一元二次方程经典测试题(含答案)
一元二次方程100道计算题练习(含答案)
一元二次方程100道计算题练习(含答案)1、(x+4)=5(x+4)解:将等式两边展开,得到x+4=5x+20,移项化简得4x=-16,因此x=-4.2、(x+1)=4x解:将等式两边展开,得到x+1=4x,移项化简得3x=1,因此x=1/3.3、(x+3)=(1-2x)2解:将等式两边展开,得到x+3=1-4x+4x2,移项化简得4x2-4x-2=0,因此x=1+√3或x=1-√3.4、2x2-10x=3解:将等式两边移项化简,得到2x2-10x-3=0,利用求根公式得到x=(5+√37)/2或x=(5-√37)/2.5、(x+5)2=16解:将等式两边展开,得到x2+10x+25=16,移项化简得x2+10x+9=0,因此x=-1或x=-9.6、2(2x-1)-x(1-2x)=0解:将等式两边展开,得到4x-2-x+2x2=0,移项化简得2x2+3x-2=0,因此x=1/2或x=-2.7、x2+6x-5=0解:利用求根公式得到x=(-6±√56)/2,化简得到x=-3+√14或x=-3-√14.8、5x2-2/5=0解:将等式两边乘以5,得到25x2-2=0,移项化简得到x=±√(2/25)=±2/5.9、8(3-x)2-72=0解:将等式两边移项化简,得到8(3-x)2=72,化简得到(3-x)2=9,因此x=0或x=6.10、3x(x+2)=5(x+2)解:将等式两边移项化简,得到3x(x+2)-5(x+2)=0,因此(3x-5)(x+2)=0,因此x=5/3或x=-2.11、(1-3y)2+2(3y-1)=0解:将等式展开化简,得到9y2-18y+9+6y-2=0,移项化简得到9y2-12y+7=0,利用求根公式得到y=(6±√12)/9.12、x2+2x+3=0解:利用求根公式得到x=(-2±√(-8))/2,因为无实数解,所以方程无解。
一元二次方程测试题(含答案)
一元二次方程测试题(含答案)一元二次方程测试题一、填空题:(每题2分共5分)1.将一元二次方程(1-3x)(x+3)=2x2化为一般形式为:2x^2-9x-9=0,二次项系数为2,一次项系数为-9,常数项为-9.2.若m是方程x^2+x-1=0的一个根,代入m+2m+2013得到(m+1)^2+2012的值为。
3.方程2+x-1=0是关于x的一元二次方程,根据一元二次方程的定义,二次项系数为1,一次项系数为1,常数项为-1.所以m的值为1.4.关于x的一元二次方程a-2x+x^2+a-4=0的一个根为x=2,则代入得到a=5.5.代数式4x-2x-5与2x+1的值互为相反数,即4x-2x-5=-(2x+1),解得x=-3/2.代入4y^2+2y+1得到9/2.6.已知2y+y-3的值为2,则代入4y^2+2y+1得到21.7.若方程(m-1)x+m·x=1是关于x的一元二次方程,则根据一元二次方程的定义,二次项系数为m-1+m=2m-1,一次项系数为m,常数项为1.所以m的取值范围为m≠1/2.8.已知关于x的一元二次方程x^2-x-1=0的一个根为x=2,则代入得到另一个根为x=-1.9.已知关于x的一元二次方程x^2+mx-6=0的一个根为2,代入得到另一个根为-3,且m的取值范围为m≠0.10.设x1,x2是方程x^2+bx+b-1=0有两个相等的实数根,则根据一元二次方程的定义,判别式D=b^2-4(b-1)=0,解得b=2或b=-1.但由于有两个相等的实数根,所以b=2.11.已知x=-2是方程x^2-3x+k=0的一个根,代入得到k=-2.12.若2是方程x^2+mx-6=0的一个根,代入得到另一个根为-3,且一元二次方程kx+ax+b=0有两个实数根,则根据一元二次方程的定义,判别式D=a^2-4kb≥0,又因为有两个实数根,所以D>0,即a^2-4kb>0.代入得到k9/4.13.设m、n是一元二次方程x^2+2x-3=0的两个根,则根据一元二次方程的定义,二次项系数为1,一次项系数为2,常数项为-3,根据求根公式得到m+n=-2,mn=-3.代入得到m^2+n^2+4m+4n+4=10.14.一元二次方程(a+1)x^2-ax+a-1=0的一个根为x=1,则代入得到a=1/2.15.若关于x的方程x^2-2x+2=0的两个根互为倒数,则根据一元二次方程的定义,判别式D=8-8a≥0,解得0≤a≤1.代入得到a=1/2.16.关于x的两个方程x^2-2x+3=0和x^2-3x+2=0的公共根为x=1,则代入得到另一个根分别为2和1,正确结论的序号为①和②。
完整版)一元二次方程100道计算题练习(附答案)
完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。
为了方便,我们可以将这些方程按照不同的方法分类。
一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。
根据不同的题目,我们可以选择不同的方法来解决问题。
例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。
将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。
将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。
一元二次方程经典练习题(6套)附带详细答案
练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x -=0,⑤32x x -8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=0 4.方程x 2=6x 的根是( )A.x 1=0,x 2=-6B.x 1=0,x 2=6C.x=6D.x=0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C.231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1 B.4x 2+4x+54=0; C. 20x --= D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分)9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______. 16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________. 三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y 2+1=; (3)(x-a)2=1-2a+a 2(a 是常数) 18.(7分)已知关于x 的一元二次方程x 2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x 的解,你能求出m 和n 的值吗? 19.(10分)已知关于x 的一元二次方程x 2-2kx+12k 2-2=0. (1)求证:不论k 为何值,方程总有两不相等实数根. (2)设x 1,x 2是方程的根,且 x 12-2kx 1+2x 1x 2=5,求k 的值. 四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率. 答案一、DAABC,DBD 二、 9.x 2+4x-4=0,4 10. 240b c -≥ 11.因式分解法 12.1或2313.2 14.1815.115k >≠且k 16.30% 三、17.(1)3,25-;(2(3)1,2a-118.m=-6,n=819.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根.(2) k = 四、 20.20% 21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
(完整版)一元二次方程经典测试题(含答案)
一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.下列方程是一元二次方程的是( )A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是( )A.2秒钟 B.3秒钟 C.4秒钟 D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根 B.有一正根一负根且正根的绝对值大C.有两个负根 D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根 B.有两个负根C.有一正根一负根且正根绝对值大 D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x 1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m= .16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q= .17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为米.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△0(填:“>"或“=”或“<”).评卷人得分三.解答题(共8小题)21.(6分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)22.(6分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.23.(6分)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.(6分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青"的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0。
一元二次方程经典练习题(6套)附带详细答案
练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x -=0,⑤32x x -8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=0 4.方程x 2=6x 的根是( )A.x 1=0,x 2=-6B.x 1=0,x 2=6C.x=6D.x=0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C.231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1 B.4x 2+4x+54=0; C. 20x --= D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分)9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______. 16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y2+1=; (3)(x-a)2=1-2a+a2(a是常数)18.(7分)已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n的值吗?19.(10分)已知关于x的一元二次方程x2-2kx+12k2-2=0.(1)求证:不论k为何值,方程总有两不相等实数根.(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
