3、5、9、13
金分割点( AP2 P1P2 ),点 P3 是线段 AP2 的黄金分割点( AP3 P2P3 ),..,依此类推,则线段
AP2020 的长度是(

A. (3 5 )2020 2
B. ( 5 1)2020 2
C. ( 1)2020 2
D. ( 5 2)1010
11.爱好骑行的小明想知道从淮北到首都北京的距离大约是多少,因此他从一张比例尺
AB AC AB 被点 C 黄金分割,点 C 叫做线段 AB 的黄金分割点,AC 与 AB 的比叫做黄金比.请
计算黄金比.
22.已知 x y z ,且 2x+3y﹣z=18,求 4x+y﹣3z 的值. 234
23.阅读理解:
如图①,点 C 将线段 AB 分成两部分,若 AC = BC ,则点 C 为线段 AB 的黄金分割点. AB AC

相似及对应线段成比例

相似及对应线段成比例

线段的比(一)基础知识:1.两条线段的比就是两条线段 的比.线段a 的长度为3厘米,线段b 的长度为6米,两线段a,b 的比为2. 在地图或工程图纸上, 与 的比通常称为比例尺A 、B 两地的实际距离AB=250m ,画在图上的距离A′B′=5cm,求图上的距离与实际距离的比为3.四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即dc b a ,那么这四条线段a ,b ,c ,d叫做成比例线段,简称已知四条线段a 、b 、c 、d 的长度,试判断它们是否成比例?(1)a=16 cm b=8 cm c=5 cm d=10 cm(2)a=8 cm b=5 cm c=6 cm d=10 cm课堂学习:1.两条线段的比的概念如果选用同一个长度单位量得两条线段AB 、CD 的长度分别是m 、n ,那么就说这两条线段的比(ratio )AB ∶CD =m ∶n ,或写成CD AB =n m ,其中,线段AB 、CD 分别叫做这两个线段比的前项 和后项. 如果把n m 表示成比值k ,则CDAB =k 或AB =k ·CD . 【 例1 】在比例尺为1∶8000的某校地图上矩形运动场的图上尺寸是1cm ×2cm ,那么矩形运动场的实际尺寸是多少?巩固练习:在比例尺是1∶8000000的《中国行政》地图上,量得福州到上海之间的距离为7.5厘米,求福州与上海两地的实际距离是多少千米?归纳与小结:1、(1)度量两条线段的必须统一(2)线段的长度的比与所选择的度量线段的长度单位无关(3)两条线段的长度都是正数,所以两条线段的比值总是2. 比例线段的概念四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即dc b a =,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段(proportional segments ).如果a 与b 的比值和c 与d 的比值相等,那么dc b a =或a ∶b =c ∶d ,这时组成比例的四个数a ,b ,c ,d 叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a 、d 为外项,c 、b 为内项.【 例2】 (杭州市)已知:1、、2三个数,请你再添上个数,写出一个比例式 .分析:这是一道多种答案的开放性创新题巩固练习1.线段a=4 , b=9 , a 、b 的比例中项c=_____;a 、b 、c 的第四比例d=______.2.已知三个数1、2、3,请你再添上一个数,使它们构成一个比例式,则这个数是多少?归纳与小结:(1)四条线段成比例时,要将这四条线段按 列出 .(2)线段 又叫做a ,b ,c 的第四比例项 (3)如果比例内项是两条相同的线段,即c b b a =或a ∶b =b ∶c ,那么b 叫做线段a ,c 的比例中项.小结:1.两条线段的比的概念2.比例线段的概念练习:1.如果一张地图的比例尺是1∶150000 , 在地图上量得甲乙两地的距离是4cm , 则甲、乙两地的实际距离是 _________.2.某地的海岸线长250千米 , 在地图上测得这条海岸线长6.25cm , 则这地图的比例尺是 _________.3.某建筑物在地面上的影长为40m , 同时高为1.2m的测竿的影长为2m , 那么该建筑物的高是_________.4. 若a=2,b=3,c=33,则a、b、c的第四比例项d为________.5. 下列各组线段长度成比例的是()A、1㎝,2㎝,3㎝,4㎝B、1㎝,3㎝, 5㎝,5㎝C、1㎝,2㎝,3㎝,4㎝D、1㎝,2㎝,2㎝,4㎝作业:1、在YC市的1:40000最新旅游地图上,景点A与景点B的距离是15㎝,则它们的实际距离是()A、60000米B、6000米C、600米D、60千米2、延长线段AB到C,使BC=2AB,那么AC∶AB=()A、2∶1B、3∶2C、1∶2D、3∶13、等边三角形的边与高的比是 _________.4、一条线段和一个角在放大10倍的放大镜下看是10㎝和60°,则这条线段的实际长是,角的实际是5、在同一时刻 , 量得长2米的测杆影长3.5米 , 一电线杆的影长为17.5米 , 则这电线杆高等于 _________.6、已知线段a、b、c、d是成比例线段,且 a = 2㎝,b = 0.6㎝,c=4㎝,那么d= ㎝.7、如果a∶b=3∶2 , 且b是a和c的比例中项 , 那么b:c为 _________.8、已知线段a=6cm , b=8cm , c=15cm(1)求它们的第四比例项d;(2)求a , b的比例中项X;(3)求a , c的比例中项Y9、某学校如图所示,比例尺是1∶2000,请你根据图中尺寸(单位:㎝),其中AB⊥AD,求出学校的周长及面积.9、如图,在△ABC 中,AB=6㎝,AD=4㎝,AC=5㎝,,且AD AE AB AC =,①求AE 的长;②等式AD AE BD EC= 成立吗?10、已知x 是a 、b 的比例中项,且a=(52+11),b=(52-11),若x <0,则x=__________11、如图,一张矩形报纸ABCD 的长AB=acm ,宽BC=bcm ,E ,F 分别是AB ,CD 的中点,将这张报纸沿着直线EF 对折后,矩形AEFD 的长与宽之比等于矩形ABCD 的长与宽之比,则a ∶b 等于( ) (A)2:1 (B)1: 2 (C)3:1 (D)1: 3线段的比(二)基础 1、若x x y -=2,则x y= ; 2、已知0235a b c ==≠,则b c a b ++的值是 课堂学习:1. 比例的基本性质两条线段的比实际上就是两个数的比.如果a ,b ,c ,d 四个数满足d c b a =,那么ad =bc 吗?反过来,如果ad =bc ,那么d c b a =吗?与同伴交流. 【 例1 】(1)如图,已知d c b a ==3,求b b a +和d d c +; (2)如果d c b a ==k (k 为常数),那么d d c b b a +=+成立吗?为什么? (3)如果dc b a =,那么d d c b b a -=-成立吗?为什么?巩固练习:1、 已知),0,0(32≠≠=y x y x 求:⑴yx ;⑵x y x -;⑶x y x +. 2、如果线段a 、b 、c 、d 满足ad=bc ,则下列各式中不成立的是( )A 、a cb d = B 、1111ac bd ++=++ C 、a b c d b d ±±= D 、a c a b d b ±=±归纳与小结:可以用比例的基本性质,也可用合比性质【 例2】 (1)如果f e d c b a ==,那么ba f db ec a =++++成立吗?为什么? (2)如果d c b a ==…=nm (b +d +…+n ≠0),那么b a n d b m c a =++++++ 成立吗?为什么.?巩固练习:已知a :b :c=2:3:4,且a-2b+3c=20,则a+2b+3c=归纳与小结:连比时,可设比例系数为 k拓展提高:已知x ∶4 =y ∶5 = z ∶6 , 则 求①222x y z xy xz yz+-++ ② ()x y +:(y+z) ③(x+y-3z):(2x-3y+z)小结:1.熟记成比例线段的定义.2.掌握比例的基本性质,并能灵活运用.当堂检测:1、已知2925a b a b +=-,则a :b= ;2、如果y y x + = 47,那么yx 的值是 3、若3x -4y = 0,则y y x +的值是 ;4、若753z y x ==,则z y x z y x -++-=________. 作业:1、如果53=-b b a ,那么b a =________. 2、已知(a -b )∶(a +b )= 3∶7,那么a ∶b 的值是 .3、若875c b a ==,且3a -2b +c =3,则2a +4b -3c 的值是_________. 4、如图4—1—2,等腰梯形ABCD 的周长是104 cm ,AD ∥BC ,且AD ∶AB ∶BC=2∶3∶5,则这个梯形的中位线的长是( )cm .A .72.8B .51C .36.4D .285、已知dc b c =,则下列式子中正确的是( ) A .a ∶b =c 2∶d 2 B .a ∶d =c ∶bC .a ∶b =(a +c )∶(b +d )D .a ∶b =(a -d )∶(b -d )6、已知xy = mn ,则把它改写成比例式后,错误的是 ( )A 、n x =y mB 、m y =x nC 、m x =n yD 、m x =yn 7、若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB=10,23==BQ ΑQ BP AP , 求线段PQ 的长.8、若65432+==+c b a ,且2a -b+3c=21.试求a ∶b ∶c .9、已知:a ∶b ∶c=2∶3∶5,且a 、b 、c 三数之和为100,及b=ma-10,那么m 等于( ) A .2 B .23 C .3 D .35 10.如果a :b=4:3,且c :d=9:14,那么ac bd bd ac 743--的值应等于( ) A .211- B .1411- C .45- D .32- 4.4 相似多边形基础1.各角 ,各边 的两个多边形叫做相似多边形。

