2018年吉林中考数学总复习动点问题练习含答案
2018吉林中考数学总复习动点问题练习(四)
2018吉林中考数学总复习动点问题2.4 因动点产生的数轴问题练习年班姓名成绩:例1.如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x 轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC 于点F,点E、点F的纵坐标分别记为yE,yF.特例探究填空:当m=1,n=2时,yE=2,yF=2;当m=3,n=5时,yE=15,yF=15.归纳证明对任意m,n(n>m>0),猜想yE与yF的大小关系,并证明你的猜想.拓展应用(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出yE与yF的大小关系;(2)连接EF,AE.当S四边形OFEA=3S△OFE时,直接写出m与n的关系及四边形OFEA 的形状.OA•AF=2••EF•AFm=例2.如图12,在平面直角坐标系中,四边形ABCD 是以AB 为直径的⊙M 的内接四边形,点A ,B 在x 轴上,MBC ∆是边长为2的等边三角形,过点M 作直线l 与x 轴垂直,交⊙M 于点E ,垂足为点M ,且点D 平分 .(1)求过A ,B ,E 三点的抛物线的解析式; (2)求证:四边形AMCD 是菱形;(3)请问在抛物线上是否存在一点P ,使得ABP ∆的面积等于定值5?若存在,请求出所有的点P 的坐标;若不存在,请说明理由.解:(1)由题意可知MBC ∆为等边三角形点A ,B ,C ,E 均在⊙M 上∴2====ME MC MB MA又∵MB CO ⊥ ∴1==BO MO ∴A (3-,0),B (1,0),E (1-,2-) 抛物线顶点E 的坐标为(1-,2-) 设函数解析式为()212-+=x a y (0≠a )把点B (1,0)代入()212-+=x a y解得:21=a ∴二次函数解析式为 ()21212-+=x y (2)连接DM ,∵MBC ∆为等边三角形 ∴︒=∠60CMB ∴︒=∠120AMC∵点D 平分弧AC ∴︒=∠=∠=∠6021AMC CMD AMD ∵MA MC MD ==∴MCD ∆,MDA ∆是等边三角形 ∴AD MA CM DC ===∴四边形AMCD 为菱形(四条边都相等的四边形是菱形)(3)存在. 理由如下:设点P 的坐标为(m ,n ) ∵12ABP S AB n ∆=,4=AB ∴5421=⨯⨯n 即52=n 解得25±=n 当25=n 时,()2521212=-+m解此方程得:21=m ,42-=m即点P 的坐标为(2,25),(4-,25) 当25-=n 时,()2521212-=-+m此方程无解∴所求点P 坐标为(2,25),(4-,25)(注:每题只给出一种解法,如有不同解法请参照评分标准给分)。
2018吉林中考数学总复习动点问题练习(二)
因此 MD>MP,⊙M 与直线 AB 相离. (2)①如图 4,MO≥MD>MP,因此不存在 MO=MP 的情况.
图4
②如图 5,当 PM=PO 时,又因为 PB=PO,因此△BOM 是直角三角形. 在 Rt△BOM 中,BM=2,
cos B BO 4 8 42 BO OA BM 5 ,所以 5 .此时 5 .
B
=(
)2
A
Q
D
整理得:y=
E
P
C
25、⑴证明:∵四边形 ABCD 为正方形; A E
[键入文字]
Q
D
∴∠BAP+∠QAE=∠B=90O, ∵QE⊥AP; ∴∠QAE+∠EQA=∠AEQ=9 0O ∴∠BAP=∠EQA, ∠B=∠AEQ;
B
P
C
为两个具有公共直角边的直角三角形. 2018 年吉林市中考数学总复习动点问题专题练习 满分解答 在 Rt△ABC 中,AC=6, 所以 AB=10,BC=8. 的半径长为 1,⊙B 过点 M 作 MD⊥AB,垂足为 D. 在 Rt△BMD 中,BM=2,
sin B MD 3 6 MD BM 5 ,所以 5.
[键入文字]
(3)如图 7,过点 N 作 NF⊥AB,垂足为 F.联结 ON. 当两圆外切时,半径和等于圆心距,所以 ON=x+y. 在 Rt△BNF 中,BN=y, 在 Rt△ONF 中,
sin B 3 4 3 4 cos B NF y BF y 5, 5 ,所以 5 , 5 . 4 y 5 ,由勾股定理得
OF AB AO BF 10 x
ON2=OF2+NF2.
于是得到 整理,得
( x y ) 2 (10 x y 250 50 x x 40
2018年吉林省长春市中考数学试卷(含答案与解析)
数学试卷 第1页(共32页) 数学试卷 第2页(共32页)绝密★启用前吉林省长春市2018年初中学业水平考试数 学一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.15-的绝对值是 ( )A .15-B .15C .5-D .52.长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2 500 000 000元,2 500 000 000这个数用科学记数法表示为( )A .100.2510⨯B .102.510⨯C .92.510⨯D .82510⨯ 3.下列立体图形中,主视图是圆的是( )ABCD 4.不等式360x -≥的解集在数轴上表示正确的是( )ABCD5.如图,在ABC △中,CD 平分ACB ∠交AB 于点D ,过点D 作DE BC 交AC 于点E .若54A ∠=︒,48B ∠=︒,则CDE ∠的大小为 ( )A .44︒B .40︒C .39︒D .38︒6.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺7.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A 、B 在同一水平面上).为了测量A 、B 两地之间的距离,一架直升飞机从A 地出发,垂直上升800米到达C 处,在C 处观察B 地的俯角为α,则A 、B 两地之间的距离为( )A .800sin α米B .800tan α米C .800sin α米D .800tan α米 8.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数0k y x x=(>)的图象上,若2AB =,则k 的值为 ( )A .4B.C .2D毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共32页) 数学试卷 第4页(共32页)二、填空题(本大题共6小题,每小题3分,共18分) 9..(填“>”、“=”或“<”) 10.计算:23•a a = .11.如图,在平面直角坐标系中,点A 、B 的坐标分别为()1,3、(),3n ,若直线2y x =与线段AB 有公共点,则n 的值可以为 .(写出一个即可)12.如图,在ABC △中,AB AC =.以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD .若32A ∠=︒,则CDB ∠的大小为 度.13.如图,在ABCD 中,7AD=,AB =60B ∠=︒.E 是边BC 上任意一点,沿AE 剪开,将ABE △沿BC 方向平移到DCF △的位置,得到四边形AEFD ,则四边形AEFD 周长的最小值为 .14.如图,在平面直角坐标系中,抛物线2y x mx =+交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A '恰好落在抛物线上.过点A '作x 轴的平行线交抛物线于另一点C .若点A '的横坐标为1,则A C '的长为 .三、解答题(本大题共10小题,共78分)15.(本小题满分6分)先化简,再求值:22111x x x -+--,其中1x =.16.(本小题满分6分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为1A 、2A ,图案为“蝴蝶”的卡片记为B ).17.(本小题满分6分)图①、图②均是88⨯的正方形网格,每个小正方形的顶点称为格点,线段OM 、ON 的端点均在格点上.在图①、图②给定的网格中以OM 、ON 为邻边各画一个四边形,使第四个顶点在格点上.要求: (1)所画的两个四边形均是轴对称图形. (2)所画的两个四边形不全等.数学试卷 第5页(共32页) 数学试卷 第6页(共32页)18.(本小题满分7分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润. (1)求每套课桌椅的成本; (2)求商店获得的利润.19.(本小题满分7分)如图,AB 是O 的直径,AC 切O 于点A ,BC 交O 于点D .已知O 的半径为6,40C ∠=︒. (1)求B ∠的度数.(2)求AD 的长.(结果保留π)20.(本小题满分7分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下: 20 21 19 16 27 18 31 29 21 22 25 20 19 22 35 33 19 17 18 29 18 35 22 15 18 18 31 31 19 22 整理上面数据,得到条形统计图:根据以上信息,解答下列问题:(1)上表中众数m 的值为 ;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据 来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”) (3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________21.(本小题满分8分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3 5.5x≤≤时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.22.(本小题满分9分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF BE⊥交BC于点F.易证ABF BCE≌.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG BE⊥交BC于点F,交AD于点G.(1)求证:BE FG=.(2)连结CM,若1CM=,则FG的长为.【应用】如图③,取BE的中点M,连结CM.过点C作CG BE⊥交AD于点G,连结EG、MG.若3CM=,则四边形GMCE的面积为.数学试卷第7页(共32页)数学试卷第8页(共32页)数学试卷 第9页(共32页) 数学试卷 第10页(共32页)23.(本小题满分10分)如图,在Rt ABC 中,90C ∠=︒,30A ∠=︒,4AB =,动点P 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.过点P 作PD AC ⊥于点D (点P 不与点A 、B 重合),作60DPQ ∠=︒,边PQ 交射线DC 于点Q .设点P 的运动时间为t 秒. (1)用含t 的代数式表示线段DC 的长; (2)当点Q 与点C 重合时,求t 的值;(3)设PDQ △与ABC 重叠部分图形的面积为S ,求S 与t 之间的函数关系式; (4)当线段PQ 的垂直平分线经过ABC △一边中点时,直接写出t 的值.24.(本小题满分12分)如图,在平面直角坐标系中,矩形ABCD 的对称中心为坐标原点O ,AD y ⊥轴于点E (点A 在点D 的左侧),经过E 、D 两点的函数2112y x mx =-++(0x ≥)的图象记为1G ,函数2112y x mx =---(0x <)的图象记为2G ,其中m 是常数,图象1G 、2G 合起来得到的图象记为G .设矩形ABCD 的周长为L . (1)当点A 的横坐标为1-时,求m 的值; (2)求L 与m 之间的函数关系式;(3)当2G 与矩形ABCD 恰好有两个公共点时,求L 的值; (4)设G 在42x -≤≤上最高点的纵坐标为0y ,当0392y ≤≤时,直接写出L 的取值范围.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________62.【答案】C【解析】2500000000用科学记数法表示为92.510⨯. 【考点】科学记数法的表示方法. 3.【答案】D【解析】A .圆锥的主视图是三角形,故A 不符合题意; B .圆柱的主视图是矩形,故B 错误; C .圆台的主视图是梯形,故C 错误; D .球的主视图是圆,故D 正确.【考点】简单几何体的三视图,熟记常见几何体的三视图是解题关键. 4.【答案】B【解析】360362x x x ≥≥≥﹣,,,在数轴上表示为,故选:B .【考点】解一元一次不等式和在数轴上表示不等式的解集. 5.【答案】 C 【解析】5448180544878A B ACB ∠=︒∠=︒∴∠=︒-︒-︒=︒,,,CD 平分ACB ∠交AB 于点D ,178=392DCB ∴∠=⨯︒︒,39DE BC CDE DCB ∴∠=∠=︒∥,,故选:C .7 / 16【考点】三角形内角和问题. 6.【答案】B【解析】解:设竹竿的长度为x 尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,1.5150.5x ∴=,解得45x =(尺). 【考点】相似三角形的应用. 7.【答案】D【解析】解:在Rt ABC 中,90800CAB B AC α∠=︒∠==,,米,ACtan ABα∴=, 800tan tan AC AB αα∴==. 故选:D .【考点】解直角三角形的应用. 8.【答案】A【解析】解:作BD AC ⊥于D ,如图,ABC 为等腰直角三角形,AC ∴==,BD AD CD ∴== AC x ⊥轴,C∴,把C 代入ky x=得4k ==. 故选:A .8【考点】反比例函数图象上点的坐标特征. 9.【答案】>【解析】解:23910=<,3>,故答案为:>.【考点】实数的大小比较和算术平方根的应用. 10.【答案】5a【解析】解:23235•a a a a +==. 故答案为:5a .【考点】同底数的幂的乘法的运算法则. 11.【答案】2【解析】解:∵直线2y x =与线段AB 有公共点,23n ∴≥,32n ∴≥.故答案为:2.【考点】一次函数图象上点的坐标特征. 12.【答案】37 【解析】解:32741372AB AC A ABC ACB BC DC CDB CBD ACB =∠=︒∴∠=∠=︒=∴∠=∠=∠=︒,,,又,.故答案为:37.【考点】等腰三角形的性质,三角形外角的性质. 13.【答案】20【解析】解:当AE BC ⊥时,四边形AEFD 的周长最小, ∵AE BC ⊥,AB =60B ∠=︒.∴3AE BE ==,∵ABE 沿BC 方向平移到DCF 的位置, ∴7EF BC AD ===,9 / 16∴四边形AEFD 周长的最小值为:14620+=, 故答案为:20. 【考点】平移的性质. 14.【答案】3【解析】解:当0y =时,20x mx +=,解得120x x m ==-,,则,0A m (-),∵点A 关于点B 的对称点为A ',点A '的横坐标为1, ∴点A 的坐标为10(-,), ∴抛物线解析式为2y x x =+,当1x =时,22y x x =+=,则1,2A '(),当2y =时,22x x +=,解得1221x x =-=,,则2,1C (-),∴A C '的长为123-=(-). 故答案为3.【考点】二次函数图象上点的坐标特征. 15.【解析】解:()()2222111211111111x x x x x x x x x x x -+---+=--=-+-=-=+当1x时,原式11+= 【考点】分式的化简求值.由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果, 所以抽出的两张卡片上的图案都是“金鱼”的概率为49.10【考点】列表法和树状图法. 17.【答案】解:如图所示:【考点】作图——轴对称变换,以及全等三角形的判定. 18.【答案】解:(1)设每套课桌椅的成本为x 元, 根据题意得:601006072100372x x ⨯-=⨯-()-, 解得:82x =.答:每套课桌椅的成本为82元. (2)60100821080⨯-=()(元). 答:商店获得的利润为1080元. 【考点】一元一次方程的应用. 19.【答案】解:(1)∵AC 切O 于点A ,904050BAC C B ∠=︒∠=︒∴∠=︒,,;(2)连接OD , 502100B AOD B ∠=︒∴∠=∠=︒,,∴AD 的长为100610=1803ππ⨯.【考点】切线的性质、圆周角定理、弧长公式等知识点. 20.【答案】解:(1)由图可得, 众数m 的值为18,11 / 16故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)1+1+2+3+1+2300=10030⨯(名), 答:该部门生产能手有100名工人.【考点】条形统计图、用样本估计总体、加权平均数、中位数和众数.21.【答案】解:(1)每分钟向储存罐内注入的水泥量为1535÷=分钟;(2)设0y kx b k =+≠()把()3,15,()5.5,25代入15=225 5.5k b k b +⎧⎨=+⎩,解得43k b =⎧⎨=⎩∴当3 5.5x ≤≤时,y 与x 之间的函数关系式为43y x =+(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为541-=立方米;只打开输出口前,水泥输出量为5.53 2.5-=立方米,之后达到总量8立方米需输出8 2.5 5.5-=立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5 5.511+=分钟故答案为:1,11.【考点】一次函数的图象性质以及在实际问题中比例系数k 代表的意义.22.【答案】解:感知:∵四边形ABCD 是正方形,909090AB BC BCE ABC ABE CBE AF BE ABE BAF BAF CBE ∴=∠=∠=︒∴∠+∠=︒⊥∴∠+∠=︒∴∠=∠,,,,,,在ABF 和BCE 中,90BAF CBE AB BC ABC BCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,ABF BCE ASA ∴≌(); 探究:(1)如图②,过点G 作GP BC ⊥于P ,∵四边形ABCD 是正方形,∴90AB BC A ABC =∠=∠=︒,,∴四边形ABPG 是矩形,∴PG AB =,∴PG BC =,同感知的方法得,PGF CBE ∠=∠,在PGF 和CBE 中,90PGF CBE PG BC PFG ECB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,PGF CBE ASA BE FG ∴∴=≌(),,(2)由(1)知,FG BE =,连接CM ,∵90BCE ∠=︒,点M 是BE 的中点,222BE CM FG ∴==∴=,,故答案为:2.应用:同探究(2)得,226BE ME CM ===,∴3ME =,同探究(1)得,6CG BE ==,∵BE CG ⊥, ∴1163922CEGM S CG ME =⨯=⨯⨯=四边形, 故答案为9.【考点】正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质.23.【答案】解:(1)在Rt ABC 中,304A AB ∠=︒=,,13 / 1690AC PD AC ADP CDP ∴=⊥∴∠=∠=︒,,在Rt ADP 中,2AP t =,202DP t AD APcosA t CD AC AD t ∴====∴==,﹣<<); (2)在Rt PDQ 中,∵60DPC ∠=︒,30PQD A PA PQ PD AC AD DQ ∴∠=︒=∠∴=⊥∴=,,,,∵点Q 和点C 重合,21AD DQ AC t ∴+=∴⨯=∴=,;(3)当01t ≤<时,21122PDQ S SDQ DP t ==⨯=⨯=; 当12t <<时,如图2,21CQ AQ AC AD AC t =-=-=--),在Rt CEQ 中,30CQE ∠=︒,∴•121CE CQ tan CQE t t =∠=-=)(﹣),∴)()21112122PDQ ECQ S S S t t t ==⨯-⨯-⨯-=+--,∴())220112t S t <≤=⎨⎪+-<<⎪⎩;(4)当PQ 的垂直平分线过AB 的中点F 时,如图3,11190222230PGF PG PQ AP t AF AB A AQP ∴∠=︒=====∠=∠=︒,,,,60302222212FPG PFG PF PG t AP PF t t t ∴∠=︒∴∠=︒∴==∴+=+=∴=,,,,; 当PQ 的垂直平分线过AC 的中点M 时,如图4,11190222QMN AN AC QM PQ AP t ∴∠=︒=====,, 在Rt NMQ中,cos30MQ NQ ==︒,34AN NQ AQ t +==∴=,, 当PQ 的垂直平分线过BC 的中点时,如图5,111302260301BF BC PE PQ t H ABC BFH H BH BF ∴====∠=︒∠=︒∴∠=︒=∠∴==,,,,,,在Rt PEH 中,22PH PE t ==,22554AH AP PH AB BH t t t ∴=+=+∴+=∴=,,,即:当线段PQ 的垂直平分线经过ABC △一边中点时,t 的值为12秒或34秒或54秒.15 / 16【考点】等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质.24.【答案】解:(1)由题意()()()0,11,11,1E A B -,,把()1,1B 代入2112y x mx =-++中,得到1112m =-++, ∴12m =. (2)∵抛物线1G 的对称轴1m x m =-=-, ∴2AE ED m ==,∵矩形ABCD 的对称中心为坐标原点O ,4284AD BC m AB CD L m ∴====∴=+,,.(3)∵当2G 与矩形ABCD 恰好有两个公共点,∴抛物线2G 的顶点21,12M m m ⎛⎫-- ⎪⎝⎭在线段AE 上, ∴21112m -=, ∴2m =或2-(舍弃),∴82420L =⨯+=.(4)①当最高点是抛物线1G 的顶点21,12N m m ⎛⎫+ ⎪⎝⎭时, 若213122m +=,解得1m =或1-(舍弃), 若21192m +=时,4m =或4-(舍弃), 又∵2m ≤,观察图象可知满足条件的m 的值为12m ≤≤,②当()2,21m -是最高点时,321922m m⎧≤-≤⎪⎨⎪≤⎩,解得25m ≤≤,综上所述,15m ≤≤,∴1244L ≤≤.【考点】二次函数综合题、矩形的性质、待定系数法、不等式组等知识.。
2018年吉林中考数学各种类型动点问题汇编 (共76张PPT)
1.如图所示,我国两艘海监船 A,B 在南海海域巡航,某一时刻,两船同时收到指令,立 即前往救援遇险抛锚的渔船 C,此时,B 船在 A 的正南方向 5 海里处,A 船测得渔船 C 在其南偏东 450 方向, B 船测得渔船 C 在其南偏东 530 方向.已知 A 船的航速为 30 海里/ 小时,B 船的航速为 25 海里/小时,问 C 船至少要等待多长时间才能得到救援?(参考 数据:sin53°≈
7.如图,AB是半圆O的直径,射线AM⊥AB,点P在AM上,连接OP交半圆O于 点D,PC切半圆O于点D,连接BC。 (1)求证:BC∥OP; (2)若半圆O的半径等于2,填空: ①当AP=____时,四边形OAPC是正方形; ②当AP=_____时,四边形BODC是菱形。
锐角三角函数
类型一:背对背型
3.如图,在四边形ABCD中,AD//BC,∠A=∠B=90°,AD=1,AB=5,BC=4,点 P是线段AB上的一个动点,点E是CD的中点,延长PE至F,使EF=PE. (1)求证:△PED≌△FEC; (2)填空: ①当AP=________时,四边形PCFD是矩形; ②当AP=________时,四形PCFD是菱形.