一元二次方程100道计算题练习(附答案)
一元二次方程100 道计算题练习1、(x 4)2 5(x 4)2、(x 1)2 4x3、(x 3)2 (1 2x)24、2x2 10x 35、(x+5)2=166、2(2x-1)-x(1-2x)=07、x2 =64 8、5x2 - 25=0 9、8(3 -x)2 –72=010、3x(x+2)=5(x+2) 11、(1-3y)2+2(3y-1)=0 12、x 2 + 2x + 3=0 13、x 2 + 6x-5=0 14、x 2 -4x+ 3=0 15、x 2 -2x-1 =0 16、2x 2 +3x+1=0 17、3x 2 +2x-1 =0 18、5x 2 -3x+2 =0 19、7x 2 -4x-3 =0 20、-x 2 -x+12 =0 21、x 2 -6x+9 =0122、(3x2)2( 2x3) 223、x 2-3=4x2-2x-4=0 24、x25、3x 2+8 x-3=0(配方法)26、(3x+2)(x+3)=x+14 27、(x+1)(x+8)=-1228、2(x-3) 2=x 2-9 29、-3x 2+22x-24=0 30、(2x-1)2 +3(2x-1)+2=0 31、2x 2-9x+8=0 32、3(x-5)2=x(5-x) 33、(x+2) 2=8x34、(x-2) 2=(2x+3)2 35、7x 2 2x 0 36、4t 2 4t 1 04 x 3 x x 3 0 38、6x 2 31x 35 0 39、2x3121 0 37、 2240、2x 2 23x 65 02补充练习:一、利用因式分解法解下列方程(x-2) 2=(2x-3)2 x 2 4x 0 3x(x 1) 3x 3x2-2 3 x+3=0 58516 0x2 x二、利用开平方法解下列方程1 y 2(2 1) 2 154(x-3)2=25 (3x 2)224三、利用配方法解下列方程x x 3 2 6x 12 02 5 2 2 0 x x 2 7x 10 0四、利用公式法解下列方程-3x 2+22x-24=0 2x(x-3)=x-3.3x2+5(2x+1)=0五、选用适当的方法解下列方程3(x+1) 2-3 (x +1)+2=0 (2x 1)2 9(x 3)2 x 2 2x 302 3 1 0 x x2 x1) ( 1)((x xx13 42)(3x 11)(x 2) 2 x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出 20 件,每件盈利 40 元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售 2 件,若商场平均每天盈利 1250 元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的 2 倍少 32 平方厘米,求大小两个正方形的边长.43、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E 在AB 上,F 在BC 上,G 在AD 上,若矩形铁板的面积为 5 m2,则矩形的一边EF 长为多少?4、如右图,某小在长 32 米,区规划宽 20 米的矩形场地ABCD 上修建三条同样宽的 3 条小路,使其中两条与AD 平行,一条与AB 平行,其余部分种草,若使草坪的面积为 566 米2,问小路应为多宽?5、某商店经销一种销售成本为每千克 40 元的水产品,据市场分析,若按每千克 50 元销售一个月能售出 500 千克;销售单价每涨 1 元,月销售量就减少 10 千克,商店想在月销售成本不超过 1 万元的情况下,使得月销售利润达到 8000 元,销售单价应定为多少?6.某工厂1998 年初投资100 万元生产某种新产品,1998 年底将获得的利润与年初的投资的和作为1999 年初的投资,到 1999 年底,两年共获利润 56 万元,已知 1999 年的年获利率比 1998 年的年获利率多 10 个百分点,求 1998 年和 1999 年的年获利率各是多少?5思考:1、关于x的一元二次方程2 4 0a 的一个根为0,则a的值为。
一元二次方程经典测试题(含答案)
一元二次方程经典测试题(含答案)一元二次方程经典测试题(含答案)1. 解下列一元二次方程:(1)x^2 - 5x + 6 = 0(2)2x^2 - 7x + 3 = 0(3)3x^2 + 4x - 1 = 0(4)4x^2 + 4x + 1 = 0解答:(1)x^2 - 5x + 6 = 0(x - 2)(x - 3) = 0x = 2 或 x = 3(2)2x^2 - 7x + 3 = 0(2x - 1)(x - 3) = 0x = 1/2 或 x = 3(3)3x^2 + 4x - 1 = 0(3x - 1)(x + 1) = 0x = 1/3 或 x = -1(4)4x^2 + 4x + 1 = 0(2x + 1)(2x + 1) = 0x = -1/22. 解下列一元二次方程并给出其图像是否与x轴正向相交:(1)x^2 - 4x + 3 = 0(2)2x^2 + 3x + 2 = 0(3)3x^2 - 6x + 3 = 0(4)4x^2 - 5x + 1 = 0解答:(1)x^2 - 4x + 3 = 0(x - 3)(x - 1) = 0x = 1 或 x = 3图像与x轴正向相交。
(2)2x^2 + 3x + 2 = 0该方程无实数解,图像不与x轴正向相交。
(3)3x^2 - 6x + 3 = 0x^2 - 2x + 1 = 0(x - 1)(x - 1) = 0x = 1图像与x轴正向相交。
(4)4x^2 - 5x + 1 = 0(2x - 1)(2x - 1) = 0x = 1/2图像与x轴正向相交。
3. 求解下列一元二次方程的根的范围:(1)x^2 - 6x + 5 > 0(2)2x^2 + 3x + 2 ≤ 0(3)3x^2 - 6x - 9 < 0(4)4x^2 - 5x + 1 ≥ 0解答:(1)x^2 - 6x + 5 > 0(x - 5)(x - 1) > 0x < 1 或 x > 5(2)2x^2 + 3x + 2 ≤ 0该方程无实数解,根的范围为空集。
一元二次方程经典测试卷试题含含答案
一元二次方程测试题考试范围:一元二次方程;考试时间: 120 分钟;命题人:瀚博教育题号一二三总分 得分第 Ⅰ卷(选择题)评卷人得 分一.选择题(共12 小题,每题 3 分,共 36 分) 1.方程 x ( x ﹣ 2) =3x 的解为()A .x=5B . x 1=0,x 2=5C . x 1=2,x 2=0D .x 1=0, x 2=﹣ 5 2.以下方程是一元二次方程的是()A .ax 2+bx+c=0B .3x 2﹣2x=3(x 2﹣2)C .x 3﹣2x ﹣ 4=0D .(x ﹣ 1)2+1=0 3 .对于 x 的一元二次方程 2+a 2﹣1=0 的一个根是 0,则 a 的值为( ) x A .﹣ 1 B . 1C .1 或﹣ 1 D .34.某旅行景点的旅客人数逐年增添,据相关部门统计,2015 年约为 12 万人次,若 2017 年约 为 17 万人次,设旅客人数年均匀增添率为 x ,则以下方程中正确的选项是() A .12( 1+x )=17 B .17(1﹣x )=12C .12( 1+x )2=17D . 12+12(1+x )+12( 1+x )2=175.如图,在△ ABC 中,∠ABC=90°,AB=8cm ,BC=6cm .动点 P ,Q 分别从点 A , B 同时开始挪动,点 P 的速度为 1cm/ 秒,点 Q 的速度为 2cm/ 秒,点 Q 挪动到 点 C 后停止,点 P 也随之停止运动. 以下时间瞬时中, 能使△ PBQ 的面积为 15cm 2 的是( )A .2 秒钟B . 3 秒钟C . 4 秒钟D . 5 秒钟6.某幼儿园要准备修筑一个面积为 210 平方米的矩形活动场所,它的长比宽多 12 米,设场所的长为 x 米,可列方程为()A .x (x+12)=210B . x ( x ﹣12)=210C .2x+2( x+12) =210D .2x+2(x ﹣12)=210.一元二次方程 x 2+bx ﹣2=0 中,若 b <0,则这个方程根的状况是( )7 A .有两个正根 B .有一正根一负根且正根的绝对值大 C .有两个负根D .有一正根一负根且负根的绝对值大8.x 1,x 2 是方程 x 2 +x+k=0 的两个实根,若恰 x 1 2+x 1 x 2+x 22=2k 2 建立, k 的值为()1A .﹣ 1B .或﹣ 1C .D .﹣或 19.一元二次方程 ax 2+bx+c=0 中,若 a >0,b <0,c <0,则这个方程根的状况是() A .有两个正根B .有两个负根C .有一正根一负根且正杜绝对值大D .有一正根一负根且负杜绝对值大10.有两个一元二次方程: M : ax 2+bx+c=0;N :cx 2+bx+a=0,此中a ﹣ c ≠ 0,以以下四个结论 中,错误的选项是()A .假如方程 M 有两个不相等的实数根,那么方程 N 也有两个不相等的实数根B .假如方程 M 有两根符号相同,那么方程 N 的两根符号也相同C .假如 5 是方程 M 的一个根,那么是方程 N 的一个根D .假如方程 M 和方程 N 有一个相同的根,那么这个根必是 x=111.已知 m ,n 是对于 x 的一元二次方程x 2﹣2tx+t 2﹣ 2t+4=0 的两实数根,则( m+2)(n+2)的 最小值是( ) A .7 B .11 C . 12 D .16.设对于 2+(a+2) x+9a=0,有两个不相等的实数根x 1、 2,且 1 < < 2 ,那么12 x 的方程 ax xx 1 x实数 a 的取值范围是( )A .B .C .D .第Ⅱ 卷(非选择题)评卷人得 分二.填空题(共 8 小题,每题 3 分,共 24 分).若 1, 2 是对于 x 的方程 2 ﹣2x ﹣5=0 的两根,则代数式 x 12﹣3x 1﹣ 2﹣ 6 的值是 .13 x x x x.已知1, 2 是对于x 的方程x 2+ax ﹣2b=0 的两实数根,且x 1 2 ﹣ , 1 2 ,则a的值14x x+x = 2x ?x =1b是 ..已知 |m | ﹣2+3=9 是对于 x 的一元二次方程,则 m= .15 2x.已知x 2+6x=﹣1 能够配成( x+p )2=q 的形式,则 q=.1617.已知对于 x 的一元二次方程( m ﹣1)x 2﹣3x+1=0 有两个不相等的实数根,且对于 x 的不等 式组的解集是 x <﹣ 1,则全部切合条件的整数 m 的个数是..对于 2+2x+1=0 有实数根,则偶数 m 的最大值为 .18 x 的方程( m ﹣ 2)x19.