九年级数学下册《第二十七章 成比例线段与相似多边形》练习题附答案解析-人教版

九年级数学下册《第二十七章 成比例线段与相似多边形》练习题附答案解析-人教版

九年级数学下册《第二十七章 成比例线段与相似多边形》练习题附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.如果:12:8a b =,且b 是a ,c 的比例中项,那么:b c 等于( )A .4:3B .3:2C .2:3D .3:42.4和9的比例中项是( )A .6B .6±C .169D .8143.下列各组图形中,一定是相似形的是( )A .两个腰长相等的等腰梯形B .两个半径不等的半圆C .两个周长相等的三角形D .两个面积相等的矩形4.用一个2倍放大镜照一个ABC ,下面说法中错误的是( )A .ABC 放大后,A ∠是原来的2倍B .ABC 放大后,各边长是原来的2倍C .ABC 放大后,周长是原来的2倍D .ABC 放大后,面积是原来的4倍5.下列结论中,错误的有:( )①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A .1个B .2个C .3个D .4个6.已知,如图两个四边形相似,则∠α的度数是( )A .87°B .60°C .75°D .120°7.对于题目:“在长为6,宽为2的矩形内,分别剪下两个小矩形,使得剪下的两个矩形均与原矩形相似,请设计剪下的两个矩形周长和为最大值时的方案,并求出这个最大值.”甲、乙两个同学设计了自认为满足条件的方案,并求出了周长和的最大值.甲方案:如图1所示,最大值为16;乙方案:如图2所示,最大值为16.下列选项中说法正确的是( )A .甲方案正确,周长和的最大值错误B .乙方案错误,周长和的最大值正确C .甲、乙方案均正确,周长和的最大值正确D .甲、乙方案均错误,周长和的最大值错误8.如图,以点O 为位似中心,把ABC 的各边放大为原来的2倍得到A B C ''',下列说法错误的是( )A .AB //A B ''B .:1:2AO AA '=C .ABC A B C '''∽△△D .:1:4ABC A B C S S '''=9.已知四边形ABCD ∽四边形EFGH ,且AB =3,EF =4,FG =5.则四边形EFGH 与四边形ABCD 的相似比为( )A .3:4B .3:5C .4:3D .5:3二、解答题10.如图,所示的两个矩形是否相似?并简单说明理由.11.在一张复印出来的纸上,一个三角形的一条边由原图中的2cm 变成了6cm ,放缩比例是多少?这个三角形的面积发生了怎样的变化?''''.12.如图,四边形ABCD∽四边形A B C D(1)α=________,它们的相似比是________;(2)求边x的长度.13.一个矩形的长是宽的2倍,写出这个矩形的面积关于宽的函数解析式.14.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DE∥AC交直线AB于点E,DF∥AB交直线AC于点F.(1)当点D在边BC上时,如图①,求证:DE+DF=AC;(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE、DF、AC之间的等量关系式(不需要证明);(3)若AC=10,DE=7,问:DF的长为多少?三、填空题15.四边形ABCD和四边形A′B′C′D′,O为位似中心,若OA:OA′=1:4,那么S四边形ABCD:S四边形A′B′C′D′=______.16.相似图形:①定义:形状相同的图形叫做______.②性质:两个图形相似是指它们的形状相同,与他们的______无关.全等图形与相似图形的联系与区别:全等图形是一种特殊的相似图形,不仅形状相同,大小也相同.17.两地的实际距离是1200千米,在地图上量得这两地的距离为2厘米,则这幅地图的比例尺是1∶___.参考答案与解析1.B【分析】由b 是a 、c 的比例中项,根据比例中项的定义,即可求得=b a c b,又由a :b =12:8,即可求得答案.【详解】解:∵b 是a 、c 的比例中项∴b 2=acb ac b∴= ∵a :b =12:8 ∴12382a b == :3:2b c ∴=故选:B .【点睛】此题主要考查了比例线段,正确把握比例中项的定义是解题关键.2.B【分析】根据比例中项的定义:如果存在a 、b 、c 三个数,满足::a b b c =,那么b 就交租ac 的比例中项,进行求解即可.【详解】解:设4和9的比例中项为x∴4::9x x =∴6x =±故选B .【点睛】本题主要考查了求比例中项,熟知比例中项的定义是解题的关键.3.B【分析】根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,依据定义即可解决.【详解】解:两个腰长相等的等腰梯形、两个周长相等的三角形、两个面积相等的矩形都属于形状不唯一确定的图形.故A 、C 、D 错误;而圆的形状唯一确定,两个半径不等的半圆相似,故B 正确.故选B .【点睛】本题考查相似形的识别,解题关键要联系实际,根据相似图形的定义得出.4.A【分析】用2倍的放大镜放大一个△ABC,得到一个与原三角形相似的三角形;根据相似三角形的性质:相似三角形的面积比等于相似比的平方,周长比等于相似比.可知:放大后三角形的面积是原来的4倍,边长和周长是原来的2倍,而内角的度数不会改变.【详解】解:因为放大前后的三角形相似放大后三角形的内角度数不变面积为原来的4倍,周长和边长均为原来的2倍故选A.【点睛】本题考查对相似三角形性质的理解:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.5.B【分析】根据相似多边形的定义判断①⑤,根据相似图形的定义判断②,根据相似三角形的判定判断③④. 【详解】相似多边形对应边成比例,对应角相等,菱形之间的对应角不一定相等,故①错误;放大镜下的图形只是大小发生了变化,形状不变,所以一定相似,②错误;等边三角形的角都是60°,一定相似,③正确;钝角只能是等腰三角形的顶角,则底角只能是35°,所以两个等腰三角形相似,④正确;矩形之间的对应角相等,但是对应边不一定成比例,故⑤正确.有2个错误,故选B.【点睛】本题考查相似图形的判定,注意相似三角形与相似多边形判定的区别.6.A【解析】略7.D【分析】根据相似多边形对应边的比相等的性质分别求出两个小矩形纸片的长与宽,进而求解即可.【详解】解:∵6:2=3:1∴三个矩形的长宽比为3:1甲方案:如图1所示3a+3b=6∴a+b=2周长和为2(3b+b)+2(3a+a)=8(a+b)=16;乙方案:如图2所示a+b=2周长和为2(3b+b)+2(3a+a)=8(a+b)=16;如图3所示矩形①的长为2,则宽为2÷3=23;则矩形②的长为6-23=163,宽为163÷3=169;∴矩形①和矩形②的周长和为2(2+23)+2(163+169)=1769;∵176916∴周长和的最大值为1769;故选:D.【点睛】本题考查了相似多边形的性质,分别求出所剪得的两个小矩形纸片的长与宽是解题的关键.8.B【分析】根据位似的性质对各选项进行判断,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心,位似的两个图形必须是相似形,对应点的连线都经过同一点;对应边平行或共线.【详解】以点O 为位似中心,把ABC 的各边放大为原来的2倍得到A B C '''∴ABC ∆和A B C '''∆是位似图形∴ABC ∆~A B C '''∆,故C 正确;∴:1:2AO OA '=,:1:2OB OB =' 又AOB A OB ''∠=∠ABO ∆~ΔA B O ''∴ABO A B O ∠=∠''∴AB //A B ''故A 正确;∵把ABC 的各边放大为原来的2倍得到A B C '''∴:1:2AO OA '=∴:1:3AO AA '=,故B 选线说法错误; ∵2:()1:4ABC A B C OA S S OA ''''==,故D 正确; ∴说法错误的是:B 选项;故选:B .【点睛】本题考查了位似图形变换,正确掌握位似的性质是解题的关键.9.C【解析】略10.相似,见解析【分析】要说明两个矩形是否相似,只要说明对应角是否相等,对应边的比是否相等.【详解】解:相似.理由:这两个的角是直角,因而对应角相等一定是正确的小矩形的长是20-5-5=10,宽是12-3-3=6 因为1062012=,即两个矩形的对应边的比相等 因而这两个矩形相似.【点睛】此类题目主要考查相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.11.放缩比例是3:1,面积扩大为原来的9倍【分析】根据放缩比例等于对应边的比解答;根据相似多边形面积的比等于相似比的平方解答.【详解】解:∵多边形的一条边由原图中的2cm变成了6cm∴这次复印的放缩比例是6:2=3:1∴这个多边形的面积变为原来的9倍.【点睛】本题考查了相似多边形的性质,主要利用了相似比的求解以及相似多边形面积的比等于相似比的平方.12.(1)81︒ 3∶2;(2)332 x=【分析】(1)根据相似多边形的性质求出∠A′、∠B′,以及相似比,根据四边形的内角和定理求出∠C′;(2)根据相似多边形的性质列出比例式,计算即可.(1)解:∵四边形ABCD∽四边形A B C D''''∴∠A′=∠A=64°,∠B′=∠B=75°∴∠C′=360°−64°−75°−140°=81°它们的相似比为:93 62 =故答案为:81°3 2(2)解:∵四边形ABCD∽四边形A′B′C′D′∴9 116 x=解得x=332.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应角相等、对应边成比例是解题的关键.13.S=2x 2【分析】用x表示矩形的宽,则矩形的长为2x,然后利用矩形的面积公式即可得到解析式.【详解】解:∵矩形的长是宽的2倍,宽为x∴矩形的长是2x∵矩形的面积=长×宽∴S=x•2x=2x2故答案为:S=2x2.【点睛】此题考查了列函数关系式,解题关键是:熟记矩形的面积公式.14.(1)见解析;(2)图②中,DE﹣DF=AC;图③中,DF﹣DE=AC;(3)17或3【分析】(1)证明四边形AEDF是平行四边形,且△BED和△DFC是等腰三角形即可证得;(2)与(1)的证明方法相同;(3)根据(1)(2)中的结论直接求解.【详解】解:(1)∵DE∥AC,DF∥AB∴四边形AEDF是平行四边形∴DE=AF,∠FDC=∠B又∵AB=AC∴∠B=∠C∴∠FDC=∠C∴DF=FC∴DE+DF=AF+FC=AC;(2)如图②,当点D在边BC的延长线上时∵DE∥AC,DF∥AB∴四边形AEDF是平行四边形∴DE=AF,∠FDC=∠B又∵ZAB=AC∴∠B=∠ACB=∠DCF∴∠FDC=∠DCF∴DF=FC∴DE=AF=AC+CF=AC+DF;即DE﹣DF=AC;当点D在边BC的反向延长线上时,在图③∵DE∥AC,DF∥AB∴四边形AEDF是平行四边形∴DE=AF,∠FDC=∠ABC又∵AB=AC∴∠ABC=∠C∴∠FDC=∠C∴DF=FC∴DF=FC=FA+AC=DE+AC;∴DF﹣DE=AC.(3)当点D在边BC上时如图①所示DE+DF=AC∴DF=AC﹣DE=10﹣7=3;当点D在边BC的反向延长线上时,如图③所示,DF﹣DE=AC.∴DF=AC+DE=10+7=17.∴DF的长为17或3【点睛】本题考查平行四边形的判定与性质以及等腰三角形的判定,是一个基础题,解决本题的关键是进行分类讨论.15.1:16【解析】略16.相似图形位置【解析】略17.60000000【分析】根据比例尺=图上距离:实际距离列式计算即可.【详解】解:1200千米=120000000厘米2:120000000=1:60000000.故答案为:60000000.【点睛】本题考查了比例线段,掌握比例尺的定义是解题的关键,注意单位的换算问题.第11 页共11 页。

图形的相似 知识归纳+真题解析

图形的相似 知识归纳+真题解析

(4)平行于三角形一边的直线和其他两边(或延长线)相交,所构成的三角形与原三角形相 似. 3.相似三角形的性质 (1)相似三角形周长的比等于相似比. (2)相似三角形面积的比等于相似比的平方. (3)相似三角形对应高、对应角平分线、对应中线的比等于相似比. 4.相似多边形的性质 (1)相似多边形周长的比等于相似比. (2)相似多边形面积的比等于相似比的平方. 5.位似图形 (1)定义 两个多边形不仅相似,而且每组对应顶点所在直线相交于一点,这个点叫做位似中 心,对应边的比叫做位似比.位似是一种特殊的相似. (2)性质 (1)位似图形上的任意一对对应点到位似中心的距离的比等于位似比; (2)位似图形对应点的连线或延长线相交于 (3)位似图形对应边成比例; (4)位似图形对应角相等. 一 点;
a c b d
AC AB
4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。 (二)1.相似图形定义:形状相同的图形称为相似图形.相似图形的性质:对应角相等, 对应边的比成比例. 2.相似三角形的判定 (1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似; (2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,且夹角夹角相等,那么 这两个三角形相似; (3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相 似;
AC AB
4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。 ( 二 ) 1. 相 似 图 形 定 义 : 形 状 相 同 的 图 形 称 为 相 似 图 形 . 相 似 图 形 的 性 质 : 对 应 角 ,对应边的比 .
2.相似三角形的判定 (1)如果一个三角形的两角分别与另一个三角形的两角对应 似; (2)如果一个三角形的两条边与另一个三角形的两条边对应 个三角形相似; (3)如果一个三角形的三条边和另一个三角形的三条边对应 似; (4)平行于三角形一边的直线和其他两边 (或延长线 )相交,所构成的三角形与原三角 形 . ,那么这两个三角形相 ,且夹角 ,那么这两 ,那么这两个三角形相

相似图形知识点典型例题

相似图形知识点典型例题

相似图形知识点典型例题TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】第四章 相似图形 一、知识要点 1、成比例线段:若线段a ,b ,c ,d 满足d c b a =,则a ,b ,c ,d 称为成比例线段. 2、比例的性质:(1) dc b a = ab cd =(互逆的时候是否需要条件?) (2)d c b a = dd c b b a ±=± (3)n m d c b a === ba n db mc a =++++++ (0≠+++nd b ) 3、黄金分割:点C 把线段AB 分成两条线段AC 和BC ,如果ACBC AB AC =,那么线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.AC :AB =1:618.01:215≈- 4、相似多边形:如果两个多边形的角对应相等,边对应成比例,那么这个多边形叫做相似多边形.对应边的比叫做相似比.5、相似三角形的判定:(1)两个角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似.6、相似三角形的性质:(1)相似三角形的对应角相等,对应边成比例;(2)相似三角形的对应高的比、对应角平分线的比、对应中线的比都等于相似比;(3)相似三角形的周长比等于相似比,面积的比等于相似比的平方.7、位似图形:如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.8、位似图形的性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.二、典型例题: 例1 如果31==d c b a ,求b b a +,b b a -,d b c a ++,d b c a 22--.例2 以长为2cm 的定线段AB 为边,作正方形ABCD ,取AB 的中点P .在BA 的延长线上取点F ,使PF =PD .以AF 为边长作正方形AFEM .点M 落在AD 上.(如图)(1)试求AM ,DM 的长;(2)点M 是线段AD 的黄金分割点吗?请说明理由.例3 一位同学想利用树影测出树高,他在某时刻测得直立的标杆高1米,影长是0.9米,但他去测树影时,发现树影的上半部分落在墙CD 上,(如图所示)他测得BC =2.7米,CD =1.2米.你能帮他求出树高为多少米吗?例4 如图,矩形ABCD 中,E ,F 分别在BC ,AD 上,矩形ABCD ∽矩形EC DF ,且AB =2,ABCD EC 3DF S S =矩形矩形,试求ABCD S 矩形.E。

九年级数学第四章图形的相似课时练习题及答案

九年级数学第四章图形的相似课时练习题及答案

九(上) 第四章图形的相似 分节练习第1节 成比例线段1、在某市城区地图(比例尺1:9000)上;新安大街的图上长度与光华大街的图上长度分别是16 cm 和10 cm . ★(1)新安大街与光华大街的实际长度各是多少米?(2)新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢?2、【基础题】已知P 是线段AB 上的一点;且AP :PB =2:5;则AB :PB =______. ★★★3、【基础题】已知a;b;c;d 是成比例线段;其中a =3 cm;b =2 cm;c =6 cm;求线段d 的长. ★【基础题】已知DC BD EA BF =;且3=BD ;2=DC ;4=EA ;则BF =______. ★★★ 4、【基础题】 (1)已知2=b a ;求b b a +; (2)已知25=b a ;求ba b a +-. ★★★ 5、【基础题】 若2===fe d c b a ;且4=++f d b ;则=++e c a ______. ★ k c b a b c a a c b =+=+=+ (0≠c b a ++);那么函数k kx y +=的图象一定不经过第______象限. ★6、【综合题】若235cb a ==;且8=+-c b a ;则a =______. ★ 6.1【提高题】已知151110a c c b b a +=+=+;求a :b :c ☆第2节 平行线分线段成比例 7、【基础题】如左下图;321l l l ∥∥;两条直线被它们所截; AB =2;BC =3;EF =4;求DE. ★7.1【综合题】如右上图;321////l l l ;AM =2;MB =3;CD =4.5;则ND =______;CN =______. ★8、如左下图;ABC △中;DE BC ∥;2AD =;3AE =;4BD =;则AC =______. ★★★8.1、【综合题】如右上图;在△ABC 中;EF ∥CD ;DE ∥BC ;求证:AF ·BD = AD ·FD ★l 3l 2l 1F E D C B A第3节 相似多边形9、【基础题】下列各组图形中;两个图形形状不一定相同的是( ) ★A 、两个等边三角形B 、有一个角是35°的两个等腰三角形C 、两个正方形D 、两个圆9.1、【综合题】下列各组图形中相似的图形是( ) ★A 、对应边成比例的多边形B 、四个角都对应相等的两个梯形C 、有一个角相等的两个菱形D 、各边对应成比例的两个平行四边形10、【基础题】以正方形各边中点为顶点;可以组成一个新正方形;求新正方形与原正方形的相似比. ★10.1、【综合题】两个正六边形的边长分别为a 和b ;请问它们是否相似?不相似请说明理由;相似求出相似比. ★11、【基础题】已知矩形草坪长20 m ;宽10 m ;沿草坪四周外围有1 m 宽的环形小路;小路内外边缘所成的矩形相似吗?为什么?11.1【综合题】如图有一张矩形纸片;折成一半后形成的矩形与原矩形相似;则原矩形的长、宽的比是多少? ★12、六边形ABCDEF ∽六边形111111F E D C B A ;ο62=B ∠;则1B ∠=______.第4节 探索三角形相似的条件13、【基础题】从下面这些三角形中;选出相似的三角形. ★★★13.1【基础题】如图;在下列每个图形中(每个图形都各自独立);是否存在相似的三角形;如果存在;把它们用字母表示出来;并简要说明识别的根据. ★★★14、【基础题】如左下图;D 、E 分别是△ABC 的边AB 、AC 上的点;DE ∥BC;AD =2;BD =3;DE =4;求BC 的长. ★★★14.1【基础题】如右上图;BD 和EC 相交于点A;ED ∥BC;BD =12;AD =4;EC =9;则AC =______. ★★★14.2、【基础题】如左下图;在△ABC 中;点D 、E 在BC 上;且FD ∥AB ;FE ∥AC ;那么△ABC 和△FDE是否相似;为什么? ★★★14.3【基础题】如右上图;为了估算河的宽度;我们可以在河对岸选定一个目标作为点A ;再在河的这一边选点B 和C ;使BC AB ⊥;然后再选点E ;使BC EC ⊥;确定BC 与AE 的交点为D ;测得120=BD 米;60=DC 米;50=EC 米;你能求出两岸之间AB 的大致距离吗? ★★★14.4【综合题】如左下图;△ABC 为等边三角形;双向延长BC 到D 、E;使得∠DAE =120°;求证:BC 是BD 、CE 的比例中项. ★15、【基础题】如右上图在Rt △ABC 中; ∠ACB =90°;CD ⊥AB 于D . ★★★(1)请指出图中所有的相似三角形; (2)你能得出AD CD =2·DB 吗?15.1、【综合题】如右图;正方形ABCD 的边长为2;AE =EB;MN =1;线段MN 的两端在CB 、CD 上滑动;当CM= 时;ΔAED 与N;M;C 为顶点的三角形相似. ★16、【综合题】右边四个三角形;与左边的三角形相似的是( ) ★★★16.1、【综合题】如右图;在大小为4×4的正方形网格中;是相似三角形的是 ( ) ★★★A. ①和②B. ②和③C. ①和③D. ②和④17、【综合题Ⅱ】(巴中)如图;在平行四边形ABCD 中;过点A 作AE ⊥BC;垂足为E;连接DE;点F 为线段DE 上一点;且∠AFE=∠B(1)求证:△ADF ∽△DEC;(2)若AB=8;AD=6;AF=4;求AE 的长.黄金分割18、【综合题Ⅰ】如图;点C 是线段AB 的黄金分割点(AC >BC );已知AB =2 cm;求AC 的长度和ABAC 的值. ★18.1【基础题】已知M 是线段AB 的黄金分割点;且AM >BM . (1)写出AB 、AM 、BM 之间的比例式;(2)如果AB =12 cm ;求AM 与BM 的长. ★【基础题】一支铅笔长16 cm ;把它按黄金分割后;较长部分涂上橘红色;较短部分涂上浅蓝色;那么橘红色部分的长是 _____ cm ;浅蓝色部分的长是 ____ cm . (结果保留一位小数) ★第5节 相似三角形判定定理的证明19、【综合题Ⅰ】如左下图;BC AE AB DE AC AD ==. 求证:AE AB =. ★20、【综合题Ⅲ】如右上图;在等边三角形ABC 中;点D 、E 、F 分别是三边上的点;且AE =BF =CD ;那么△ABC 与△DEF 相似吗?请说明理由. ☆21、【综合题Ⅲ】如图;在ABC △中(∠B ≠∠C );AB =8 cm;BC =16 cm;点P 从点A 开始沿边AB 向点B 以2 cm/s 的速度移动;点Q 从点B 开始沿边BC 向点C 以4 cm/s 的速度移动;如果点P 、Q 分别从点A 、B 同时出发; 经几秒钟△PBQ 与△ABC 相似?试说明理由. ★第6节 利用相似三角形测高22、【基础题】高4 m 的旗杆在水平地面上的影子长6 m;此时测得附近一个建筑物的影长24 m;求该建筑物的高.★★★、【基础题】旗杆的影子长6米;同时测得旗杆顶端到其影子顶端的距离是10米;如果此时附近的小树影子长3米;那么小树有多高? ★22.2【综合题Ⅰ】(2007湖南怀化)如图;九年级(1)班课外活动小组利用标杆测量学校旗杆的高度;已知标杆高度3m CD =;标杆与旗杆的水平距离15m BD =;人的眼睛与地面的高度 1.6m EF =;人与标杆CD 的水平距离2m DF =;人的眼睛E 、标杆顶点C 和旗杆顶点A 在同一直线;求旗杆AB 的高度. ★★★22.3、【综合题Ⅲ】张明同学想利用树影测校园内的树高。

