实验一晶体二极管特性分析

合集下载

二极管特性及参数

二极管特性及参数
二极管截止 I= 0 UD =-5V
[例1] 电路如图所示,计算二极管中的电流 ID 。已知二 极管的导通电压UD(on) = 0.6 V,交流电阻 rD 近似为零。
E 6V
R1 2 k
A
0.6V R2 1k
ID
D
E 6 V
解:可以判断二极管处于导通状态, 则电路模型:
UA -E+UD(on)=-6+0.6=5.4V
有一死区电压UD(on),室温下硅管: UD(on) =(0.5~0.7)V, 锗管:UD(on) =(0.1~0.3)V。 在正常工作电流范围内,管压降的变化范围很小。硅管 (0.6~0.8)V
由于表面漏电流影响,二极管反向电流要比理想PN结的Is 大。对硅管一般小于0.1μA,锗管小于几十微安。
晶体二极管特性及参数
<<西电丝路云课堂>>
---孙 肖 子
2.3.1 二极管的伏安特性--指数特性
iD IS (equD / kT 1) IS (euD /UT 1)
IS 为反向饱和电流,q 为电子电量 ;UT = kT/q, 称为热电压,在室温 27℃ 即 300 K 时,UT = 26 mV。
I

I R1

IR2

E
U A R1

0 U A R2
6 (5.4) 0 (5.4) 5.7 5.4 11.1mA
2
1
二极管特性及参数
谢谢收看和听讲, 欢迎下次再相见!
<<西电丝路云课堂>>
2.3.3 二极管的电路管压降及模型
UD E IR I f (UD)
工作点不同, I DQ 变化很大, 但 U DQ差别极小, 所以只要二极管

硅二极管的伏安特性曲线以及二极管特性参数的测定

硅二极管的伏安特性曲线以及二极管特性参数的测定

关的反向饱和电流I0。

当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。

2、二极管的类型二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。

根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。

按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。

点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。

由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。

面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。

平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。

3、二极管的导电特性二极管最重要的特性就是单方向导电性。

在电路中,电流只能从二极管的正极流入,负极流出。

下面通过简单的实验说明二极管的正向特性和反向特性。

(1)正向特性在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。

必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。

只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。

导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。

(2)反向特性在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。

二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。

晶体二极管实验报告

晶体二极管实验报告

晶体二极管实验报告一、实验目的:1.了解晶体二极管的基本结构和原理;2.探究晶体二极管在电路中的应用。

二、实验器材及材料:1.晶体二极管2.直流电源3.万用表4.原型板5.连接线6.电阻7.LED灯(可选)三、实验原理:晶体二极管是一种光、电、热效应非常敏感的电子元件,具有一个PN结构。

当沿着P区施加电压时,会产生电流;当沿着N区施加电压时,PN结就不能导通,电流流过程断开。

晶体二极管具有单向导电性,只能让电流从P区流向N区。

四、实验步骤:1.实验前应将直流电源的电压调整到适宜的值,以保证实验安全;2.将实验所需的器材及材料准备齐全,并按照电路图的要求进行连接;3.将晶体二极管正确地插入原型板中;4.将直流电源接通,调节合适的电压值;5.使用万用表进行电流和电压的测量;6.反复改变直流电压的值,记录下电流对电压的关系曲线;7.做好相关实验数据的整理和总结。

五、实验数据及处理:1.测量实验电路中的电流和电压数据,并记录在实验数据表中;2.绘制电流对电压的关系曲线图。

六、实验结果分析:根据实验中测得的电流对电压的关系曲线,我们可以得出晶体二极管在不同电压下的导通和截止状态。

当施加的电压超过晶体二极管的正向电压时,将发生正向偏置,二极管将导通;而当施加的电压低于正向电压时,发生反向偏置,二极管将截止。

七、实验心得:通过本次实验,我进一步掌握了晶体二极管的工作原理和特性,了解了晶体二极管在电路中的应用。

此外,通过实验数据的采集和处理,我也加深了对实验数据的分析和总结能力。

总之,本次实验对加深我对电子元件的认识和理解起到了一定的帮助。

测量二极管的伏安特性实验报告

测量二极管的伏安特性实验报告

测量二极管的伏安特性实验报告实验报告课程名称:大学物理实验(1)实验名称:测量二极管的伏安特性学院:XX学院专业:XX 班级:XX 组号:XX 指导教师:XX报告人学号:XX 实验时间:年月日星期实验地点:科技楼903实验报告提交时间:一、实验目的了解晶体二极管的导电特性并测定其伏安特性曲线。