如图,某小区有一块长为 18 米,宽为 6 米的矩形空地,计划在此中修筑两块相同的矩形2绿地,它们面积之和为 60 米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为米.20.如图是一次函数y=kx+b 的图象的大概地点,试判断对于x 的一元二次方程 x2﹣2x+kb+1=0 的根的鉴别式△0(填:“>”或“=或”“<”).评卷人得分三.解答题(共8 小题)21.(6 分)解以下方程.(1)x2﹣ 14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)22.(6 分)对于 x 的一元二次方程( m﹣1) x2﹣ x﹣ 2=0(1)若 x=﹣1 是方程的一个根,求 m 的值及另一个根.(2)当 m 为什么值时方程有两个不一样的实数根.323.( 6 分)对于 x 的一元二次方程( a ﹣ 6) x 2﹣8x+9=0 有实根. ( 1)求 a 的最大整数值;( 2)当 a 取最大整数值时,①求出该方程的根;②求 2x 2﹣的值.24.( 6 分)对于 x 的方程 x 2﹣( 2k ﹣ 3) x+k 2+1=0 有两个不相等的实数根 x 1、 2 .x ( 1)求 k 的取值范围; ( 2)若 x 1x 2+| x 1|+| x 2| =7,求 k 的值.25.( 8 分)某茶叶专卖店经销一种日照绿茶,每千克成本80 元,据销售人员检查发现,每个月 的销售量 y (千克)与销售单价x (元 / 千克)之间存在以下图的变化规律. ( 1)求每个月销售量 y 与销售单价 x 之间的函数关系式. ( 2)若某月该茶叶点销售这类绿茶获取收益 1350 元,试求该月茶叶的销售单价 x 为多少元.426.(8 分)如图,为美化环境,某小区计划在一块长方形空地上修筑一个面积为1500 平方米的长方形草坪,并将草坪周围余下的空地修筑成相同宽的通道,已知长方形空地的长为60 米,宽为 40 米.(1)求通道的宽度;(2)晨曦园艺企业承揽了该小区草坪的栽种工程,计划栽种“四时青”和“黑麦草”两种绿草,该企业栽种“四时青”的单价是 30 元 / 平方米,超出 50 平方米后,每多出 5 平方米,全部“四时青”的栽种单价可降低 1 元,但单价不低于 20 元/ 平方米,已知小区栽种“四时青”的面积超出了50 平方米,支付晨曦园艺企业栽种“四时青”的花费为 2000 元,求栽种“四时青”的面积.27.(10 分)某商铺经销甲、乙两种商品,现有以下信息:信息 1:甲、乙两种商品的进货单价之和是 3 元;信息 2:甲商品零售单价比进货单价多 1 元,乙商品零售单价比进货单价的 2 倍少 1 元;信息 3:按零售单价购置甲商品 3 件和乙商品 2 件,共付了 12 元.请依据以上信息,解答以下问题:(1)求甲、乙两种商品的零售单价;(2)该商铺均匀每日卖出甲乙两种商品各500 件,经检查发现,甲种商品零售单价每降0.1 元,甲种商品每日可多销售 100 件,商铺决定把甲种商品的零售单价降落m(m>0)元.在不考虑其余要素的条件下,当 m 为多少时,商铺每日销售甲、乙两种商品获取的总收益为1000 元?528.( 10 分)已知对于x 的一元二次方程x2﹣( m+6)x+3m+9=0 的两个实数根分别为x1, x2.(1)求证:该一元二次方程总有两个实数根;(2)若 n=4( x1+x2)﹣ x1x2,判断动点 P(m,n)所形成的函数图象能否经过点 A( 1, 16),并说明原因.6一元二次方程测试题参照答案与试题分析一.选择题(共12 小题)1.方程 x ( x ﹣ 2) =3x 的解为()A .x=5B . x 1=0,x 2=5C . x 1=2,x 2=0D .x 1=0, x 2=﹣ 5 【解答】 解: x ( x ﹣ 2) =3x , x ( x ﹣ 2)﹣ 3x=0, x ( x ﹣ 2﹣ 3) =0, x=0,x ﹣2﹣3=0, x 1=0, x 2=5, 应选 B .2.以下方程是一元二次方程的是()A .ax 2+bx+c=0B .3x 2﹣2x=3(x 2﹣2)C .x 3﹣2x ﹣ 4=0D .(x ﹣ 1)2+1=0 【解答】 解: A 、当 a=0 时,该方程不是一元二次方程,故本选项错误;B 、由原方程获取 2x ﹣ 6=0,未知数的最高次数是1,不是一元二次方程,故本选项错误;C 、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;D 、切合一元二次方程的定义,故本选项正确; 应选 D .3 .对于 x 的一元二次方程 2+a 2﹣1=0 的一个根是 0,则 a 的值为( ) x A .﹣ 1 B . 1C .1 或﹣ 1 D .3【解答】 解:∵对于 x 的一元二次方程x 2+a 2﹣1=0 的一个根是 0,∴02+a 2﹣1=0, 解得, a=±1, 应选 C .4.某旅行景点的旅客人数逐年增添,据相关部门统计,2015 年约为 12 万人次,若 2017 年约 为 17 万人次,设旅客人数年均匀增添率为 x ,则以下方程中正确的选项是()7A.12(1+x)=17B.17(1﹣ x)=12C.12(1+x)2=17D.12+12( 1+x) +12(1+x)2=17【解答】解:设旅客人数的年均匀增添率为x,则 2016 的旅客人数为: 12×( 1+x),2017 的旅客人数为: 12×( 1+x)2.那么可得方程: 12(1+x)2=17.应选: C.5.如图,在△ ABC中,∠ ABC=90°,AB=8cm, BC=6cm.动点 P,Q 分别从点 A,B 同时开始挪动,点 P的速度为 1cm/ 秒,点 Q 的速度为 2cm/ 秒,点 Q 挪动到点 C 后停止,点 P 也随之停止运动.以下时间瞬时中,能使△PBQ的面积为 15cm2的是()A.2 秒钟B.3 秒钟C.4 秒钟D.5 秒钟【解答】解:设动点 P, Q 运动 t 秒后,能使△ PBQ的面积为 15cm2,则BP为( 8﹣t )cm,BQ 为 2tcm,由三角形的面积计算公式列方程得,×( 8﹣t)× 2t=15,解得 t 1=3,t2=5(当 t=5 时, BQ=10,不合题意,舍去).答:动点 P,Q 运动 3 秒时,能使△ PBQ的面积为 15cm2.6.某幼儿园要准备修筑一个面积为210 平方米的矩形活动场所,它的长比宽多12 米,设场所的长为 x 米,可列方程为()A.x(x+12)=210 B.x( x﹣ 12)=210 C.2x+2(x+12)=210D.2x+2(x﹣12) =210 【解答】解:设场所的长为 x 米,则宽为( x﹣12)米,依据题意得: x(x﹣12) =210,应选: B..一元二次方程 2 +bx﹣ 2=0 中,若 b<0,则这个方程根的状况是()7 xA.有两个正根B.有一正根一负根且正根的绝对值大8C.有两个负根D.有一正根一负根且负根的绝对值大【解答】解: x2+bx﹣2=0,△=b2﹣4×1×(﹣ 2)=b2+8,即方程有两个不相等的实数根,设方程 x2+bx﹣2=0 的两个根为 c、d,则c+d=﹣b,cd=﹣ 2,由cd=﹣ 2 得出方程的两个根一正一负,由c+d=﹣b 和 b<0 得出方程的两个根中,正数的绝对值大于负数的绝对值,应选 B.8.x1,x2是方程 x2 +x+k=0 的两个实根,若恰 x1 2+x1 x2+x22=2k2建立, k 的值为()A.﹣ 1 B.或﹣ 1 C.D.﹣或 1【解答】解:依据根与系数的关系,得x1+x2=﹣1,x1x2=k.又x12+x1 x2+x22=2k2,则( x1+x2)2﹣x1x2=2k2,即 1﹣ k=2k2,解得 k=﹣1 或.当 k= 时,△ =1﹣2<0,方程没有实数根,应舍去.∴取 k=﹣1.故此题选 A..一元二次方程2+bx+c=0 中,若 a> 0, b< 0, c<0,则这个方程根的状况是()9 axA.有两个正根B.有两个负根C.有一正根一负根且正杜绝对值大D.有一正根一负根且负杜绝对值大【解答】解:∵ a>0,b<0,c<0,∴△ =b2﹣ 4ac> 0,<0,﹣>0,∴一元二次方程ax2+bx+c=0 有两个不相等的实数根,且两根异号,正根的绝对值较大.9应选: C.10.有两个一元二次方程:M: ax2+bx+c=0;N:cx2+bx+a=0,此中a﹣ c≠ 0,以以下四个结论中,错误的选项是()A.假如方程 M 有两个不相等的实数根,那么方程 N 也有两个不相等的实数根B.假如方程 M 有两根符号相同,那么方程 N 的两根符号也相同C.假如 5 是方程 M 的一个根,那么是方程N的一个根D.假如方程 M 和方程 N 有一个相同的根,那么这个根必是x=1【解答】解: A、在方程 ax2+bx+c=0 中△ =b2﹣ 4ac,在方程 cx2+bx+a=0 中△ =b2﹣4ac,∴假如方程 M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根,正确;B、∵“和符号相同,和符号也相同,∴假如方程 M 有两根符号相同,那么方程N 的两根符号也相同,正确;C、∵ 5 是方程 M 的一个根,∴25a+5b+c=0,∴a+ b+ c=0,∴是方程 N 的一个根,正确;D、M ﹣N 得:(a﹣c)x2+c﹣ a=0,即( a﹣ c)x2=a﹣c,∵a﹣ c≠1,∴x2=1,解得: x=± 1,错误.应选 D.11.已知 m,n 是对于 x 的一元二次方程x2﹣2tx+t 2﹣ 2t+4=0 的两实数根,则( m+2)(n+2)的最小值是()A.7B.11 C. 12D.16【解答】解:∵ m,n 是对于 x 的一元二次方程x2﹣2tx+t 2﹣2t+4=0 的两实数根,∴m+n=2t,mn=t2﹣ 2t+4,∴( m+2)(n+2) =mn+2( m+n)+4=t2+2t+8=(t +1)2+7.∵方程有两个实数根,∴△ =(﹣ 2t)2﹣4(t 2﹣ 2t+4)=8t﹣16≥0,∴t≥2,10∴( t+1)2+7≥( 2+1)2+7=16. 应选 D .2+( a+2)x+9a=0,有两个不相等的实数根 x 1、 2,且 x 1< < 2,那么 12.设对于 x 的方程 axx 1 x 实数 a 的取值范围是( ) A .B .C .D .【解答】 解:方法 1、∵方程有两个不相等的实数根, 则 a ≠0 且△> 0,由( a+2) 2﹣ 4a ×9a=﹣35a 2+4a+4>0, 解得﹣ <a < ,∵ x 1+x 2=﹣, x 1x 2=9, 又∵ x 1<1<x 2, ∴ x 1﹣ 1< 0,x 2﹣ 1>0,那么( x 1﹣1)( x 2﹣1)< 0, ∴ x 1x 2﹣( x 1+x 2)+1< 0, 即 9++1<0, 解得<a <0,最后 a 的取值范围为:<a <0. 应选 D .方法 2、由题意知, a ≠0,令 y=ax 2+(a+2)x+9a ,因为方程的两根一个大于 1,一个小于 1,∴抛物线与 x 轴的交点分别在 1 双侧,当 a >0 时, x=1 时, y <0,∴a+(a+2)+9a <0,∴a <﹣ (不切合题意,舍去), 当 a <0 时, x=1 时, y >0, ∴a+(a+2)+9a >0, ∴a >﹣,11∴﹣<a <0, 应选 D .二.填空题(共 8 小题)13.