4 3 4 ,con53°≈ ,tan53°≈ , 2 ≈1.41) 5 5 3
2.如图,某飞机于空中探测某座山的高度,在点 A 处飞机的飞行高度是 AF=3700 米,从 飞机上观测山顶目标 C 的俯角是 45°, 飞机继续以相同的高度飞行 300 米到达 B 处, 此 时观测目标 C 的俯角是 50°, 求这座山的高度 CD. (参考数据: sin50°≈0.77,c0s50° ≈0.64,tan50°≈1.20)
特殊四边形的综合探究问题,∠ACB=90°,过点C的直线MN∥AB,D为AB边 上的一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE. (1)求证:CE=AD; (2)当D在AB中点时. ①四边形BECD是 _______ 形; ②则当∠A等于_____ 度时,四边形BECD是正方形.
2018年吉林省数学中考真题含答案解析
4.如图,将木条 a,b 与 c 钉在一起,∠1 =70°, ∠2 =50°.要使木条 a 与 b 平行,木条 a 旋转的度数至
少是
(A)10°.
(B)20°.
(C)50°.
(D )70°.
5. 如图,将△ABC 折叠,使点 A 与 BC 边中点 D 重合,折痕为 MN. 若 A B = 9 , BC = 6, 则△
重合),且 MN∥BC.将△AMN 沿 MN 所在的直线折叠,使点 A 的对应点为 P.
(1)当 MN 为何值时,点 P 恰好落在 BC 上?
(2)设 MN=x,△PMN 与△ABC 重叠部分的面积为 y,试写出 y 与 x 的函数关系式.当 x
为何值时,y 的值最大?最大值是多少?
A
M
N
B
P
C
14
(2)写出此题正确的解答过程.
16.如 图,在正方形 ABCD 中,点 E,F 分别
在 BC,CD 上,且 BE=CF. 求证:△ABE ≌△BCF.
2
17. 一个不透明的口袋中有三个小球,上面分别标有字母 A,B,C,除所标字母不同外,其它完全相
同.从 中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球. 用画树状图(或列表)
表二
中位数
众数 400
乙
400.8
得出结论: 包装机分装情况比较好的是
402
(填甲或乙),说明你的理由。
方差 36. 85
8.56
23.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行.小玲开始跑步中途改为 步行,到达图书馆恰好用 30min.小东骑自行车以 300m/m in 的速度直接回家.
活动目的
吉林市中考一轮复习《第45讲:点运动综合性问题》课件
考向互动探究
第43课时┃考向互动探究
解题方法点析 此类动点问题涉及二次函数的综合应用以 及待定系数法求二次函数关系式和待定系数法求一次函数关 系式等知识,利用分类讨论思想得出t的值是解题关键.
考向互动探究
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
2018吉林中考数学第一轮复习考点聚焦归类探究回归教材
第45课时 点运动综合型问题
第43课时┃考向互动探究
考向互动探究
探究一、动点二次函数综合型问题
例1.[2013•广安] 如图43-1,在平面直角坐标系xOy中,抛物 线y=ax2+bx+c经过A、B、C三点,已知点A(-3,0),B(0, 3),C(1,0). (1)求此抛物线的关系式;
即所求抛物线的关系式为 y=-153x2+4153x+4 5 3.
考向互动探究
第43课时┃考向互动探究
解析
(2)依题意,可知 OC=CB=2,∠COA=60°,
∴当动点 Q 运动到 OC 边时,OQ=4-t,
∴△OPQ 的高为:OQ·sin60°
∴
S
=
2018年吉林省中考数学试卷(答案+解析)(可编辑修改word版)
A .{B .{C .{D .{2018 年吉林省中考数学试卷一、选择题(共 6 小题,每小题 2 分,满分 12 分) 1.(2 分)计算(﹣1)×(﹣2)的结果是( ) A .2B .1C .﹣2D .﹣32.(2 分)如图是由 4 个相同的小正方体组成的立体图形,它的主视图是()A .B .C .D .3.(2 分)下列计算结果为 a 6 的是( )A .a 2•a 3B .a 12÷a 2C .(a 2)3D .(﹣a 2)34.(2 分)如图,将木条 a ,b 与 c 钉在一起,∠1=70°,∠2=50°,要使木条 a 与 b 平行,木条 a 旋转的度数至少是()A .10°B .20°C .50°D .70°5.(2 分)如图,将△ABC 折叠,使点 A 与 BC 边中点 D 重合,折痕为 MN ,若 AB =9,BC =6,则△DNB 的周长为()A .12B .13C .14D .156.(2 分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡 x 只,兔 y 只,可列方程组为( )x + y = 35 2x + 2y = 94 x + y = 354x + 2y = 94x + y = 354x + 4y = 94x + y = 352x + 4y = 94二、填空题(共 8 小题,每小题3 分,满分 24 分) 7.(3 分)计算: 16=.8.(3 分)买单价 3 元的圆珠笔 m 支,应付 元. 9.(3 分)若 a +b =4,ab =1,则 a 2b +ab 2=.10.(3 分)若关于 x 的一元二次方程 x 2+2x ﹣m =0 有两个相等的实数根,则 m 的值为.11.(3 分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C,则点C 坐标为.12.(3 分)如图是测量河宽的示意图,AE 与BC 相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB= m.13.(3 分)如图,A,B,C,D 是⊙O 上的四个点,AB=BC,若∠AOB=58°,则∠BDC= 度.114.(3 分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=2,则该等腰三角形的顶角为度.三、解答题(共12 小题,满分84 分)15.(5 分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2) (第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2 (第三步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出此题正确的解答过程.16.(5 分)如图,在正方形ABCD 中,点E,F 分别在BC,CD 上,且BE=CF,求证:△ABE≌△BCF.17.(5 分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.k18.(5 分)在平面直角坐标系中,反比例函数y=x(k≠0)图象与一次函数y=x+2 图象的一个交点为P,且点P 的横坐标为1,求该反比例函数的解析式.19.(7 分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x 表示,庆庆同学所列方程中的y 表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.20.(7 分)如图是由边长为1 的小正方形组成的8×4 网格,每个小正方形的顶点叫做格点,点A,B,C,D 均在格点上,在网格中将点D 按下列步骤移动:第一步:点D 绕点A 顺时针旋转180°得到点D1;第二步:点D1绕点B 顺时针旋转90°得到点D2;第三步:点D2绕点C 顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D 经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π).21.(7 分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α 的代数式表示旗杆AB 的高度.数学活动方案22.(7 分)为了调查甲、乙两台包装机分装标准质量为400g 奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10 袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:得出结论:包装机分装情况比较好的是(填甲或乙),说明你的理由.23.(8 分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min 的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y 关于x 的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.24.(8 分)如图①,在△ABC 中,AB=AC,过AB 上一点D 作DE∥AC 交BC 于点E,以E 为顶点,ED 为一边,作∠DEF=∠A,另一边EF 交AC 于点F.(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,▱ADEF 的形状为;(3)延长图①中的DE 到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF 的形状,并说明理由.25.(10 分)如图,在矩形ABCD 中,AB=2cm,∠ADB=30°.P,Q 两点分别从A,B 同时出发,点P 沿折线AB﹣BC 运动,在AB 上的速度是2cm/s,在BC 上的速度是2 3cm/s;点Q 在BD 上以2cm/s 的速度向终点D 运动,过点P 作PN⊥AD,垂足为点N.连接PQ,以PQ,PN 为邻边作▱PQMN.设运动的时间为x(s),▱PQMN 与矩形ABCD 重叠部分的图形面积为y(cm2)(1)当PQ⊥AB 时,x= ;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)直线AM 将矩形ABCD 的面积分成1:3 两部分时,直接写出x 的值.26.(10 分)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x 轴相交于A,B 两点,与y 轴相交于点C,顶点为D,直线DC 与x 轴相交于点E.(1)当a=﹣1 时,抛物线顶点D 的坐标为,OE= ;(2)OE 的长是否与a 值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE.设P(m,n),直接写出n 关于m 的函数解析式及自变量m 的取值范围.2018 年吉林省中考数学试卷参考答案与试题解析一、选择题(共6 小题,每小题2 分,满分12 分)1.(2 分)计算(﹣1)×(﹣2)的结果是( )A.2 B.1 C.﹣2 D.﹣3【分析】根据“两数相乘,同号得正”即可求出结论.【解答】解:(﹣1)×(﹣2)=2.故选:A.2.(2 分)如图是由4 个相同的小正方体组成的立体图形,它的主视图是( )A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3 个正方形,第二层最右边有一个正方形.故选:B.3.(2 分)下列计算结果为a6 的是( )A.a2•a3 B.a12÷a2 C.(a2)3 D.(﹣a2)3【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【解答】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.4.(2 分)如图,将木条a,b 与c 钉在一起,∠1=70°,∠2=50°,要使木条a 与b 平行,木条a 旋转的度数至少是( )A.10°B.20°C.50°D.70°【分析】根据同位角相等两直线平行,求出旋转后∠2 的同位角的度数,然后用∠1 减去即可得到木条a 旋转的度数.【解答】解:如图.∵∠AOC=∠2=50°时,OA∥b,∴要使木条a 与b 平行,木条a 旋转的度数至少是70°﹣50°=20°.故选:B.A .{B .{ {,5.(2 分)如图,将△ABC 折叠,使点 A 与 BC 边中点 D 重合,折痕为 MN ,若 AB =9,BC =6,则△DNB 的周长为()A .12B .13C .14D .15【分析】由 D 为 BC 中点知 BD =3,再由折叠性质得 ND =NA ,从而根据△DNB 的周长=ND +NB +BD =NA +NB +BD =AB +BD 可得答案.【解答】解:∵D 为 BC 的中点,且 BC =6,1∴BD =2BC =3, 由折叠性质知 NA =ND ,则△DNB 的周长=ND +NB +BD =NA +NB +BD =AB +BD =3+9=12, 故选:A .6.(2 分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡 x 只,兔 y 只,可列方程组为()x + y = 35 2x + 2y = 94 x + y = 35 4x + 4y = 94 x + y = 354x + 2y = 94x + y = 352x + 4y = 94【分析】根据题意可以列出相应的方程组,从而可以解答本题. 【解答】解:由题意可得, x + y = 352x + 4y = 94故选:D .二、填空题(共 8 小题,每小题 3 分,满分 24 分) 7.(3 分)计算: 16= 4 .【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果. 【解答】解:∵42=16,故答案为 4.8.(3 分)买单价 3 元的圆珠笔 m 支,应付 3m 元. 【分析】根据总价=单价×数量列出代数式. 【解答】解:依题意得:3m . 故答案是:3m .9.(3 分)若 a +b =4,ab =1,则 a 2b +ab 2= 4 .【分析】直接利用提取公因式法分解因式,再把已知代入求出答案.∴ 16=4, C .{ D .{【解答】解:∵a +b =4,ab =1, ∴a 2b +ab 2=ab (a +b ) =1×4 =4.故答案为:4.10.(3 分)若关于 x 的一元二次方程 x 2+2x ﹣m =0 有两个相等的实数根,则 m 的值为 ﹣1 .【分析】由于关于 x 的一元二次方程 x 2+2x ﹣m =0 有两个相等的实数根,可知其判别式为 0,据此列出关于 m 的不等式,解答即可.【解答】解:∵关于 x 的一元二次方程 x 2+2x ﹣m =0 有两个相等的实数根, ∴△=b 2﹣4ac =0, 即:22﹣4(﹣m )=0, 解 得 :m =﹣1, 故选答案为﹣1.11.(3 分)如图,在平面直角坐标系中,A (4,0),B (0,3),以点 A 为圆心,AB 长为半径画弧,交 x 轴的负半轴于点 C ,则点 C 坐 标 为 (﹣1,0) .【分析】求出 OA 、OB ,根据勾股定理求出 AB ,即可得出 AC ,求出 OC 长即可. 【解答】解:∵点 A ,B 的坐标分别为(4,0),(0,3), ∴OA =4,OB =3,在 Rt △AOB 中,由勾股定理得:AB = 32 + 42=5, ∴AC =AB =5, ∴OC =5﹣4=1,∴点 C 的坐标为(﹣1,0), 故答案为:(﹣1,0),12.(3 分)如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B =∠C =90°,测得BD =120m ,DC =60m ,EC =50m ,求得河宽AB = 100 m .【分析】由两角对应相等可得△BAD ∽△CED ,利用对应边成比例可得两岸间的大致距离 AB . 【解答】解:∵∠ADB =∠EDC ,∠ABC =∠ECD =90°, ∴△ABD ∽△ECD ,ABBD∴E C = CD ,AB =BD × E C CD ,120 × 50解得:AB= 60 = 100(米).故答案为:100.13.(3 分)如图,A,B,C,D 是⊙O 上的四个点,AB=BC,若∠AOB=58°,则∠BDC= 29 度.1【分析】根据∠BDC=2∠BOC 求解即可;【解答】解:连接OC.∵AB=BC,∴∠AOB=∠BOC=58°,1∴∠BDC=2∠BOC=29°,故答案为29.114.(3 分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=2,则该等腰三角形的顶角为 36 度.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【解答】解:∵△ABC 中,AB=AC,∴∠B=∠C,1∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=2,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.三、解答题(共12 小题,满分84 分)15.(5 分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2) (第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2 (第三步)(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;{(2) 写出此题正确的解答过程.【分析】先计算乘法,然后计算减法.【解答】解:(1)该同学解答过程从第 二步开始出错,错误原因是 去括号时没有变号; 故答案是:二;去括号时没有变号; (2)原式=a 2+2ab ﹣(a 2﹣b 2) =a 2+2ab ﹣a 2+b 2 =2ab +b 2.16.(5 分)如图,在正方形 ABCD 中,点 E ,F 分别在 BC ,CD 上,且 BE =CF ,求证:△ABE ≌△BCF .【分析】根据正方形的性质,利用 SAS 即可证明; 【解答】证明:∵四边形 ABCD 是正方形, ∴AB =BC ,∠ABE =∠BCF =90°, 在△ABE 和△BCF 中,AB = BC ∠ABE = ∠BCF ,B E = CF∴△ABE ≌△BCF .17.(5 分)一个不透明的口袋中有三个小球,上面分别标有字母 A ,B ,C ,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.【分析】列表得出所有等可能的情况数,再找出两次摸出的小球所标字母相同的情况数,即可求出其概率.AB C A (A ,A ) (B ,A ) (C ,A ) B (A ,B ) (B ,B ) (C ,B ) C(A ,C )(B ,C )(C ,C )由列表可知可能出现的结果共 9 种,其中两次摸出的小球所标字母相同的情况数有 3 种, 3 1所以该同学两次摸出的小球所标字母相同的概率=9=3.k18.(5 分)在平面直角坐标系中,反比例函数 y =x (k ≠0)图象与一次函数 y =x +2 图象的一个交点为 P ,且点 P 的横坐标为 1,求 该反比例函数的解析式.【分析】先求出 P 点的坐标,再把 P 点的坐标代入反比例函数的解析式,即可求出答案. 【解答】解:∵把 x =1 代入 y =x +2 得:y =3, 即 P 点的坐标是(1,3),k把 P 点的坐标代入 y =x 得:k =3,3即反比例函数的解析式是 y =x .19.(7 分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x 表示甲队每天修路的长度,庆庆同学所列方程中的y 表示甲队修路400 米所需时间或乙队修路600 米所需时间;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.【分析】(1)根据两人的方程思路,可得出:x 表示甲队每天修路的长度;y 表示甲队修路400 米所需时间或乙队修路600 米所需时间;(2)根据题意,可找出:(冰冰)甲队修路400 米所用时间=乙队修路600 米所用时间;(庆庆)乙队每天修路的长度﹣甲队每天修路的长度=20 米;(3)选择两个方程中的一个,解之即可得出结论.【解答】解:(1)∵冰冰是根据时间相等列出的分式方程,∴x 表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20 米列出的分式方程,∴y 表示甲队修路400 米所需时间或乙队修路600 米所需时间.故答案为:甲队每天修路的长度;甲队修路400 米所需时间或乙队修路600 米所需时间.(2)冰冰用的等量关系是:甲队修路400 米所用时间=乙队修路600 米所用时间;庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20 米(选择一个即可).400 600(3)选冰冰的方程:x=x + 20,去分母,得:400x+8000=600x,移项,x 的系数化为1,得:x=40,检验:当x=40 时,x、x+20 均不为零,∴x=40.答:甲队每天修路的长度为40 米.600 400选庆庆的方程:y﹣y=20,去分母,得:600﹣400=20y,将y 的系数化为1,得:y=10,经验:当y=10 时,分母y 不为0,∴y=10,400∴y=40.答:甲队每天修路的长度为40 米.20.(7 分)如图是由边长为1 的小正方形组成的8×4 网格,每个小正方形的顶点叫做格点,点A,B,C,D 均在格点上,在网格中将点D 按下列步骤移动:第一步:点D 绕点A 顺时针旋转180°得到点D1;第二步:点D1绕点B 顺时针旋转90°得到点D2;第三步:点D2绕点C 顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D 经过的路径;(2)所画图形是轴对称对称图形;(3)求所画图形的周长(结果保留π).【分析】(1)利用旋转变换的性质画出图象即可;(2)根据轴对称图形的定义即可判断;(3)利用弧长公式计算即可;【解答】解:(1)点D→D1→D2→D 经过的路径如图所示:(2)观察图象可知图象是轴对称图形,故答案为轴对称.90 ⋅ π⋅ 4(3)周长=4×180=8π.21.(7 分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α 的代数式表示旗杆AB 的高度.数学活动方案课题测量学校旗杆的高度活动目的运用所学数学知识及方法解决实际问题方案示意图测(1) 用测角量仪测得∠步ADE=α;骤(2) 用皮尺测得BC=a 米,CD=b 米.计算过程【解答】解:(1)用测角仪测得∠ADE=α;(2)用皮尺测得BC=a 米,CD=b 米.(3)计算过程:∵四边形BCDE 是矩形,∴DE=BC=a,BE=CD=b,在Rt△ADE 中,AE=ED•tanα=a•tanα,∴AB=AE+EB=a•tanα+b.22.(7 分)为了调查甲、乙两台包装机分装标准质量为400g 奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10 袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:包装机分装情况比较好的是乙(填甲或乙),说明你的理由.【分析】整理数据:由题干中的数据结合表中范围确定个数即可得;分析数据:根据众数和中位数的定义求解可得;得出结论:根据方差的意义,方差小分装质量较为稳定即可得.【解答】解:整理数据:将甲组数据重新排列为:393、394、395、400、400、400、406、408、409、410,∴甲组数据的中位数为400;乙组数据中402 出现次数最多,有3 次,∴乙组数据的众数为402;得出结论:表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.故答案为:乙.23.(8 分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min 的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为 4000 m,小玲步行的速度为 100 m/min;(2)求小东离家的路程y 关于x 的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.【分析】(1)认真分析图象得到路程与速度数据;(2)采用方程思想列出小东离家路程y 与时间x 之间的函数关系式;(3)两人相遇实际上是函数图象求交点.【解答】解:(1)结合题意和图象可知,线段CD 为小东路程与时间函数图象,折线O﹣A﹣B 为小玲路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为2000÷20=100m/s故答案为:4000,100(2)∵小东从离家4000m 处以300m/min 的速度返回家,则xmin 时,∴他离家的路程y=4000﹣300x40自变量x 的范围为0≤x≤ 3(3)由图象可知,两人相遇是在小玲改变速度之前∴4000﹣300x=200x解得x=8∴两人相遇时间为第8 分钟.24.(8 分)如图①,在△ABC 中,AB=AC,过AB 上一点D 作DE∥AC 交BC 于点E,以E 为顶点,ED 为一边,作∠DEF=∠A,另一边EF 交AC 于点F.(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,▱ADEF 的形状为菱形;(3)延长图①中的DE 到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF 的形状,并说明理由.【分析】(1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明;1(2)根据三角形中位线定理得到DE=2AC,得到AD=DE,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明.【解答】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF 为平行四边形;(2)解:▱ADEF 的形状为菱形,理由如下:∵点D 为AB 中点,1∴AD=2AB,∵DE∥AC,点D 为AB 中点,1∴DE=2AC,∵AB=AC,∴AD=DE,∴平行四边形ADEF 为菱形,故答案为:菱形;(3)四边形AEGF 是矩形,理由如下:由(1)得,四边形ADEF 为平行四边形,∴AF∥DE,AF=DE,∵EG=DE,∴AF∥DE,AF=GE,∴四边形AEGF 是平行四边形,∵AD=AG,EG=DE,∴AE⊥EG,∴四边形AEGF 是矩形.25.(10 分)如图,在矩形ABCD 中,AB=2cm,∠ADB=30°.P,Q 两点分别从A,B 同时出发,点P 沿折线AB﹣BC 运动,在AB 上的速度是2cm/s,在BC 上的速度是2 3cm/s;点Q 在BD 上以2cm/s 的速度向终点D 运动,过点P 作PN⊥AD,垂足为点N.连接PQ,以PQ,PN 为邻边作▱PQMN.设运动的时间为x(s),▱PQMN 与矩形ABCD 重叠部分的图形面积为y(cm2) 2(1)当PQ⊥AB 时,= 3s ;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)直线AM 将矩形ABCD 的面积分成1:3 两部分时,直接写出x 的值.【分析】(1)当PQ⊥AB 时,BQ=2PB,由此构建方程即可解决问题;(2)分三种情形分别求解即可解决问题;(3)分两种情形分别求解即可解决问题;【解答】解:(1)当PQ⊥AB 时,BQ=2PB,∴2x=2(2﹣2x),2∴x=3s.2故答案为3s.2(2)①如图1 中,当0<x≤3时,重叠部分是四边形PQMN.3 2y =2(2﹣x +2tx × 3x = 2 x 2+ 3x1 3y =2x × 3x =2 3x 2.2②如图②中,当3<x ≤1 时,重叠部分是四边形 PQEN .③如图 3 中,当 1<x <2 时,重叠部分是四边形 PNEQ .13y =2(2﹣x +2)×[ 3x ﹣2 3(x ﹣1)]= 2 x 2﹣3 3x +4 3; 2(0<x ≤ 3) 综上所述,y ={3x 2 + 3x(2<x ≤ 1).33x 2 ‒ 3 3x + 4 (1<x <2)(3) ①如图 4 中,当直线 AM 经过 BC 中点 E 时,满足条件.2 3x 22 31则有:tan∠EAB=tan∠QPB,3 3x∴2 =2 ‒ 2x‒ x,2解得x=5.②如图5 中,当直线AM 经过CD 的中点E 时,满足条件.此时tan∠DEA=tan∠QPB,3x∴=2 ‒ 2x‒x,4解得x=7,2 4综上所述,当x=5或7时,直线AM 将矩形ABCD 的面积分成1:3 两部分.26.(10 分)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x 轴相交于A,B 两点,与y 轴相交于点C,顶点为D,直线DC 与x 轴相交于点E.(1)当a=﹣1 时,抛物线顶点D 的坐标为 (﹣1,4) ,OE= 3 ;(2)OE 的长是否与a 值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE.设P(m,n),直接写出n 关于m 的函数解析式及自变量m 的取值范围.【分析】(1)求出直线CD 的解析式即可解决问题;(2)利用参数a,求出直线CD 的解析式求出点E 坐标即可判断;(3)求出落在特殊情形下的a 的值即可判断;(4)如图,作PM⊥对称轴于M,PN⊥AB 于N.两条全等三角形的性质即可解决问题;【解答】解:(1)当a=﹣1 时,抛物线的解析式为y=﹣x2﹣2x+3,∴顶点D(﹣1,4),C(0,3),∴直线CD 的解析式为y=﹣x+3,∴E(3,0),∴OE=3,故答案为(﹣1,4),3.(2)结论:OE 的长与a 值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD 的解析式为y=ax﹣3a,当y=0 时,x=3,∴E(3,0),∴OE=3,∴OE 的长与a 值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,∴a=﹣1,当β=60°时,在Rt△OCE 中,OC= 3OE=3 3,∴﹣3a=3 3,∴a=﹣3,∴45°≤β≤60°,a 的取值范围为﹣3≤a≤﹣1.(4)如图,作PM⊥对称轴于M,PN⊥AB 于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,DM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,当顶点D 在x 轴上时,P(1,﹣2),此时m 的值1,∵抛物线的顶点在第二象限,∴m<1.∴n=﹣m﹣1(m<1).第21 页(共21 页)。