人教版九年级下册第二十七章相似图形及成比例的线段

人教版九年级下册第二十七章相似图形及成比例的线段

新知小结
求线段的长度比,先看单位是否统一,不统一的要 化为同一单位,再把数值进行化简化成最简整数比.
巩固新知
1 在比例尺为1:10 000 000的地图上,量的甲乙两地 的距离是30cm,求两地的实际距离. 解: 3000km.
2 在1 : 1 000 000的地图上,A,B两点之间的距离
是5 cm,则A,B两地的实际距离是( B )
【答案】C
3.观察下列各组图形,其中不.相.似.的是( A )
4.对于四条线段 a,b,c,d,如果其中两条线段的__比______(即 它们_长__度__的__比___)与另两条线段的__比____相等,如ab=dc,我们 就说这四条线段成比例.
5.在比例尺为 1∶38 000 的城市交通地图上,某条道路的长为 5
a :b = c :d
们的形状不相同.图(6)“拉长”而不是整体放大变成
2 m,b=8 cm,则a∶b=________.
B中的
,它
D.所有的圆都相似
利用比例的性质求代数式值的方法:当一个题中
D.5
例2 若a=0.2 m,b=8 cm,则a∶b=__5_∶__2___. 导引:a=0.2 m=20 cm,a∶b=20∶8=5∶2.
判断线段是否成比例,其基本方法是先排序,后求 比值,再看比值是否相等.
巩固新知
1 下列四组线段中,是成比例线段的是( C ) A.3 cm,4 cm,5 cm,6 cm B.4 cm,8 cm,3 cm,5 cm C.5 cm,15 cm,2 cm,6 cm D.8 cm,4 cm,1 cm,3 cm
巩固新知
1
(中考·东营)若 y 3 ,则 x y 的值为(
x4
x

第22讲 图形的相似(含答案点拨)

第22讲 图形的相似(含答案点拨)

第22讲图形的相似考纲要求命题趋势1.了解比例线段的有关概念及其性质,并会用比例的性质解决简单的问题.2.了解相似多边形、相似比和相似三角形的概念,掌握其性质和判定并会运用图形的相似解决一些简单的实际问题.3.了解位似变换和位似图形的概念,掌握并运用其性质.相似多边形的性质是中考考查的热点,其中以相似多边形的相似比、面积比、周长比的关系考查较多.相似三角形的判定、性质及应用是考查的重点,常与方程、圆、四边形、三角函数等相结合,进行有关计算或证明.知识梳理一、比例线段1.比例线段的定义在四条线段a,b,c,d中,如果其中两条线段的比等于另外两条线段的比,即__________________,那么这四条线段a,b,c,d叫做成比例线段,简称__________.2.比例线段的基本性质ab=cd⇔ad=bc.3.黄金分割把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的__________,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点.⎝⎛AC=5-12AB≈0.618AB,BC=⎭⎪⎫3-52AB二、相似多边形1.定义对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做________,相似比为1的两个多边形全等.2.性质(1)相似多边形的对应角________,对应边成________;(2)相似多边形周长的比等于________;(3)相似多边形面积的比等于__________.三、相似三角形1.定义各角对应________,各边对应成________的两个三角形叫做相似三角形.2.判定(1)平行于三角形一边的直线和其他两边(或两边延长线)相交,所构成的三角形与________相似;(2)两角对应________,两三角形相似;(3)两边对应成________且夹角________,两三角形相似;(4)三边对应成________,两三角形相似;(5)斜边和一条直角边对应成比例,两直角三角形相似.3.性质(1)相似三角形的对应角________,对应边成________;(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于________; (3)相似三角形周长的比等于________; (4)相似三角形面积的比等于____________. 四、位似变换与位似图形 1.定义取定一点O ,把图形上任意一点P 对应到射线OP (或它的反向延长线)上一点P ′,使得线段OP ′与OP 的______等于常数k (k >0),点O 对应到它自身,这种变换叫做位似变换,点O 叫做________,常数k 叫做________,一个图形经过位似变换得到的图形叫做与原图形位似的图形.2.性质两个位似的图形上每一对对应点都与位似中心在一条直线上,并且新图形与原图形上对应点到位似中心的距离之比等于________.3.画位似图形的步骤 (1)确定位似________;(2)连接图形各顶点与位似中心的线段(或延长线); (3)按位似比进行取点;(4)顺次连接各点,所得的图形就是所求图形. 自主测试1.若相似△ABC 与△DEF 的相似比为1:3,则△ABC 与△DEF 的面积比为( ) A .1:3 B .1:9 C .3:1 D .1: 32.如图,点F 是ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误的是( )A .ED EA =DF AB B .DE BC =EF FBC .BC DE =BF BED .BF BE =BC AE3.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A ′B ′C ′D ′E ′,已知OA =10 cm ,O A ′=20cm ,则五边形ABCDE 的周长与五边形A ′B ′C ′D ′E ′的周长的比值是__________.4.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F .求证:(1)△ACB ∽△DCE ; (2)EF ⊥AB .考点一、相似图形的性质【例1】如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A .2 cm 2B .4 cm 2C .8 cm 2D .16 cm 2解析:根据相似多边形面积的比等于相似比的平方,得S 阴影S 原矩形=⎝⎛⎭⎫482,S 阴影4×8=14,S 阴影=8cm 2.答案:C方法总结 相似多边形的性质:对应边成比例,对应角相等,周长的比等于相似比,面积的比等于相似比的平方,利用相似多边形的性质可求多边形的边长、角、周长或面积.触类旁通1 如图所示的两个四边形相似,则∠α的度数是( )A .87°B .60°C .75°D .120°考点二、相似三角形的性质与判定【例2】如图,在ABCD 中,E ,F 分别是AD ,CD 边上的点,连接BE ,AF ,它们相交于点G ,延长BE 交CD 的延长线于点H ,则图中相似三角形共有( )A .2对B .3对C .4对D .5对解析:依据题中的条件,平行四边形的对边平行,由AD ∥BC ,可得△HED ∽△HBC ,由AB ∥CD ,可得△HED ∽△BEA ,△HFG ∽△BAG .根据相似的传递性,可得△HBC ∽△BEA ,一共有四对相似三角形.答案:C方法总结 判定两个三角形是否相似首先看是否存在平行线或能否作出相关的平行线,再看是否存在两组对应角相等,若只有一对对应角相等,再看夹这个角的两边是否成比例;若无内角相等,就考虑三组对应边是否成比例.触类旁通 2 已知如图(1),(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB ,CD 交于O 点,对于各图中的两个三角形而言,下列说法正确的是( )A .都相似B .都不相似C .只有(1)相似D .只有(2)相似 考点三、位似图形【例3】如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是( )A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2)解析:分两种情况计算,即矩形OABC 和矩形OA ′B ′C ′在原点的同侧和两侧. 答案:D方法总结 位似图形一定是相似图形,但相似图形不一定是位似图形,利用位似的方法,可以把一个多边形放大或缩小.位似图形所有对应点的连线相交于位似中心.触类旁通3 如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( )A .-12aB .-12(a +1)C .-12(a -1)D .-12(a +3)考点四、相似三角形的应用【例4】问题背景:在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中的一些物体进行了测量,下面是他们通过测量得到的一些信息:甲组:如图(1),测得一根直立于平地,长为80 cm 的竹竿的影长为60 cm. 乙组:如图(2),测得学校旗杆的影长为900 cm.丙组:如图(3),测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200 cm ,影长为156 cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图(3),设太阳光线NH 与⊙O 相切于点M .请根据甲、丙两组得到的信息,求景灯灯罩的半径.(提示:如图(3),景灯的影长等于线段NG 的影长;需要时可采用等式1562+2082=2602)解:(1)如题图,△ABC ∽△DEF ,∴AB DE =ACDF.∵AB =80 cm ,AC =60 cm ,DF =900 cm ,∴80DE =60900.∴DE =1 200 cm ,即DE =12 m. 故学校旗杆的高度是12 m.(2)如题图(3),连接OM ,设⊙O 的半径为r cm.与(1)类似得AB GN =AC GH ,即80GN =60156.∴GN =208 cm.在Rt △NGH 中,根据勾股定理得NH 2=1562+2082=2602,∴NH =260 cm. ∵NH 切⊙O 于M , ∴OM ⊥NH .则∠OMN =∠HGN =90°.又∠ONM =∠HNG ,∴△OMN ∽△HGN .∴OM HG =ONHN.又∵ON =OI +IN =OI +(GN -GI )=r +8,∴r 156=r +8260,解得r =12. ∴景灯灯罩的半径是12 cm.方法总结 应用相似三角形解决实际问题,首先要建立数学模型,把实际问题转化为数学问题,然后利用相似三角形对应边成比例或相似三角形的性质建立等量关系求解.触类旁通4 一个铝质三角形框架三条边长分别为24 cm,30 cm,36 cm ,要做一个与它相似的铝质三角形框架,现有长为27 cm,45 cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )A .0种B .1种C .2种D .3种1.(2012贵州铜仁)如图,六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,则下列结论正确的是( )A .∠E =2∠KB .BC =2HIC .六边形ABCDEF 的周长=六边形GHIJKL 的周长D .S 六边形ABCDEF =2S 六边形GHIJKL2.(2012山东聊城)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,则下列结论不正确的是( )A .BC =2DEB .△ADE ∽△ABCC .AD AE =ABACD .S △ABC =3S △ADE3.(2012山东泰安)如图,AB ∥CD ,E ,F 分别为AC ,BD 的中点,若AB =5,CD =3,则EF 的长是( )A .4B .3C .2D .14.(2012重庆)已知,△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则△ABC 与△DEF 的面积之比为__________.5.(2012湖南娄底)如图,在一场羽毛球比赛中,站在场内M处的运动员林丹把球从N 点击到了对方内的B点,已知网高OA=1.52米,OB=4米,OM=5米,则林丹起跳后击球点N离地面的距离NM=__________米.6.(2012湖南张家界)已知△ABC与△DEF相似且面积比为4:25,则△ABC与△DEF 的相似比为__________.1.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()2.如图,边长为4的等边△ABC中,DE为中位线,则四边形BCED的面积为()A.2 3 B.3 3C.4 3 D.6 33.已知△ABC与△DEF相似且对应中线的比为2:3,则△ABC与△DEF的周长比为__________.4.如图,在△ABC中,DE∥AB,CD:DA=2:3,DE=4,则AB的长为__________.(第4题图)5.如图,为了测量某棵树的高度,小明用长为2 m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距6 m,与树相距15 m,则树的高度为__________ m.(第5题图)6.如图所示,正方形ABCD 和正方形OEFG 中,点A 和点F 的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是__________.7.如图,∠1=∠2,添加一个条件使得△ADE ∽△ACB __________.8.如图,在矩形ABCD 中,AB =6,AD =12,点E 在AD 边上且AE =8,EF ⊥BE 交CD 于点F .(1)求证:△ABE ∽△DEF . (2)求EF 的长.参考答案导学必备知识 自主测试1.B 2.C 3.1:24.证明:(1)∵AC DC =32,BC CE =64=32,∴AC DC =BCCE.又∠ACB =∠DCE =90°,∴△ACB ∽△DCE . (2)∵△ACB ∽△DCE ,∴∠ABC =∠DEC . 又∠ABC +∠A =90°,∴∠DEC +∠A =90°. ∴∠EF A =90°,∴EF ⊥AB . 探究考点方法 触类旁通1.A 触类旁通2.A 触类旁通3.D触类旁通4.B (1)假设以27 cm 为一边,把45 cm 截成两段,设这两段分别为x cm ,y cm(x <y ).则可得:24x =30y =3627①或24x =3027=36y②(注:27 cm 不可能是最小边),由①解得x =18,y =22.5,符合题意;由②解得x =1085,y =1625,x +y =1085+1625=2705=54>45,不合题意,舍去.(2)假设以45 cm 为一边,把27 cm 截成两段,设这两段分别为x cm ,y cm(x <y ).则可得:24x =30y =3645(注:只能是45是最大边),解得x =30,y =752,x +y =30+37.5=67.5>27,不合题意,舍去.综合以上可知,截法只有一种.品鉴经典考题1.B ∵六边形ABCDEF ∽六边形GHIJKL , ∴∠E =∠K ,故A 错误;∵六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1, ∴BC =2HI ,故B 正确;∵六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,∴六边形ABCDEF 的周长=六边形GHI JKL 的周长×2,故C 错误; ∵六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1, ∴S 六边形ABCDEF =4S 六边形GHIJKL ,故D 错误. 故选B.2.D ∵在△ABC 中,点D ,E 分别是边AB ,AC 的中点, ∴DE ∥BC ,BC =2DE ,故A 正确;∵DE ∥BC ,∴△ADE ∽△ABC ,故B 正确;∵△ADE ∽△ABC ,∴AD AE =ABAC,故C 正确;∵DE 是△ABC 的中位线,∴AD :AB =1:2,又∵△ADE ∽△ABC ,∴S △ABC =4S △ADE ,故D 错误. 3.D 连接DE 并延长交AB 于H .∵CD ∥AB ,∴∠C =∠A ,∠CDE =∠AHE . ∵E 是AC 中点,∴EC =AE , ∴△DCE ≌△HAE , ∴DE =HE ,DC =AH . ∵F 是BD 中点,∴EF 是△DHB 的中位线,∴EF =12BH .∵BH =AB -AH =AB -DC =2,∴EF =1. 故选D.4.9:1 ∵△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,∴三角形的相似比是3:1,∴△ABC 与△DEF 的面积之比为9:1.5.3.42 根据题意得AO ⊥BM ,NM ⊥BM ,∴AO ∥NM ,∴△ABO ∽△NBM ,∴OA NM =OBBM.∵OA =1.52米,OB =4米,OM =5米,∴BM =OB +OM =4+5=9(米),∴1.52NM =49,解得NM =3.42(米),∴林丹起跳后击球点N 离地面的距离NM 为3.42米. 故答案为3.42. 6.2:5研习预测试题1.A 2.B 3.2:3 4.10 5.7 6.(1,0)或(-5,-2)7.略.8.(1)证明:如图,∵EF ⊥BE ,∴∠EFB =90°,∴∠1+∠2=90°. 在矩形ABCD 中,∠A =90°,∠D =90°,∴∠2+∠3=90°,∴∠1=∠3. ∵∠A =∠D =90°, ∴△ABE ∽△DEF .(2)解:在△ABE 中,∠A =90°,AB =6,AE =8, ∴BE =AB 2+AE 2=62+82=10. 又∵DE =AD -AE =12-8=4, 由(1)得△ABE ∽△DEF . ∴BE EF =AB DE. ∴EF =BE ·DE AB =10×46=203.。