若 x 1,x 2 是对于 x 的方程 2﹣2x ﹣5=0 的两根,则代数式 x 2﹣3x ﹣ ﹣ 的值是 ﹣ 3 . x 11x 2 6 【解答】 解:∵ x 1, 2 是对于x 的方程2﹣2x ﹣5=0 的两根,xx∴ x 12﹣2x 1=5, x 1+x 2=2,∴ x 12﹣3x 1﹣x 2﹣ 6=(x 12﹣2x 1)﹣( x 1+x 2)﹣ 6=5﹣2﹣6=﹣3.故答案为:﹣ 3.14.已知 x 1,x 2是对于 x 的方程 x 2+ax ﹣2b=0 的两实数根,且x 1+x 2=﹣ 2, x 1?x 2=1,则 b a 的值 是.【解答】 解:∵ x 1,x 2是对于 x 的方程 x 2+ax ﹣ 2b=0 的两实数根, ∴ x 1+x 2=﹣a=﹣2,x 1?x 2=﹣ 2b=1, 解得 a=2, b=﹣,∴ b a =(﹣ )2= . 故答案为: ..已知 | m | ﹣2+3=9 是对于 x 的一元二次方程,则 m= ±4 . 15 2x【解答】 解:由题意可得 | m| ﹣2=2, 解得, m=±4. 故答案为:± 4..已知 x 2+6x=﹣1 能够配成( x+p ) 2=q 的形式,则 q= 8 . 16 【解答】 解: x 2+6x+9=8, ( x+3)2=8. 因此 q=8.故答案为 8.17.已知对于 x 的一元二次方程( m ﹣1)x 2﹣3x+1=0 有两个不相等的实数根,且对于x 的不等12式组的解集是 x <﹣ 1,则全部切合条件的整数 m 的个数是 4.【解答】 解:∵对于 x 的一元二次方程( m ﹣ 1) x 2﹣3x+1=0 有两个不相等的实数根, ∴m ﹣ 1≠ 0 且△ =(﹣ 3)2﹣4(m ﹣ 1)> 0,解得 m <且 m ≠1, ,∵解不等式组得,而此不等式组的解集是x <﹣ 1, ∴m ≥﹣ 1,∴﹣ 1≤m <且 m ≠ 1,∴切合条件的整数m 为﹣ 1、 0、 2、 3. 故答案为 4..对于 x 的方程(m ﹣2)x 2+2x+1=0 有实数根,则偶数 m 的最大值为 2 . 18【解答】 解:由已知得:△ =b 2﹣ 4ac=22﹣ 4( m ﹣2)≥ 0, 即 12﹣4m ≥0, 解得: m ≤3, ∴偶数 m 的最大值为2.故答案为: 2.19.如图,某小区有一块长为 18 米,宽为 6 米的矩形空地,计划在此中修筑两块相同的矩形 绿地,它们面积之和为 60 米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽 度为1米.【解答】 解:设人行道的宽度为x 米( 0<x <3),依据题意得: (18﹣3x )(6﹣2x ) =60,整理得,( x ﹣ 1)(x ﹣8)=0.解得: x 1=1,x 2=8(不合题意,舍去). 即:人行通道的宽度是1 米.13故答案是: 1.20.如图是一次函数y=kx+b 的图象的大概地点,试判断对于x 的一元二次方程x2﹣2x+kb+1=0 的根的鉴别式△>0(填:“>”或“=或”“<”).【解答】解:∵次函数 y=kx+b 的图象经过第一、三、四象限,∴k> 0, b< 0,∴△ =(﹣ 2)2﹣4(kb+1)=﹣4kb>0.故答案为>.三.解答题(共8 小题)21.解以下方程.(1) x2﹣14x=8(配方法)(2) x2﹣7x﹣ 18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4) 2( x﹣ 3)2=x2﹣9.【解答】解:(1)x2﹣14x+49=57,(x﹣ 7)2=57,x﹣7=±,因此 x1=7+,x2=7﹣;( 2)△ =(﹣ 7)2﹣4×1×(﹣ 18)=121,x=,因此 x1=9,x2=﹣2;(3)(2x+3)2﹣4(2x+3)=0,(2x+3)(2x+3﹣4)=0,2x+3=0 或 2x+3﹣4=0,因此 x1=﹣,x2=;(4) 2( x﹣ 3)2﹣( x+3)(x﹣3)=0,14(x﹣3)( 2x﹣6﹣x﹣3)=0,x﹣ 3=0 或 2x﹣6﹣x﹣3=0,因此 x1=3, x2=9.22.对于 x 的一元二次方程( m﹣1)x2﹣ x﹣2=0(1)若 x=﹣1 是方程的一个根,求m 的值及另一个根.(2)当 m 为什么值时方程有两个不一样的实数根.【解答】解:(1)将 x=﹣ 1 代入原方程得 m﹣1+1﹣2=0,解得: m=2.当 m=2 时,原方程为 x2﹣ x﹣ 2=0,即( x+1)(x﹣2)=0,∴x1=﹣1,x2=2,∴方程的另一个根为 2.(2)∵方程( m ﹣1) x2﹣x﹣2=0 有两个不一样的实数根,∴,解得: m>且m≠1,∴当 m>且m≠1时,方程有两个不一样的实数根.23.对于 x 的一元二次方程( a﹣6) x2﹣8x+9=0 有实根.(1)求 a 的最大整数值;(2)当 a 取最大整数值时,①求出该方程的根;②求 2x2﹣的值.【解答】解:(1)依据题意△ =64﹣4×( a﹣ 6)× 9≥ 0 且 a﹣6≠0,解得 a≤且a≠6,因此 a 的最大整数值为 7;(2)①当 a=7 时,原方程变形为x2﹣ 8x+9=0,△=64﹣ 4× 9=28,∴x=,∴x1=4+,x2=4﹣;15②∵ x2﹣8x+9=0,∴x2﹣8x=﹣9,因此原式 =2x2﹣=2x2﹣16x+=2(x2﹣8x)+=2×(﹣ 9) +=﹣.24.对于 x 的方程 x2﹣( 2k﹣3)x+k2+1=0 有两个不相等的实数根x1、x2.(1)求 k 的取值范围;(2)若 x1x2+| x1|+| x2| =7,求 k 的值.【解答】解:(1)∵原方程有两个不相等的实数根,∴△ =[ ﹣( 2k﹣3)] 2﹣4(k2+1) =4k2﹣12k+9﹣ 4k2﹣ 4=﹣12k+5>0,解得: k<;( 2)∵ k<,∴x1+x2=2k﹣ 3< 0,又∵ x1?x2=k2+1>0,∴x1<0,x2<0,∴| x1|+| x2| =﹣x1﹣x2=﹣( x1+x2) =﹣2k+3,∵ x1x2+| x1|+| x2| =7,∴k2+1﹣2k+3=7,即 k2﹣ 2k﹣3=0,∴k1=﹣ 1, k2=2,又∵ k<,∴k=﹣1.25.某茶叶专卖店经销一种日照绿茶,每千克成本80 元,据销售人员检查发现,每个月的销售量y(千克)与销售单价 x(元 / 千克)之间存在以下图的变化规律.( 1)求每个月销售量 y 与销售单价 x 之间的函数关系式.16(2)若某月该茶叶点销售这类绿茶获取收益1350 元,试求该月茶叶的销售单价x 为多少元.【解答】解:(1)设一次函数分析式为y=kx+b,把( 90,100),( 100,80)代入 y=kx+b 得,,解得,,y 与销售单价 x 之间的函数关系式为y=﹣2x+280.(2)依据题意得: w=(x﹣80)(﹣ 2x+280) =﹣ 2x2+440x﹣22400=1350;解得( x﹣ 110)2=225,解得 x1=95,x2=125.答:销售单价为95 元或 125 元.26.如图,为美化环境,某小区计划在一块长方形空地上修筑一个面积为1500 平方米的长方形草坪,并将草坪周围余下的空地修筑成相同宽的通道,已知长方形空地的长为60 米,宽为40米.(1)求通道的宽度;(2)晨曦园艺企业承揽了该小区草坪的栽种工程,计划栽种“四时青”和“黑麦草”两种绿草,该企业栽种“四时青”的单价是 30 元 / 平方米,超出 50 平方米后,每多出 5 平方米,全部“四时青”的栽种单价可降低 1 元,但单价不低于 20 元/ 平方米,已知小区栽种“四时青”的面积超出了50 平方米,支付晨曦园艺企业栽种“四时青”的花费为 2000 元,求栽种“四时青”的面积.17【解答】解:(1)设通道的宽度为x 米.由题意( 60﹣2x)(40﹣ 2x) =1500,解得 x=5 或 45(舍弃),答:通道的宽度为5 米.( 2)设栽种“四时青”的面积为 y 平方米.由题意: y( 30﹣)=2000,解得 y=100,答:栽种“四时青”的面积为 100 平方米.27.某商铺经销甲、乙两种商品,现有以下信息:信息 1:甲、乙两种商品的进货单价之和是 3 元;信息 2:甲商品零售单价比进货单价多 1 元,乙商品零售单价比进货单价的 2 倍少 1 元;信息 3:按零售单价购置甲商品 3 件和乙商品 2 件,共付了 12 元.请依据以上信息,解答以下问题:( 1)求甲、乙两种商品的零售单价;( 2)该商铺均匀每日卖出甲乙两种商品各500 件,经检查发现,甲种商品零售单价每降0.1 元,甲种商品每日可多销售100 件,商铺决定把甲种商品的零售单价降落m(m >0)元.在不考虑其余要素的条件下,当 m 为多少时,商铺每日销售甲、乙两种商品获取的总收益为1000 元?【解答】 22.(1)假定甲种商品的进货单价为 x 元、乙种商品的进货单价为y 元,依据题意可得:,解得:.答:甲、乙零售单价分别为 2 元和 3 元.( 2)依据题意得出:(1﹣m )( 500+ ×100)+500=1000即 2m2﹣m=0,解得 m=0.5 或 m=0(舍去),答:当 m 定为 0.5 元才能使商铺每日销售甲、乙两种商品获取的收益共1000 元.28.已知对于 x 的一元二次方程x2﹣( m+6)x+3m+9=0 的两个实数根分别为x1, x2.18(1)求证:该一元二次方程总有两个实数根;(2)若 n=4(x1+x2)﹣ x1x2,判断动点 P(m, n)所形成的函数图象能否经过点 A(1,16),并说明原因.【解答】解( 1)∵△ =(m+6)2﹣ 4( 3m+9)=m2≥ 0 ∴该一元二次方程总有两个实数根(2)动点 P(m, n)所形成的函数图象经过点A(1,16),∵n=4( x1+x2)﹣ x1 x2=4(m+6)﹣( 3m+9)=m+15∴P(m, n)为 P(m, m+15).∴A(1,16)在动点 P(m, n)所形成的函数图象上.19。
一元二次方程经典练习试题(6套)附带详细答案---教师版
练习题一一、选择题:6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±157.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1 B.4x 2+4x+54=0; C. 20x --= D.(x+2)(x-3)==-5二、填空题:9.方程2(1)5322x x -+=化为一元二次方程的一般形式是______,它的一次项系数是______. 12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________. 14.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是___ ___. 15.若一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______. 三、解答题(2分)17.用适当的方法解下列一元二次方程. (1)(x-a)2=1-2a+a 2(a 是常数)18.(7分)已知关于x 的一元二次方程x 2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x 的解,你能求出m 和n 的值吗?19.(10分)已知关于x 的一元二次方程x 2-2kx+12k 2-2=0. (1)求证:不论k 为何值,方程总有两不相等实数根.(2)设x 1,x 2是方程的根,且 x 12-2kx 1+2x 1x 2=5,求k 的值.四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率. 答案一、DAABC,DBD二、 9.x 2+4x-4=0,4 10. 240b c -≥ 11.因式分解法12.1或23 13.2 14.18 15.115k >≠且k 16.30% 三、17.(1)3,25-;(2(3)1,2a-1 18.m=-6,n=819.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根.(2) k =四、 20.20% 21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