2018年吉林省中考数学试卷含答案解析(Word版)
2018年吉林省中考数学试卷一、选择题(共6小题,每小题2分,满分12分)1.(2.00分)计算(﹣1)×(﹣2)的结果是()A.2 B.1 C.﹣2 D.﹣32.(2.00分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(2.00分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)34.(2.00分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a 与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°5.(2.00分)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12 B.13 C.14 D.156.(2.00分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)7.(3.00分)计算:=.8.(3.00分)买单价3元的圆珠笔m支,应付元.9.(3.00分)若a+b=4,ab=1,则a2b+ab2=.10.(3.00分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m 的值为.11.(3.00分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为.12.(3.00分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=m.13.(3.00分)如图,A,B,C,D是⊙O上的四个点,=,若∠AOB=58°,则∠BDC=度.14.(3.00分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为度.三、解答题(共12小题,满分84分)15.(5.00分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出此题正确的解答过程.16.(5.00分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.17.(5.00分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.18.(5.00分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.19.(7.00分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示,庆庆同学所列方程中的y表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.20.(7.00分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π).21.(7.00分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平22.(7.00分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一分析数据:表二得出结论:包装机分装情况比较好的是(填甲或乙),说明你的理由.23.(8.00分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x (min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.24.(8.00分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC 于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,▱ADEF的形状为;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.25.(10.00分)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x=;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.26.(10.00分)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为,OE=;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.2018年吉林省中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2.00分)计算(﹣1)×(﹣2)的结果是()A.2 B.1 C.﹣2 D.﹣3【分析】根据“两数相乘,同号得正”即可求出结论.【解答】解:(﹣1)×(﹣2)=2.故选:A.【点评】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.2.(2.00分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形.故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(2.00分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【解答】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.4.(2.00分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a 与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a旋转的度数.【解答】解:如图.∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是70°﹣50°=20°.故选:B.【点评】本题考查了旋转的性质,平行线的判定,根据同位角相等两直线平行求出旋转后∠2的同位角的度数是解题的关键.5.(2.00分)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12 B.13 C.14 D.15【分析】由D为BC中点知BD=3,再由折叠性质得ND=NA,从而根据△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD可得答案.【解答】解:∵D为BC的中点,且BC=6,∴BD=BC=3,由折叠性质知NA=ND,则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=3+9=12,故选:A.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6.(2.00分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C.D.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.二、填空题(共8小题,每小题3分,满分24分)7.(3.00分)计算:=4.【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴=4,故答案为4.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.8.(3.00分)买单价3元的圆珠笔m支,应付3m元.【分析】根据总价=单价×数量列出代数式.【解答】解:依题意得:3m.故答案是:3m.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.9.(3.00分)若a+b=4,ab=1,则a2b+ab2=4.【分析】直接利用提取公因式法分解因式,再把已知代入求出答案.【解答】解:∵a+b=4,ab=1,∴a2b+ab2=ab(a+b)=1×4=4.故答案为:4.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.(3.00分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m 的值为﹣1.【分析】由于关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的不等式,解答即可.【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.【点评】本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.11.(3.00分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为(﹣1,0).【分析】求出OA、OB,根据勾股定理求出AB,即可得出AC,求出OC长即可.【解答】解:∵点A,B的坐标分别为(4,0),(0,3),∴OA=4,OB=3,在Rt△AOB中,由勾股定理得:AB==5,∴AC=AB=5,∴OC=5﹣4=1,∴点C的坐标为(﹣1,0),故答案为:(﹣1,0),【点评】本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出OC的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.12.(3.00分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=100m.【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,,解得:AB=(米).故答案为:100.【点评】此题主要考查了相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.13.(3.00分)如图,A,B,C,D是⊙O上的四个点,=,若∠AOB=58°,则∠BDC=29度.【分析】根据∠BDC=∠BOC求解即可;【解答】解:连接OC.∵=,∴∠AOB=∠BOC=58°,∴∠BDC=∠BOC=29°,故答案为29.【点评】本题考查圆周角定理,圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(3.00分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为36度.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.【点评】本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理和已知得出5∠A=180°是解此题的关键.三、解答题(共12小题,满分84分)15.(5.00分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;(2)写出此题正确的解答过程.【分析】先计算乘法,然后计算减法.【解答】解:(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;故答案是:二;去括号时没有变号;(2)原式=a2+2ab﹣(a2﹣b2)=a2+2ab﹣a2+b2=2ab+b2.【点评】考查了平方差公式和实数的运算,去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;②a﹣(b﹣c)=a﹣b+c,括号前是“﹣”号,去括号时连同它前面的“﹣”号一起去掉,括号内各项都要变号.16.(5.00分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.【分析】根据正方形的性质,利用SAS即可证明;【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF.【点评】本题考查正方形的性质全等三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(5.00分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.【分析】列表得出所有等可能的情况数,再找出两次摸出的小球所标字母相同的情况数,即可求出其概率.【解答】解:列表得:由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种,所以该同学两次摸出的小球所标字母相同的概率==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.18.(5.00分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.【分析】先求出P点的坐标,再把P点的坐标代入反比例函数的解析式,即可求出答案.【解答】解:∵把x=1代入y=x+2得:y=3,即P点的坐标是(1,3),把P点的坐标代入y=得:k=3,即反比例函数的解析式是y=.【点评】本题考查了用待定系数法求反比例函数的解析式和函数图象上点的坐标特征,能求出P点的坐标是解此题的关键.19.(7.00分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示甲队每天修路的长度,庆庆同学所列方程中的y表示甲队修路400米所需时间;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.【分析】(1)根据两人的方程思路,可得出:x表示甲队每天修路的长度;y表示甲队修路400米所需时间;(2)根据题意,可找出:(冰冰)甲队修路400米所用时间=乙队修路600米所用时间;(庆庆)乙队每天修路的长度﹣甲队每天修路的长度=20米;(3)选择两个方程中的一个,解之即可得出结论.【解答】解:(1)∵冰冰是根据时间相等列出的分式方程,∴x表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,∴y表示甲队修路400米所需时间.故答案为:甲队每天修路的长度;甲队修路400米所需时间.(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可).(3)选冰冰的方程:=,去分母,得:400x+8000=600x,移项,x的系数化为1,得:x=40,检验:当x=40时,x、x+20均不为零,∴x=40.答:甲队每天修路的长度为40米.选庆庆的方程:﹣=20,去分母,得:600﹣400=20y,将y的系数化为1,得:y=10,经验:当y=10时,分母y不为0,∴y=10,∴=40.答:甲队每天修路的长度为40米.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.(7.00分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是轴对称对称图形;(3)求所画图形的周长(结果保留π).【分析】(1)利用旋转变换的性质画出图象即可;(2)根据轴对称图形的定义即可判断;(3)利用弧长公式计算即可;【解答】解:(1)点D→D1→D2→D经过的路径如图所示:(2)观察图象可知图象是轴对称图形,故答案为轴对称.(3)周长=4×=8π.【点评】本题考查作图﹣旋转变换,弧长公式、轴对称图形等知识,解题的关键是理解题意,正确画出图形,属于中考常考题型.21.(7.00分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平【分析】在Rt△ADE中,求出AE,再利用AB=AE+BE计算即可;【解答】解:(1)用测角仪测得∠ADE=α;(2)用皮尺测得BC=a米,CD=b米.(3)计算过程:∵四边形BCDE是矩形,∴DE=BC=a,BE=CD=b,在Rt△ADE中,AE=ED•tanα=a•tanα,∴AB=AE+EB=a•tanα+b.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(7.00分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一分析数据:表二得出结论:包装机分装情况比较好的是乙(填甲或乙),说明你的理由.【分析】整理数据:由题干中的数据结合表中范围确定个数即可得;分析数据:根据众数和中位数的定义求解可得;得出结论:根据方差的意义,方差小分装质量较为稳定即可得.【解答】解:整理数据:表一分析数据:将甲组数据重新排列为:393、394、395、400、400、400、406、408、409、410,∴甲组数据的中位数为400;乙组数据中402出现次数最多,有3次,∴乙组数据的众数为402;表二得出结论:表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.故答案为:乙.【点评】本题考查了众数、中位数以及方差,掌握众数、中位数以及方差的定义及数据的整理是解题的关键.23.(8.00分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x (min)之间的函数图象如图所示(1)家与图书馆之间的路程为4000m,小玲步行的速度为200m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.【分析】(1)认真分析图象得到路程与速度数据;(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;(3)两人相遇实际上是函数图象求交点.【解答】解:(1)结合题意和图象可知,线段CD为小玲路程与时间函数图象,折现O﹣A﹣B为为小东路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为2000÷10=200m/s故答案为:4000,200(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x自变量x的范围为0≤x≤(3)由图象可知,两人相遇是在小玲改变速度之前∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.【点评】本题是一次函数实际应用问题,考查了对一次函数图象代表意义的分析和从方程角度解决一次函数问题.24.(8.00分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC 于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,▱ADEF的形状为菱形;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.【分析】(1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到DE=AC,得到AD=DE,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明.【解答】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF为平行四边形;(2)解:▱ADEF的形状为菱形,理由如下:∵点D为AB中点,∴AD=AB,∵DE∥AC,点D为AB中点,∴DE=AC,∵AB=AC,∴AD=DE,∴平行四边形ADEF为菱形,故答案为:菱形;(3)四边形AEGF是矩形,理由如下:由(1)得,四边形ADEF为平行四边形,∴AF∥DE,AF=DE,∵EG=DE,∴AF∥DE,AF=GE,∴四边形AEGF是平行四边形,∵AD=AG,EG=DE,∴AE⊥EG,∴四边形AEGF是矩形.【点评】本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.25.(10.00分)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x=s;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.【分析】(1)当PQ⊥AB时,BQ=2PB,由此构建方程即可解决问题;(2)分三种情形分别求解即可解决问题;(3)分两种情形分别求解即可解决问题;【解答】解:(1)当PQ⊥AB时,BQ=2PB,∴2x=2(2﹣2x),∴x=s.故答案为s.(2)①如图1中,当0<x≤时,重叠部分是四边形PQMN.y=2x×x=2x2.②如图②中,当<x≤1时,重叠部分是四边形PQEN.y=(2﹣x+2tx×x=x2+x③如图3中,当1<x<2时,重叠部分是四边形PNEQ.y=(2﹣x+2)×[x﹣2(x﹣1)]=x2﹣3x+4;综上所述,y=.(3)①如图4中,当直线AM经过BC中点E时,满足条件.则有:tan∠EAB=tan∠QPB,∴=,解得x=.②如图5中,当直线AM经过CD的中点E时,满足条件.此时tan∠DEA=tan∠QPB,∴=,解得x=,综上所述,当x=s或时,直线AM将矩形ABCD的面积分成1:3两部分.【点评】本题考查四边形综合题、矩形的性质平行四边形的性质、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想解决问题,属于中考压轴题.26.(10.00分)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为(﹣1,4),OE=3;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.【分析】(1)求出直线CD的解析式即可解决问题;(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;(3)求出落在特殊情形下的a的值即可判断;(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题;【解答】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,∴顶点D(﹣1,4),C(0,3),∴直线CD的解析式为y=﹣x+3,∴E(3,0),∴OE=3,故答案为(﹣1,4),3.(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,∴a=﹣1,当β=60°时,在Rt△OCE中,OC=OE=3,∴﹣3a=3,∴a=﹣,∴45°≤β≤60°,a的取值范围为﹣≤a≤﹣1.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,PM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,当顶点D在x轴上时,P(1,﹣2),此时m的值1,∵抛物线的顶点在第二象限,∴m<1.∴n=﹣m﹣1(m<1).【点评】本题考查二次函数综合题、一次函数的应用、等腰直角三角形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
中考数学总复习《动点问题》专项提升训练(带答案)