二、实验原理晶体二极管的导电特性:晶体二极管无论加上正向或反向电压,当电压小于一定数值时只能通过很小的电流,只有当电压大于一定数值时,才有较大电流出现,相应的电压可以称为导通电压。

正向导通电压小,反向导通电压相差很大。

当外加电压大于导通电压时,电流按指数规律迅速增大,此时,欧姆定律对二极管不成立。

实验线路图如下:注意:无论毫安表内接还是外接,实验数据都应该进行修正:毫安表外接时应该进行电流修正,内接时应该进行电压修正。

由于实验用毫伏表内阻很大(约100~1000多万欧姆),按照上述接法,数据修正简单:正向时伏特表的电流可以忽略;反向时,伏特表的电流始终保持0.0006mA,很容易修正。

假如将毫安表内接,则无论正向反向,每一个数据都要做电压修正,并且每个修正值都不同,给实验带来很大麻烦。

三、实验仪器晶体二极管、电压表、电流表、电阻箱、导线、电源、开关等。

四、实验内容和步骤1、测定正向特性曲线打开电源开关,把电源电压调到最小,然后接通线路,逐步减小限流电阻,直到毫安表显示1.9999mA,记录相应的电流和电压。

然后调节电源电压,将电压表的最后一位调节成0,记录电压与电流;以后按每降低0.010V测量一次数据,直至伏特表读数为0.5500V为止。

此时,正向电流不需要修正。

2、测定反向特性曲线把线路改接后,接通线路,将电源电压调到最大,逐步减小限流电阻,直到毫安表显示1.9999mA为止,记录相应的电流和电压。

然后调节电源电压或者限流电阻,再将电流调节为1.8006、1.6006、1.4006……mA情况下,记录相应的电压;其中0.0006mA为伏特表的电流,此为修正电流,记录电流时应该自行减去。

实验3-1 伏安法测晶体二极管特性.

实验3-1 伏安法测晶体二极管特性.

实验3-1 伏安法测晶体二极管特性给一个元件通以直流电,用电压表测出元件两端的电压,用电流表测出通过元器件的电流。

通常以电压为横坐标、电流为纵坐标,画出该元件电流和电压的关系曲线,称为该元件的伏安特性曲线。

这种研究元件特性的方法称为伏安法。

伏安特性曲线为直线的元件称为线性元件,如电阻;伏安特性曲线为非直线的元件称为非线性元件,如二极管、三极管等。

伏安法的主要用途是测量研究线性和非线性元件的电特性。

非线性电阻总是与一定的物理过程相联系,如发热、发光和能级跃迁等,江崎玲、於奈等人因研究与隧道二极管负电阻有关的现象而获得1973年的诺贝尔物理学奖。

【实验目的】1.具体了解和分析二极管的伏安特性曲线。

2.学会分析伏安法的电表接入误差,正确选择电路使其误差最小。

3.学会电表、电阻器、电源等基本仪器的使用。

【仪器用具】安培计、伏特计、变阻器、转盘电阻箱、甲电池、待测二极管、导线、双刀双掷倒向开关、单刀开关【实验原理】半导体二极管的核心是一个PN结,这个PN结处在一小片半导体材料的P区与N区之间(如图3-1-1),它由这片材料中的P型半导体区域和N型半导体区域相连所构成。

连接P 型区域的引出线称为P极,连接N型区域的引出线称为N极。

当电压加在PN结上时,若电压的正端接在P极上,电压的负端接在N极上(如图3-1-2),称这种连接为“正向连接”;反之,档PN结的两极反向连接到电压上时为“反向连接”。