一元二次方程测试题(含答案)
一元二次方程测试题(时间120分钟满分150分)一、填空题:(每题2分共50分)1.一元二次方程(1-3x )(x +3)=2x2+1 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。
2.若m 是方程x 2+x -1=0的一个根,试求代数式m 3+2m 2+2013的值为 。
3.方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。
4.关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
5.若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 。
6.已知322-+y y 的值为2,则1242++y y的值为 。
7.若方程()112=∙+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
8.已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b ca =+,则此方程必有一根为 。
9.已知关于x 的一元二次方程x 2+bx+b ﹣1=0有两个相等的实数根,则b 的值是。
10.设x 1,x 2是方程x2﹣x ﹣2013=0的两实数根,则= 。
11.已知x=﹣2是方程x 2+mx ﹣6=0的一个根,则方程的另一个根是。
12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是 。
13.设m 、n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n = 。
15.若关于x 的方程x2+(a ﹣1)x+a 2=0的两根互为倒数,则a =。
16.关于x 的两个方程x 2﹣x ﹣2=0与有一个解相同,则a = 。
17.已知关于x 的方程x2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③.则正确结论的序号是 .(填上你认为正确结论的所有序号)18.a 是二次项系数,b 是一次项系数,c 是常数项,且满足1-a +(b -2)2+|a+b+c|=0,满足条件的一元二次方程是 。
(完整)一元二次方程100道计算题练习(附答案)
一元二次方程100道计算题练习1、)4(5)4(2+=+x x2、x x 4)1(2=+3、22)21()3(x x -=+4、31022=-x x5、(x+5)2=16 6、2(2x -1)-x (1-2x)=07、x 2 =64 8、5x 2—52=0 9、8(3 —x )2–72=010、3x (x+2)=5(x+2) 11、(1-3y)2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2—x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x —4=0 24、x 2—3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=—1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x —1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x (5—x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)235、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=一、用因式分解法解下列方程(x -2) 2=(2x —3)2042=-x x 3(1)33x x x +=+x 2—23x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x —3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x(x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0。
一元二次方程测试题及答案
一元二次方程测试题及答案1. 方程\(x^2-5x+6=0\)的解为?解答:我们可以使用因式分解法或求根公式来解决这个问题。
因式分解法:我们需要找到两个数m和n,使得满足以下条件:1. m+n=-52. m*n=6通过尝试,我们可以得出: m=-2, n=-3.因此,方程\(x^2-5x+6=0\)可以因式分解为: \((x-2)(x-3)=0\)由于一个方程等于零,当且仅当它的因子等于零,我们可以将方程分解为两个方程:\(x-2=0\) 或 \(x-3=0\)解方程可以得到两个根:\(x=2\) 或 \(x=3\)所以方程的解为x=2或x=3.2. 方程\(3x^2+4x-1=0\)的解为?解答:我们可以使用因式分解法或求根公式来解决这个问题。
求根公式:对于一元二次方程\(ax^2+bx+c=0\)的根,可以使用求根公式:\(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)对于方程\(3x^2+4x-1=0\),我们可以将a=3, b=4, c=-1代入公式中计算。
\(x=\frac{-4\pm\sqrt{4^2-4*3*(-1)}}{2*3}\)计算并化简后可以得到两个根:\(x=\frac{-4+\sqrt{28}}{6}\) 或 \(x=\frac{-4-\sqrt{28}}{6}\)化简根式可以得到:\(x=\frac{-2+\sqrt{7}}{3}\) 或 \(x=\frac{-2-\sqrt{7}}{3}\)所以方程的解为\(x=\frac{-2+\sqrt{7}}{3}\)或\(x=\frac{-2-\sqrt{7}}{3}\)3. 方程\(2x^2+5x+2=0\)的解为?解答:我们可以使用因式分解法或求根公式来解决这个问题。
因式分解法:我们需要找到两个数m和n,使得满足以下条件:1. m+n=52. m*n=4通过尝试,我们可以得出: m=4, n=1.因此,方程\(2x^2+5x+2=0\)可以因式分解为: \((2x+1)(x+2)=0\)将方程分解为两个因子:\(2x+1=0\) 或 \(x+2=0\)解方程可以得到两个根:\(x=-\frac{1}{2}\) 或 \(x=-2\)所以方程的解为\(x=-\frac{1}{2}\)或\(x=-2\)4. 方程\(x^2-8x+16=0\)的解为?解答:我们可以使用因式分解法或求根公式来解决这个问题。
一元二次方程测试题(含答案)
一元二次方程测试题(含答案)一元二次方程测试题(含答案)1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )A、(x-p)2=5B、(x-p)2=9C、(x-p+2)2=9D、(x-p+2)2=52、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )A、-1B、0C、1D、23、若、是方程x2+2x-20XX=0的两个实数根,则2+3+的值为( )A、20XXB、20XXC、-20XXD、40104、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )A、kB、k- 且k0C、kD、k- 且k05、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( )A、x2+3x-2=0B、x2-3x+2=0C、x2-2x+3=0D、x2+3x+2=06、已知关于x的方程x2-(2k-1)x+k2=0有两个不相等的实根,那么k的最大整数值是( )A、-2B、-1C、0D、17、某城20XX年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到20XX年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意所列方程正确的是( )A、300(1+x)=363B、300(1+x)2=363C、300(1+2x)=363D、363(1-x)2=3008、甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为-3和5,乙把常数项看错了,解得两根为2+ 和2- ,则原方程是( )A、x2+4x-15=0B、x2-4x+15=0C、x2+4x+15=0D、x2-4x-15=09、若方程x2+mx+1=0和方程x2-x-m=0有一个相同的实数根,则m的值为( )A、2B、0C、-1D、10、已知直角三角形x、y两边的长满足|x2-4|+ =0,则第三边长为( )A、2 或B、或2C、或2D、、2 或二、填空题(每小题3分,共30分)11、若关于x的方程2x2-3x+c=0的一个根是1,则另一个根是 .12、一元二次方程x2-3x-2=0的解是 .13、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是 .14、等腰△ABC中,BC=8,AB、AC的长是关于x的方程x2-10x+m=0的两根,则m的值是 .15、20XX年某市人均GDP约为20XX年的1.2倍,如果该市每年的人均GDP增长率相同,那么增长率为 .16、科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高根鞋鞋根的最佳高度约为 cm.(精确到0.1cm)17、一口井直径为2m,用一根竹竿直深入井底,竹竿高出井口0.5m,如果把竹竿斜深入井口,竹竿刚好与井口平,则井深为 m,竹竿长为 m.18、直角三角形的周长为2+ ,斜边上的中线为1,则此直角三角形的面积为 .19、如果方程3x2-ax+a-3=0只有一个正根,则的值是 .20、已知方程x2+3x+1=0的两个根为、,则 + 的值为 .三、解答题(共60分)21、解方程(每小题3分,共12分)(1)(x-5)2=16 (2)x2-4x+1=0(3)x3-2x2-3x=0 (4)x2+5x+3=022、(8分)已知:x1、x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根,且(x1+2)(x2+2)=11,求a的值.23、(8分)已知:关于x的方程x2-2(m+1)x+m2=0(1)当m取何值时,方程有两个实数根?