中考数学总复习《动点问题》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________例题1.如图,在菱形ABCD中,∠A=60°,AB=4,动点M,N同时从A点出发,点M以每秒2个单位长度沿折线A﹣B﹣C向终点C运动;点N以每秒1个单位长度沿线段AD向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,△AMN的面积为y个平方单位,则下列正确表示y与x函数关系的图象是()A B C D解:连接BD,过B作BE⊥AD于E,当0≤x<2时,点M在AB上在菱形ABCD中,∠A=60°,AB=4∴AB=AD∴△ABD是等边三角形∴AE=ED=12AD=2,BE=√3AE=2√3∵AM=2x,AN=x∴AMAN=ABAE=2∵∠A=∠A∴△AMN∽△ABE∴∠ANM=∠AEB=90°∴MN=√AM2−AN2=√3xx×√3x=√32x2∴y=12当2≤x≤4时,点M在BC上y=12AN⋅BE=12x×2√3=√3x综上所述,当0≤x<2时的函数图象是开口向上的抛物线的一部分,当2≤x≤4时,函数图象是直线的一部分故选:A.2.如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,P A﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC=.解:由函数图象知:当x=0,即P在B点时,BA﹣BE=1.利用两点之间线段最短,得到P A﹣PE≤AE.∴y的最大值为AE∴AE=5.在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25设BE的长度为t则AB=t+1∴(t+1)2+t2=25即:t2+t﹣12=0∴(t+4)(t﹣3)=0解得t=﹣4或t=3由于t>0∴t=3∴AB=t+2=3+2=5,AD=BC=3×2=6.故答案为:6.3.如图①,在△ABC中,AB=AC,AD⊥BC于点D(BD>AD),动点P从B点出发,沿折线BA→AC方向运动,运动到点C停止,设点P的运动路程为x,△BPD的面积为y,y与x的函数图象如图②,则BC的长为.解:由题意得:AB+AC=2√13,△ABD的面积=3∵AB=AC∴AB=AC=√13∵AD⊥BC∴∠ADB=90°,BC=2BD∴AD2+BD2=AB2∴AD2+BD2=13∵△ABD的面积=3∴12AD•BD=3∴AD•BD=6∴(AD+BD)2=AD2+2BD•AD+BD2=13+2×6=25∴AD+BD=5或AD+BD=﹣5(舍去)∵AD2+BD2=AB2∴BD2+(5﹣BD)2=13∴BD=2或BD=3当BD=2时,AD=5﹣BD=3(舍去)当BD=3时,AD=5﹣BD=2∴BC=2BD=6故答案为:6.4.如图,在平面直角坐标系中,菱形AOCB的边OC在x轴上,∠AOC=60°,OC的长是一元二次方程x2﹣4x﹣12=0的根,过点C作x轴的垂线,交对角线OB于点D,直线AD分别交x轴和y 轴于点F和点E,动点M从点O以每秒1个单位长度的速度沿OD向终点D运动,动点N从点F 以每秒2个单位长度的速度沿FE向终点E运动.两点同时出发,设运动时间为t秒.(1)求直线AD的解析式;(2)连接MN,求△MDN的面积S与运动时间t的函数关系式;(3)点N在运动的过程中,在坐标平面内是否存在一点Q,使得以A,C,N,Q为顶点的四边形是矩形.若存在,直接写出点Q的坐标,若不存在,说明理由.(1)解:解方程x2﹣4x﹣12=0得:x1=6,x2=﹣2∴OC=6∵四边形AOCB是菱形,∠AOC=60°∴OA=OC=6,∠BOC=1∠AOC=30°2∴CD=OC•tan30°=6×√3=2√33∴D(6,2√3)过点A作AH⊥OC于H∵∠AOH=60°OA=3,AH=OA•sin60°=6×√32=3√3∴OH=12∴A(3,3√3)设直线AD的解析式为y=kx+b(k≠0)代入A(3,3√3),D(6,2√3)得:{3k+b=3√36k+b=2√3解得:{k=−√3 3b=4√3∴直线AD的解析式为y=−√33x+4√3;(2)解:由(1)知在Rt△COD中,CD=2√3,∠DOC=30°∴OD=2CD=4√3,∠EOD=90°﹣∠DOC=90°﹣30°=60°∵直线y=−√33x+4√3与y轴交于点E∴OE=4√3∴OE=OD∴△EOD是等边三角形∴∠OED=∠EDO=∠BDF=60°,ED=OD=4√3∴∠OFE=30°=∠DOF∴DO=DF=4√3①当点N在DF上,即0≤t≤2√3时由题意得:DM=OD−OM=4√3−t,DN=4√3−2t过点N作NP⊥OB于P则NP=DN×sin∠PDN=DN×sin60°=(4√3−2t)×√32=6−√3t∴S=12DM×NP=12(4√3−t)×(6−√3t)=√32t2﹣9t+12√3;②当点N在DE上,即2√3<t≤4√3时由题意得:DM=OD﹣OM=√3−t,DN=2t﹣4√3过点N作NT⊥OB于T则NT =DN •sin ∠NDT =DN •sin60°=(2t ﹣4√3)×√32=√3t −6 ∴S =12DM ⋅NT =12(4√3−t)(√3t −6)=−√32t 2+9t −12√3; 综上,S ={√32t 2−9t +12√3(0≤t ≤2√3)−√32t 2+9t −12√3(2√3<t ≤4√3);(3)解:存在,分情况讨论:①如图,当AN 是直角边时,则CN ⊥EF ,过点N 作NK ⊥CF 于K∵∠NFC =30° OE =4√3 ∴∠NCK =60° OF =√3OE =12 ∴CF =12﹣6=6 ∴CN =12CF =3∴CK =CN ×cos60°=3×12=32 NK =CN ×sin60°=3×√32=3√32 ∴将点N 向左平移32个单位长度,再向下平移3√32个单位长度得到点C ∴将点A 向左平移32个单位长度,再向下平移3√32个单位长度得到点Q∵A(3,3√3) ∴Q (32,3√32); ②如图,当AN 是对角线时,则∠ACN =90°,过点N 作NL ⊥CF 于L∵OA =OC ,∠AOC =60° ∴△AOC 是等边三角形 ∴∠ACO =60°∴∠NCF=180°﹣60°﹣90°=30°=∠NFC∴CL=FL=12CF=3∴NL=CL•tan30°=3×√33=√3∴将点C向右平移3个单位长度,再向上平移√3个单位长度得到点N ∴将点A向右平移3个单位长度,再向上平移√3个单位长度得到点Q ∵A(3,3√3)∴Q(6,4√3);∴存在一点Q,使得以A,C,N,Q为顶点的四边形是矩形,点Q的坐标是(32,3√32)或(6,4√3).练习题1.如图1,在Rt△ABC中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中BP 长与运动时间t(单位:s)的关系如图2,则AC的长为()A.15√52B.√427C.17D.5√32.如图1,正方形ABCD的边长为4,E为CD边的中点.动点P从点A出发沿AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,线段PE的长为y,y与x的函数图象如图2所示,则点M的坐标为()A.(4,2√3)B.(4,4)C.(4,2√5)D.(4,5)3.如图,在正方形ABCD中,AB=4,动点M,N分别从点A,B同时出发,沿射线AB,射线BC 的方向匀速运动,且速度的大小相等,连接DM,MN,ND.设点M运动的路程为x(0≤x≤4),△DMN的面积为S,下列图象中能反映S与x之间函数关系的是()A B C D4.如图,在边长为4的菱形ABCD中,∠A=60°,点P从点A出发,沿路线A→B→C→D运动.设P点经过的路程为x,以点A,D,P为顶点的三角形的面积为y,则下列图象能反映y与x的函数关系的是()A B C D5.如图,四边形ABCD中,已知AB∥CD,AB与CD之间的距离为4,AD=5,CD=3,∠ABC=45°,点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ⊥AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ 的面积为y,则能反映y与x之间函数关系的图象是()A B C D6.如图(1),在平面直角坐标系中,矩形ABCD在第一象限,且BC∥x轴,直线y=2x+1沿x轴正方向平移,在平移过程中,直线被矩形ABCD截得的线段长为a,直线在x轴上平移的距离为b,a、b间的函数关系图象如图(2)所示,那么矩形ABCD的面积为.7.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点P是平面内一个动点,且AP=3,Q 为BP的中点,在P点运动过程中,设线段CQ的长度为m,则m的取值范围是.8.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE﹣ED﹣DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.=48cm2;③当14<t<22时,y 给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是.9.如图,在平面直角坐标系中,点A的坐标为(9,0),点C的坐标为(0,3),以OA,OC为边作矩形OABC.动点E,F分别从点O,B同时出发,以每秒1个单位长度的速度沿OA,BC向终点A,C移动.当移动时间为4秒时,求AC•EF的值.10.在平面直角坐标系中,O为原点,菱形ABCD的顶点A(√3,0),B(0,1),D(2√3,1),矩形EFGH的顶点E(0,12),F(−√3,12),H(0,32).(1)填空:如图①,点C的坐标为点G的坐标为;(2)将矩形EFGH沿水平方向向右平移,得到矩形E′FG′H′,点E,F,G,H的对应点分别为E′,F′,G′,H′,设EE′=t,矩形E′F′G′H′与菱形ABCD重叠部分的面积为S.①如图②,当边E′F′与AB相交于点M、边G′H′与BC相交于点N,且矩形E′F′G′H′与菱形ABCD重叠部分为五边形时,试用含有t的式子表示S,并直接写出t的取值范围;②当2√33≤t≤11√34时,求S的取值范围(直接写出结果即可).11.已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求CFBG的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN扫过的面积.12.已知四边形ABCD是边长为1的正方形,点E是射线BC上的动点,以AE为直角边在直线BC 的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图,若点E在线段BC上运动,EF交CD于点P,AF交CD于点Q,连接CF 时,求线段CF的长;①当m=13②在△PQE中,设边QE上的高为h,请用含m的代数式表示h,并求h的最大值;(2)设过BC的中点且垂直于BC的直线被等腰直角三角形AEF截得的线段长为y,请直接写出y 与m的关系式.参考答案1.C.2.C.3.A.4.A.5.B.6.8.7.72≤m≤132.8.①③⑤.9.30.10.(1)(√3,2)(−√3,32);(2)当2√33≤t≤11√34时,则√316≤S≤√3.11.(1)√2;(2)BE=2MN MN⊥BE (3)9π.12.(1)①√23;②h=﹣m2+m=﹣(m−12)2+14,∴m=12时,h最大值是14;(2)y={1−12m−1−m2(1+m)+m2(0≤m≤12) 1+m22m2+2m(m>12).。
2018年中考数学《几何图形的动点问题》同步提分训练含答案解析
2018年中考数学提分训练: 几何图形的动点问题一、选择题1.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B,C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x 的大致图象是()A. B. C. D.2.如图1,在矩形ABCD中,动点E从A出发,沿方向运动,当点E到达点C时停止运动,过点E做,交CD于F点,设点E运动路程为x, ,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( )A. B. C. 6 D. 53.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A. ①B. ④C. ①或③D. ②或④4.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B. C. D.5.如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别为AM,MR的中点,则EF的长随M点的运动( )A. 变短B. 变长C. 不变D. 无法确定二、填空题6.在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为________.(结果不取近似值)7.如图,在平面直角坐标系中,A(4,0)、B(0,-3),以点B为圆心、2 为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为________.8.如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC 在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=________;(2)当△ABC的边与坐标轴平行时,t=________。
精品 2018年吉林省中考数学试卷及答案解析
2
10.( 3 分)若关于 x 的一元二次方程 x +2x﹣ m= 0 有两个相等的实数根, 则 m 的值为 ﹣ 1 . 解:∵关于 x 的一元二次方程 x2+2x﹣ m= 0 有两个相等的实数根, ∴△= b2﹣ 4ac= 0, 即: 22﹣4(﹣ m)= 0, 解得: m=﹣ 1, 故选答案为﹣ 1.
=
度.
14.( 3 分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征
第 2页(共 25页)
值”,记作
k,若
k=
1 2
,则该等腰三角形的顶角为
三、解答题(共 12 小题,满分 84 分)
度.
15.( 5 分)某同学化简 a( a+2b)﹣( a+b)( a﹣ b)出现了错误,解答过程如下: 原式= a2+2ab﹣( a2﹣ b2) (第一步) = a2+2ab﹣ a2﹣ b2(第二步) = 2ab﹣ b2 (第三步)
20.( 7 分)如图是由边长为 1 的小正方形组成的 8× 4 网格,每个小正方形的顶点叫做格点,
点 A, B, C, D 均在格点上,在网格中将点 D 按下列步骤移动:
第一步:点 D 绕点 A 顺时针旋转 180°得到点 D1;
第二步:点 D1 绕点 B 顺时针旋转 90°得到点 D2; 第三步:点 D2 绕点 C 顺时针旋转 90°回到点 D.
26.(10 分) 如图, 在平面直角坐标系中, 抛物线 y= ax2+2ax﹣3a( a< 0)与 x 轴相交于 A,
2018年吉林省中考数学试卷(带解析)
2018年吉林省中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2分)计算(﹣1)×(﹣2)的结果是()A.2B.1C.﹣2D.﹣3【解答】解:(﹣1)×(﹣2)=2.故选:A.2.(2分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【解答】解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形.故选:B.3.(2分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3【解答】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.4.(2分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a 与b平行,木条a旋转的度数至少是()A .10°B .20°C .50°D .70°【解答】解:如图.∵∠AOC=∠2=50°时,OA ∥b ,∴要使木条a 与b 平行,木条a 旋转的度数至少是70°﹣50°=20°.故选:B .5.(2分)如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则△DNB 的周长为()A .12B .13C .14D .15【解答】解:∵D 为BC 的中点,且BC=6,∴BD=12BC=3,由折叠性质知NA=ND ,则△DNB 的周长=ND +NB +BD=NA +NB +BD=AB +BD=3+9=12,故选:A .6.(2分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为()A.+=352+2=94B.+=354+2=94C.+=354+4=94D.+=352+4=94【解答】解:由题意可得,+=352+4=94,故选:D.二、填空题(共8小题,每小题3分,满分24分)7.(3分)计算:16=4.【解答】解:∵42=16,∴16=4,故答案为4.8.(3分)买单价3元的圆珠笔m支,应付3m元.【解答】解:依题意得:3m.故答案是:3m.9.(3分)若a+b=4,ab=1,则a2b+ab2=4.【解答】解:∵a+b=4,ab=1,∴a2b+ab2=ab(a+b)=1×4=4.故答案为:4.10.(3分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m 的值为﹣1.【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.11.(3分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为(﹣1,0).【解答】解:∵点A,B的坐标分别为(4,0),(0,3),∴OA=4,OB=3,在Rt△AOB中,由勾股定理得:AB=32+42=5,∴AC=AB=5,∴OC=5﹣4=1,∴点C的坐标为(﹣1,0),故答案为:(﹣1,0),12.(3分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=100m.【解答】解:∵∠ADB=∠EDC ,∠ABC=∠ECD=90°,∴△ABD ∽△ECD ,=,=×,解得:AB=120×5060=100(米).故答案为:100.13.(3分)如图,A ,B ,C ,D 是⊙O 上的四个点,=,若∠AOB=58°,则∠BDC=29度.【解答】解:连接OC .∵=,∴∠AOB=∠BOC=58°,∴∠BDC=12∠BOC=29°,故答案为29.14.(3分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k=12,则该等腰三角形的顶角为36度.【解答】解:∵△ABC 中,AB=AC ,∴∠B=∠C ,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k=12,∴∠A :∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.三、解答题(共12小题,满分84分)15.(5分)某同学化简a (a +2b )﹣(a +b )(a ﹣b )出现了错误,解答过程如下:原式=a 2+2ab ﹣(a 2﹣b 2)(第一步)=a 2+2ab ﹣a 2﹣b 2(第二步)=2ab ﹣b 2(第三步)(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;(2)写出此题正确的解答过程.【解答】解:(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;故答案是:二;去括号时没有变号;(2)原式=a 2+2ab ﹣(a 2﹣b 2)=a 2+2ab ﹣a 2+b 2=2ab +b 2.16.(5分)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且BE=CF ,求证:△ABE ≌△BCF .【解答】证明:∵四边形ABCD 是正方形,∴AB=BC ,∠ABE=∠BCF=90°,在△ABE 和△BCF 中,=∠=∠=,∴△ABE ≌△BCF .17.(5分)一个不透明的口袋中有三个小球,上面分别标有字母A ,B ,C ,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.【解答】解:列表得:AB C A (A ,A )(B ,A )(C ,A )B (A ,B )(B ,B )(C ,B )C(A ,C )(B ,C )(C ,C )由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种,所以该同学两次摸出的小球所标字母相同的概率=39=13.18.(5分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.【解答】解:∵把x=1代入y=x+2得:y=3,即P点的坐标是(1,3),把P点的坐标代入y=得:k=3,即反比例函数的解析式是y=3.19.(7分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示甲队每天修路的长度,庆庆同学所列方程中的y表示甲队修路400米所需时间;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.【解答】解:(1)∵冰冰是根据时间相等列出的分式方程,∴x表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,∴y表示甲队修路400米所需时间.故答案为:甲队每天修路的长度;甲队修路400米所需时间.(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可).(3)选冰冰的方程:400=600+20,去分母,得:400x+8000=600x,移项,x的系数化为1,得:x=40,检验:当x=40时,x、x+20均不为零,∴x=40.答:甲队每天修路的长度为40米.600﹣400=20,去分母,得:600﹣400=20y,将y的系数化为1,得:y=10,经验:当y=10时,分母y不为0,∴y=10,400=40.答:甲队每天修路的长度为40米.20.(7分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是轴对称对称图形;(3)求所画图形的周长(结果保留π).【解答】解:(1)点D→D1→D2→D经过的路径如图所示:(2)观察图象可知图象是轴对称图形,故答案为轴对称.(3)周长=4×90⋅⋅4180=8π.21.(7分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a ,b ,α的代数式表示旗杆AB 的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平课题测量学校旗杆的高度活动目的运用所学数学知识及方法解决实际问题方案示意图测量步骤(1)用测角仪测得∠ADE=α;(2)用皮尺测得BC=a 米,CD=b 米.计算过程【解答】解:(1)用测角仪测得∠ADE=α;(2)用皮尺测得BC=a 米,CD=b 米.(3)计算过程:∵四边形BCDE 是矩形,∴DE=BC=a ,BE=CD=b ,在Rt △ADE 中,AE=ED•tan α=a•tan α,∴AB=AE+EB=a•tanα+b.22.(7分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一质量(g)频数种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲303013乙031510分析数据:表二种类平均数中位数众数方差甲401.540040036.85乙400.84024028.56得出结论:包装机分装情况比较好的是乙(填甲或乙),说明你的理由.【解答】解:整理数据:表一质量(g)频数种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲303013乙031510分析数据:将甲组数据重新排列为:393、394、395、400、400、400、406、408、409、410,∴甲组数据的中位数为400;乙组数据中402出现次数最多,有3次,∴乙组数据的众数为402;表二种类平均数中位数众数方差甲401.540040036.85乙400.84024028.56得出结论:表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.故答案为:乙.23.(8分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为4000m,小玲步行的速度为100m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.【解答】解:(1)结合题意和图象可知,线段CD为小玲路程与时间函数图象,折现O﹣A﹣B为为小东路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为2000÷20=200m/s 故答案为:4000,100(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x自变量x的范围为0≤x≤40 3(3)由图象可知,两人相遇是在小玲改变速度之前∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.24.(8分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,▱ADEF的形状为菱形;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.【解答】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF为平行四边形;(2)解:▱ADEF的形状为菱形,理由如下:∵点D 为AB 中点,∴AD=12AB ,∵DE ∥AC ,点D 为AB 中点,∴DE=12AC ,∵AB=AC ,∴AD=DE ,∴平行四边形ADEF 为菱形,故答案为:菱形;(3)四边形AEGF 是矩形,理由如下:由(1)得,四边形ADEF 为平行四边形,∴AF ∥DE ,AF=DE ,∵EG=DE ,∴AF ∥DE ,AF=GE ,∴四边形AEGF 是平行四边形,∵AD=AG ,EG=DE ,∴AE ⊥EG ,∴四边形AEGF 是矩形.25.(10分)如图,在矩形ABCD 中,AB=2cm ,∠ADB=30°.P ,Q 两点分别从A ,B 同时出发,点P 沿折线AB ﹣BC 运动,在AB 上的速度是2cm/s ,在BC 上的速度是23cm/s ;点Q 在BD 上以2cm/s 的速度向终点D 运动,过点P 作PN ⊥AD ,垂足为点N .连接PQ ,以PQ ,PN 为邻边作▱PQMN .设运动的时间为x (s ),▱PQMN 与矩形ABCD 重叠部分的图形面积为y (cm 2)(1)当PQ ⊥AB 时,x=23s ;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)直线AM 将矩形ABCD 的面积分成1:3两部分时,直接写出x 的值.【解答】解:(1)当PQ ⊥AB 时,BQ=2PB ,∴2x=2(2﹣2x ),∴x=23s .23s .(2)①如图1中,当0<x ≤23时,重叠部分是四边形PQMN .y=2x ×3x=23x 2.23<x ≤1时,重叠部分是四边形PQEN .y=12(2﹣x +2tx ×3x=32x 2+3x③如图3中,当1<x <2时,重叠部分是四边形PNEQ.y=12(2﹣x +2)×[3x ﹣23(x ﹣1)]=32x 2﹣33x +43;综上所述,y={232(0<≤23)322+3(23<≤1)322−33+43(1<<2).(3)①如图4中,当直线AM 经过BC中点E 时,满足条件.则有:tan ∠EAB=tan ∠QPB ,∴32=32−2−,解得x=25.②如图5中,当直线AM 经过CD 的中点E 时,满足条件.此时tan ∠DEA=tan ∠QPB ,231=32−2−,解得x=47,综上所述,当x=25或47时,直线AM 将矩形ABCD 的面积分成1:3两部分.26.(10分)如图,在平面直角坐标系中,抛物线y=ax 2+2ax ﹣3a (a <0)与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E .(1)当a=﹣1时,抛物线顶点D 的坐标为(﹣1,4),OE=3;(2)OE 的长是否与a 值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设P (m ,n ),直接写出n 关于m 的函数解析式及自变量m 的取值范围.【解答】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x 2﹣2x +3,∴顶点D (﹣1,4),C (0,3),∴直线CD的解析式为y=﹣x+3,∴E(3,0),∴OE=3,故答案为(﹣1,4),3.(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,∴a=﹣1,当β=60°时,在Rt△OCE中,OC=3OE=33,∴﹣3a=33,∴a=﹣3,∴45°≤β≤60°,a的取值范围为﹣3≤a≤﹣1.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,DM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,当顶点D在x轴上时,P(1,﹣2),此时m的值1,∵抛物线的顶点在第二象限,∴m<1.∴n=﹣m﹣1(m<1).。
2018年吉林中考数学总复习动点问题练习含答案
y
3 3 2 2 3 x ( x 4) x x Байду номын сангаас 6 3 .