正向连接时,二极管很容易导图3-1-1 图3-1-2通,反向连接时,二极管很难导通。

我们称二极管的这种特性为单向导电性。

实验工作中往往利用二极管的单向导电性进行整流、检波、作电子开关等。

二极管电流随外加电压变化的关系曲线称为伏安特性曲线。

二极管的伏安特性曲线如图3-1-3和图3-1-4所示。

这两个图说明了二极管的单向导电性。

由图可见,在正向区域,锗管和硅管的起始导通电压不同,电流上升的曲线斜率也不同。

图3-1-3 图3-1-4利用绘制出的二极管的伏安特性曲线,可以计算出二极管的直流电阻及表征其它特性的某些参数。

晶体管开关特性、限幅器与钳位器

晶体管开关特性、限幅器与钳位器

晶体管开关特性、限幅器与钳位器实验二晶体管开关特性、限幅器与钳位器1. 实验目的(1)观察晶体二极管、三极管的开关特性,了解外电路参数变化对晶体管开关特性的影响(2)掌握限幅器和钳位器的基本工作原理。

2. 实验原理(1)晶体二极管的开关特性由于晶体二极管具有单向导电性,故英开关特性表现在正向导通与反向截止两种不同状态的转换过程。

如图2—1电路,输入端施加一方波激励信号%,由于二极管结电容的存在,因而有充电、放电和存贮电荷的建立与消散的过程。

因此当加在二极管上的电压突然由正向偏B(+K)变为反向偏置(-?时,二极管并不立即截止,而是出现一个较大的反向电流-冬,并维持R一段时间:(称为存贮时间)后,电流才开始减小,再经徐(称为下降时间)后,反向电流才等于静态特性上的反向电流厶,将tr=ts+tf叫做反向恢复时间,纭与二极管的结构有关,PN结面积小,结电容小,存贮电荷就少,匚就短,同时也与正向导通电流和反向电流有关。

当管子选泄后,减小正向导通电流和增大反向驱动电流,可加速电路的转换过程。

(2)晶体三极管的开关特性晶体三极管的开关特性是指它从截止到饱和导通,或从饱和导通到截止的转换过程,而且这种转换都需要一泄的时间才能完成。

如图2-2电路的输入端,施加一个足够幅度(在-%和+%之间变化)的矩形脉冲电压%激励信号,就能使晶体管从截止状态进入饱和导通,再从饱和进入截止。

可见晶体管T的集电极电流几和输出电压K 的波形已不是一个理想的矩形波,其起始部分和平顶部分都延迟了一段时间,苴上升沿和下降沿都变得缓慢了,如图2—2波形所示,从上开始跃升到丄上升到0.1A,所需时间定义为延迟时间乱,而丄从0.1矗增长到0.9矗的时间为上升时间“从K开始跃降到i.下降到0.9厶s 的时间为存贮时间ts,而几从0.9lcs下降到0.1忑的时间为下降时间如通常称1^=1Atr为三极管开关的“接通时间”,toff=ts+tf称为“断开时间”,形成上述开关特性的主要原因乃是晶体管结电容之故。

非线性元件伏安特性的测量实验报告-基本模板

非线性元件伏安特性的测量实验报告-基本模板

非线性元件伏安特性的测量实验报告-基本模板.docx非线性元件伏安特性的测量实验报告一、实验目的1. 掌握伏安特性测量的基本原理和方法;2. 了解非线性元件的基本特性和使用条件;3. 通过实验观察非线性元件的伏安特性,探究其非线性特性。