相似图形及成比例线段(讲义及答案)

相似图形及成比例线段(讲义及答案)

相似图形及成比例线段(讲义)➢课前预习1.读一读,想一想:①两个数相除又叫做两个数的比,比如a÷b,又可以写作ab,a:b;在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.②比的前项和后项同时乘或除以相同的数(0除外),比值不变.③表示两个比相等的式子叫做比例,比如a:b=c:d,又可以写作a cb d=;组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项.④在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质.⑤能够完全重合的两个图形称为全等图形.⑥全等图形的形状和大小都相同.2.填空:①若a:b=2:3,b:c=2:3,则a:b:c=_________.②若2a=3b=4c,则a:b:c=________.3.求解下列各式中的x.(1)41232x=::;(2)100602020x x=+-;(3)342x xx x--=;(4)11x xx-=(其中x>0).➢知识点睛一、比例性质1. 基本性质:如果_____________,那么_________________;如果ad =bc (a ,b ,c ,d 都不等于0),那么________________. 2. 等比性质:如果_________________(_________________),那么______________________.二、成比例线段1. 四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.如: GEF HDC B AAB EF BC FG = AB BCEF FG =2. 平行线分线段成比例两条直线被一组平行线所截,所得的______________成比例. 推论:_____________________________________________.B 1B 2B 3A 3A 2l 3l 2l 1m nA 13. 黄金分割:点C 把线段AB 分成两条线段AC 和BC ,如果_____________,那么称线段AB 被点C _________,点C 叫做线段AB 的黄金分割点.ACAB=________≈_______,称为黄金比.-x1xCBA三、相似图形1. __________的图形称为相似图形.利用“_____”来表述两个图形间的相似关系时,要把表示对应角顶点的字母写在对应的位置上.E FDC B A符号表示 各边成比例△ABC ∽△______ 2. 相似多边形:定义:_________、_________的两个多边形叫做相似多边形. 相似多边形对应边的比叫做__________. 性质:相似多边形的周长比等于___________. 3. 相似三角形:定义:_________、__________的两个三角形叫做相似三角形.➢ 精讲精练1. 在△ABC 和△DEF 中,14AB BC CA DE EF FD ===,且△ABC 的周长为8,则△DEF 的周长为_________.2. 若43===f e d c b a ,则a c eb d f +-=+-_____,2424ac e bd f +-=+-_____.AB BC CA DE EF FD ==(b+d-f≠0,2b+d-4f≠0)3.已知a b ckb c a c a b===+++,求k的值.4.(1)如果a b cd e f==且a:b:c=3:4:5,那么d:e:f=3:4:5.你认为这个结论正确吗?请利用设k法进行证明.(2)如果a cb d=,那么a b c db d++=.你认为这个结论正确吗?请利用设k法进行证明.5.若438324x y z+++==,且x+y+z=12,则x zy z-=+________.6.①已知a,b,c,d是成比例线段,若a=3,b=2,c=4,则线段d=_______;若a是d的2倍,b=2,c=9,则a=_______.②在比例尺为1:50 000的地图上量得甲、乙两地的距离为10 cm,则甲、乙两地的实际距离是__________km.7.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF分别交l1,l2,l3于点D,E,F,AC与DF相交于点G,且AG=2,GB=1,BC=5,则DEEF的值为________.l 3l 2l 1GFE DC B AEB A D第7题图 第8题图8. 如图,DE ∥BC ,且DB =AE ,若AB =5,AC =10,则AE =______.9. 如图,在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB ,且AD :DB =3:5,则CF :CB =( ) A .5:8B .3:8C .3:5D .2:5FEA DG F ADC BE第9题图 第10题图10. 如图,在△ABC 中,D ,F 分别为BC ,AC 上一点,BD :DC =3:2,连接BF ,AD ,两线段相交于点E 且AE :AD =1:2,过点D 作DG ∥AC 交BF 于点G ,则BE :EF =________.11. 美是一种感觉,当人体的下半身身长与身高的比值越接近0.618时,越给人一种美感.某女士身高160 cm ,下半身身长与身高的比值是0.60,为尽可能达到好的效果,她应穿高跟鞋的高度约为_________.(精确到0.1 cm ) 12. 顶角为36°的等腰三角形称为黄金三角形,其底与腰的比恰为黄金比.如图,13. 等腰梯形的中位线截两腰所得的两个小梯形.其中,一定相似的有_____________(填写序号).14. 某小区有一矩形草坪,如图所示,其长为30米,宽为10米,若想沿草坪四周修一宽度相等的环形小路,使得小路内外边缘所成的矩形相似,你能做到吗?若能,请求出这一宽度;若不能,请说明理由.15.四边形ABCD∽四边形A1B1C1D1,其中AB=4,A1B1=6,CD=8,∠A=77°,∠B=83°,∠C=85°,则四边形A1B1C1D1中的∠D1=_______,其最大角是______,C1D1的长为________,四边形ABCD 与四边形A1B1C1D1的相似比为_____________;若它们周长的差是15,则较大四边形的周长为___________.16.如图,已知矩形ABCD,请在下图网格纸中画出矩形EFGH.矩形EFGH需满足:①矩形ABCD∽矩形EFGH;②BC=EF.ADCB17.已知△ABC∽△DEF,AB=6 cm,BC=4 cm,AC=9 cm,且△DEF的最短边边长为8 cm,则最长边边长为()A.16 cm B.18 cm C.4.5 cm D.13 cm18.如图,△ABC∽△ADE,连接BD.①若AB=9,AE=4,AD=AC,BC=8,则AD=____,DE=___,△ABC与△ADE的相似比为___________;②若∠DBA=30°,∠ADB=110°,则∠CAE=_________.EDCBA19.如图,在△ABC中,∠A=90°,点E在线段AB上,点D在线段AC上,且满足△ABC∽△ADE,若AE=6,EB=3,2AD=DC,则AD=______,DE=______.EDCBA20.如图,线段AD,BC相交于点O,连接AB,CD,其中BO=2AO,AD=3.5,OC54=,且△AOB∽△COD,则△AOB与△COD的相似比为______;若AB52=,则OC:CD:DO=________.OCBDA【参考答案】 ➢ 课前预习2. ①4:6:9;②6:4:33. (1)13x =;(2)5x =;(3)103x =; (4)12x -+=. ➢ 知识点睛一、比例性质1.0a cb d b d=(,不为);ad =bc ;a c b d =或a b c d = 2. a c m b d n ===…;( );a c m ab d n b +++=+++…… 二、成比例线段 2. 对应线段平行于三角形一边的直线截其他两边(或两边的延长线)所得对应线段成比例3.BC ACAC AB=;0.618 三、相似图形1. 形状相同;∽;DEF2. 各角对应相等;各边对应成比例;相似比;相似比3. 三角对应相等;三边对应成比例 框内答案 框4:两➢ 精讲精练1. 322. 34;343. 12k =或1k =-.4. (1)正确,证明略;(2)正确,证明略. 5.170b d n +++≠…6.①83;6;②57.3 58.10 39. A10.4:111.7.5 cm12.613.①②③④⑤⑥14.不能,理由略.15.115°;∠D1;12;2:3;4516.图略.17.B18.①6;163;3:2;②40°19.20.45;2:5:4。

新版华东师大版九年级数学上册第23章图形的相似23.1成比例线段同步检测题(附答案)

新版华东师大版九年级数学上册第23章图形的相似23.1成比例线段同步检测题(附答案)