(3)抛物线的对称轴是直线 x=2,设点 P 的坐标为(2, y). ①当 OP=OB=4 时,OP2=16.所以 4+y2=16.解得 y 2 3 . 当 P 在 (2, 2 3) 时,B、O、P 三点共线(如图 2).
2018 年吉林中考数学总复习动点问题练习含答案
2018 吉林中考数学总复习动点问题
此时
QN
3 15 15 31 PM CQ CN QN 4 4 4 .所以 4 4. tan QPD QD DN 3 PD DM 4 .
因动点产生的等腰三角形问题练习
年 班 姓名 成绩: 1.如图 1,在 Rt△ABC 中,∠A=90°,AB=6,AC=8,点 D 为边 BC 的中点,DE⊥BC 交边 AC 于点 E, 点 P 为射线 AB 上的一动点,点 Q 为边 AC 上的一动点,且∠ PDQ=90°. (1)求 ED、EC 的长; (2)若 BP=2,求 CQ 的长; (3)记线段 PQ 与线段 DE 的交点为 F,若△PDF 为等腰三角形,求 BP 的长.
所以 QN=CN-CQ=
4
25 7 8 8 (如图 2 所示).
此时
PM
4 7 7 25 QN BP BM PM 3 3 6 .所以 6 6 .
PM DM 4 3 4 QN PM PM QN DN 3 .所以 4 3 所以 QN , .
③不存在 DP=DF 的情况.这是因为∠DFP≥∠DQP>∠DPQ(如图 5,图 6 所示).
此时 图1 备用图 解:(1)在 Rt△ABC 中, AB=6,AC=8,所以 BC=10.
2018年吉林省长春市中考数学试卷(带解析)
2018年吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣15的绝对值是()A.﹣15B.15C.﹣5D.5【解答】解:|−15|= 1 5,故选:B.2.(3分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×108【解答】解:2500000000用科学记数法表示为2.5×109.故选:C.3.(3分)下列立体图形中,主视图是圆的是()A.B.C.D.【解答】解:A、圆锥的主视图是三角形,故A不符合题意;B、圆柱的柱视图是矩形,故B错误;C、圆台的主视图是梯形,故C错误;D、球的主视图是圆,故D正确;故选:D.4.(3分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D .【解答】解:3x ﹣6≥0,3x ≥6,x ≥2,在数轴上表示为,故选:B .5.(3分)如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E .若∠A=54°,∠B=48°,则∠CDE 的大小为()A .44°B .40°C .39°D .38°【解答】解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD 平分∠ACB 交AB 于点D ,∴∠DCB=12×78°=39°,∵DE ∥BC ,∴∠CDE=∠DCB=39°,故选:C .6.(3分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,15=1.50.5,解得x=45(尺).故选:B.7.(3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B 在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.800米D.800米【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==800.故选:D.8.(3分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x >0)的图象上,若AB=2,则k的值为()A.4B.22C.2D.2【解答】解:作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=2AB=22,∴BD=AD=CD=2,∵AC⊥x轴,∴C(2,22),把C(2,22)代入y=得k=2×22=4.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.(填“>”、“=”或“<”)【解答】解:∵32=9<10,∴10>3,故答案为:>.10.(3分)计算:a 2•a 3=a 5.【解答】解:a 2•a 3=a 2+3=a 5.故答案为:a 5.11.(3分)如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为2.(写出一个即可)【解答】解:∵直线y=2x 与线段AB 有公共点,∴2n ≥3,∴n ≥32.故答案为:2.12.(3分)如图,在△ABC 中,AB=AC .以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD .若∠A=32°,则∠CDB 的大小为37度.【解答】解:∵AB=AC ,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC ,∴∠CDB=∠CBD=12∠ACB=37°.故答案为:37.13.(3分)如图,在▱ABCD中,AD=7,AB=23,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为20.【解答】解:当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=23,∠B=60°.∴AE=3,BE=3,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:2014.(3分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C 的长为3.【解答】解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),∵点A 关于点B 的对称点为A ′,点A ′的横坐标为1,∴点A 的坐标为(﹣1,0),∴抛物线解析式为y=x 2+x ,当x=1时,y=x 2+x=2,则A ′(1,2),当y=2时,x 2+x=2,解得x 1=﹣2,x 2=1,则C (﹣2,1),∴A ′C 的长为1﹣(﹣2)=3.故答案为3.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:2−2−1+1−1,其中x=5﹣1.【解答】2−2−1+1−1=2−2+1−1=2−1−1=(+1)(−1)−1=x +1,当x=5﹣1时,原式=5﹣1+1=5.16.(6分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A 1、A 2,图案为“蝴蝶”的卡片记为B)【解答】解:列表如下:A 1A 2B A1(A 1,A 1)(A 2,A 1)(B ,A 1)A2(A 1,A 2)(A2,A 2)(B ,A 2)B (A 1,B )(A 2,B )(B ,B )由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为49.17.(6分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM 、ON 的端点均在格点上.在图①、图②给定的网格中以OM 、ON 为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.【解答】解:如图所示:18.(7分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.19.(7分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)【解答】解:(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴100×6180=103π.20.(7分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:2 02119162718312921222 5219223533191718291 8352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为18;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【解答】解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×1+1+2+3+1+230=100(名),答:该部门生产能手有100名工人.21.(8分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是1立方米,从打开输入口到关闭输出口共用的时间为11分钟.【解答】解:(1)每分钟向储存罐内注入的水泥量为15÷3=5立方米;(2)设y=kx+b(k≠0)把(3,15)(5.5,25)代入15=3+25=5.5+解得=4=3∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;只打开输出口前,水泥输出量为5.5﹣3=2.5立方米,之后达到总量8立方米需需输出8﹣2.5=5.5立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟故答案为:1,1122.(9分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD 于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为2.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为9.【解答】解:感知:∵四边形ABCD是正方形,∴AB=BC,∠BCE=∠ABC=90°,∴∠ABE+∠CBE=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠BAF=∠CBE,在△ABF和△BCE中,∠=∠=∠=∠=90°,∴△ABF≌△BCE(ASA);探究:(1)如图②,过点G作GP⊥BC于P,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴四边形ABPG是矩形,∴PG=AB,∴PG=BC,同感知的方法得,∠PGF=∠CBE ,在△PGF 和△CBE 中,∠=∠=∠=∠=90°,∴△PGF ≌△CBE (ASA ),∴BE=FG ,(2)由(1)知,FG=BE ,连接CM ,∵∠BCE=90°,点M 是BE 的中点,∴BE=2CM=2,∴FG=2,故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE ⊥CG ,∴S 四边形CEGM =12CG ×ME=12×6×3=9,故答案为9.23.(10分)如图,在Rt △ABC 中,∠C=90°,∠A=30°,AB=4,动点P 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.过点P 作PD ⊥AC 于点D (点P 不与点A 、B 重合),作∠DPQ=60°,边PQ 交射线DC 于点Q .设点P 的运动时间为t 秒.(1)用含t 的代数式表示线段DC 的长;(2)当点Q 与点C 重合时,求t 的值;(3)设△PDQ 与△ABC 重叠部分图形的面积为S ,求S 与t 之间的函数关系式;(4)当线段PQ 的垂直平分线经过△ABC 一边中点时,直接写出t 的值.【解答】解:(1)在Rt △ABC 中,∠A=30°,AB=4,∴AC=23,∵PD ⊥AC ,∴∠ADP=∠CDP=90°,在Rt △ADP 中,AP=2t ,∴DP=t ,AD=APcosA=2t ×32=3t ,∴CD=AC ﹣AD=23﹣3t (0<t <2);(2)在Rt △PDQ 中,∵∠DPC=60°,∴∠PQD=30°=∠A ,∴PA=PQ ,∵PD ⊥AC ,∴AD=DQ ,∵点Q 和点C 重合,∴AD +DQ=AC ,∴2×3t=23,∴t=1;(3)当0<t ≤1时,S=S △PDQ =12DQ ×DP=12×3t ×t=32t 2;当1<t <2时,如图2,CQ=AQ ﹣AC=2AD ﹣AC=23t ﹣23=23(t ﹣1),在Rt △CEQ 中,∠CQE=30°,∴CE=CQ•tan ∠CQE=23(t ﹣1)×33=2(t ﹣1),∴S=S △PDQ ﹣S △ECQ =12×3t ×t ﹣12×23(t ﹣1)×2(t ﹣1)=﹣332t 2+43t ﹣23,∴S=322(0<≤1)−3322+43−23(1<<2);(4)当PQ 的垂直平分线过AB 的中点F 时,如图3,∴∠PGF=90°,PG=12PQ=12AP=t ,AF=12AB=2,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t ,∴AP +PF=2t +2t=2,∴t=12;当PQ 的垂直平分线过AC 的中点M 时,如图4,∴∠QMN=90°,AN=12AC=3,QM=12PQ=12AP=t ,在Rt △NMQ 中,NQ=30°=233t ,∵AN +NQ=AQ ,∴3+233t=23t ,∴t=34,当PQ 的垂直平分线过BC 的中点时,如图5,∴BF=12BC=1,PE=12PQ=t ,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H ,∴BH=BF=1,在Rt △PEH 中,PH=2PE=2t ,∴AH=AP +PH=AB +BH ,∴2t +2t=5,∴t=54,即:当线段PQ 的垂直平分线经过△ABC 一边中点时,t 的值为12秒或34秒或54秒.24.(12分)如图,在平面直角坐标系中,矩形ABCD 的对称中心为坐标原点O ,AD ⊥y 轴于点E (点A 在点D 的左侧),经过E 、D 两点的函数y=﹣12x 2+mx +1(x ≥0)的图象记为G 1,函数y=﹣12x 2﹣mx ﹣1(x <0)的图象记为G 2,其中m 是常数,图象G 1、G 2合起来得到的图象记为G .设矩形ABCD 的周长为L .(1)当点A 的横坐标为﹣1时,求m 的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当32≤y0≤9时,直接写出L的取值范围.【解答】解:(1)由题意E(0,1),A(﹣1,1),D(1,1)把D(1,1)代入y=﹣12x2+mx+1中,得到1=﹣12+m+1,∴m=1 2.(2)∵抛物线G1的对称轴x=﹣−1=m,∴AE=ED=2m,∵矩形ABCD的对称中心为坐标原点O,∴AD=BC=4m,AB=CD=2,∴L=8m+4.(3)∵当G2与矩形ABCD恰好有两个公共点,∴抛物线G2的顶点M(﹣m,12m2﹣1)在线段AE上,12m2﹣1=1,∴m=2或﹣2(舍弃),∴L=8×2+4=20.(4)①当最高点是抛物线G1的顶点N(m,12m2+1)时,12m2+1=32,解得m=1或﹣1(舍弃),12m2+1=9时,m=4或﹣4(舍弃),又∵m≤2,观察图象可知满足条件的m的值为1≤m≤2,②当(2,2m﹣1≤2−1≤9 2≤,解得2≤m≤5,综上所述,1≤m≤5,∴12≤L≤44.。
中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)
中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,ab ≠0),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.2.(1)如图1,点P 为矩形ABCD 对角线BD 上一点,过点P 作//EF BC ,分别交AB 、CD 于点E 、F .若2BE =,PF=6,AEP △的面积为1S ,CFP 的面积为2S ,则12S S +=________;(2)如图2,点P 为ABCD 内一点(点P 不在BD 上),点E 、F 、G 、H 分别为各边的中点.设四边形AEPH 的面积为1S ,四边形PFCG 的面积为2S (其中21S S >),求PBD △的面积(用含1S 、S的代数式表示);2(3)如图3,点P为ABCD内一点(点P不在BD上)过点P作//EF AD,HG//AB与各边分别相交于点E、F、G、H设四边形AEPH的面积为1S,四边形PGCF的面积为2S(其中21),S S求PBD△的面积(用含1S、2S的代数式表示);(4)如图4 点A B C D把O四等分.请你在圆内选一点P(点P不在AC BD 上)设PB PC BC围成的封闭图形的面积为1S PA PD AD围成的封闭图形的面积为2S PBD△的面积为3S PAC△的面积为4S.根据你选的点P的位置直接写出一个含有1S2S3S4S的等式(写出一种情况即可).3.已知直线y=x+4与x轴y轴分别交于A B两点∠ABC=60°BC与x轴交于点C.(1)试确定直线BC的解析式.(2)若动点P从A点出发沿AC向点C运动(不与A C重合)同时动点Q从C点出发沿CBA向点A运动(不与C A重合) 动点P的运动速度是每秒1个单位长度动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S P点的运动时间为t秒求S与t的函数关系式并写出自变量的取值范围.(3)在(2)的条件下当△APQ的面积最大时y轴上有一点M 平面内是否存在一点N 使以A Q M N为顶点的四边形为菱形?若存在请直接写出N点的坐标;若不存在请说明理由.4.如图在等腰梯形ABCD中AB∥DC AB=8cm CD=2cm AD=6cm.点P 从点A出发以2cm/s的速度沿AB向终点B运动;点Q从点C出发以1cm/s的速度沿CD DA向终点A运动(P Q两点中有一个点运动到终点时所有运动即终止).设P Q同时出发并运动了t秒.(1)当PQ将梯形ABCD分成两个直角梯形时求t的值;(2)试问是否存在这样的t 使四边形PBCQ的面积是梯形ABCD面积的一半?若存在求出这样的t的值若不存在请说明理由.5.如图在平面直角坐标系中以坐标原点O为圆心2为半径画⊙O P是⊙O上一动点且P在第一象限内过点P作⊙O的切线与轴相交于点A与轴相交于点B.(1)点P在运动时线段AB的长度也在发生变化请写出线段AB长度的最小值并说明理由;(2)在⊙O上是否存在一点Q使得以Q O A P为顶点的四边形时平行四边形?若存在请求出Q点的坐标;若不存在请说明理由.6.如图已知长方形ABCD中AD=6cm AB=4cm 点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动同时点Q在线段BC上由点B向点C运动.(1)若点Q的运动速度与点P的运动速度相等经过1秒后△AEP与△BPQ是否全等请说明理由并判断此时线段PE和线段PQ的位置关系;(2)若点Q的运动速度与点P的运动速度相等运动时间为t秒设△PEQ的面积为Scm2请用t的代数式表示S;(3)若点Q的运动速度与点P的运动速度不相等当点Q的运动速度为多少时能够使△AEP与△BPQ全等?7.如图长方形ABCD中5cm,8cm==现有一动点P从A出发以2cm/s的速度沿AB BC----返回到点A停止设点P运动的时间为t秒.长方形的边A B C D At=时BP=___________cm;(1)当2(2)当t为何值时连接,,△是等腰三角形;CP DP CDP(3)Q为AD边上的点且6DQ=P与Q不重合当t为何值时以长方形的两个顶点及点P为顶点的三角形与DCQ全等.8.如图平行四边形ABCD中6cmB∠︒G是CD的中点E是BC==60AB=8cm边AD上的动点EG的延长线与BC的延长线交于点F连接CE DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=______时四边形CEDF是矩形;②AE=______时四边形CEDF是菱形.9.在平面直角坐标系中点A在第一象限AB⊥x轴于点B AC⊥y轴于点C已知点B(b0)C(0 c)其中b c满足|b﹣8|6+-=0.c(1)直接写出点A坐标.(2)如图2 点D从点O出发以每秒1个单位的速度沿y轴正方向运动同时点E从点A出发以每秒2个单位的速度沿射线BA运动过点E作GE⊥y轴于点G设运动时间为t 秒当S四边形AEGC<S△DEG时求t的取值范围.(3)如图3 将线段BC平移使点B的对应点M恰好落在y轴负半轴上点C的对应点为N连接BN交y轴于点P当OM=4OP时求点M的坐标.10.如图在平面直角坐标系中点A B的坐标分别是(﹣4 0)(0 8)动点P从点O出发沿x轴正方向以每秒1个单位的速度运动同时动点C从点B出发沿12.