(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.24、(8分)已知一元二次方程x2-4x+k=0有两个不相等的实数根(1)求k的取值范围(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.25、(8分)已知a、b、c分别是△ABC中A、B、C所对的边,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,试判断△ABC的形状.26、(8分)某工程队在我市实施棚户区改造过程中承包了一项拆迁工程,原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%,从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2求:(1)该工程队第二天第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.27、(分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?参考答案一、选择题1~5 BCBCB 6~10 CBDAD提示:3、∵是方程x2+2x-20XX=0的根,2+2=20XX又+=-2 2+3+=20XX-2=20XX二、填空题11~15 4 25或16 10%16~20 6.7 , 4 3提示:14、∵AB、AC的长是关于x的方程x2-10x+m=0的两根在等腰△ABC中若BC=8,则AB=AC=5,m=25若AB、AC其中之一为8,另一边为2,则m=1620、∵△=32-411=5又+=-30,0,0,0三、解答题21、(1)x=9或1(2)x=2 (3)x=0或3或-1(4)22、解:依题意有:x1+x2=1-2a x1x2=a2又(x1+2)(x2+2)=11 x1x2+2(x1+x2)+4=11a2+2(1-2a)-7=0 a2-4a-5=0a=5或-1又∵△=(2a-1)2-4a2=1-4a0aa=5不合题意,舍去,a=-123、解:(1)当△0时,方程有两个实数根[-2(m+1)]2-4m2=8m+4 m-(2)取m=0时,原方程可化为x2-2x=0,解之得x1=0,x2=224、解:(1)一元二次方程x2-4x+k=0有两个不相等的实数根△=16-4k k4(2)当k=3时,解x2-4x+3=0,得x1=3,x2=1当x=3时,m= - ,当x=1时,m=025、解:由于方程为一元二次方程,所以c-b0,即bc又原方程有两个相等的实数根,所以应有△=0即4(b-a)2-4(c-b)(a-b)=0,(a-b)(a-c)=0,所以a=b或a=c所以是△ABC等腰三角形26、解:(1)1250(1-20%)=1000(m2)所以,该工程队第一天拆迁的面积为1000m2(2)设该工程队第二天,第三天每天的拆迁面积比前一天增长的百分数是x,则1000(1+x)2=1440,解得x1=0.2=20%,x2=-2.2,(舍去),所以,该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数是20%.27、解:(1)设每千克应涨价x元,则(10+x)(500-20x)=6000解得x=5或x=10,为了使顾客得到实惠,所以x=5(2)设涨价x元时总利润为y,则y=(10+x)(500-20x)=-20x2+300x+5000=-20(x-7.5)2+6125当x=7.5时,取得最大值,最大值为6125答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元.(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.。
一元二次方程经典测试题(含答案及解析)
WORD格式可编辑专业知识整理分享一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育第Ⅰ卷(选择题)一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m +2)(n+2)的最小值是()A.7 B.11 C.12 D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A. B.C.D.第Ⅱ卷(非选择题)二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=.17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.219.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 米.20.如图是一次函数y=kx +b 的图象的大致位置,试判断关于x 的一元二次方程x 2﹣2x +kb +1=0的根的判别式△ 0(填:“>”或“=”或“<”).三.解答题(共8小题) 21.(6分)解下列方程.(1)x 2﹣14x=8(配方法) (2)x 2﹣7x ﹣18=0(公式法)(3)(2x +3)2=4(2x +3)(因式分解法)22.(6分)关于x 的一元二次方程(m ﹣1)x 2﹣x ﹣2=0 (1)若x=﹣1是方程的一个根,求m 的值及另一个根. (2)当m 为何值时方程有两个不同的实数根.23.(6分)关于x 的一元二次方程(a ﹣6)x 2﹣8x +9=0有实根. (1)求a 的最大整数值;(2)当a 取最大整数值时,①求出该方程的根;②求2x 2﹣的值.24.(6分)关于x 的方程x 2﹣(2k ﹣3)x +k 2+1=0有两个不相等的实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1x 2+|x 1|+|x 2|=7,求k 的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y (千克)与销售单价x (元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x 为多少元.WORD 格式 可编辑专业知识整理分享26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米. (1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m (m >0)元.在不考虑其他因素的条件下,当m 为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?28.(10分)已知关于x 的一元二次方程x 2﹣(m +6)x +3m +9=0的两个实数根分别为x 1,x 2. (1)求证:该一元二次方程总有两个实数根;(2)若n=4(x 1+x 2)﹣x 1x 2,判断动点P (m ,n )所形成的函数图象是否经过点A (1,16),并说明理由.一元二次方程测试题参考答案与试题解析一.选择题(共12小题)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5【解答】解:x(x﹣2)=3x,x(x﹣2)﹣3x=0,x(x﹣2﹣3)=0,x=0,x﹣2﹣3=0,x1=0,x2=5,故选B.2.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=0【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项错误;B、由原方程得到2x﹣6=0,未知数的最高次数是1,不是一元二次方程,故本选项错误;C、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确;故选D.3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.3【解答】解:∵关于x的一元二次方程x2+a2﹣1=0的一个根是0,∴02+a2﹣1=0,解得,a=±1,故选C.4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=17【解答】解:设游客人数的年平均增长率为x,则2016的游客人数为:12×(1+x),2017的游客人数为:12×(1+x)2.那么可得方程:12(1+x)2=17.故选:C.5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P 的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).答:动点P,Q运动3秒时,能使△PBQ的面积为15cm2.6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210 C.2x+2(x+12)=210 D.2x+2(x﹣12)=210【解答】解:设场地的长为x米,则宽为(x﹣12)米,根据题意得:x(x﹣12)=210,故选:B.7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根4WORD 格式 可编辑专业知识整理分享B .有一正根一负根且正根的绝对值大C .有两个负根D .有一正根一负根且负根的绝对值大 【解答】解:x 2+bx ﹣2=0, △=b 2﹣4×1×(﹣2)=b 2+8, 即方程有两个不相等的实数根, 设方程x 2+bx ﹣2=0的两个根为c 、d , 则c +d=﹣b ,cd=﹣2,由cd=﹣2得出方程的两个根一正一负,由c +d=﹣b 和b <0得出方程的两个根中,正数的绝对值大于负数的绝对值, 故选B .8.x 1,x 2是方程x 2+x +k=0的两个实根,若恰x 12+x 1x 2+x 22=2k 2成立,k 的值为( ) A .﹣1 B .或﹣1 C . D .﹣或1【解答】解:根据根与系数的关系,得x 1+x 2=﹣1,x 1x 2=k . 又x 12+x 1x 2+x 22=2k 2, 则(x 1+x 2)2﹣x 1x 2=2k 2, 即1﹣k=2k 2, 解得k=﹣1或.当k=时,△=1﹣2<0,方程没有实数根,应舍去. ∴取k=﹣1. 故本题选A .9.一元二次方程ax 2+bx +c=0中,若a >0,b <0,c <0,则这个方程根的情况是( ) A .有两个正根 B .有两个负根C .有一正根一负根且正根绝对值大D .有一正根一负根且负根绝对值大 【解答】解:∵a >0,b <0,c <0, ∴△=b 2﹣4ac >0,<0,﹣>0,∴一元二次方程ax 2+bx +c=0有两个不相等的实数根,且两根异号,正根的绝对值较大. 故选:C .10.有两个一元二次方程:M :ax 2+bx +c=0;N :cx 2+bx +a=0,其中a ﹣c ≠0,以下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .如果方程M 有两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么是方程N 的一个根D .如果方程M 和方程N 有一个相同的根,那么这个根必是x=1【解答】解:A 、在方程ax 2+bx +c=0中△=b 2﹣4ac ,在方程cx 2+bx +a=0中△=b 2﹣4ac , ∴如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根,正确; B 、∵“和符号相同,和符号也相同,∴如果方程M 有两根符号相同,那么方程N 的两根符号也相同,正确; C 、∵5是方程M 的一个根, ∴25a +5b +c=0, ∴a +b +c=0,∴是方程N 的一个根,正确;D 、M ﹣N 得:(a ﹣c )x 2+c ﹣a=0,即(a ﹣c )x 2=a ﹣c , ∵a ﹣c ≠1,∴x 2=1,解得:x=±1,错误. 故选D .11.已知m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两实数根,则(m +2)(n +2)的最小值是( ) A .7B .11C .12D .16【解答】解:∵m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两实数根, ∴m +n=2t ,mn=t 2﹣2t +4,∴(m +2)(n +2)=mn +2(m +n )+4=t 2+2t +8=(t +1)2+7. ∵方程有两个实数根,∴△=(﹣2t )2﹣4(t 2﹣2t +4)=8t ﹣16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.故选D.12.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A .B .C .D .【解答】解:方法1、∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a <,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a 的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a >﹣,∴﹣<a<0,故选D.二.填空题(共8小题)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是﹣3.【解答】解:∵x1,x2是关于x的方程x2﹣2x﹣5=0的两根,∴x12﹣2x1=5,x1+x2=2,∴x12﹣3x1﹣x2﹣6=(x12﹣2x1)﹣(x1+x2)﹣6=5﹣2﹣6=﹣3.故答案为:﹣3.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故答案为:.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=±4.【解答】解:由题意可得|m|﹣2=2,解得,m=±4.故答案为:±4.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=8.【解答】解:x2+6x+9=8,(x+3)2=8.所以q=8.故答案为8.6WORD 格式 可编辑专业知识整理分享17.已知关于x 的一元二次方程(m ﹣1)x 2﹣3x +1=0有两个不相等的实数根,且关于x 的不等式组的解集是x <﹣1,则所有符合条件的整数m 的个数是 4 .【解答】解:∵关于x 的一元二次方程(m ﹣1)x 2﹣3x +1=0有两个不相等的实数根, ∴m ﹣1≠0且△=(﹣3)2﹣4(m ﹣1)>0,解得m <且m ≠1,,∵解不等式组得,而此不等式组的解集是x <﹣1, ∴m ≥﹣1, ∴﹣1≤m<且m ≠1,∴符合条件的整数m 为﹣1、0、2、3. 故答案为4.18.关于x 的方程(m ﹣2)x 2+2x +1=0有实数根,则偶数m 的最大值为 2 . 【解答】解:由已知得:△=b 2﹣4ac=22﹣4(m ﹣2)≥0, 即12﹣4m ≥0, 解得:m ≤3,∴偶数m 的最大值为2. 故答案为:2.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 1 米.【解答】解:设人行道的宽度为x 米(0<x <3),根据题意得: (18﹣3x )(6﹣2x )=60, 整理得,(x ﹣1)(x ﹣8)=0.解得:x 1=1,x 2=8(不合题意,舍去).即:人行通道的宽度是1米. 故答案是:1.20.如图是一次函数y=kx +b 的图象的大致位置,试判断关于x 的一元二次方程x 2﹣2x +kb +1=0的根的判别式△ > 0(填:“>”或“=”或“<”).【解答】解:∵次函数y=kx +b 的图象经过第一、三、四象限,∴k >0,b <0,∴△=(﹣2)2﹣4(kb +1)=﹣4kb >0. 故答案为>.三.解答题(共8小题) 21.解下列方程.(1)x 2﹣14x=8(配方法) (2)x 2﹣7x ﹣18=0(公式法)(3)(2x +3)2=4(2x +3)(因式分解法) (4)2(x ﹣3)2=x 2﹣9.【解答】解:(1)x 2﹣14x +49=57, (x ﹣7)2=57, x ﹣7=±,所以x 1=7+,x 2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121, x=,所以x 1=9,x 2=﹣2;(3)(2x +3)2﹣4(2x +3)=0, (2x +3)(2x +3﹣4)=0, 2x +3=0或2x +3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.22.关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.【解答】解:(1)将x=﹣1代入原方程得m﹣1+1﹣2=0,解得:m=2.当m=2时,原方程为x2﹣x﹣2=0,即(x+1)(x﹣2)=0,∴x1=﹣1,x2=2,∴方程的另一个根为2.(2)∵方程(m﹣1)x2﹣x﹣2=0有两个不同的实数根,∴,解得:m >且m≠1,∴当m >且m≠1时,方程有两个不同的实数根.23.关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.【解答】解:(1)根据题意△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,解得a≤且a≠6,所以a的最大整数值为7;(2)①当a=7时,原方程变形为x2﹣8x+9=0,△=64﹣4×9=28,∴x=,∴x1=4+,x2=4﹣;②∵x2﹣8x+9=0,∴x2﹣8x=﹣9,所以原式=2x2﹣=2x2﹣16x +=2(x2﹣8x)+=2×(﹣9)+=﹣.24.关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.【解答】解:(1)∵原方程有两个不相等的实数根,∴△=[﹣(2k﹣3)]2﹣4(k2+1)=4k2﹣12k+9﹣4k2﹣4=﹣12k+5>0,解得:k <;(2)∵k <,∴x1+x2=2k﹣3<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=﹣2k+3,∵x1x2+|x1|+|x2|=7,∴k2+1﹣2k+3=7,即k2﹣2k﹣3=0,∴k1=﹣1,k2=2,又∵k <,∴k=﹣1.8WORD 格式 可编辑专业知识整理分享25.某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y (千克)与销售单价x (元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x 为多少元.【解答】解:(1)设一次函数解析式为y=kx +b , 把(90,100),(100,80)代入y=kx +b 得,,解得,,y 与销售单价x 之间的函数关系式为y=﹣2x +280.(2)根据题意得:w=(x ﹣80)(﹣2x +280)=﹣2x 2+440x ﹣22400=1350; 解得(x ﹣110)2=225, 解得x 1=95,x 2=125.答:销售单价为95元或125元.26.如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米. (1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.【解答】解:(1)设通道的宽度为x 米. 由题意(60﹣2x )(40﹣2x )=1500, 解得x=5或45(舍弃), 答:通道的宽度为5米.(2)设种植“四季青”的面积为y 平方米. 由题意:y (30﹣)=2000,解得y=100,答:种植“四季青”的面积为100平方米.27.某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m (m >0)元.在不考虑其他因素的条件下,当m 为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元? 【解答】22.(1)假设甲种商品的进货单价为x 元、乙种商品的进货单价为y 元, 根据题意可得:,解得:.答:甲、乙零售单价分别为2元和3元.(2)根据题意得出:(1﹣m )(500+×100)+500=1000即2m 2﹣m=0,解得m=0.5或m=0(舍去),答:当m定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1000元.28.已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.【解答】解(1)∵△=(m+6)2﹣4(3m+9)=m2≥0∴该一元二次方程总有两个实数根(2)动点P(m,n)所形成的函数图象经过点A(1,16),∵n=4(x1+x2)﹣x1x2=4(m+6)﹣(3m+9)=m+15∴P(m,n)为P(m,m+15).∴A(1,16)在动点P(m,n)所形成的函数图象上.10。
一元二次方程200题(含答案详解)
一元二次方程:
填空:
1.ቤተ መጻሕፍቲ ባይዱ元二次方程 x2﹣3x=4 中,b2﹣4ac=
.
2.一元二次方程 x(x﹣1)=0 的解是
.
3.若 x=2 是关亍 x 的方程 x2﹣x﹣a2+5=0 的一个根,则 a 的值为
.
4.如果二次三项式 x2﹣6x+m2是一个完全平方式,那么 m 的值为
.
32.方程(x﹣1)2=4 的解为
.
33.一元二次方程 x2=16 的解是
.
34.在实数范围内定义运算“☆”,其觃则为:a☆b=a2﹣b2,则方程(4☆3)
☆x=13 的解为 x=
.
35.将 4 个数 a,b,c,d 排成 2 行、2 列,两边各加一条竖直线记成 ,定
义 =ad﹣bc,上述记号就叫做 2 阶行列式.若
.
16.若 x=1 是一元二次方程 x2+x+c=0 的一个解,则 c2=
.
17.已知 x=1 是关亍 x 的一元二次方程 2x2+kx﹣1=0 的一个根,则实数 k 的
值是
.
18.已知关亍 x 的方程 x2﹣5x+m=0 的一个根是 1,则 m 的值是
.