第23章 图形的相似23.1.1 成比例线段知识点 1 线段的比1.已知线段a =20 cm ,b =30 cm ,则a ∶b =________,b ∶a =________.2.已知线段AB ,在BA 的延长线上取一点C ,使CA =3AB ,则线段CA 与线段CB 的比为( )A .3∶4B .2∶3C .3∶5D .1∶23.如图23-1-1,C 是线段AB 的中点,点D 在BC 上,AB =24 cm ,BD =5 cm. (1)AC ∶CB =________,AC ∶AB =________;(2)BC BD =______,CD AB =________,ADCD=______. 图23-1-1知识点 2 成比例线段的概念 4.线段a =8 cm ,b =30 cm ,c =10 cm ,d =24 cm 中,最短两条线段的比a ∶c =________,最长两条线段的比d ∶b =________,所以这四条线段________成比例线段(填“是”或“不是”).5.下列各组中的四条线段,是成比例线段的是( )A .3 cm ,6 cm ,12 cm ,18 cmB .2 cm ,3 cm ,4 cm ,5 cmC. 2 cm ,10 cm , 5 cm ,5 cmD .5 cm ,2 cm ,3 cm ,6 cm6.判断下列线段是不是成比例线段,若是,请写出比例式. (1)a =7 cm ,b =4 cm ,c =d =2 7 cm ; (2)a =20 mm ,b =8 m ,c =28 m ,d =7 cm. 知识点 3 比例的基本性质7.已知a b =cd ,若其中a =5 cm ,b =3 cm ,c =2 cm ,则可列比例式( )( )=( )( ),根据比例的基本性质,可得________,所以线段d =________ cm.8.已知x y =79,那么下列等式一定成立的是( )A .x =97y B .7y =9xC .7x =9yD .xy =639.若2x =5y ,则下列式子中错误的是( )A. y x =25 B. x -y y =32C.x +y x -y =73D. y -x x =3510. 画在图纸上的某一零件长 3.2 cm ,若比例尺是1∶20,则该零件的实际长度是__________.11.已知c 4=b 5=a6≠0,则b +c a 的值为________.12.已知a b =43,求a +b b 和a -b a的值.13. 等腰直角三角形斜边上的高与腰的长度之比是( )A.2∶1 B .1∶2 C .2∶ 2 D .1∶ 214.已知三个数2,2,4.若再添加一个数,就得到这四个数成比例,则添加的数是( )A .2 2B .2 2或22C .2 2,4 2或8 2D .2 2,22或4 2 15.若a b =cd ,则下列各式一定成立的有( )①a +b b =c +d d ;②a -b b =c -dd ; ③a a +b =c c +d ;④a a -b =c c -d . A .4个 B .3个 C .2个 D .1个16.[教材练习第2题变式]若a 5=b 3=c 2,且a -b +c =8,则a =________.17.已知AB A ′B ′=BC B ′C ′=ACA ′C ′=2,且△ABC 的周长为18 cm ,求△A ′B ′C ′的周长.18.如图23-1-2,若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB =10,APBP =AQ BQ =32.求线段PQ 的长. 图23-1-219.已知线段a =0.3 m ,b =60 cm ,c =12 dm. (1)求线段a 与线段b 的比;(2)如果a ∶b =c ∶d ,求线段d 的长. 20.已知x -y x +y =911,求下列各式的值:(1)xx +y ; (2)2x +y y -x. 21.已知△ABC 的三边长a ,b ,c 满足关系式a +43=b +32=c +84,且a +b +c =12,则这个三角形的面积是多少?22.阅读下列解题过程,然后解题:题目:已知x a -b =y b -c =zc -a (a ,b ,c 互不相等),求x +y +z 的值.解:设x a -b =y b -c =z c -a=k(k≠0),则x =k(a -b),y =k(b -c),z =k(c -a), ∴x +y +z =k(a -b +b -c +c -a)=k·0=0, ∴x +y +z =0.依照上述方法解答下面的问题:已知a ,b ,c 为非零实数,且a +b +c≠0,当a +b -c c =a -b +c b =-a +b +ca时,求(a +b )(b +c )(c +a )abc的值.参考答案1.2∶3 3∶22. A3.(1)1∶1 1∶2 (2)125 724 1974.4∶5 4∶5 是5.C [解析] 只有C 中210=55,为成比例线段. 6.[解析] 判断四条线段是不是成比例线段,可根据线段长度的大小关系,从小到大排列,判断较短的两条线段的比是否等于较长的两条线段的比,若比值相等则这四条线段是成比例线段.解:(1)因为b c =42 7=4×72 7×7=2 77,d a =2 77,所以这四条线段是成比例线段,比例式为b c =da.(2)将线段从小到大排列,得a =20 mm =0.02 m ,d =7 cm =0.07 m ,b =8 m ,c =28 m .因为a d =0.020.07=27,b c =828=27,所以这四条线段是成比例线段,比例式为a d =b c. 7.5 3 2 d 5d =6 658. B 9. D 10. 64 cm11. 32 [解析] 设c 4=b 5=a6=k ,则c =4k ,b =5k ,a =6k ,所以b +c a =5k +4k 6k =32.12.解:由已知可设a =4k ,b =3k (k ≠0), ∴a +b b =4k +3k 3k =7k 3k =73,a -b a =4k -3k 4k =k 4k =14. 13. D14. D [解析] 设这个数是x ,由题意,得 当2∶2=4∶x 时,则2x =4 2,解得x =2 2; 当2∶4=x ∶2时,则4x =2 2,解得x =22; 当2∶2=x ∶4时,则2x =8,解得x =4 2. 故选D. 15. A16.10 [解析] 由a 5=b 3=c 2,得b =3a 5,c =2a 5,由a -b +c =8,得a -3a 5+2a5=8,解得a =10.17.解:∵AB A ′B ′=BC B ′C ′=AC A ′C ′=2, ∴AB =2A ′B ′,BC =2B ′C ′,AC =2A ′C ′. ∵AB +BC +AC =18,∴2A ′B ′+2B ′C ′+2A ′C ′=18, ∴2(A ′B ′+B ′C ′+A ′C ′)=18, ∴A ′B ′+B ′C ′+A ′C ′=9, ∴△A ′B ′C ′的周长为9 cm.18.[解析] 根据AP BP =AQ BQ =32,分别求出BP ,BQ 的长,两者相加即可求出PQ 的长.解:∵AB =10,AP BP =AQ BQ =32,∴BP =4,BQ =20, ∴PQ =BP +BQ =24. 答:线段PQ 的长为24.19.解:a =0.3 m =3 dm ,b =60 cm =6 dm ,c =12 dm. (1)a ∶b =3∶6=1∶2. (2)∵a ∶b =c ∶d , ∴1∶2=12∶d , 解得d =24(dm).故线段d 的长是24 dm.20.解:由已知可得9(x +y )=11(x -y ),整理得x =10y .(1)x x +y =10y 10y +y =10y 11y =1011. (2)2x +y y -x =20y +y y -10y =21y -9y=-73.21.令a +43=b +32=c +84=k ,则a =3k -4,b =2k -3,c =4k -8,代入a +b +c =12,可得k =3,∴这个三角形的三边长为a =5,b =3,c =4. ∵a 2=b 2+c 2,∴这个三角形为直角三角形, ∴S =12bc =12×3×4=6.22.设a +b -c c =a -b +c b =-a +b +c a=k (k ≠0),则a +b -c =kc ①,a -b +c =kb ②,-a +b +c =ka ③, 由①+②+③,得a +b +c =k (a +b +c ). ∵a +b +c ≠0,∴k =1,∴a +b =2c ,b +c =2a ,c +a =2b , ∴(a +b )(b +c )(c +a )abc =2c ·2a ·2b abc=8.23.1.2 平行线分线段成比例知识点 1 平行线分线段成比例1.如图23-1-3,AD ∥BE ∥CF ,直线m ,n 与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,根据平行线分线段成比例,可得AB BC =()(),若AB =5,BC =10,DE =4,可得() ()=()(),解得EF =________. 图23-1-32.如图23-1-4,在四边形ABCD 中,点E ,F 分别在AD 和BC 上,AB ∥EF ∥DC ,且DE =3,DA =5,CF =4,则FB 的长为( )A.32B.83C .5D .6 图23-1-43.如图23-1-5,若AD ∥BE ∥CF ,直线l 1,l 2与平行线分别交于点A ,B ,C 和点D ,E ,F .若AB =BC ,则DE 与EF ________(填“相等”或“不相等”).图23-1-54.如图23-1-6,在四边形ABCD 中,AD ∥BC ,E 是AB 上一点,EF ∥BC 交CD 于点F .若AE =2,BE =6,CD =7,则FC =________.图23-1-65.如图23-1-7,已知AD ∥BE ∥CF ,它们依次交直线l 1,l 2于点A ,B ,C 和点D ,E ,F .如果AB =6,BC =10,那么DEDF的值是________.图23-1-76.[教材练习第1题变式]如图23-1-8,直线a ∥b ∥c .(1)若AC =6 cm ,EC =4 cm ,BD =8 cm ,则线段DF 的长度是多少厘米? (2)若AE ∶EC =5∶2,DB =5 cm ,则线段DF 的长度是多少厘米?图23-1-8知识点 2 平行线分线段成比例的推论7.[2019·兰州改编]如图23-1-9,在△ABC 中,因为DE ∥BC ,所以AD BD =( )( ).若AD BD =23,则AD BD =( )( )=________. 图23-1-98.如图23-1-10,直线l 1∥l 2∥l 3,直线AC 与l 1,l 2,l 3分别交于点A ,B ,C ,直线DF 与l 1,l 2,l 3分别交于点D ,E ,F ,AC 与DF 相交于点G ,且AG =2,GB =1,BC =5,则DEEF的值为( ) A. 12 B .2 C. 25 D. 35图23-1-109.如图23-1-11,在△ABC 中,DE ∥BC ,且分别交AB ,AC 于点D ,E ,则下列比例式不正确的是( )A.AB AD =AC AEB.AB AC =AD AEC.AD BD =AE ECD.AB DE =AC EC图23-1-1110.如图23-1-12,若AB ∥DC ,AC ,BD 相交于点E ,且AE =2,EC =3,BD =10,则ED =________.图23-1-1211.如图23-1-13,在△ABC 中,DE ∥BC ,且DB =AE .若AB =5,AC =10,求AE 的长.图23-1-1312.如图23-1-14,已知AB ∥CD ∥EF ,AD ∶AF =3∶5,BE =10,那么BC 的长为________.图23-1-1413.如图23-1-15,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A ,B ,C 都在横格线上.若线段AB =4 cm ,则线段BC =________cm.图23-1-1514. 如图23-1-16,AD 为△ABC 的中线,E 为AD 的中点,连结BE 并延长交AC 于点F ,则CFAF=__________.唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。

北师大版九年级数学上册第四章《图形的相似》第1课时成比例线段典型题同步练习题及答案 (1)

北师大版九年级数学上册第四章《图形的相似》第1课时成比例线段典型题同步练习题及答案 (1)

成比例线段同步练习(典型题汇总)知识点 1 线段的比1.下列说法中正确的有( )①两条线段的比是两条线段的长度之比,比值是一个正数;②两条线段的长度之比是同一单位下的长度之比;③两条线段的比值是一个数量,不带单位;④两条线段的比有顺序,ab与ba不同,它们互为倒数.A.1个 B.2个 C.3个 D.4个2.已知线段AB,在BA的延长线上取一点C,使CA=3AB,则线段CA与线段CB之比为( )A.3∶4 B.2∶3C.3∶5 D.1∶2知识点 2 成比例线段3.下列各组线段(单位:cm)中,是成比例线段的是( )A.1,2,3,4 B.1,2,2,4C.3,5,9,13 D.1,2,2,34.教材随堂练习第3题变式题若线段a,b,c,d成比例,其中a=3 cm,b=6 cm,c =2 cm,则d=__________.知识点 3 比例的基本性质5.已知x2=y3,那么下列式子中一定成立的是( )A.2x=3y B.3x=2yC.x=2y D.xy=66.若3a=5b,则ab=________.7.等边三角形的一边与这条边上的高的比是( )A.3∶2B.3∶1C.2∶3 D.1∶38.如果a+2bb=52,那么ab的值是( )A.12 B.2 C.15 D.59.如图4-1-1所示,已知矩形ABCD和矩形A′B′C′D′,AB=8 cm,BC=12 cm,A′B′=4 cm,B′C′=6 cm.(1)求A′B′AB和B′C′BC的值;(2)线段A′B′,AB,B′C′,BC是成比例线段吗?图4-1-110.教材习题4.1第2题变式题如图4-1-2,已知ADDB=AEEC,AD=6.4 cm,DB=4.8 cm,EC=4.2 cm,求AC的长.图4-1-211.已知三条线段的长度分别是4,8,5,试写出另一条线段的长度,使这四条线段为成比例线段.答案:1.D.2.A .3.B 4.4 cm 5.B 6.537.C8.A9.解:(1)∵AB=8 cm,BC=12 cm,A′B′=4 cm,B′C′=6 cm,∴A′B′AB=48=12,B′C′BC=612=12.(2)由(1)知A′B′AB=12,B′C′BC=12,∴A′B′AB=B′C′BC,∴线段A′B′,AB,B′C′,BC是成比例线段.10.解:∵ADDB=AEEC,∴6.44.8=AE4.2,解得AE=5.6(cm),则AC=AE+EC=5.6+4.2=9.8(cm).11.解:设所求的线段长度为x.当x∶4=8∶5时,可求得x=325;当x∶4=5∶8时,可求得x=208=52;当4∶8=5∶x时,可求得x=404=10.所以所求的线段长度可能为325或52或10.成比例线段同步练习(典型题汇总)一、选择题1.若34yx =,则x yx +的值为( )A .1B .47C .54D .74答案:D解析:解答:∵34yx =, ∴43744x yx ++==.故选D .分析:根据合分比性质求解.2.已知250x y y =≠(),则下列比例式成立的是()A . 25x y=B . 52x y=C .25x y =D .52x y =答案:B解析:解答:∵250x y y =≠(), ∴ 52x y=故选B .分析:本题须根据比例的基本性质对每一项进行分析即可得出正确结论.3.若250y x -=,则x y :等于( )A .2:5B .4:25C .5:2D .25:4答案:A解析:解答:∵250y x -=,∴25y x =,∴25x y =::.故选A .分析:根据两內项之积等于两外项之积整理即可得解.4.已知32x y =,那么下列等式一定成立的是( )A .x =2,y =3B .32x y =C .23x y =D .320x y +=答案:A解析:解答:A 、x =2,y =3时,32x y =,故A 正确;C 、当y =0时,23xy =无意义,故C 错误;故选:A .分析:根据比例的性质,代数式求值,可得答案.5.已知52ab =,那么下列等式中,不一定正确的是( )A .25a b =B . 52ab=C .7a b +=D .72a b b +=答案:C解析:解答:由比例的性质,得A 、25a b =,故A 正确;B 、25a b =,得 52ab=,故B 正确;C 、a b +有无数个值,故C 错误;D 、由合比性质,得72a bb +=,故D 正确;故选:C .分析:根据比例的性质,可判断A 、B ;根据合比性质,可判断D .6.若34a b =,则ab =( )A .34B .43C .32D .23答案:B解析:解答:两边都除以3b ,得43a b =,故选:B .分析:根据等式的性质,可得答案.7.若非零实数x ,y 满足43y x =,则x y :等于()A .3:4B .4:3C .2:3D .3:2答案:B解析:解答:∵43y x =,∴43x y =::, 故选:B .分析:根据比例的性质,即可解答.8.不为0的四个实数a 、b ,c 、d 满足ab cd =,改写成比例式错误的是( )A .a dc b =B .cba d =C .d ba c =D .acb d =答案:D解析:解答:A 、adab cd c b =⇒=,故A 正确;B 、cba d =ab cd ⇒=,故B 正确;C 、dba c = ab cd ⇒=,故C 正确;D 、acb d =ad bc ⇒=,故D 错误;故选:D .分析:根据比例的性质,可得答案.9.已知32x y =,那么下列等式中,不一定正确的是()A .5x y +=B .23x y =C .52x y y +=D .35xx y +=答案:A解析:解答:∵32xy =,∴设3x k =,2y k =,A 、5x y k +=,k 不一定等于1,则5x y +=不一定正确,故本选项符合题意;B 、236x y k ==,一定成立,故本选项不符合题意;C 、5522x y ky k +==,一定成立,故本选项不符合题意;D 、3355xkx y k ==+,一定成立,故本选项不符合题意.故选A .分析:根据比例的性质,设x =3k ,y =2k ,然后对各选项分析判断利用排除法求解.10.如果a =3,b =2,且b 是a 和c 的比例中项,那么c =( )A .23±B .23C .43D .43±答案:C解析:解答:根据题意,可知a b b c =::,2b ac =,当a =3,b =2时223c =,34c =,43c =. 故选:C .分析:比例中项,也叫“等比中项”,即如果a 、b 、c 三个量成连比例,即a b b c =::,则b 叫做a 和c 的比例中项.据此代数计算得解.11.在比例尺为1:2000的地图上测得A 、B 两地间的图上距离为5cm ,则A 、B 两地间的实际距离为( )A .10mB .25mC .100mD .10000m答案:C解析:解答:设A 、B 两地间的实际距离为xm , 根据题意得152000x 100=g ,解得x=100.所以A、B两地间的实际距离为100m.故选C.分析:设A、B两地间的实际距离为x m,根据比例线段得152000x100g,然后解方程即可.12.在一张比例尺为1:5000000的地图上,甲、乙两地相距70毫米,此两地的实际距离为()A.3.5千米B.35千米C.350千米D.3500千米答案:C解析:解答:设甲、乙两地的实际距离为x mm,1:5000000=70:x,解得x=350000000.350000000mm=350千米即甲乙两地的实际距离为350千米.故选C.分析:根据比例尺=图上距离:实际距离,列比例式即可求得甲、乙两地的实际距离.要注意统一单位.13.下列各组中得四条线段成比例的是()A.4cm、2cm、1cm、3cmB.1cm、2cm、3cm、5cmC.3cm、4cm、5cm、6cmD.1cm、2cm、2cm、4cm答案:D解析:解答:A、从小到大排列,由于1×4≠2×3,所以不成比例,不符合题意;B、从小到大排列,由于1×5≠2×3,所以不成比例,不符合题意;C、从小到大排列,由于3×6≠4×5,所以不成比例,不符合题意;D、从小到大排列,由于1×4=2×2,所以成比例,符合题意.故选D.分析:四条线段成比例,根据线段的长短关系,从小到大排列,判断中间两项的积是否等于两边两项的积,相等即成比例.14.在比例尺为1:m的某市地图上,规划出长a厘米,宽b厘米的矩形工业园区,该园区的实际面积是()米2.A.4 10m abB.42 10m abC.410abmD.24 10 abm答案:D解析:解答:设该园区的实际面积是2xcm,∵地图上长a 厘米,宽b 厘米的矩形工业园区的面积为:ab 平方厘米,根据题意得: 21abx m =(),∴2x abm =,2abm 平方厘米=2410abm 平方米.故选D .分析:首先设该园区的实际面积是2xcm ,然后由比例尺的定义列方程:21abxm =(),解此方程即可求得答案.15.已知线段a =2,b =4,线段c 为a ,b 的比例中项,则c 为( )A .3B .±C .D答案:C解析:解答:∵线段c 为a ,b 的比例中项,∴2c ab =,∵线段a =2,b =4,∴28c =,∴c =故选C .分析:根据比例中项的定义列方程求解即可.二、填空题16.如果0acek b d f b d f ===++≠(),且3a c e b d f ++=++(),那么k =______.答案:3解析:解答:由等比性质,得3 aa c ek b b d f ++===++,故答案为:3.分析:根据等比性质,可得答案.17.已知0456c b a≠==,则b ca +的值为______. 答案:32解析:解答:由比例的性质,得23c a =,56b a =.52936362a ab c a a ++===. 故答案为:32.分析:根据比例的性质,可用a 表示b 、c ,根据分式的性质,可得答案.18.已知52x y =::,那么x y y +=():______.答案:7:2解析:解答:由合比性质,得72x y y +=()::, 故答案为:7:2.分析:根据合比性质,可得答案.19.已知线段a =2厘米,c =8厘米,则线段a 和c 的比例中项b 是______厘米.答案:4解析:解答:∵线段b 是a 、c 的比例中项,∴216b ac ==,解得b =±4,又∵线段是正数,∴b =4.故答案为4.分析:根据线段比例中项的概念,可得a b b c =::,可得216b ac ==,故b 的值可求. 20.有一块三角形的草地,它的一条边长为25m .在图纸上,这条边的长为5cm ,其他两条边的长都为4cm ,则其他两边的实际长度都是______m .答案:20解析:解答:设其他两边的实际长度分别为xm 、ym , 由题意得,25445x y ==, 解得x =y =20.即其他两边的实际长度都是20m .分析:设其他两边的实际长度分别为x m 、y m ,然后根据相似三角形对应边成比例列式求解即可.三、解答题21.若0235a b c abc ==≠(),求a b c a b c++-+的值. 答案:解答:设235a b c k ===, 则2a k =,3b k =,5c k =, 所以23510523542a b c k k k k a b c k k k k ++++===-+-+. 解析:分析:先设235a b c k ===,可得2a k =,3b k =,5c k =,再把a 、b 、c 的值都代入所求式子计算即可.22.已知:643xy z ==(x 、y 、z 均不为零),求332x y y z+-的值. 答案:解答:设643xy z k ===,则6x k =,4y k =,3z k = ∴36341833234236x y k k k y z k k k++⨯===-⨯-⨯. 解析:分析:先设643x y z k ===(k ≠0),然后用k 表示x 、y 、z ;最后将x 、y 、z 代入332x y y z+-消去k ,从而求解.23.已知线段a 、b 、c 满足::3:2:6a b c =,且226a b c ++=.(1)求a 、b 、c 的值; 6a =|4b =|12c =(2)若线段x 是线段a 、b 的比例中项,求x 的值.答案:解答:(1)∵::3:2:6a b c =,∴设3a k =,2b k =,6c k =,又∵226a b c ++=,∴322626k k k +⨯+=,解得2k =,∴6a =,4b =,12c =;(2)∵x 是a 、b 的比例中项,∴2x ab =,∴246x =⨯,∴x =x =-(舍去),即x 的值为.解析:分析:(1)利用::3:2:6a b c =,可设3a k =,2b k =,6c k =,则322626k k k +⨯+=,然后解出k 的值即可得到a 、b 、c 的值;(2)根据比例中项的定义得到2x ab =,即246x =⨯,然后根据算术平方根的定义求解.24.在比例尺为1:10000的地图上,有甲、乙两个相似三角形区域,其周长分别为10cm 和15cm .(1)求它们的面积比;49(2)若在地图上量得甲的面积为216cm ,则乙所表示的实际区域的面积是多少平方米?523.610m ⨯答案:解答:(1)2104 159S S ==甲乙(); (2)∵4 9S S =甲乙,216S cm =甲, ∴236S cm =乙,又∵比例尺是1:1000,∴829252S 3610cm 3.610cm 3.610m =⨯=⨯=⨯实际.解析: 分析:(1)先根据相似三角形的面积的比等于相似比的平方即可求解;(2)首先根据两个图形的面积的比即可求得乙的面积,然后根据面积的比等于相似比的平方求得实际面积. 25.已知234x y z ==,求223x y z y z ++-. 答案:解答:令234x y z k ===, ∴2x k =,3y k =,4z k =, ∴原式46414149455k k k k k k k ++===-. 解析:分析:设2x k =,3y k =,4z k =,再代入原式即可得出答案.。