在四边形ABCD中//,90,10cm,8cm∠=︒===点P从点A出发沿折线AB CD BCD AB AD BCABCD方向以3cm/s的速度匀速运动;点Q从点D出发沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发当一个点到达终点时另一点也停止运动设运动时间为()s t.(1)求CD的长;(2)当四边形PBQD为平行四边形时求四边形PBQD的周长;(3)在点P Q的运动过程中是否存在某一时刻使得BPQ的面积为220cm若存在请求出所有满足条件的t的值;若不存在请说明理由.13.在平面直角坐标系中矩形OABC的边OA任x轴上OC在y轴上B(4 3)点M从点A开始以每秒1个单位长度的速度沿AB→BC→CO运动设△AOM的面积为S 点M运动的时间为t.(1)当0<t<3时AM=当7<t<10时OM=;(用t的代数式表示)(2)当△AOM为等腰三角形时t=;(3)当7<t<10时求S关于t的函数关系式;(4)当S=4时求t的值.14.如图1 在平面直角坐标系中正方形OABC的边长为6 点A C分别在x y 正半轴上点B在第一象限.点P是x正半轴上的一动点且OP=t连结PC将线段PC绕点P顺时针旋转90度至PQ连结CQ取CQ中点M.(1)当t=2时求Q与M的坐标;(2)如图2 连结AM以AM AP为邻边构造平行四边形APNM.记平行四边形APNM 的面积为S.①用含t的代数式表示S(0<t<6).②当N落在△CPQ的直角边上时求∠CPA的度数;(3)在(2)的条件下连结AQ记△AMQ的面积为S'若S=S'则t=(直接写出答案).15.如图平面直角坐标系中矩形OABC的顶点B的坐标为(7 5)顶点A C 分别在x轴y轴上点D的坐标为(0 1)过点D的直线与矩形OABC的边BC交于点G 且点G不与点C重合以DG为一边作菱形DEFG 点E在矩形OABC的边OA 上设直线DG的函数表达式为y=kx+b(1)当CG=OD时求直线DG的函数表达式;(2)当点E的坐标为(5 0)时求直线DG的函数表达式;(3)连接BF 设△FBG的面积为S CG的长为a 请直接写出S与a的函数表达式及自变量a 的取值范围.16.如图 在四边形ABCD 中 //AD BC 3AD = 5DC = 42AB = 45B ∠=︒ 动点M 从点B 出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动 设运动的时间为s t .(1)求BC 的长.(2)当//MN AB 时 求t 的值(3)试探究:t 为何值时 MNC ∆为等腰三角形?参考答案:1.(1)证明:∵四边形ABCD 是矩形∴AD ∥BC∴∠CAD =∠ACB ∠AEF =∠CFE∵EF 垂直平分AC 垂足为O∴OA =OC∴△AOE ≌△COF∴OE =OF∴四边形AFCE 为平行四边形又∵EF ⊥AC∴四边形AFCE 为菱形设菱形的边长AF =CF =x cm 则BF =(8﹣x )cm在Rt △ABF 中 AB =4cm由勾股定理得42+(8﹣x )2=x 2解得x =5iii )如图3 当P 点在AB 上 Q 点在CD 上时 AP =CQ 即12﹣a =b 得a +b =12. 综上所述 a 与b 满足的数量关系式是a +b =12(ab ≠0).2.(1)过P 点作AB∥MN∵S 矩形AEPM +S 矩形DFPM =S 矩形CFPN +S 矩形DFPM =S 矩形ABCD -S 矩形BEPN又∵11,,22AEP CFP AEPM CFPN SS S S ==矩形矩形 ∴1==26=62AEP CFP S S ⨯⨯, ∴1212.S S +=(2)如图 连接PA PC在APB △中 因为点E 是AB 中点可设APE BPE S S a ==同理 ,,BPF CPF CPG DFG DPH APH S S b S S c S S d ======所以APE APH CPF AEPH PFCG CPG S S SS a b d S S c =+++=++++四边形四边形 BPE BPF DPH DPH EDFP HPGD S S S S S S a b c d +=+++=+++四边形四边形.所以12EBFP HPGD AEPH PFCG S S S S S S +++=+四边形四边形四边形四边形所以1212ABD ABCD SS S S ==+ 所以1DPH APH S S S a ==-. ()()()1121121PBD ABD BPE PDH S S S S S S S S a S a S S =-++=+-++-=-.(3)易证四边形EBGP 四边形HPFD 是平行四边形.EBP SHPD S .()()121211122222ABD ABCD EBF HPD EBP HPD SS S S S S S S S S ==+++=+++ ()()12112FBD ABD EBP HPD S S S S S S S =-++=-. (4)试题解析:(1)由已知得A 点坐标(﹣4﹐0) B 点坐标(0﹐43﹚ ∵OB=3OA ∴∠BAO=60° ∵∠ABC=60° ∴△ABC 是等边三角形 ∵O C=OA=4 ∴C 点坐标﹙4 0﹚ 设直线BC 解析式为y kx b =+∴ ∴直线BC 的解析式为343y x =-+; ﹙2﹚当P 点在AO 之间运动时 作QH⊥x 轴 ∵QH CQ OB CB= ∴2843QH t = ∴QH=3t ∴S △APQ =AP•QH=132t t ⋅=232t ﹙0<t≤4﹚ 同理可得S △APQ =t·﹙833t -﹚=23432t t -+﹙4≤t<8﹚∴223(04)2{343?(48)2t t S t t t <≤=-+≤<; (3)存在 如图当Q 与B 重合时 四边形AMNQ 为菱形 此时N 坐标为(4 0) 其它类似还有(﹣4 8)或(﹣4 ﹣8)或(﹣4 ).4.(1)53(2)存在 使四边形PBCQ 的面积是梯形ABCD 面积的一半.(1)过D 作DE⊥AB 于E 过C 作CF⊥AB 于F 通过Rt ADE Rt BCF ∆≅∆ 得AE BF = 若四边形APQD 是直角梯形 则四边形DEPQ 为矩形 通过AP AE EP =+ 代入t 值 即可求解(2)假设当时 通过点Q 在CD 上或在AD 上 两种情况进行讨论求解5.(1)线段AB 长度的最小值为4理由如下:连接OP如图② 设四边形APQO 为平行四边形因为OQ PA ∥ 90APO ︒∠=所以90POQ ︒∠= 又因为OP OQ =所以45PQO ︒∠= 因为PQ OA ∥所以PQ y ⊥轴.设PQ y ⊥轴于点H在Rt △OHQ 中 根据2,45OQ HQO ︒=∠= 得Q 点坐标为(2,2-)所以符合条件的点Q 的坐标为(2,2-)或(2,2-).6.(1)∵长方形ABCD∴∠A =∠B =90°∵点E 为AD 的中点 AD =6cm∴AE =3cm又∵P 和Q 的速度相等可得出AP =BQ =1cm BP =3 ∴AE =BP在△AEP 和△BQP 中∴y=xy 3=4-y⎧⎨⎩ 解得:x=1y=1⎧⎨⎩ (舍去). 综上所述,点Q 的运动速度为32cm /s 时能使两三角形全等.7.(1)1(2)54t =或4或232 (3) 3.5t = 5.5或10(1)解:动点P 的速度是2cm/s∴当2t =时 224AP =⨯=∵5cm AB =∴BP =1cm ;(2)解:①当点P 在AB 上时 CDP △是等腰三角形∴PD CP =在长方形ABCD 中 ,90AD BC A B =∠=∠=︒∴()HL DAP CBP ≌∴AP BP =∴1522AP AB ==∵动点P 的速度是2cm/s∵90D5DP CD == 2AB CB CD t ++=∴要使一个三角形与DCQ 全等①当点P运动到1P时16△≌△DCQ CDPCP DQ==此时1∴点P的路程为:1527AB BP+=+=∴72 3.5t=÷=;②当点P运动到2P时26△≌△CDQ ABPBP DQ==此时2∴点P的路程为:25611+=+=AB BP∴112 5.5t=÷=③当点P运动到3P时35△≌△CDQ BAP==此时3AP DQ∴点P的路程为:3585220AB BC CD DP+++=+++=∴20210t=÷=④当点P运动到4P时即P与Q重合时46△≌△CDQ CDPDP DQ==此时4∴点P的路程为:4585624+++=+++=AB BC CD DPt=÷=此结果舍去不符合题意∴24212综上所述t的值可以是: 3.5t= 5.5或10.8.(1)四边形ABCD是平行四边形∥∴BC AD∴∠=∠FCG EDGG是CD的中点∴=CG DG△中在CFG△和DEGCFG∴≅(ASA)DEGFG EG∴=又CG DG=∴四边形CEDF是平行四边形.2)①当5AE=如图过60B∠=12BM∴=5AE=DE AD∴=在MBA△BM DEB=⎧⎪∠=∠⎨⎪(SAS)MBA EDC∴≅CED AMB∴∠=∠四边形CEDF是平行四边形∴平行四边形CEDF②当2AE cm =时 四边形CEDF 是菱形 理由如下:四边形ABCD 是平行四边形8AD ∴= 6CD AB == 60CDE B ∠=∠=︒2AE =6DE AD AE ∴=-=DE CD ∴=CDE ∴∆是等边三角形CE DE ∴=四边形CEDF 是平行四边形∴平行四边形CEDF 是菱形故答案为:2;9.(1)解:∵|b ﹣8|6c +-=0∴b -8=0 c -6=0∴b =8 c =6∵B (b 0) C (0 c )∴B (8 0) C (0 6)又∵AB ⊥x 轴 AC ⊥y 轴∴A (8 6);(2)∵AB ⊥x 轴 AC ⊥y 轴 GE ⊥y 轴∴四边形AEGC 是矩形设运动时间为t 秒∴OD =t AE =2t DG =6+2t-t =6+t∴S 四边形AEGC =8×2t =16t S △DEG =12×(6+t )×8=4t +242∵OM=4OP∴-m=-4×62m解得m=-12综上所述m的值为-4或-12.10.(1)∵点A B的坐标分别是(﹣4 0)(0 8)∴OA=4 OB=8∵点C运动到线段OB的中点∴OC=BC=12OB=4∵动点C从点B出发沿射线BO方向以每秒2个单位的速度运动∴2t=4解之:t=2;∵PE=OA=4 动点P从点O出发沿x轴正方向以每秒1个单位的速度运动∴OE=OP+PE=t+4=2+4=6∴点E(6 0)(2)证明:∵四边形PCOD是平行四边形∴OC=PD OC∥PD当点C在y轴的负半轴上时③如果点M在DE上时24163(3)22t tt--=++解得423t=+④当N在CE上时28(3)8214tt tt-⋅++-=-+解得12t=综上分析可得满足条件的t的值为:t1=28﹣16 3t2=2 t3=4+2 3t4=12.11.(1) ()30D,,()1,3E;(2)933022933222572222t tS t tt t⎧⎛⎫-+≤≤⎪⎪⎝⎭⎪⎪⎛⎫=-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-≤⎪ ⎪⎝⎭⎩<(3)198s解:(1)3922y x=-+当y=0时39=022x-+则x=3 即点()30D,当y=3时39=322x-+则x=1 故点()1,3E故:()30D,,()1,3E;(2)如图1 ①当点P在OD段时此时0≤t<32119()2223233S PD OC t t=⨯⨯=⨯-⨯=-+;②当点P在点D时此时t=32此时三角形不存在0S=;''6ADP BEP S S -=-30232t t ⎛⎫≤≤ ⎪⎝⎭⎫<≤⎪;即当点P 在边AB 上运动 且PD PE +的值最小时 运动时间t 为198s . 12.(1)16cm ;(2)(8813)cm +;(3)53t =秒或395秒 解:(1)如图1过A 作AM DC ⊥于M在四边形ABCD 中 //AB CD 90BCD ∠=︒//AM BC ∴∴四边形AMCB 是矩形10AB AD cm == 8BC cm =8AM BC cm ∴== 10CM AB cm ==在Rt AMD ∆中 由勾股定理得:6DM cm =10616CD DM CM cm cm cm =+=+=;(2)如图2当四边形PBQD 是平行四边形时 PB DQ =即1032t t -=解得2t =此时4DQ = 12CQ = 22413BQ BC CQ =+=所以()28813PBQD C BQ DQ =+=+;1003t 14(102BPQ BP BC ==解得53t =;P 在BC 上时 63t1(32BP CQ t =此方程没有实数解;CD 上时:在点Q 的右侧54(34PQ BC =6< 不合题意若P 在Q 的左侧 如图6 即3485t <14(534)202BPQ S PQ BC t ∆==-= 解得395t =; 综上所述 当53t =秒或395秒时 BPQ ∆的面积为220cm . 13.(1)t 10-t ;(2)5;(3)S =20-2t ;(4)2或8. 解:(1)当0<t <3时 点M 在线段AB 上 即AM =t 当7<t <10时 点M 在线段OC 上 OM =10-t故填:t 10-t ;(2)∵四边形ABCO 是矩形 B (4 3)∴OA =BC =4 AB =OC =3∵△AOM 为等腰三角形∴只有当MA =MO 此时点M 在线段BC 上 CM =BM =2 ∴t =3+2=5故填:5;(3)∵当7<t <10时 点M 在线段OC 上∴114(10)20222S OA OM t t =⋅⋅=⨯⨯-=-;(4)①当点M 在线段AB 上时 4=12×4t 解得t =2;②当点M 在线段BC 上时 S =6 不符合题意;当点M 在线段OC 上时 4=20-2t 解得t =8.∴OD =OP +PD =8∴Q (8 2)∵M 是CQ 的中点 C (0 6)∴M (4 4);(2)①∵△COP ≌△PDQ∴OP =OQ =t OC =PD =6∴OD =t +6∴Q (t +6 t )∵C (0 6)∴M (62t + 62t +) 当0<t <6时 S =AP ×y M =(6﹣t )×62t +=2362t -; ②分两种情况:a 当N 在PC 上时 连接OB PM 如图2﹣1所示:∵点M 的横 纵坐标相等∴点M 在对角线BD 上∵四边形OABC 是正方形∴OC =OA ∠COM =∠AOM∴∠MPA =12(180°﹣45°)=67.5° ∴∠CPA =67.5﹣45=22.5°;综上所述 当点N 在△CPQ 的直角边上时 ∠CPA 的度数为112.5°或22.5°;(3)过点M 作MH ⊥x 轴于点H 过点Q 作QG ⊥x 轴于点G∵AMQ AHM AGQ MHGQ S S S S =--△△△梯形∴S '=12(62t ++t )•62t +﹣12(6﹣62t +)•62t +﹣12t •t =3t ①当0<t <6时 即点AP 在点A 左侧时 如图3所示:∵S =S '∴2362t -=3t 解得:t =﹣3+35 或t =﹣3﹣35(舍去);②当t >6时 即点P 在点A 右侧时 如图4所示:S =AP ×y M =(t ﹣6)×62t +=2362t - ∵S =S '将D (0 1)G (10 5)代入y=kx+b 得:1105b k b =⎧⎪⎨+=⎪⎩解得:21051k b ⎧=⎪⎨⎪=⎩∴当CG=OD 时 直线DG 的函数表达式为y=2105x+1.(3)设DG 交x 轴于点P 过点F 作FM⊥x 轴于点M 延长MF 交BC 于点N 如图所示.∵DG∥EF∴∠FEM=∠GPO.∵BC∥OA∴∠DGC=∠GPO=∠FEM.在△DCG 和△FME 中90DCG FME DGC FEMDG FE⎧∠=∠=⎪∠=∠⎨⎪=⎩ ∴△DCG≌△FME(AAS )∴FM=DC=4.∵MN⊥x 轴∴四边形OMNC 为矩形在Rt△CDH 中 由勾股定理可得: HC=22543-=∴BC=BK+KH+HC=4+3+3=10;(2)如图② 过D 作DG∥AB 交BC 于G 点 则四边形ADGB 为平行四边形 ∴BG=AD=3∴GC=BC−BC=10−3=7由题意得 当M N 运动t 秒后 CN=t CM=10−2t∵AB∥DG MN∥AB∴DG∥MN∴∠NMC=∠DGC又∵∠C=∠C∴△MNC ~△GDC∴CN CM CD CG=, ∴10257tt -=解得t=5017; (3)第一种情况:当NC=MC 时 如图③22∵∠C=∠C∠MFC=∠DHC=90°∴△MFC~△DHC∴FC MCHC DC=即:1 102253tt-=解得:t=6017;综上所述当t=103t=258或t=6017时△MNC为等腰三角形.。
2018年吉林中考数学总复习动点问题练习含答案
QDDN32018吉林中考数学总复习动点问题??tan?QPD?4PDDM.3)如图5,如图2,在Rt△PDQ中,(因动点产生的等腰三角形问题练习BA3?C?tan?成绩:年班姓名4CA.所以∠QPD=∠C在Rt△ABC.中,,于点ED=8,点为边BC的中点,DE⊥BC交边ACABRt1.如图1,在△ABC中,∠A=90°,=6,AC由∠PDQ=90°,∠CDE=90°,可得∠PDF=∠CDQ90上的一动点,点点P为射线ABQ为边AC上的一动点,且∠PDQ=°..因此△PDF ∽△CDQ.EC(1)求ED、的长;当△=2,求CQ的长;PDF是等腰三角形时,△CDQ也是等腰三角形.(2)若BP①如图5,当BPPQ(3)记线段与线段DE的交点为F,若△PDF为等腰三角形,求的长.CQ=CD=5时,QN=CQ-CN=5-4=1(如图3所示).44453?PM?QN??BP?BMPM??3333..所以此时CH5425?Ccos???CQ备用图图1 CQ285.,可得时,由,当②如图6QC=QD =10.,所以,Rt解:(1)在△ABC中,AB=6AC=8BC15325725??5?CCDED??tan???4?EC 44848(如图在,.=2所示)所以,所以QN=CN-CQ.CDRt△CDE中,=5 ⊥⊥作,过点)如图2DDMAB,DNAC是、N,那么DMDN、,垂足分别为M (272574???PM?3BP?BM?QNPM?=,=△ABC的两条中位线,DM4DN3.6663..所以此时MDN=90QDN.=∠°,可得∠PDM°,∠=由∠PDQ90③不存在DP=.∽△因此△PDMQDN DF的情况.这是因为∠DFP≥∠DQP>∠DPQ(如图5,图6所示).4DMPM43??QNQNPMPM??3DNQN34.所以,.所以图5 图62.如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.( 3 图图2 4图1)求抛物线的函数关系式;(2 .1PM上时,BMP,2BP,当3①如图=在=)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的19333??CQ?4?QN?CN?PM?QN坐标;若不存在,请说明理由.4444此时..所以PM的延长线上时,MB在,2=BP,当4②如图P5=.3115153??CN?CQ?QN4??PM?QN 4444此时.所以.(2)因为抛物线与x轴交于O、A(4, 0),设抛物线的解析式为y=ax(x-4),3??a6)2a?(?2,??23)?23??(6..解得,代入点B33232x4)???y??xx(x?366.所以抛物线的解析式为(3图1 )抛物线的对称轴是直线x=2,设点P的坐标为(2, y).+,1)(x-3)1,0)x解:(1)因为抛物线与轴交于A(-、B(3, 0)两点,设y=a(x y??23..解得4时,OP2=16.所以4+y2=16①当OP=OB=1.=3.解得a=-3a代入点C(0 ,3),得-.+32x3)(x所以抛物线的函数关系式是y=-+1)(x-=-x2+(2,23)时,B、O、PP在三点共线(如图2).当12(2)如图,抛物线的对称轴是直线x=.PACPA上时,+PC最小,△的周长最小.P当点落在线段BC223?2?y?y16??243)?(y 4时,BP2=16..所以.解得=②当BPBO=21.x设抛物线的对称轴与轴的交点为H PHBH?2222322y??y4y?(?23)??.解得=③当PB=PO时,PB2PO2..所以COBO.BHPHCO,BO=,得==由2 所以点(1, 2)的坐标为.P3)2(2,?的坐标为所示.,如图2综合①、②、③,点P2图66? M3()点的坐标为(1, 1)、(1,))(1,0)、(1,.或°至顺时针旋转O120OB的位置.绕点,将线段=轴上,在,点如图3.1AxOA4OA的坐标;)求点(1B 、、OB的抛物线的解析式;)求经过(2A为顶点的三角形是等腰三角形?若,使得以点)在此抛物线的对称轴上,是否存在点3PPB、、O(存在,求点的坐标;若不存在,请说明理由.P3图图24x?y3 B.,且与x轴交于点74.如图1,已知一次函数y=-x+的图象交于点与正比例函数A 的坐标;A和点B(1)求点出OP从点,过点B作直线l//y轴.动点y(2)过点A作AC⊥轴于点C运动;同时直AC—A的路线向点—发,以每秒1个单位长的速度,沿O轴于x出发,以相同速度向左平移,在平移过程中,直线l1 图交l线从点BlP和直线P到达点A时,点.