二、实验仪器1. 直流稳压电源;2. 电流表、电压表;3. 变阻器;4. 二极管;5. 晶体管等元件。

三、实验原理1. 二极管伏安特性二极管是一种具有非线性电性质的半导体元件,其伏安特性呈现出一定的折线性。

正向电压增加,二极管导通电流增加,其电压降逐渐减小,最终趋近于一个稳定的干接触电压;反向电压增加,二极管截止,几乎无表观电流。

因此,在二极管正向伏安特性曲线上,一段电压范围内表现为导通状态,称为“正导区”;另一段电压范围内表现为截止状态,称为“反向截止区”。

2. 晶体管伏安特性晶体管是一种受控的半导体放大器,其伏安特性是非线性的。

晶体管的输出电流与输入电压及偏置电压有关,而晶体管的输入电阻和输出电阻受到偏置电压的影响,具有较大的变化。

因此,晶体管的伏安特性存在多种类型,如单调式、双调式、S 型等,具有一定的特征。

四、实验步骤1. 准备实验仪器和元件。

2. 组装实验电路,如图所示。

3. 调节直流稳压电源的输出电压为所需电压,如0.1V、0.2V 等。

4. 用电压表测量二极管正反向电压,用电流表测量二极管正向电流。

5. 记录实验数据,绘制二极管正向伏安特性曲线,观察其特性,并测量二极管的大量反向电压。

6. 更换为晶体管等元件重复上述步骤,观察不同类型晶体管的伏安特性曲线,分析其性质。

五、实验结果与分析二极管、晶体管伏安特性曲线如下图所示:通过二极管、晶体管的伏安特性曲线可以看出,二极管在正向电压范围内,其电流随电压增加而增加,直到饱和状态,形成正向电流;而在反向电压范围内,其发生突变,极性反转,电流几乎为0;晶体管的伏安特性曲线则显示出不同类型晶体管的特征,如单调式晶体管的特征为输出电流与输入电压成正比,输出VS输入为线性,而双调式晶体管的电流输出与偏置电压存在双簇,输出与输入有一定的非线性关系。

二极管实训报告

二极管实训报告

实训报告1 《二极管的识别与检测》2节课[ 岗位描述] 实际工作中,电子元器件检测是第一道电子产品质量控制点。

一般大中型电子企业都设有专门从事电子元器件检测的部门。

因此掌握电子元器件的识别与检测技能,即可胜任电子企业质量检测部门相关岗位。

[ 实训目的 ] 1. 掌握普通二极管的识别与简易检测方法。

2.掌握专用二极管的识别与简易检测方法。

[ 实训器材 ] 表11.普通单色二极管的检测:a.正向导通电压1.5-2.5v.外加电压越大越亮。

注意实际电压不能使led超过其最大工作电流。

b. 检测时,要用r×10k挡(因内电池电压为9v),方法同普通二极管,只是正向电大得多,甚至测量时还微微发光。

2.稳压二极管的检测:a.工作在反压状态,具有稳压作用,检测方法同普通二极管。

b.不同处:用r×1k挡测反向电阻很大,换用r×10k, 其反向电阻减小很多。

若换挡电阻基本不变,说明是普通二极管。

变化则为稳压二极管。

[ 原理 ] 使用r×10k挡内电池9v,若稳压二极管反向击穿电压比<9v,则因击穿而电阻减小很多。

而普通二极管反向击穿电压比普通管大得多,不会击穿。

3.普通光电二极管的检测:a.光电二极管工作在反向偏置状态。

b.无光照时,光电二极管与普通管一样,反向电流小,反向电阻大(几十兆以上);有光照时,反向电流明显增加,反向电阻明显减小(几千-几十千),反向电流与光照成正比。

检测有无光照电阻相差很大。

检测结果相差不大说明已坏或不是光电二极管。

[ 实训步骤 ] 1.普通二极管的识别与检测。

在下表中填好检测结果。

【注意】a.塑封白环一端为负极,玻璃封装黑环一端为负极。

b.检测时两手不能同时接触两引脚,表至于r×1k挡,并欧姆调零。

调零时间不能太长。

c.读数要用平面镜成像规律。

2.专用二极管的识别与检测。

在下表中填好测量结果。

【注意】a.测试发光二极管,应用r×10k挡并调零。

晶体二极管的伏安特性曲线

晶体二极管的伏安特性曲线

晶体二极管的伏安特性曲线二极管最重要的特性就是单向导电性,这是由于在不同极性的外加电压下,内部载流子的不同的运动过程形成的,反映到外部电路就是加到二极管两端的电压和通过二极管的电流之间的关系,即二极管的伏安特性。

在电子技术中,常用伏安特性曲线来直观描述电子器件的特性。

根据图1的试验电路来测量,在不同的外加电压下,每转变一次RP的值就可测得一组电压和电流数据,在以电压为横坐标,电流为纵坐标的直角坐标系中描绘出来,就得到二极管的伏安特性曲线。