北师大版九年级数学上册第四章《图形的相似》第1课时成比例线段典型题同步练习题及答案 (4)

北师大版九年级数学上册第四章《图形的相似》第1课时成比例线段典型题同步练习题及答案 (4)

成比例线段同步练习 (典型题汇总)1.知道线段的比的概念,会计算两条线段的比;(重点)2.理解成比例线段的概念;(重点)3.掌握成比例线段的判定方法.(难点)一、情景导入请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?这些例子都是形状相同、大小不同的图形.它们之所以大小不同,是因为它们图上对应的线段的长度不同.二、合作探究探究点一:线段的比 【类型一】 求线段的比已知线段AB =2.5m ,线段CD =400cm ,求线段AB 与CD 的比.解析:要求AB 和CD 的比,只需要根据线段的比的定义计算即可,但注意要将AB 和CD 的单位统一.解:∵AB =2.5m =250cm ,∴AB CD =250400=58. 方法总结:求线段的比时,首先要检查单位是否一致,不一致的应先统一单位,再求比.【类型二】 比例尺在比例尺为1:50 000的地图上,量得甲、乙两地的距离是3cm ,则甲、乙两地的实际距离是 m.解析:根据“比例尺=图上距离实际距离”可求解.设甲、乙两地的实际距离为x cm ,则有1:50 000=3:x ,解得x =150 000. 150 000cm =1500m.故答案为1500.方法总结:理解比例尺的意义,注意实际尺寸的单位要进行恰当的转化. 探究点二:成比例线段【类型一】 判断线段成比例下列四组线段中,是成比例线段的是( )A.3cm ,4cm ,5cm ,6cmB.4cm ,8cm ,3cm ,5cmC.5cm ,15cm ,2cm ,6cmD.8cm ,4cm ,1cm ,3cm 解析:将每组数据按从小到大的顺序排列,前两条线段的比和后两条线段的比相等的四条线段成比例.四个选项中,只有C 项排列后有25=615.故选C.方法总结:判断四条线段是否成比例的方法:(1)把四条线段按从小到大顺序排好,计算前两条线段的比和后两条线段的比,看是否相等做出判断;(2)把四条线段按从小到大顺序排好,计算前后两个数的积与中间两个数的积,看是否相等作出判断.【类型二】 由线段成比例求线段的长已知:四条线段a 、b 、c 、d ,其中a =3cm ,b =8cm ,c =6cm. (1)若a 、b 、c 、d 是成比例线段,求线段d 的长度; (2)若b 、a 、c 、d 是成比例线段,求线段d 的长度.解析:紧扣成比例线段的概念,利用比例式构造方程并求解. 解:(1)由a 、b 、c 、d 是成比例线段,得a b =c d ,即38=6d,解得d =16. 故线段d 的长度为16cm ;(2)由b 、a 、c 、d 是成比例线段,得 b a =c d ,即83=6d ,解得d =94. 故线段d 的长度为94cm.方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长.已知三条线段长分别为1cm ,2cm ,2cm ,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解析:因为本题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.解:若x :1=2:2,则x =22;若1:x =2:2,则x =2;若1:2=x :2,则x =2;若1:2=2:x ,则x =2 2.所以所添加的线段的长有三种可能,可以是22cm ,2cm ,或22cm. 方法总结:若使四个数成比例,则应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.三、板书设计成比例线段⎩⎪⎪⎨⎪⎪⎧线段的比:如果选用同一长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么 这两条线段的比就是它们长度的比, 即AB :CD =m :n,或写成AB CD =mn成比例线段:四条线段a ,b ,c ,d ,如果a 与b 的比 等于c 与d 的比,即a b =cd ,那么这四条线段a ,b ,c ,d 叫做成比例线段, 简称比例线段从丰富的实例入手,引导学生进行观察、发现和概括.在自主探究和合作交流过程中,适时引入新知识,并通过引导学生建立新的数学模型,开拓思维,提升学生认知能力.成比例线段同步练习 (典型题汇总)1.理解并掌握比例的基本性质和等比性质;(重点)2.能运用比例的性质进行相关计算,能通过比例变形解决一些实际问题.(难点)一、情景导入配制糖水时,通过确定糖和水的比例来确保配制糖水的浓度.若有含糖a 千克的糖水b 千克,含糖c 千克的糖水d 千克,含糖e 千克的糖水f 千克……它们的浓度相等,把这些糖水混合到一起后,浓度不变.可表示为a +c +…+m b +d +…+n =a b.这样表示的数学根据是什么? 二、合作探究探究点一:比例的基本性质已知a +3b 2b =72,求a b 的值.解:解法1:由比例的基本性质,得2(a +3b )=7×2b .∴a =4b ,∴ab=4.解法2:由a +3b 2b =72,得a +3bb =7,∴a b +3b b =a b +3=7,∴ab=4. 方法总结:利用比例的基本性质,把比例式转化成等积式,再用含有其中一个字母的代数式表示另一个字母,然后利用代入法或化成方程求解,这是解决比例问题常见的方法.探究点二:等比性质(1)已知a :b :c =3:4:5,求2a -3b +ca +b 的值;(2)已知a b =c d =ef =2,且b +d +f ≠0,求a -2c +3e b -2d +3f的值.解析:(1)利用“引入参数法”,把a ,b ,c 用含同一个字母的代数式表示出来,再代入分式求值;(2)应用比例的等比性质,表示出a 与b 、c 与d 、e 与f 三组量之间的倍数关系,再代入原代数式求值.解:(1)设a :b :c =3:4:5=k ,则a =3k ,b =4k ,c =5k ,∴2a -3b +c a +b =6k -12k +5k3k +4k =-k 7k =-17; (2)∵a b =c d =e f =2,∴a b =-2c -2d =3e 3f =2,∴a -2c +3eb -2d +3f=2. 方法总结:解多个比例式连在一起求值型试题的方法:方法一是引入参数,使其他的量都统一用含有一个字母的式子表示,再求分式的值;方法二是运用等比性质,即如果ab =c d =…=mn (b +d +…+n ≠0),则a +c +…+m b +d +…+m =a b,转化后求分式的值. 若a ,b ,c 都是不等于零的数,且a +b c =b +ca =c +ab=k ,求k 的值. 解:当a +b +c ≠0时,由a +b c =b +c a =c +ab =k ,得a +b +b +c +c +aa +b +c =k ,则k =2(a +b +c )a +b +c=2;当a +b +c =0时,则有a +b =-c . 此时k =a +b c =-cc=-1.综上所述,k 的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a +b +c ≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a +b +c =0这种情况.三、板书设计比例的性质⎩⎪⎪⎨⎪⎪⎧基本性质:⎩⎪⎨⎪⎧如果ab =cd ,那么ad =bc 如果ad =bc (a ,b ,c ,d 都不等于0),那么a b =c d 等比性质:如果a b =c d =…=mn (b +d +…+n ≠0),那么a +c +…+m b +d +…+n =ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.。

1.成比例线段

1.成比例线段
bd
即 a = 4 ,解得 a=2 cm.故选 B.
36
第23章 图形的相似
ห้องสมุดไป่ตู้
3.若互不相等的四条线段的长 a,b,c,d 满足 a = c ,m 为任意实数,则下列各式一
bd
定成立的是( D )
(A) a m = c m (B) a b = c d (C) a = d
bm dm
bc ac ab
一、二、四或一、二、三 象限.
a b ck,
解析:由题知
b


a

c

k
,
∴a+b+c=2(a+b+c)k.
c (a b)k,
当 a+b+c=0,即 a=-(b+c)时,k=-1.当 a+b+c≠0 时,k= 1 .
2
∴y=-x+1 过一、二、四象限,y= 1 x+1 过一、二、三象限.
324
则 a=3k-4,b=2k-3,c=4k-8. ∵a+b+c=12, ∴(3k-4)+(2k-3)+(4k-8)=12,k=3. ∴a=5,b=3,c=4. ∵b2+c2=a2,∴△ABC 是直角三角形.
∴S△ABC= 1 ×3×4=6.
2
第23章 图形的相似
x y 4k 3k
y
4k 3
(2)设 x = y = z =m(m≠0),
235
则 x=2m,y=3m,z=5m. ∵3x+2y-z=14,∴3×2m+2×3m-5m=14.∴m=2. ∴x=4,y=6,z=10.
第23章 图形的相似

北师大版数学九年级上册第四章图形的相似知识点归纳及例题

北师大版数学九年级上册第四章图形的相似知识点归纳及例题

北师大版九年级上册第四章图形的相似知识点归纳及例题【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、对应边成比例、周长的比等于相似比、面积的比等于相似比的平方;3、探索并掌握相似三角形的判定方法,并能利用这些性质和判定方法解决生活中的一些实际问题;4、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标变化;5、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的能力.【知识点网络】【知识点梳理】要点一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures). 知识点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等; 2.相似多边形如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多形. 知识点诠释:(1)相似多边形的定义既是判定方法,又是它的性质. (2)相似多边形对应边的比称为相似比.3. 比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比与另两条线段的比相等,如a :b =c :d ,我们就说这四条线段是成比例线段,简称比例线段. 知识点诠释:(1)若a :b =c :d ,则ad=bc ;(d 也叫第四比例项) (2)若a :b=b :c ,则 =ac (b 称为a 、c 的比例中项). 4.平行线分线段成比例:基本事实:两条直线被一组平行线所截,所得的对应线段成比例. 推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例. 知识点二、相似三角形 1. 相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):两角分别相等的两个三角形相似. 知识点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似. 判定方法(三):两边成比例且夹角相等的两个三角形相似.2b知识点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):三边成比例的两个三角形相似.2.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比.知识点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.(3) 相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方。