当点.C 轴,垂足为y⊥作B,过点)如图1(解:2BC或线段点R,交线段BAAO于点Q秒.都停止运动.在运动过程中,设动点P运动的时间为t3OC?2 BOC中,∠OBC△在Rt,所以4=OB2=BC,.°,30=?为顶点的三角形的面积为、AP、R8为何值时,以①当t的为顶点的三角形是等腰三角形?若存在,求、、②是否存在以APQt3)(?2,?2.的坐标为所以点B 值;若不存在,请说明理由.] [键入文字226图1 ?t43.412267,??x?y?438?时,△APQ是等腰三角形.或5 t综上所述,=1或或3,x??4?,y?x??4.y?3??)解方程组.(3,4) 所以点A的坐标是得1解:(0?x?7y??7?x令.(7,0).所以点B 的坐标是,得8S??S?SS?,得,当P在OC上运动时,0≤t<4.由(2)①如图2R△APRPO△△ACPA梯形COR 1118)?(7??t(4?4??t)??t(3+7?t)?42012?8tt??222.如(舍去)t=6.解得t.整理,得=2或图5 图3,当P在CA上运动时,△APR的最大面积为6.图6图7为顶点的三角形的面积为=因此,当t2时,以A、P、R8.5.如图1,在矩形ABCD中,AB=m (m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?12?y m,要使△DEF(3为等腰三角形,)若m的值应为多少?4 图图2 3 图<0≤t4.上运动时的情形,②我们先讨论P在OC2AB4?>.因此∠OABOB,所以745AOB45AOB如图1,在△中,∠B=°,∠>°,OB=>,AB图.B 1>∠AOB∠解:(1)因为∠EDC与∠FEB都是∠DEC的余角,所以∠EDC=∠FEB.又因为∠C=∠,所以=向由,点如图4POC运动的过程中,OPBR=RQPQ//x轴.B=90°,所以△°保持不变,∠=因此∠AQP45PAQ越来越大,所以只存在∠APQ的情况.=∠AQP m8?x18DCEB?2xx??y??.=,===的垂直平分线上,此时点A在PQOR2CA6.所以BR1t1yxmCEBFm.∽△EBFy.因此关于x,即的函数关系为.整理,得DCE .<上运动时的情形,CA4≤t7在我们再来讨论P2035511??tOROAOQOAAQ?????cosA?22?4)2??y??(xx?x?t7??AP3353中,在△APQ .为定值,,88.因此当x=4时,y时,取得最大值为2.,当(2)如图2m=841205?t?tt7??833 AQAP,当5如图=时,解方程,得.1218122?x??x?y24)]??7tt?()?2[(7t??8x?x12?0mmm m,QP当6如图,AP的垂直平分线上,PA在=OP)-2(OR.解方程Q点时,=QA.解得.整理,得x(3) =若2或,那么x=6.要使△DEF5t?为等腰三角形,只存在ED=EF的情况.因为△DCE∽△EBF,所以CE=BF,即x=y.将x=y =2代得.12121y?y?AQ3520mm2,得m=2==;将3入6m,得=(如图)xy 6代入(如图4).?2(7?)?tt??A?cos A?cos?AP2AQ?533AP,得,当7如PQ=PA.因此时,那么.解方程3=GM=x,PM=EG.=在矩形EGMP中,EP.中,在平行四边形BMQEBM=EQ=1+x .所以BG=PQ=1 2PH与NM互相平分,PH=2PQ=.因为PM与NH平行且相等,所以73,PH =2,所以PN.在Rt△PNH中,NH==4.在平行四边形ABMN中,MN=AB=4 图 3 图2图73的周长为.+因此△PMN+4BC=AB4,交CD于点F,作是中,6.如图1,在等腰梯形ABCDAD//BC,EAB的中点,过点EEF//BC,∠B°.=60=6 到EBC的距离;(1)求点,⊥P(2)点为线段EF上的一个动点,过点P 作PMEF交BC于NM过作MN//AB交折线ADC于M,=,设EPx.连结PN的周长;若的形状是否发生改变?若不变,求出△PMNPMN①当点N在线段AD上时(如图2),△改变,请说明理由;5图PMN)在线段②当点NDC上时(如图3,是否存在点P,使△为等腰三角形?若存在,请求出所有满图4恒为等边三角形.的值;若不存在,请说明理由.x DC②当点N在线段上时,△CMN足条件的的平分线上.关于直线PC对称,点P在∠DCB如图5,当PM=PN时,△PMC与△PNC3.30°,所以MC=在Rt△PCM中,PM3=,∠PCM=.的中点,x=2、此时M、P分别为BCEF33=5.-,x=GM=GC=如图6,当MP=MN时,MPMN=MC-=MC2 图1 图°.PNM=120=时,∠图3 NMP=∠NPM30°,所以∠,当如图7NP=NM1解:()如图重合.P与F又因为∠FNM=120 GBCEGE4,过点作⊥于.°,所以.=4此时x12BEAB 32 60中,△Rt在BEG=,∠B°,时,△PMN为等腰三角形.或5-综上所述,当x=2或43BE?EG??60sin?1?60?cos?BEBG?.所以3所以点BC到E的距离为.是F的中点,所以是E,)因为2(AD//EF//BCABDC的中点.ABCD是梯形EF因此4=的中位线,EF.8 7 的形状不是否发生改变.PMN上时,△AD在线段,当点4①如图N图6 图图于EF⊥NH作N过点交于点NM与PH,设HQ.] [键入文字。
2018年吉林省中考数学试卷(含答案与解析)
数学试卷 第1页(共46页) 数学试卷 第2页(共46页)绝密★启用前吉林省2018年初中毕业生学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算(1)(2)-⨯-的结果是( ) A .2B .1C .2-D .3- 2.图是由4个相同的小正方体组成的立体图形,它的主视图是( )ABCD 3.下列计算结果为6a 的是( )A .23a a B .122a a ÷ C .23()aD .23()a -4.如图,将木条a ,b 与c 钉在一起,170︒=∠,250︒∠=,要使木条a 与b 平行,木条a 旋转的度数至少是 ( )A .10︒B .20︒C .50︒D .70︒5.如图,将ABC △折叠,使点A 与BC 边中点D 重合,折痕为MN ,若9AB =,6BC =,则DNB △的周长为( )A .12B .13C .14D .156.国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( )A .35,2294x y x y +=⎧⎨+=⎩B .35,4294x y x y +=⎧⎨+=⎩C .35,4494x y x y +=⎧⎨+=⎩D .35,2494x y x y +=⎧⎨+=⎩ 第Ⅱ卷(非选择题 共108分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 7..8.买单价3元的圆珠笔m 支,应付 元.9.若4a b +=,1ab =,则22a b ab += .10.若关于x 的一元二次方程220x x m +-=有两个相等的实数根,则m 的值为 .11.如图,在平面直角坐标系中,(4,0)A ,(0,3)B ,以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为 .12.如图是测量河宽的示意图,AE 与BC 相交于点D ,90B C ︒==∠∠,测得120 mBD =,60 m DC =,50 m EC =,求得河宽AB = m .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共46页) 数学试卷 第4页(共46页)13.如图,A ,B ,C ,D 是O 上的四个点,AB BC =,若58AOB ︒=∠,则BDC =∠ 度.14.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k .若12k =,则该等腰三角形的顶角为 度.三、解答题(本大题共12小题,共84分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分5分)某同学化简(2)()()a a b a b a b +-+-出现了错误,解答过程如下: 原式222()2a ab a b =+--(第一步)2222a a b a b=--+(第二步) 22a b b =-(第三步)(1)该同学解答过程从第 步开始出错,错误原因是 ; (2)写出此题正确的解答过程. 16.(本小题满分5分)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且BE CF =. 求证:ABE BCF △≌△.17.(本小题满分5分)一个不透明的口袋中有三个小球,上面分别标有字母A ,B ,C ,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.18.(本小题满分5分)在平面直角坐标系中,反比例函数(0)ky k x=≠图象与一次函数2y x =+图象的一个交点为P ,且点P 的横坐标为1,求该反比例函数的解析式.19.(本小题满分7分)根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x 表示 ,庆庆同学所列方程中的y 表示 ; (2)两个方程中任选一个,并写出它的等量关系; (3)解(2)中你所选择的方程,并回答老师提出的问题.数学试卷 第5页(共46页) 数学试卷 第6页(共46页)20.(本小题满分7分)如图是由边长为1的小正方形组成的84⨯网格,每个小正方形的顶点叫做格点,点A ,B ,C ,D 均在格点上,在网格中将点D 按下列步骤移动:第一步:点D 绕点A 顺时针旋转180︒得到点1D ; 第二步:点1D 绕点B 顺时针旋转得90︒到点2D ; 第三步:点2D 绕点C 顺时针旋转90︒回到点D . (1)请用圆规画出点12D D D D →→→经过的路径; (2)所画图形是 对称图形; (3)求所画图形的周长(结果保留π).21.(本小题满分7分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺.请帮助组长林平完成方案内容,用含a ,b ,α的代数式表示旗杆AB 的高度. 数学活动方案活动时间:2018年4月2日 活动地点:学校操场 填表人:林平22.(本小题满分7分)为了调查甲、乙两台包装机分装标准质量为400 g 奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题. 收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g )如下: 甲:400,400,408,406,410,409,400,393,394,395 乙:403,404,396,399,402,402,405,397,402,398 整理数据:表一分析数据:表二-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共46页) 数学试卷 第8页(共46页)得出结论:包装机分装情况比较好的是 (填甲或乙),说明你的理由. 23.(本小题满分8分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30 min .小东骑自行车以300 m/min 的速度直接回家,两人离家的路程(m)y 与各自离开出发地的时间(min)x 之间的函数图象如图所示 (1)家与图书馆之间的路程为 m ,小玲步行的速度为 m/min ; (2)求小东离家的路程y 关于x 的函数解析式,并写出自变量的取值范围; (3)求两人相遇的时间.24.(本小题满分8分)如图1,在ABC △中,AB AC =,过AB 上一点D 作DE AC ∥交BC 于点E ,以E 为顶点,ED 为一边,作DEF A =∠∠,另一边EF 交AC 于点F . (1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图1中的DE 到点G ,使EG DE =,连接AE ,AG ,FG ,得到图2,若AD AG =,判断四边形AEGF 的形状,并说明理由.图1图225.(本小题满分10分)如图,在矩形ABCD 中, 2 cm AB =,30ADB ︒=∠.P ,Q 两点分别从A ,B 同时出发,点P 沿折线AB BC -运动,在AB 上的速度是2 cm/s ,在BC 上的速度是;点Q 在BD 上以2 cm/s 的速度向终点D 运动,过点P 作PN AD ⊥,垂足为点N .连接PQ ,以PQ ,PN 为邻边作□PQMN .设运动的时间为(s)x ,□PQMN 与矩形ABCD 重叠部分的图形面积为2)(cm y(1)当PQ AB ⊥时,x = ;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)直线AM 将矩形ABCD 的面积分成1:3两部分时,直接写出x 的值.备用图26.(本小题满分10分)如图,在平面直角坐标系中,抛物线223(0)y ax ax a a =+-<与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E . (1)当1a =-时,抛物线顶点D 的坐标为 ,OE = ; (2)OE 的长是否与a 值有关,说明你的理由; (3)设DEO β=∠,4560β︒︒≤≤,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设(,)P m n ,直接写出n关于m的函数解析式及自变量m的取值范围.数学试卷第9页(共46页)数学试卷第10页(共46页)6吉林省2018年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】(1)(2)2-⨯-= 故选A . 【考点】有理数的运算. 2.【答案】B【解析】从正面看已知几何体,得到的平面图形是,故选B .【考点】几何体的主视图. 3.【答案】C【解析】23235 a a a a +==,12210122=a a a a -=÷,36223)=(a a a ⨯=,236()a a -=-,故选C . 【考点】整式的运算. 4.【答案】B【解析】根据题意,若使木条a 与b 平行,且木条a 旋转度数最少,则木条a 应按顺时针方向旋转的度数为1220︒-=∠∠,故选B .【考点】平行线的性质、旋转的性质. 5.【答案】A【解析】由翻折可知AN DN =,∴DNB △的周长为DN NB BD AN NB BD AB BD ++=++=+,∵9AB =,6BC =,点D 是BC 的中点,∴3BD =,∴DNB △的周长为9312+=,故选A .【考点】轴对称的性质、中点定义. 6.【答案】D【解析】根据题意,因为每只鸡有1个头和2只脚,每只免有1个头和4只脚,由“鸡兔共有35个头”得35x y +=,由“鸡兔共有94只脚”得2494x y +=,列出方程组为35,2494,x y x y +=⎧⎨+=⎩故选D .【考点】列方程组解应用题.第Ⅱ卷二.填空题7.【答案】4.【考点】二次根式的运算.8.【答案】3m【解析】根据题意,每支圆珠笔3元,m支圆珠笔3m元,则应付3m元.【考点】列代数式表示数.9.【答案】4【解析】∵4a b+=,1ab=,∴22()144a b ab ab a b+=+=⨯=.【考点】分解因式,求代数式的值.10.【答案】1-【解析】由题意知2241(=)0m⨯⨯--=∆,解得1m=-,即m的值为1-.【考点】]一元二次方程的根的判别式.11.【答案】(1,0)-【解析】根据题意,由点A的坐标(4,0)得4OA=,由点B的坐标(0,3)得3OB=,在Rt OAB△中,由勾股定理可得5AB=,∴5AC=,∴1OC AC OA=-=,又∵点C在x轴的负半轴上,∴点C的坐标为(1,0)-.【考点】勾股定理、平面直角坐标系内点的坐标.12.【答案】100【解析】∵90B C︒==∠∠,ADB EDC=∠∠,∴ABD ECD△∽△,∵AB BDEC CD=,又120 mBD=,60 mDC=,50 mEC=,则可得100 mAB=,即河宽AB为100 m.【考点】相似三角形的判定和性质.13.【答案】29【解析】如图,作AB所对的圆周角AEB∠,则1=2AEB AOB∠∠,∵°=58AOB∠,°=29AEB∠,又∵AB BC=,∴°29BDC AEB==∠∠.7 / 238【考点】圆周角定理及其推论. 14.【答案】36【解析】由题意可知当12k =时,设这个等腰三角形的顶角为°x .则它的一个底角为°(2)x ,根据三角形的内角和定理得22180x x x ++=,解得36x =,则这个等腰三角形的顶角是°36. 【考点】新定义、等腰三角形的性质、三角形的内角和定理. 三、解答题 15.【答案】(1)二; 去括号法则用错(2)原式222()2a ab a b =+--222()2a a b a b =+--22a b b =+【解析】(1)二; 去括号法则用错(2)原式222()2a ab a b =+--222()2a a b a b =+--22a b b =+评分说明:第(1)题,与“去括号法则用错”等同的说法均给分. 【考点】整式的化简16.【答案】证明:在正方形ABCD 中,9 / 23AB BC =,°90ABC C ==∠∠∵BE CF = ∴ABE BCF △≌△.【解析】证明:在正方形ABCD 中,AB BC =,°90ABC C ==∠∠∵BE CF = ∴ABE BCF △≌△.【考点】正方形的性质、全等三角形的判定. 17.【答案】13【解析】解法一:根据题意.可以画出如下树状图:从树状图可以看出,所有可能出现的结果共有9种,其中小球上字母相同的结果有3种,所以()3193P ==字母相同.10从表中可以看出,所有可能出现的结果共有9种,其中小球上字母相同的结果有3种,所以()3193P ==字母相同. 【考点】随机事件发生的概率.18.【答案】解:∵点P 的横坐标为1,∴1x =, ∵点P 在直线2y x =+上,∴3y =. ∴(1,3)P 将(1,3)P 代人ky x=中,∴3k =. ∴该反比例函数的解析式为3y x=. 【解析】解:∵点P 的横坐标为1,∴1x =, ∵点P 在直线2y x =+上,∴3y =. ∴(1,3)P 将(1,3)P 代人ky x=中,∴3k =. ∴该反比例函数的解析式为3y x=. 【考点】]一次函数、反比例函数的图象与性质. 19.【答案】解:(1)甲队每天修路的长度;甲队修路400米所用的天数(乙队修路600米所的天数). (2)选冰冰所列方程(选第一个方程),甲队修路400米与乙队修路800米所用时间相等; 选庆庆所列方程(选第二个方程),乙队每天修路长度与甲队每天修路长度的差等于20米. (3)选第一个方程:40060020x x =+解方程,得40x =. 经检验:40x =是原分式方程的解且符合题意. ∴40x =.答:甲队每天修路40米. 选第二个方程:11 / 2360040020y y-=.解方程,得10y =. 经检验:10y =是原分式方程的解且符合题意. ∴400=4010. 答:甲队每天修路40米.【解析】解:(1)甲队每天修路的长度;甲队修路400米所用的天数(乙队修路600米所的天数). (2)选冰冰所列方程(选第一个方程),甲队修路400米与乙队修路800米所用时间相等; 选庆庆所列方程(选第二个方程),乙队每天修路长度与甲队每天修路长度的差等于20米. (3)选第一个方程:40060020x x =+解方程,得40x =. 经检验:40x =是原分式方程的解且符合题意. ∴40x =.答:甲队每天修路40米. 选第二个方程:60040020y y-=.解方程,得10y =. 经检验:10y =是原分式方程的解且符合题意. ∴400=4010. 答:甲队每天修路40米. 【考点】列分式方程解应用题. 20.【答案】解:(1)(2)轴.(3)所画图形周长2π42π4=+2=4π+4π=8π24⨯⨯⨯. 【解析】解:(1)(2)轴.(3)所画图形周长2π42π4=+2=4π+4π=8π24⨯⨯⨯. 【考点】]基本作图一一作弧、轴对称图形和中心对称图形的概念、扇形的弧长. 21.【答案】【解析】测量步骤:(1)测角仪. (2)皮尺.计算过程:如图,ADE α=∠,DE BC a ==,BE CD b ==.在Rt ADE △中,角°90AED =∠. ∵tan AE ADE DE=∠. ∴ tan AE ED ADE =∠. ∴ tan αAE a =.∴( tan α)AB AE EB b a =+=+(米). 【解析】测量步骤:(1)测角仪. (2)皮尺.13 / 23计算过程:如图,ADE α=∠,DE BC a ==,BE CD b ==.在Rt ADE △中,角°90AED =∠. ∵tan AEADE DE=∠. ∴ tan AE ED ADE =∠. ∴ tan αAE a =.