图1 测量晶体二极管伏安特性a) 正向特性b) 反向特性图2 2CZ54D伏安特性曲线图3 2AP7伏安特性曲线图2和图3分别表示硅二极管2CZ54D和锗二极管2AP7的伏安特性曲线,图中坐标的右上方是二极管正偏时,电压和电流的关系曲线,简称正向特性;坐标左下方是二极管反偏时电压和电流的关系曲线,简称反向特性。

下面我们以图1为例加以说明。

当二极管两端电压为零时,电流也为零,PN结为动态平衡状态,所以特性曲线从坐标原点0开头。

(一)正向特性1. 不导通区(也叫死区)当二极管承受正向电压时,开头的一段,由于外加电压较小,还不足以克服PN结内电场对载流子运动的阻挡作用,因此正向电流几乎为零,二极管呈现的电阻较大,曲线0A段比较平坦,我们把这一段称作不导通区或者死区。

与它相对应的电压叫死区电压,一般硅二极管约0.5伏,锗二极管约0.2伏(随二极管的材料和温度不同而不同)。

2. 导通区当正向电压上升到大于死区电压时,PN结内电场几乎被抵消,二极管呈现的电阻很小,正向电流增长很快,二极管正向导通。

导通后,正向电压微小的增大会引起正向电流急剧增大,AB 段特性曲线陡直,电压与电流的关系近似于线性,我们把AB 段称作导通区。

导通后二极管两端的正向电压称为正向压降(或管压降),也近似认为是导通电压。

一般硅二极管约为0.7伏,锗二极管为0.3伏。

由图可见,这个电压比较稳定,几乎不随流过的电流大小而变化。

晶体二极管伏安特性曲线课件

晶体二极管伏安特性曲线课件
晶体二极管伏安特性曲线
CONTENCT

• 晶体二极管伏安特性曲线的实验研 • 参考文献
01
晶体二极管基本原理
晶体二极管的结构与工作原理
晶体二极管的基本结构
由半导体材料制成的PN结结构,具有P型半导体和N型半导体接 触形成的空间电荷层。
晶体二极管的工作原理
PN结加正向电压时,空间电荷层变薄,载流子容易通过,形成大 的电流;加反向电压时,空间电荷层变厚,载流子不易通过,电 流很小。
分析故障原因
结合伏安特性曲线的变化 趋势和元件参数,可以分 析出故障原因,为修复提 供指导。
晶体二极管伏安特性曲线在器件性能评估中的应用
评估器件性能
通过对比不同型号、批次晶体二极管的伏安特性曲线,可以对它 们的性能进行评估和比较。
选择合适的器件
了解不同晶体二极管的伏安特性曲线,可以帮助选择适合特定需求 的器件,确保其性能和稳定性。
100%
非线性
在大信号或高电压条件下,晶体 二极管伏安特性曲线表现出明显 的非线性特征,即电流与电压之 间不再是线性关系。
80%
应用
线性二极管用于小信号处理,如 音频放大和整流电路;非线性二 极管用于大信号处理,如开关电 源和直流控制电路。
03
晶体二极管伏安特性曲线的分析
晶体二极管伏安特性曲线的分段分析
实验步骤与实验数据记录
实验步骤 1. 搭建测试电路,将晶体二极管接入电路中; 2. 调节电源,为晶体二极管提供不同的电压;
3. 使用万用表测量流过二极管的电流,并记录下来;
4. 改变电压,重复上述步骤,直至获得足够的实验数据。
实验数据记录:在实验过程中,记录下不同电压下的电流 值,这些数据将用于后续的实验结果分析。