图形的相似成比例线段

图形的相似成比例线段

图形的相似成比例线段contents •引言•图形的相似•成比例线段•图形相似与成比例线段的关系•典型例题与解题方法•总结与回顾目录如果两个图形对应角相等,对应边的长度成比例,那么这两个图形称为相似图形。

相似图形对应角对应边在两个相似图形中,相互对应的角称为对应角。

在两个相似图形中,相互对应的边称为对应边。

03相似图形定义0201成比例线段在同一平面内,四条线段a、b、c、d称为成比例线段,如果其中两条线段的长度比等于另外两条线段的长度比,即a/b=c/d。

交叉乘积定理在成比例线段中,交叉乘积相等,即ad=bc。

成比例线段定义学习目标通过学习图形的相似和成比例线段,我们应该达到以下目标能够运用这些知识解决简单的几何问题;掌握相似图形和成比例线段的基本概念和性质;培养空间思维能力和逻辑推理能力,为进一步学习几何学打下坚实基础。

相似图形的对应角相等,对应边成比例。

形状相同相似图形的大小可以不同,但形状必须相同。

大小可变对应线段之间的比值相等,即若a/b = c/d,则两图形相似,其中a、b、c、d分别为两图形的对应线段。

比例性质两角分别对应相等的两个图形相似。

AA判定两边对应成比例且夹角相等的两个图形相似。

SAS判定三边对应成比例的两个图形相似。

SSS判定建筑设计:建筑师利用相似图形来设计不同尺寸但风格统一的建筑物,如一个小区的房屋、围栏和公园设施。

艺术和设计:艺术家和设计师使用相似图形来创造分形艺术,以及在标志、海报和其他视觉设计中实现缩放效果。

这些性质、判定方法和应用展示了图形相似在几何学和现实生活中的重要性。

理解图形的相似有助于我们更好地分析、设计和应用各种形状和结构。

机械制图:在制造业中,相似的图形用于绘制不同比例的零件和装配图。

相似图形在生活中的应用等比性质在成比例线段中,若将其中两条线段作为一个整体,则其他两条线段的长度比等于这两条线段的长度比,即若a:b=c:d,则有(a+b):b=(c+d):d。

2024中考数学全国真题分类卷 第十五讲 图形的相似(含答案)

2024中考数学全国真题分类卷 第十五讲 图形的相似(含答案)