∴( tan α)AB AE EB b a =+=+(米).【考点】]基本作图一一作弧、轴对称图形和中心对称图形的概念、扇形的弧长. 22.【答案】表二甲,理由:从中位数(众数)角度说,甲的中位数(众数)为标准质量400 g . 乙,理由:从方差角度说,乙的方差小,分装情况更稳定 从平均数角度说,乙的平均数更接近标准质量400 g.【解析】表一表二甲,理由:从中位数(众数)角度说,甲的中位数(众数)为标准质量400 g.乙,理由:从方差角度说,乙的方差小,分装情况更稳定从平均数角度说,乙的平均数更接近标准质量400 g【考点】数据的整理、统计知识的应用.23.【答案】(1)4 000100(2)如图,∵小东从图书馆到家的时间4 00040(h)3003x==,∴40(,0)3D.15 / 23设CD 的解析式为(0)y kx b k =+≠, ∵图像过40(,0)3D 和(0,4 000)C 两点. ∴400,3 4 000.k b b ⎧+=⎪⎨⎪=⎩解得300,4 000.k b =-⎧⎨=⎩∴CD 的解析式为300 4 000y x =-+.∴小乐离家的路程y 与x 的解析式为40300 4 000(0)3y x x =-+≤≤. (3)设OA 的解析式为(0)y k x k ''=≠. ∵图象过点(10,2 000)A , ∴10 2 000k '=,∴200k '=. ∴OA 的解析式为200(010)y x x =≤≤∴200,300 4 000.y x y x =⎧⎨=-+⎩解得8,1 600.x y =⎧⎨=⎩答:两人出发后8分钟相遇. 【解析】(1)4 000 100(2)如图,∵小东从图书馆到家的时间 4 00040(h)3003x ==,∴40(,0)3D .设CD 的解析式为(0)y kx b k =+≠, ∵图像过40(,0)3D 和(0,4 000)C 两点.∴400,3 4 000.k b b ⎧+=⎪⎨⎪=⎩解得300,4 000.k b =-⎧⎨=⎩∴CD 的解析式为300 4 000y x =-+.∴小乐离家的路程y 与x 的解析式为40300 4 000(0)3y x x =-+≤≤. (3)设OA 的解析式为(0)y k x k ''=≠. ∵图象过点(10,2 000)A , ∴10 2 000k '=,∴200k '=. ∴OA 的解析式为200(010)y x x =≤≤∴200,300 4 000.y x y x =⎧⎨=-+⎩解得8,1 600.x y =⎧⎨=⎩ 答:两人出发后8分钟相遇. 【考点】一次函数的应用.24.【答案】(1)如图1,∵DE AC ∥,∴DEF EFC =∠∠图1∵DEF A =∠∠,∴A EFC =∠∠. ∴EF AB ∥.∴四边形ADEF 为平行四边形. (2)菱形(3)结论:四边形AEGF 为矩形.理由:如图2,由(1)知,四边形ADEF 为平行四边形.图2∴AF DE ∥,AD EF =,17 / 23∵EG ED =,∴AF EG ∥, ∴四边形AEGF 是平行四边形, ∵AD AG =,∴AG EF = ∴四边形AEGF 是矩形.【解析】(1)如图1,∵DE AC ∥,∴DEF EFC =∠∠图1∵DEF A =∠∠,∴A EFC =∠∠. ∴EF AB ∥.∴四边形ADEF 为平行四边形. (2)菱形(3)结论:四边形AEGF 为矩形.理由:如图2,由(1)知,四边形ADEF 为平行四边形.图2∴AF DE ∥,AD EF =, ∵EG ED =,∴AF EG ∥, ∴四边形AEGF 是平行四边形, ∵AD AG =,∴AG EF = ∴四边形AEGF 是矩形.【考点】平行线的性质、特殊四边形的判定. 25.【答案】(1)23(2)当203x ≤<时,如图1,过点Q 作QH AB ⊥于H .由题意得QH ,2AP x =.2 2PQMNAP QH S===.∴2y =.当01x ≤<时,如图2,设QM 与AD 交于点G ∴1() 2PQGA y S QG AP QH ==+梯形1(22) 32x x x =-+2+∴2y图1图2图3当12x ≤≤时,如图3∴1() 2PQGA y S QG PN GN ==+梯形1(22) 31)2x x x ⎡⎤=-+--⎣⎦2x -+∴2y -+19 / 23(3)25或47(如图4,如图5)图4图5【解析】(1)23(2)当203x ≤<时,如图1,过点Q 作QH AB ⊥于H .由题意得QH ,2AP x =.2 2PQMNAP QH S===.∴2y =.当01x ≤<时,如图2,设QM 与AD 交于点G ∴1() 2PQGA y S QG AP QH ==+梯形1(22) 32x x x =-+2+∴22y x =图1图2图3当12x ≤≤时,如图3∴1() 2PQGA y S QG PN GN ==+梯形1(22) 31)2x x x ⎡⎤=-+--⎣⎦2x -+∴2y -+ (3)25或47(如图4,如图5)图4图5【考点】矩形的性质、函数的应用、图形的面积. 26.【答案】(1)(1,4)- 3(2)OE 的长与a 值无关21 / 23理由:如图1,∵223y ax ax a =+-,图1∴(0,3)C a -,(1,4)D a ,∴直线CD 的解析式为3y ax a =-,当0y =时,3x =,∴3OE =,∴OE 的长与a 值无关.(3)当45β︒=时,在Rt OCE △中,OC OE =,∵3OE =,3OC a =-∴33a -=,∴1a =-.当60β︒=时,在Rt OCE △中,OC ,∵3OE =,3OC a =-∴3a -=∴a =∴当4560β︒︒≤≤,a的取值范围为1a ≤≥-.(4)1(1)n m m =--<.(如图2)22图1【解析】(1)(1,4)-3(2)OE 的长与a 值无关理由:如图1,∵223y ax ax a =+-,图1∴(0,3)C a -,(1,4)D a ,∴直线CD 的解析式为3y ax a =-,当0y =时,3x =,∴3OE =,23 / 23∴OE 的长与a 值无关.(3)当45β︒=时,在Rt OCE △中,OC OE =,∵3OE =,3OC a =-∴33a -=,∴1a =-.当60β︒=时,在Rt OCE △中,OC ,∵3OE =,3OC a =-∴3a -=∴a =∴当4560β︒︒≤≤,a的取值范围为1a ≤≥-.(4)1(1)n m m =--<.(如图2)图1【考点】在二次函数的图象与性质行分三角函数的运用、等腰直角三角形的性质、数形结合思想.。
2018吉林中考数学总复习动点问题练习(三)
2018年吉林市中考数学总复习动点问题专题练习2.3 因动点产生的梯形问题练习年 班 姓名 成绩:例1已知直线y =3x -3分别与x 轴、y 轴交于点A ,B ,抛物线y =ax2+2x +c 经过点A ,B . (1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标; (2)记该抛物线的对称轴为直线l ,点B 关于直线l 的对称点为C ,若点D 在y 轴的正半轴上,且四边形ABCD 为梯形. ①求点D 的坐标;②将此抛物线向右平移,平移后抛物线的顶点为P ,其对称轴与直线y =3x -3交于点E ,若73tan =∠DPE ,求四边形BDEP 的面积.图1 思路点拨1.这道题的最大障碍是画图,A 、B 、C 、D 四个点必须画准确,其实抛物线不必画出,画出对称轴就可以了.2.抛物线向右平移,不变的是顶点的纵坐标,不变的是D 、P 两点间的垂直距离等于7. 3.已知∠DPE 的正切值中的7的几何意义就是D 、P 两点间的垂直距离等于7,那么点P 向右平移到直线x =3时,就停止平移. 满分解答(1)直线y =3x -3与x 轴的交点为A(1,0),与y 轴的交点为B(0,-3). 将A(1,0)、B(0,-3)分别代入y =ax2+2x +c ,得20,3.a c c ++=⎧⎨=-⎩ 解得1,3.a c =⎧⎨=-⎩所以抛物线的表达式为y =x2+2x -3. 对称轴为直线x =-1,顶点为(-1,-4).(2)①如图2,点B 关于直线l 的对称点C 的坐标为(-2,-3). 因为CD//AB,设直线CD 的解析式为y =3x +b , 代入点C(-2,-3),可得b =3. 所以点D 的坐标为(0,3).②过点P 作PH ⊥y 轴,垂足为H ,那么∠PDH =∠DPE .由73tan =∠DPE ,得3tan 7PH PDH DH ∠==.而DH =7,所以PH =3. 因此点E 的坐标为(3,6).所以1()242BDEP S BD EP PH =+⋅=梯形.图2 图3 考点伸展第(2)①用几何法求点D 的坐标更简便: 因为CD//AB ,所以∠CDB =∠ABO .因此13BC OA BD OB ==.所以BD =3BC =6,OD =3.因此D (0,3).例2(本题满分13分)如图,在平面直角坐标系中,直线y=—2x+10与x轴、y轴相交于A、B两点.点C的坐标是(8,4),连接AC、BC.(1)求过O、A、C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?B、M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018吉林中考数学总复习动点问题因动点产生的等腰三角形问题练习年 班 姓名 成绩: 1•如图1,在Rt A ABC 中,/ A = 90 ° , AB = 6, AC = 8,点D 为边BC 的中点,DE 丄BC 交边AC 于点E, 点P 为射线AB 上的一动点,点 Q 为边AC 上的一动点,且/ PDQ = 90°. (1) (2) (3) tan“PD=^ =空」(3)如图 5,如图 2,在 Rt A PDQ 中,PD DM 4tan" = ^」在 Rt A ABC 中, CA 4 .所以/ QPD =/ C.由/ PDQ = 90°,/ CDE = 90°,可得/ PDF =Z CDQ. 因此△ PDF ^A CDQ.当厶PDF 是等腰三角形时,△ ①如图5,当CQ = CD = 5时, CDQ 也是等腰三角形.QN = CQ — CN = 5 — 4 = 1 (如图 3 所示).图1 解:(1 )在 Rt A ABC 中, 求ED EC 的长; 若BP = 2,求CQ 的长; 记线段PQ 与线段DE 的交点为巳若厶PDF 为等腰三角形,求 BP 的长. 备用图 AB = 6, AC = 8,所以 BC = 10 . PM =4QN 上此时3 3 •所以BP = BM - PM②如图6,当QC = QD 时,由cosCCH CQ可得CQ号丰詈3 15 25ED=CD tan= " EC 在 Rt A CDE 中,CD = 5,所以 4 4, 44』所以QN = CN- CQ =8 8 (如图2所示).(2)如图2,过点 D 作DM 丄AB , DN 丄AC ,垂足分别为 M 、N ,那么 DM 、DN 是 △ ABC 的两条中位线, DM = 4, DN = 3. 由/ PDQ = 90°,/ MDN = 90°,可得/ 因此△ PDM s^ QDN . PDM = Z QDN . PM 此时= 4QN3 6 •所以7 25 BP 二 BM PM = 3 -6 6DFP >Z DQP >Z DPQ (如图 5,图 6 所示).PM 所以QNDM 4DN _33 QN PM .所以4PM= 4QN 3图2 ①如图3,当BP = 2, 图3P 在BM 上时,PM = 1.DP = DF 的情况.这是因为/③不存在 3 3 QN PM - 此时 4 4 .所以 3 19CQ 二CN QN =4 ■ 4 4图52•如图1,抛物线y = ax2+ bx + c 经过A(— 1,0)、B(3, 0)、C(0 ,3)三点,直线l 是抛物线的对称轴.(1) 求抛物线的函数关系式;(2) 设点P 是直线I 上的一个动点,当△ PAC 的周长最小时,求点 P 的坐标;(3) 在直线I 上是否存在点M ,使△ MAC 为等腰三角形,若存在,直接写出所有符合条件的点 坐标;若不存在,请说明理由.②如图4,当BP = 2, P 在MB 的延长线上时, PM = 5.3 1515 31QN =3PM 亠 CQ 二CN QN=4 15 二31此时 4 4 •所以 44[键入文字](2)因为抛物线与x 轴交于0、A(4, 0),设抛物线的解析式为y = ax(x — 4),a」代入点 B (-2,-2 3), -2、、3= -2a(-6).解得6f~n — x图i 解:(1)因为抛物线与 x 轴交于A(— 1,0)、B(3, 0)两点,设y = a(x + 1)(x — 3), 代入点C(0 ,3),得一 3a =3.解得a =— 1. 所以抛物线的函数关系式是 y =— (x + 1)(x — 3)=— x2 + 2x + 3. (2) 如图2,抛物线的对称轴是直线 x = 1. 当点P 落在线段BC 上时,PA + PC 最小,△ PAC 的周长最小. 设抛物线的对称轴与 x 轴的交点为H . BH PH 由 BO CO , B0= CO,得 PH = BH = 2. 所以点P 的坐标为(1,2). 图2 (3) 点 M 的坐标为(1, 1)、(1, -6)、(1,一6)或(1,0).3•如图1,点A 在x 轴上,0A = 4,将线段0A 绕点0顺时针旋转 (1) 求点B 的坐标; (2) 求经过A 、0、B 的抛物线的解析式; (3)在此抛物线的对称轴上,是否存在点 P ,使得以点P 、0、B为顶点的三角形是等腰三角形?若 存在,求点P 的坐标;若不存在,请说明理由. 所以抛物线的解析式为y 「^X (X_4)=」x2^X6 6 3(3)抛物线的对称轴是直线x = 2,设点P 的坐标为(2, y).①当 0P = 0B = 4 时,0P2= 16 .所以 4+y2 = 16 .解得 y「-2 3 .当P 在(2,厶3)时,B 、0、P 三点共线(如图 2).②当 BP = B0= 4 时,BP2= 16.所以 4 (y 2J)' =16 .解得 y1 = y 2八2・ 3 .③当 PB = P0时,PB2= P02.所以4 (y 2 §)=2 y .解得 y=-2込.(2,一厶3),如图2所示.4一一一 y=j4•如图1,已知一次函数y =— x + 7与正比例函数 3的图象交于点 A ,且与x 轴交于点B .(1)求点A 和点B 的坐标; 图1 解:(1)如图2,过点B 作BC 丄y 轴,垂足为 C.在 Rt A 0BC 中,/ B0C = 30°, 0B = 4,所以 BC = 2,0C =2 3.所以点B 的坐标为(一2, 一2“3).(2)过点A 作AC 丄y 轴于点C,过点B 作直线l//y 轴.动点P 从点0出 发,以每秒1个单位长的速度,沿 0— C —A 的路线向点A 运动;同时直 线I 从点B 出发,以相同速度向左平移,在平移过程中,直线I 交x 轴于点R ,交线段BA 或线段A0于点Q .当点P 到达点A 时,点P 和直线I 都停止运动.在运动过程中,设动点 P 运动的时间为t 秒.① 当t 为何值时,以 A 、P 、R 为顶点的三角形的面积为 8? ②是否存在以 A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求 t 的值;若不存在,请说明理由..226 t二43y - -x 7, i 4 w=:x,解:(1)解方程组.3x =3,y "•所以点 A 的坐标是(3, 4). 令y=「x ・7=0,得x =7 •所以点B 的坐标是(7, 0). (2)①如图 2,当 P 在 0C 上运动 时,0< t v 4 由梯形 CORA- 5 A CP-2 PO R8得1 1 1 —(3+7 —t )4 4 (4 -t ) t (7 卜)=82 ' 2 i ' 2 i .整理, 412262t-8t •12 = 0 .解得 t = 2 或 t = 6 (舍去).如图2 图3 ②我们先讨论 P 在OC 上运动时的情形,0W t v 4. 图3,当P 在CA 上运动时,△ APR 的最大面积为6. 因此,当t = 2时,以A 、P 、R 为顶点的三角形的面积为 &图4 5•如图1,在矩形ABCD 中,AB = m ( m 是大于0的常数),BC = 8, E 为线段BC 上的动点(不与 B 、C 重合).连结DE,作EF 丄DE , EF 与射线BA 交于点F ,设CE = x , BF = y . (1) (2) 如图 1,在△ AOB 中,/ B = 45°,/ AOB >45° , OB = 7, AB =4、2,所以 OB > AB .因此/ OAB > / AOB > / B . 如图4,点P 由O 向C 运动的过程中,OP = BR = RQ,所以 因此/ AQP = 45°保持不变,/ PAQ 越来越大,所以只存在/ m 的值应为多少?解:(1)因为/y 关于x 的函数关系式; m = 8,求x 为何值时,y 的值最大,最大值是多少? 12求 若PQ//X 轴. APQ =Z AQP 的情况. EDC 与/ FEB 都是/ DEC 的余角,所以/ EDC =Z FEB.又因为/ C =Z B = 90°,所以△此时点 A 在PQ 的垂直平分线上, OR = 2CA = 6.所以BR = 1, t = 1. 我们再来讨论 P 在CA 上运动时的情形,4W t V 7. / 3 5 5 20 cos/A =_ AQ = OA _OQ =OA__OR =_ t _在厶APQ 中, 5为定值,AP =7-1 , 3 3 3 5 20 7_t= — t_— t如图5,当AP = AQ 时,解方程 3 3,得 如图6,当QP = QA 时,点Q 在PA 的垂直平分线上, DC因此CEm 8- x EB m_8-x1 2y = _一 xBF ,即x y.整理,得y 关于x 的函数关系为m41 _ 8 ⑵如图2,当 m = 8 时, 12 AP = 2(OR — OP).解方程 7-t =2[(7-t)-(t-4)], 12(3)若$ _ m ,那么m1 1 y x2 x(x-4)2 288.因此当x = 4时,y 取得最大值为 2.亠」xm m .整理, ED = EF 的情况.因为△ 2得 X -8x • 12= 0.解得 x = 2 或 x = 6 .要使△ DEF1AQ5 20 3 COS^A = ----- OAI-* y ._t_———2(^ —t^-如7,当PA = PQ 时,那么AP .因此AQ =2AP cos. A .解方程33 5,得为等腰三角形,只存在12 y =入 m ,得m = 6 (如图3);将x = y = 6代入DC0A EBF,所以 CE = BF ,即卩 x = y .将 x = y = 2 代12y-—m ,得m = 2 (如图4).在矩形EGMP 中,EP= GM = x, PM= EG= 3.在平行四边形BMQE中,BM = EQ= 1 + x.所以BG= PQ= 1 .因为PM与NH平行且相等,所以PH与NM互相平分,PH= 2PQ= 2.在Rt A PNH 中,NH= 3, PH= 2,所以PN=7. 在平行四边形ABMN中,MN = AB= 4.因此△ PMN的周长为-3 + -■ 7+ 4. 6•如图1 在等腰梯形ABCD中,AD//BC, E是AB的中点,过点E作EF//BC交CD于点F, AB= 4, BC =6,ZB= 60°.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过点P作PM丄EF交BC于M ,过M作MN//AB交折线ADC于N , 连结PN,设EP= x.①当点N在线段AD上时(如图2) , △ PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点卩,使厶PMN为等腰三角形?若存在,请求出所有满足条件的x的值;若不存在,请说明理由. 图4 图5②当点N在线段DC上时,△ CMN恒为等边三角形.如图5,当PM = PN时,△ PMC与厶PNC关于直线PC对称,点P在/ DCB的平分线上. 在Rt A PCM 中,PM =3,/ PCM= 30°,所以MC = 3.图1 图2 图3 解:(1)如图4,过点E作EG丄BC于G.1BE = —AB =2在Rt A BEG中, 2 ,/ B= 60°,所以BG 二BE cos60 =1 , EG = BE sin 60、.所以点E到BC的距离为3.(2)因为AD//EF//BC , E是AB的中点,所以F是DC的中点. 因此EF是梯形ABCD的中位线,EF= 4.①如图4,当点N在线段AD上时,△ PMN的形状不是否发生改变. 此时M、P分别为BC EF的中点,x= 2 .如图6,当MP = MN 时,MP= MN = MC=3, x= GM = GC- MC= 5—3如图7,当NP= NM 时,/ NMP = Z NPM= 30°,所以/ PNM = 120°.又因为/ FNM= 120°,所以P与F重合.此时x= 4.综上所述,当x= 2或4或5 —'■ 3时,△ PMN为等腰三角形.过点N作NH丄EF于H,设PH与NM交于点Q.[键入文字]。