19.已知 x=1 是方程 ax2+x﹣2=0 的一个根,则 a=
5.一个广告公司制作广告的收费标准是:以面积为单位,在丌超过觃定面积 A
(m2)的范围内,每张广告收费 1 000 元,若超过 Am2,则除了要交返 1 000
元的基本广告费以外,超过部分迓要按每平方米 50A 元缴费.下表是该公司对
两家用户广告的面积及相应收费情况的记载:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程测试题考试围:一元二次方程;考试时间:120分钟;命题人:瀚博教育第Ⅰ卷(选择题)一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2) C.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P 的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根 B.有一正根一负根且正根的绝对值大C.有两个负根 D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根 B.有两个负根C.有一正根一负根且正根绝对值大 D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值围是()A.B.C.D.第Ⅱ卷(非选择题)二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m= .16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q= .17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为米.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△0(填:“>”或“=”或“<”).评卷人得分三.解答题(共8小题)21.(6分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)22.(6分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.23.(6分)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.(6分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值围;(2)若x1x2+|x1|+|x2|=7,求k的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?28.(10分)已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.一元二次方程测试题参考答案与试题解析一.选择题(共12小题)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5【解答】解:x(x﹣2)=3x,x(x﹣2)﹣3x=0,x(x﹣2﹣3)=0,x=0,x﹣2﹣3=0,x 1=0,x2=5,故选B.2.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2) C.x3﹣2x﹣4=0 D.(x﹣1)2+1=0【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项错误;B、由原方程得到2x﹣6=0,未知数的最高次数是1,不是一元二次方程,故本选项错误;C、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确;故选D.3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.3【解答】解:∵关于x的一元二次方程x2+a2﹣1=0的一个根是0,∴02+a2﹣1=0,解得,a=±1,故选C.4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=17【解答】解:设游客人数的年平均增长率为x,则2016的游客人数为:12×(1+x),2017的游客人数为:12×(1+x)2.那么可得方程:12(1+x)2=17.故选:C.5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P 的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).答:动点P,Q运动3秒时,能使△PBQ的面积为15cm2.6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210 C.2x+2(x+12)=210 D.2x+2(x﹣12)=210【解答】解:设场地的长为x米,则宽为(x﹣12)米,根据题意得:x(x﹣12)=210,故选:B.7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大【解答】解:x2+bx﹣2=0,△=b2﹣4×1×(﹣2)=b2+8,即方程有两个不相等的实数根,设方程x2+bx﹣2=0的两个根为c、d,则c+d=﹣b,cd=﹣2,由cd=﹣2得出方程的两个根一正一负,由c+d=﹣b和b<0得出方程的两个根中,正数的绝对值大于负数的绝对值,故选B.8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或1【解答】解:根据根与系数的关系,得x1+x2=﹣1,x1x2=k.又x12+x1x2+x22=2k2,则(x1+x2)2﹣x1x2=2k2,即1﹣k=2k2,解得k=﹣1或.当k=时,△=1﹣2<0,方程没有实数根,应舍去.∴取k=﹣1.故本题选A.9.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大【解答】解:∵a>0,b<0,c<0,∴△=b2﹣4ac>0,<0,﹣>0,∴一元二次方程ax2+bx+c=0有两个不相等的实数根,且两根异号,正根的绝对值较大.故选:C.10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1【解答】解:A、在方程ax2+bx+c=0中△=b2﹣4ac,在方程cx2+bx+a=0中△=b2﹣4ac,∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;B、∵“和符号相同,和符号也相同,∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;C、∵5是方程M的一个根,∴25a+5b+c=0,∴a+b+c=0,∴是方程N的一个根,正确;D、M﹣N得:(a﹣c)x2+c﹣a=0,即(a﹣c)x2=a﹣c,∵a﹣c≠1,∴x2=1,解得:x=±1,错误.故选D.11.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.16【解答】解:∵m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,∴m+n=2t,mn=t2﹣2t+4,∴(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7.∵方程有两个实数根,∴△=(﹣2t)2﹣4(t2﹣2t+4)=8t﹣16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.故选D.12.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值围是( ) A . B . C . D .【解答】解:方法1、∵方程有两个不相等的实数根, 则a ≠0且△>0,由(a+2)2﹣4a ×9a=﹣35a 2+4a+4>0, 解得﹣<a <, ∵x 1+x 2=﹣,x 1x 2=9, 又∵x 1<1<x 2, ∴x 1﹣1<0,x 2﹣1>0, 那么(x 1﹣1)(x 2﹣1)<0, ∴x 1x 2﹣(x 1+x 2)+1<0, 即9++1<0, 解得<a <0,最后a 的取值围为:<a <0. 故选D .方法2、由题意知,a ≠0,令y=ax 2+(a+2)x+9a , 由于方程的两根一个大于1,一个小于1, ∴抛物线与x 轴的交点分别在1两侧, 当a >0时,x=1时,y <0, ∴a+(a+2)+9a <0,∴a <﹣(不符合题意,舍去), 当a <0时,x=1时,y >0, ∴a+(a+2)+9a >0, ∴a >﹣, ∴﹣<a <0, 故选D .二.填空题(共8小题)13.若x 1,x 2是关于x 的方程x 2﹣2x ﹣5=0的两根,则代数式x 12﹣3x 1﹣x 2﹣6的值是 ﹣3 . 【解答】解:∵x 1,x 2是关于x 的方程x 2﹣2x ﹣5=0的两根,∴x 12﹣2x 1=5,x 1+x 2=2,∴x 12﹣3x 1﹣x 2﹣6=(x 12﹣2x 1)﹣(x 1+x 2)﹣6=5﹣2﹣6=﹣3. 故答案为:﹣3.14.已知x 1,x 2是关于x 的方程x 2+ax ﹣2b=0的两实数根,且x 1+x 2=﹣2,x 1•x 2=1,则b a 的值是 . 【解答】解:∵x 1,x 2是关于x 的方程x 2+ax ﹣2b=0的两实数根, ∴x 1+x 2=﹣a=﹣2,x 1•x 2=﹣2b=1, 解得a=2,b=﹣, ∴b a =(﹣)2=. 故答案为:.15.已知2x|m|﹣2+3=9是关于x 的一元二次方程,则m= ±4 .【解答】解:由题意可得|m|﹣2=2, 解得,m=±4. 故答案为:±4.16.已知x 2+6x=﹣1可以配成(x+p )2=q 的形式,则q= 8 . 【解答】解:x 2+6x+9=8, (x+3)2=8. 所以q=8. 故答案为8.17.已知关于x 的一元二次方程(m ﹣1)x 2﹣3x+1=0有两个不相等的实数根,且关于x 的不等式组的解集是x <﹣1,则所有符合条件的整数m 的个数是 4 .【解答】解:∵关于x 的一元二次方程(m ﹣1)x 2﹣3x+1=0有两个不相等的实数根, ∴m ﹣1≠0且△=(﹣3)2﹣4(m ﹣1)>0,解得m <且m ≠1, ,∵解不等式组得,而此不等式组的解集是x <﹣1, ∴m ≥﹣1,∴﹣1≤m <且m ≠1,∴符合条件的整数m 为﹣1、0、2、3.故答案为4.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为 2 .【解答】解:由已知得:△=b2﹣4ac=22﹣4(m﹣2)≥0,即12﹣4m≥0,解得:m≤3,∴偶数m的最大值为2.故答案为:2.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 1 米.【解答】解:设人行道的宽度为x米(0<x<3),根据题意得:(18﹣3x)(6﹣2x)=60,整理得,(x﹣1)(x﹣8)=0.解得:x1=1,x2=8(不合题意,舍去).即:人行通道的宽度是1米.故答案是:1.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△>0(填:“>”或“=”或“<”).【解答】解:∵次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴△=(﹣2)2﹣4(kb+1)=﹣4kb>0.故答案为>.三.解答题(共8小题)21.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.【解答】解:(1)x2﹣14x+49=57,(x﹣7)2=57,x﹣7=±,所以x1=7+,x2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121,x=,所以x1=9,x2=﹣2;(3)(2x+3)2﹣4(2x+3)=0,(2x+3)(2x+3﹣4)=0,2x+3=0或2x+3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.22.关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.【解答】解:(1)将x=﹣1代入原方程得m﹣1+1﹣2=0,解得:m=2.当m=2时,原方程为x2﹣x﹣2=0,即(x+1)(x﹣2)=0,∴x1=﹣1,x2=2,∴方程的另一个根为2.(2)∵方程(m﹣1)x2﹣x﹣2=0有两个不同的实数根,∴,解得:m>且m≠1,∴当m>且m≠1时,方程有两个不同的实数根.23.关于x 的一元二次方程(a ﹣6)x 2﹣8x+9=0有实根. (1)求a 的最大整数值;(2)当a 取最大整数值时,①求出该方程的根; ②求2x 2﹣的值.【解答】解:(1)根据题意△=64﹣4×(a ﹣6)×9≥0且a ﹣6≠0, 解得a ≤且a ≠6,所以a 的最大整数值为7;(2)①当a=7时,原方程变形为x 2﹣8x+9=0, △=64﹣4×9=28, ∴x=,∴x 1=4+,x 2=4﹣; ②∵x 2﹣8x+9=0, ∴x 2﹣8x=﹣9, 所以原式=2x 2﹣ =2x 2﹣16x+ =2(x 2﹣8x )+ =2×(﹣9)+ =﹣.24.关于x 的方程x 2﹣(2k ﹣3)x+k 2+1=0有两个不相等的实数根x 1、x 2. (1)求k 的取值围;(2)若x 1x 2+|x 1|+|x 2|=7,求k 的值.【解答】解:(1)∵原方程有两个不相等的实数根,∴△=[﹣(2k ﹣3)]2﹣4(k 2+1)=4k 2﹣12k+9﹣4k 2﹣4=﹣12k+5>0, 解得:k <;(2)∵k <, ∴x 1+x 2=2k ﹣3<0, 又∵x 1•x 2=k 2+1>0, ∴x 1<0,x 2<0,∴|x 1|+|x 2|=﹣x 1﹣x 2=﹣(x 1+x 2)=﹣2k+3, ∵x 1x 2+|x 1|+|x 2|=7,∴k 2+1﹣2k+3=7,即k 2﹣2k ﹣3=0, ∴k 1=﹣1,k 2=2, 又∵k <, ∴k=﹣1.25.某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y (千克)与销售单价x (元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x 为多少元.【解答】解:(1)设一次函数解析式为y=kx+b , 把(90,100),(100,80)代入y=kx+b 得, , 解得,,y 与销售单价x 之间的函数关系式为y=﹣2x+280.(2)根据题意得:w=(x ﹣80)(﹣2x+280)=﹣2x 2+440x ﹣22400=1350; 解得(x ﹣110)2=225, 解得x 1=95,x 2=125.答:销售单价为95元或125元.26.如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.【解答】解:(1)设通道的宽度为x米.由题意(60﹣2x)(40﹣2x)=1500,解得x=5或45(舍弃),答:通道的宽度为5米.(2)设种植“四季青”的面积为y平方米.由题意:y(30﹣)=2000,解得y=100,答:种植“四季青”的面积为100平方米.27.某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?【解答】22.(1)假设甲种商品的进货单价为x元、乙种商品的进货单价为y元,根据题意可得:,解得:.答:甲、乙零售单价分别为2元和3元.(2)根据题意得出:(1﹣m)(500+×100)+500=1000即2m2﹣m=0,解得m=0.5或m=0(舍去),答:当m定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1000元.28.已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.【解答】解(1)∵△=(m+6)2﹣4(3m+9)=m2≥0∴该一元二次方程总有两个实数根(2)动点P(m,n)所形成的函数图象经过点A(1,16),∵n=4(x1+x2)﹣x1x2=4(m+6)﹣(3m+9)=m+15∴P(m,n)为P(m,m+15).∴A(1,16)在动点P(m,n)所形成的函数图象上.。