2024中考数学全国真题分类卷第十五讲图形的相似命题点1比例线段类型一比例的性质1.(2022大庆)已知x2=y3=z4≠0,则x2+xyyz=________.类型二黄金分割2.(2023山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()第2题图A.平移B.旋转C.轴对称D.黄金分割3.(新趋势)·数学文化(2023衡阳)在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是(结果精确到0.01m.参考数据:2≈1.414,3≈1.732,5≈2.236)()第3题图A.0.73mB.1.24mC.1.37mD.1.42m4.(新趋势)·数学文化(2023陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE·A B.已知AB为2米,则线段BE的长为________米.第4题图类型三平行线分线段成比例5.(2023丽水)如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A ,B ,C 都在横线上.若线段AB =3,则线段BC 的长是()第5题图A.23 B.1 C.32 D.26.(2023凉山州)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,若DE ∥BC ,AD DB =23,DE =6cm ,则BC 的长为()第6题图A.9cmB.12cmC.15cmD.18cm命题点2相似的基本性质7.(2023甘肃省卷)若△ABC ∽△DEF ,BC =6,EF =4,则AC DF =()A.49 B.94 C.23 D.328.(2023连云港)△ABC 的三边长分别为2,3,4,另有一个与它相似的三角形DEF ,其最长边为12,则△DEF 的周长是()A.54B.36C.27D.219.(新趋势)·条件开放性问题(2023盐城)如图,在△ABC 与△A ′B ′C ′中,点D ,D ′分别在边BC ,B ′C ′上,且△ACD ∽△A ′C ′D ′,若________,则△ABD ∽△A ′B ′D ′.请从①BD CD =B ′D ′C ′D ′;②AB CD =A ′B ′C ′D ′;③∠BAD =∠B ′A ′D ′这3个选项中选择一个作为条件(写序号),并加以证明.第9题图命题点3相似三角形的判定与性质类型一A 字型10.(2023云南)如图,在△ABC 中,D ,E 分别为线段BC ,BA 的中点,设△ABC 的面积为S 1,△EBD 的面积为S 2,则S 2S 1=()第10题图A.12 B.14 C.34 D.7811.(2023贵阳)如图,在△ABC 中,D 是AB 边上的点,∠B =∠ACD ,AC ∶AB =1∶2,则△ADC 与△ACB 的周长比是()第11题图A.1∶2B.1∶2C.1∶3D.1∶4源自北师九上P90第3题12.(2023遂宁)如图,D ,E ,F 分别是△ABC 三边上的点,其中BC =8,BC 边上的高为6,且DE ∥BC ,则△DEF 面积的最大值为()第12题图A.6B.8C.10D.1213.(新趋势)·条件开放性问题(2023邵阳)如图,在△ABC中,点D在AB边上,点E在AC 边上,请添加一个条件________,使△ADE∽△AB C.第13题图14.(2023嘉兴)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD 的长为________.第14题图15.(2022南充)如图,在△ABC中,D为BC上一点,BC=3AB=3BD,则AD∶AC的值为________.第15题图16.(2023江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.第16题图17.(2023杭州)如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF .已知四边形BFED 是平行四边形,DE BC =14.(1)若AB =8,求线段AD 的长;(2)若△ADE 的面积为1,求平行四边形BFED 的面积.第17题图18.(2020上海)已知:如图,在菱形ABCD 中,点E ,F 分别在边AB ,AD 上,BE =DF ,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:△BEC ∽△BCH ;(2)如果BE 2=AB ·AE ,求证:AG =DF .第18题图19.(挑战题)(2023宁波)【基础巩固】(1)如图①,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF 交DE于点G,求证:DG=EG;【尝试应用】(2)如图②,在(1)的条件下,连接CD,CG.若CG⊥DE,CD=6,AE=3,求DEBC的值;【拓展提高】(3)如图③,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD 交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.第19题图类型二8字型20.(2022雅安)如图,将△ABC 沿BC 边向右平移得到△DEF ,DE 交AC 于点G .若BC ∶EC =3∶1.S △ADG =16.则S △CEG 的值为()第20题图A.2B.4C.6D.821.(2023包头)如图,在边长为1的小正方形组成的网格中,A ,B ,C ,D 四个点均在格点上,AC 与BD 相交于点E ,连接AB ,C D.则△ABE 与△CDE 的周长比为()第21题图A.1∶4B.4∶1C.1∶2D.2∶122.(2022连云港)如图,△ABC 中,BD ⊥AB ,BD ,AC 相交于点D ,AD =47AC ,AB =2,∠ABC =150°,则△DBC 的面积是()第22题图A.3314 B.9314 C.337 D.63723.(2022淄博)如图,在Rt △ABC 中,∠ACB =90°,CE 是斜边AB 上的中线,过点E 作EF ⊥AB 交AC 于点F ,若BC =4,△AEF 的面积为5,则sin ∠CEF 的值为()A.35 B.55 C.45 D.255第23题图24.(2022云南)如图,在△ABC 中,点D ,E 分别是BC ,AC 的中点,AD 与BE 相交于点F .若BF =6,则BE 的长是________.第24题图25.(2022包头)如图,在Rt △ABC 中,∠ACB =90°,过点B 作BD ⊥CB ,垂足为B ,且BD =3,连接CD ,与AB 相交于点M ,过点M 作MN ⊥CB ,垂足为N .若AC =2,则MN 的长为________.第25题图26.(新考法)·结合网格考查线段位置关系(2023河北)如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A ,B 的连线与钉点C ,D 的连线交于点E ,则(1)AB 与CD 是否垂直?________(填“是”或“否”);(2)AE =________.第26题图27.(2022长春)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =4,BD =8,点E 在边AD 上,AE =13AD ,连接BE 交AC 于点M .(1)求AM 的长;(2)tan ∠MBO 的值为________.第27题图28.(2023泰安)如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE 与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.第28题图类型三旋转型29.(2023玉林)如图,在矩形ABCD中,AB=8,AD=4,点E是DC边上的任一点(不包括端点D,C),过点A作AF⊥AE交CB的延长线于点F,设DE=a.(1)求BF的长(用含a的代数式表示);(2)连接EF交AB于点G,连接GC,当GC∥AE时,求证:四边形AGCE是菱形.第29题图类型四三垂直型30.(2023达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为()A.9B.12C.15D.18第30题图31.(2022台州)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB =5,AE=DG=1,则BF=________.第31题图类型五网格中相似三角形的判定与性质32.(2020昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()第32题图A.4个B.5个C.6个D.7个33.(2022临沂)如图,点A,B都在格点上,若BC=2133,则AC的长为()第33题图A.13B.413C.213D.3133命题点4相似三角形的实际应用34.(2020绍兴)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2∶5,且三角板的一边长为8cm.则投影三角板的对应边长为()第34题图A.20cmB.10cmC.8cmD.3.2cm35.(2022河北)图①是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图②所示,此时液面AB=()第35题图A.1cmB.2cmC.3cmD.4cm36.(2023盐城)“跳眼法”是指用手指和眼睛估测距离的方法.步骤第一步:水平举起右臂,大拇指竖直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼.此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离.参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂与眼距的比值一般为10),得到的值约为被测物体离观测点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为()第36题图A.40米B.60米C.80米D.100米37.(2023陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O,C,D,F,G五点在同一直线上,A,B,O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.第37题图源自北师九上P103活动参考答案与解析1.562.D3.B 【解析】设该雕像的下部设计高度约为x ,则上部高度为2-x ,根据题意得2-x x =x2,解得x =-1+5(负值已舍去),∴x =-1+2.236≈1.24.经检验x =1.24是该分式方程的解且符合实际,∴该雕像的下部设计高度约是1.24m.4.5-1【解析】∵E 为边AB 的黄金分割点,AB =2,∴BE AB =5-12,即BE2=5-12,∴BE =(5-1)米.5.C 【解析】∵五线谱中五条横线等距离且平行,∴分割线段AC 成比例,∴根据图形得ABBC =21,∵AB =3,∴BC =32.6.C 【解析】∵DE ∥BC ,AD DB =23,∴AD AB =DE BC =25,∵DE =6cm ,∴BC =15cm.7.D8.C 【解析】△ABC 的最长边为4,与△ABC 相似的△DEF 最长边为12,∴相似比为4∶12=1∶3,∵△ABC 的周长为2+3+4=9,∴△DEF 的周长为3×9=27.9.解:选择①BD CD =B ′D ′C ′D ′;证明:∵△ACD ∽△A ′C ′D ′,∴∠ADC =∠A ′D ′C ′,AD A ′D ′=CDC ′D ′,∴∠ADB =∠A ′D ′B ′,又∵BD CD =B ′D ′C ′D ′,∴BD B ′D ′=CDC ′D ′,则BD B ′D ′=CD C ′D ′=AD A ′D ′,∴△ABD ∽△A ′B ′D ′.【一题多解】选择③∠BAD =∠B ′A ′D ′.证明:∵△ACD ∽△A ′C ′D ′,∴∠ADC =∠A ′D ′C ′,∴∠ADB =∠A ′D ′B ′,∵∠BAD =∠B ′A ′D ′,10.B 【解析】在△ABC 中,∵D 、E 分别为线段BC 、BA 的中点,∴DE ∥AC ,∴△BDE ∽△BCA ,∴S 2S 1=(BE AB )2=(12)2=14.11.B 【解析】∵∠CAD =∠BAC ,∠ACD =∠B ,∴△ADC ∽△ACB ,∴C △ADC C △ACB=AC AB =12.12.A【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,设相似比为k ,则DE =8k ,△ADE 的DE边上高为6k ,∴△DEF 的DE 边上高h =6-6k ,S △DEF =12DE ·h =12×8k ×(6-6k )=-24k 2+24k =-24(k -12)2+6,∴当k =12时,S 取最大值,此时最大值为6.13.∠ADE =∠B (答案不唯一)【解析】∵∠A =∠A ,∴添加条件∠ADE =∠B 即可得到△ADE ∽△ABC .14.233【解析】由题意得,DE =1,BC =3,在Rt △ABC 中,∠A =60°,则AB =BC tan A=33=3.∵DE ∥BC ,∴△ADE ∽△ABC ,∴DE BC =AD AB ,即13=3-BD 3,解得BD =233.15.33【解析】∵BC =3AB =3BD ,∴BC AB =ABBD=3,∵∠B =∠B ,∴△ABC ∽△DBA ,∴AD AC =BD BA =33.16.(1)证明:∵四边形ABCD 是菱形,AC 为对角线,∴∠ACB =∠ACD .∵∠ACD =∠ABE ,∴∠ACB =∠ABE .又∵∠BAC =∠EAB ,∴△ABC ∽△AEB ;(2)解:∵△ABC ∽△AEB ,∴AB AE =AC AB ,∵AB =6,AC =4,∴6AE =46,∴AE =9.17.解:(1)∵四边形BFED 是平行四边形,∴DE ∥BC ,∴AD AB =DE BC =14,∵AB =8,∴AD =2;(2)设△ABC 的面积为S ,△ADE 的面积为S 1,△CEF 的面积为S 2.∵AD AB =14,∴S 1S =(AD AB )2=116,∵S 1=1,∴S =16.∵CE CA =34,同理可得S 2=9,∴平行四边形BFED 的面积为S -S 1-S 2=6.18.证明:(1)∵四边形ABCD 是菱形,∴CD =CB ,∠D =∠B ,∵DF =BE ,∴△CDF ≌△CBE (SAS),∴∠DCF =∠BCE ,∵CD ∥BH ,∴∠H =∠DCF ,∴∠H =∠BCE ,∵∠B =∠B ,∴△BEC ∽△BCH ;(2)∵BE 2=AB ·AE ,∴AB BE =BE AE ,∵CB ∥DG ,∴AE BE =AG BC ,∴AG BC =BE AB,∵BC =AB ,∴AG =BE ,∵△CDF ≌△CBE ,∴DF =BE ,∴AG =DF .19.(1)证明:∵DE ∥BC ,∴△ADG ∽△ABF ,△AEG ∽△ACF ,∴DG BF =AG AF ,EG CF =AG AF ,∴DG BF =EG CF .∵BF =CF ,∴DG =EG ;(2)解:由(1)得DG =EG ,∵CG ⊥DE ,∴CE =CD =6.∵AE =3,∴AC =AE +CE =9.∵DE ∥BC ,∴△ADE ∽△ABC ,∴DE BC =AE AC =13;(3)解:如解图,延长GE 交AB 于点M ,连接FM ,过点M 作MN ⊥BC ,垂足为N .在▱ABCD 中,BO =DO ,∠ABC =∠ADC =45°.∵EG ∥BD ,∴同(1)中的方法可得ME =GE .第19题解图∵EF ⊥EG ,∴FM =FG =10,∴∠EFM =∠EFG .∵∠EGF =40°,∴∠EFG =50°.∵FG 平分∠EFC ,∴∠EFG =∠CFG =50°,∴∠BFM =180°-∠EFM -∠EFG -∠CFG =30°.在Rt △FMN 中,MN =FM ·sin 30°=5,FN =FM ·cos 30°=53.∵∠MBN =45°,MN ⊥BC ,∴BN =MN =5,∴BF =BN +FN =5+53.20.B 【解析】由平移性质可得,AD ∥BE ,AD =BE ,∴△ADG ∽△CEG .∵BC ∶EC =3∶1,∴BE ∶EC =2∶1,∴AD ∶EC =2∶1,∴S △ADG ∶S △ECG =(AD EC)2=4.∵S △ADG =16,∴S △CEG =4.21.D 【解析】如解图,取格点F ,H ,易得△AHB ∽△DFC ,∴AB CD =AH DF =2,∠ABF =∠DCF ,∴AB ∥CD ,∴△ABE ∽△CDE ,∵AB ∶CD =2∶1,∴周长比为2∶1.第21题解图22.A 【解析】如解图,过点C 作BD 的垂线,交BD 的延长线于点E ,则∠E =90°,∵BD ⊥AB ,CE ⊥BD ,∴AB ∥CE ,∠ABD =90°,又∵∠ADB =∠CDE ,∴△ABD ∽△CED ,∴AD CD =ABCE=BD DE .∵AD =47AC ,∴AD CD =43,∴AB CE =2CE =43=BD DE ,则CE =32.∵∠ABC =150°,∠ABD =90°,∴∠CBE =60°,∴BE =33CE =32,∴BD =47BE =237,∴S △BCD =12BD ·CE =12×237×32=3314.第22题解图23.A 【解析】如解图,过点E 作EG ⊥AC 于点G ,过点C 作EF 的垂线交EF 的延长线于点H ,∵E 是AB 的中点,BC =4,∴EG ∥BC ,EG =12BC =2,∵△AEF 的面积为5,∴12AF ·EG=5,∴AF =5.∵∠H =∠FEA =90°,∠CFH =∠AFE ,∴△CFH ∽△AFE ,∴CH AE =CFAF,∵E 为AB 的中点,∠ACB =90°,∴CE =AE ,∴CH AE =CH CE =CFAF .∵∠FEA =∠ACB =90°,∠A =∠A ,∴△AEF ∽△ACB ,∴AE AC =AF AB ,∴12AB AC =5AB ,∴AB 2=10AC .∵在Rt △ABC中,AB 2=BC 2+AC 2,∴10AC =16+AC 2,∴AC =2(舍去),AC =8,∴CF =3,∴sin ∠CEF =CH CE =CF AF =35.第23题解图24.9【解析】∵点D ,E 分别是BC ,AC 的中点,∴DE 是△ABC 的中位线,∴DE ∥AB ,DE =12AB .∴△DEF ∽△ABF ,∴EF BF =DE AB =12,∵BF =6,即EF 6=12,∴EF =3,∴BE=BF +EF =6+3=9.25.65【解析】∵∠ACB =90°,BD ⊥CB ,MN ⊥CB ,∴AC ∥MN ∥DB ,∠CNM =∠CBD ,∴∠MAC =∠MBD ,∠MCA =∠MDB =∠CMN ,∴△MAC ∽△MBD ,△CMN ∽△CDB ,∴MC MD =AC BD =23,MN BD =CM CD ,∴CM CD =25,∴MN 3=25,∴MN =65.26.(1)是;(2)455【解析】(1)如解图,易得△ACH ≌△CGD ,则∠GCD =∠CAH ,又∵∠GCD+∠ECA =90°,∴∠CAH +∠ECA =90°,∴∠CEA =90°;(2)由解图可得△CEA ∽△DEB ,BD =3,AC =2,AB =22+42=25,∴AC BD =AE BE ,∴AE BE =23,∴AE =25AB =455.第26题解图27.解:(1)∵四边形ABCD 是菱形,∴AD ∥BC ,AD =BC .∴△AEM ∽△CBM ,∴AM CM =AE CB ,∵AE =13AD =13BC ,∴AM =13CM ,∴AM =14AC ,∵AC =4,∴AM =1;(2)14.【解法提示】∵四边形ABCD 是菱形,AC =4,BD =8,∴AO =OC =2,BO =OD =4,AC ⊥BD ,∵AM =1,∴OM =1,∴在Rt △BOM 中,tan ∠MBO =OM OB =14.28.(1)证明:如解图,∵四边形ABCD 为矩形,∴OC =OD ,AB ∥CD ,∴∠2=∠3=∠4.∵DE =BE ,∴∠1=∠2,∴∠1=∠3,第28题解图又∵BE 平分∠DBC ,∴∠1=∠6,∴∠3=∠6,又∵∠3+∠5=90°,∴∠6+∠5=90°,∴BF ⊥AC ;(2)解:△ECF ,△BAF 与△OBF 相似.理由如下:如解图,由(1)知∠1=∠2,∵AB ∥CD ,∴∠2=∠3=∠4,∴∠1=∠4,又∵∠OFB =∠BFO ,∴△OBF ∽△BAF ,∵∠1=∠3,∠OFB =∠EFC ,∴△OBF ∽△ECF ;(3)解:∵△OBF ∽△ECF ,∴EF OF =CF BF ,∵OF =3,EF =2,∴23=CF BF ,∴3CF =2BF .∵OA =OC ,∴OA =OF +CF ,∴3OA =3CF +3OF .∴3OA =2BF +9,①∵△OBF ∽△BAF ,∴OF BF =BF AF ,∴BF 2=OF ·AF ,∴BF 2=3(OA +3).②由①②,得BF =1+19(负值已舍去),∴DE =BE =2+1+19=3+19.29.(1)解:∵四边形ABCD 是矩形,∴∠ABC =∠BAD =∠D =90°,∴∠ABF =90°=∠D ,∠BAE +∠DAE =90°,∵AE ⊥AF ,∴∠BAE +∠BAF =90°,∴∠DAE =∠BAF ,∴△DAE ∽△BAF ,∴AD AB =DE BF ,即48=a BF,∴BF =2a ;(2)证明:如解图,∵四边形ABCD 是矩形,∴AB ∥CD ,∵CG ∥AE ,∴四边形AGCE 是平行四边形,第29题解图∴CE =AG ,∵AB =CD ,∴DE =GB =a ,∵BF =2a ,∴tan ∠BFG =BG BF =12,∵△DAE ∽△BAF ,∴AE AF =AD AB =12,∴tan ∠AFE =12,∴∠BFG =∠AFE ,即FE 平分∠AFC ,∵EA ⊥AF ,EC ⊥CF ,∴AE =EC ,∴四边形AGCE 是菱形.30.C 【解析】∵四边形ABCD 是矩形,∴AD =BC ,∠A =∠B =∠C =90°,AB =CD ,∵将△ADE 沿DE 翻折,∴AD =DF ,AE =EF ,∠A =∠EFD =90°,设BF =x ,则AB =CD =3x ,∵BE =4,∴AE =EF =3x -4,在Rt △BEF 中,EF 2=BF 2+BE 2,∴(3x -4)2=x 2+42,解得x 1=3,x 2=0(不符合题意,舍去),∴EF =3x -4=5.∵∠BFE +∠CFD =90°,∠BFE+∠BEF =90°,∴∠CFD =∠BEF ,∵∠B =∠C ,∴△CFD ∽△BEF ,∴DF FE =CD BF ,∴DF 5=3BF BF,解得DF =15,即AD =15.31.54【解析】如解图,记EG 与AF 交于点H ,∵四边形ABCD 是正方形,∴∠BAD =∠B =90°.∵AF ⊥EG .∴∠AGE +∠GAH =90°,∠FAB +∠GAH =90°.∴∠AGE =∠FAB .∴△ABF ∽△GAE ,∴AB GA =BF AE ,∴AB AD -GD =BF AE ,∵AB =5,AE =GD =1,∴55-1=BF 1,解得BF =54.第31题解图32.C 【解析】如解图,使得△ADE ∽△ABC 的格点三角形一共有6个.第32题解图33.B 【解析】由相似得AC BC =42,∴AC 2133=42,解得AC =4133.34.A 【解析】设投影三角尺的对应边长为x cm ,∵三角尺与投影三角尺相似且相似比为2∶5,∴8∶x =2∶5,解得x =20.35.C 【解析】根据“相似三角形对应高的比等于相似比”可知15-711-7=6AB ,即84=6AB ,解得AB =3cm.36.C 【解析】根据三角形的相似,可以得到被测物体(汽车头部)到大拇指的距离为被测物体到睁开左眼时,大拇指指向的位置距离的10倍,而这个水平距离约是2个汽车的长度,因此这个距离约是2×4×10+大拇指到右眼的距离=80+0.7(估算手臂长度)≈80.7,因此汽车到观测点的距离约为80米.37.解:∵AD ∥EG ,∴∠ADO =∠EGF .又∵∠AOD =∠EFG =90°,∴△AOD ∽△EFG .∴AO EF =OD FG.∴AO =EF ·OD FG =1.8×202.4=15.同理,△BOC ∽△AOD .∴BO AO =OC OD,∴BO =AO ·OC OD =15×1620=12.∴AB =AO -BO =3(米).∴旗杆的高AB 为3米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生做题前请先回答以下问题
问题1:若四条线段a,b,c,d是成比例线段,则___________.
问题2:比例的性质:
①基本性质:若_______________,则__________________;
若ad=bc(a,b,c,d都不等于0),则_________________.
②等比性质:若______________,则_______________,其中_______________________.问题3:平行线分线段成比例:
三条平行线截两条直线,所得的_______________的比相等.
推论:_____________________________________________.
问题4:黄金分割:
点C把线段AB分成两条线段AC和BC,如果_____________,那么称线段AB被点C_________,
=________≈_______,称为黄金比.一条线段有______个黄金分割点.
问题5:形状相同的图形称为相似图形.利用“∽”来表述两个图形间的相似关系时,要把表示____________的字母写在对应的位置上.
问题6:相似多边形:
_________________、_________________的两个多边形叫做相似多边形.
相似多边形对应边的比叫做相似比,周长比等于________.
问题7:相似三角形:
_________________、_________________的两个三角形叫做相似三角形.
相似三角形对应高的比、对应角平分线的比、对应中线的比、周长的比都等于______;对应面积的比等于_____________.
相似图形及成比例线段
一、单选题(共15道,每道6分)
1.已知a,b,c,d是成比例线段,其中b=3cm,c=2cm,d=6cm,则线段a的长是( )
A.1cm
B.4cm
C.5cm
D.9cm
答案:A
解题思路:
试题难度:三颗星知识点:成比例线段
2.两地的实际距离是2000m,若在地图上量得这两地的距离为2cm,则这个地图的比例尺是( )
A.1:2 000
B.1:1000
C.1:200000
D.1:100000
答案:D
解题思路:
试题难度:三颗星知识点:比例尺的应用
3.若a:b=3:2,b:c=5:4,则a:b:c=( )
A.3:2:4
B.6:5:4
C.15:10:8
D.15:10:12
答案:C
解题思路:
试题难度:三颗星知识点:比例的性质
4.若2a=3b=5c,且,则的值是( )
A.5
B.-5
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:比例的性质
5.下列说法:①若,则;②若,则;
③若,则;④若,则;⑤若,则
(其中,).其中正确的有( )
A.2个
B.3个
C.4个
D.5个
答案:B
解题思路:
试题难度:三颗星知识点:比例的性质
6.若线段MN的长为1,P是MN的黄金分割点,则MP的长为( )
A. B.
C. D.不能确定
答案:C
解题思路:
试题难度:三颗星知识点:黄金分割
7.有以下命题:
①如果点C是线段AB的中点,那么AC是AB,BC的比例中项;
②如果点C是线段AB的黄金分割点,且,那么AC是AB与BC的比例中项;
③如果点C是线段AB的黄金分割点,,且AB=2,则.
其中正确的有( )
A.1个
B.2个
C.3个
D.4个
答案:A
解题思路:
试题难度:三颗星知识点:线段的比
8.如图,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,若AE=6,,则CE 的长为( )
A.4.5
B.8
C.10.5
D.14
答案:B
解题思路:
试题难度:三颗星知识点:平行线分线段成比例
9.如图,D是AB中点,AF∥BC,若CG:GA=3:1,BC=8,则AF的长为( )
A. B.
C.4
D.2
答案:C
解题思路:
试题难度:三颗星知识点:平行线分线段成比例
10.如图,在△ABC中,BD:DC=5:3,E为AD的中点,连接BE并延长,交AC于点F.过点D作DG∥AC,交BF于点G,则BE:EF的值为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:平行线分线段成比例
11.在△ABC中,BE平分∠ABC,交AC于点E,ED∥CB,交AB于点D,若AD=1,DE=2,则BC的长为( )
A.3
B.4
C.5
D.6
答案:D
解题思路:
试题难度:三颗星知识点:平行线分线段成比例
12.有下列几个命题:①四条边相等的四边形都相似;②四个角都相等的四边形都相似;
③三条边相等的三角形都相似;④所有的正方形都相似;⑤所有的等腰三角形都相似.其中正确的有( )
A.2个
B.3个
C.4个
D.5个
答案:A
解题思路:
试题难度:三颗星知识点:相似图形
13.下列说法:①有一个角相等的两个平行四边形相似;
②有一组邻边各成比例的两个平行四边形相似;
③有一个角相等的两个菱形相似;
④邻边之比是2:1的两个矩形相似;
⑤有一个角相等的两个等腰梯形相似.
其中正确的是( )
A.①②③④⑤
B.①③⑤
C.②④
D.③④
答案:D
解题思路:
试题难度:三颗星知识点:相似图形
14.若两相似四边形的面积之比是1:4,周长之差是6cm,则它们的周长之和是( )
A.10cm
B.12cm
C.18cm
D.24cm
答案:C
解题思路:
试题难度:三颗星知识点:相似与周长、面积
15.如图,已知四边形ABCD∽四边形AEFB,且相似比为3:2,如果AB=6,那么AE的长为( )
A.1
B.2
C.3
D.4
答案:D
解题思路:
试题难度:三颗星知识点:相似图形性质。

相关文档
最新文档