光敏元件特性实验报告

光敏元件特性实验报告

一、实验目的1. 了解光敏元件的基本工作原理和特性。

2. 掌握光敏元件在不同光照条件下的电阻变化规律。

3. 学习光敏元件在电路中的应用。

二、实验原理光敏元件是一种将光信号转换为电信号的半导体器件。

它利用光电效应,使半导体材料在光照条件下电阻值发生变化。

光敏元件的电阻值与入射光的强度呈反比关系,即光照强度越强,电阻值越小;光照强度越弱,电阻值越大。

三、实验仪器与材料1. 光敏元件:光敏电阻、光敏二极管、光敏晶体管等。

2. 电源:直流电源,电压范围0-15V。

3. 电阻:固定电阻、可变电阻等。

4. 电位器:电位器,用于调节电路中的电压。

5. 电流表:用于测量电路中的电流。

6. 电压表:用于测量电路中的电压。

7. 光源:可调光源,用于模拟不同光照条件。

8. 连接线:用于连接实验电路。

四、实验步骤1. 光敏电阻特性测试(1)将光敏电阻与固定电阻、电位器、电源、电流表、电压表连接成电路。

(2)调节电位器,使电路中的电压稳定在5V。

(3)打开光源,调节光源的强度,观察电流表、电压表的读数变化,记录不同光照条件下的电阻值。

2. 光敏二极管特性测试(1)将光敏二极管与固定电阻、电位器、电源、电流表、电压表连接成电路。

(2)调节电位器,使电路中的电压稳定在5V。

(3)打开光源,调节光源的强度,观察电流表、电压表的读数变化,记录不同光照条件下的电流值。

3. 光敏晶体管特性测试(1)将光敏晶体管与固定电阻、电位器、电源、电流表、电压表连接成电路。

(2)调节电位器,使电路中的电压稳定在5V。

(3)打开光源,调节光源的强度,观察电流表、电压表的读数变化,记录不同光照条件下的电流值。

五、实验结果与分析1. 光敏电阻特性实验结果显示,光敏电阻的电阻值随着光照强度的增加而减小,随着光照强度的减小而增大。

这说明光敏电阻具有良好的光敏特性。

2. 光敏二极管特性实验结果显示,光敏二极管的电流值随着光照强度的增加而增大,随着光照强度的减小而减小。

最新实验1二极管实验报告

最新实验1二极管实验报告

最新实验1二极管实验报告实验目的:1. 了解二极管的基本原理和特性。

2. 掌握二极管的正向导通和反向阻断功能。

3. 学习使用实验仪器测量二极管的伏安特性。

实验设备:1. 数字万用表。

2. 稳压电源。

3. 固定值电阻。

4. 二极管样品。

5. 面包板及导线。

实验步骤:1. 准备实验设备,确保电源、万用表等设备正常工作。

2. 使用数字万用表的二极管测试功能,检测二极管的正向导通电压(Vf)和反向阻断电压(Vr)。

3. 搭建电路:将二极管接入面包板,串联一个固定值电阻后连接到稳压电源。

4. 调节稳压电源的输出电压,从零开始逐渐增加,记录下不同电压下通过二极管的电流值。

5. 使用万用表测量并记录二极管两端的电压,确保不超过其最大额定电压。

6. 重复步骤4和5,获取一系列不同电流下的电压数据。

7. 断开电路,整理实验设备。

实验数据与分析:1. 记录实验数据,制作二极管的伏安特性曲线图。

2. 分析曲线图,验证二极管的非线性电阻特性。

3. 根据实验数据,计算二极管的正向导通电压和反向阻断电压,与理论值进行比较。

4. 讨论实验中可能出现的误差来源,并提出改进措施。

实验结论:1. 通过实验观察到二极管的伏安特性,验证了其单向导电性。

2. 实验数据与理论值相符,表明二极管工作正常。

3. 实验过程中应注意电源电压的调节,防止二极管过压损坏。

建议与展望:1. 增加不同类型二极管的实验,比较它们的伏安特性差异。

2. 进一步研究二极管的温度特性,了解温度对二极管性能的影响。

3. 探索二极管在实际电路中的应用,如整流电路、稳压电路等。

电路与电子技术实验报告

电路与电子技术实验报告

电路与电子技术实验报告电路与电子技术实验报告引言:电路与电子技术是现代科学与工程领域中不可或缺的一部分。

通过实验,我们可以深入了解电路的工作原理和电子器件的性能特点。

本实验报告将介绍我们在电路与电子技术实验中的一些重要发现和结果。

实验一:电阻的测量与应用在这个实验中,我们学习了如何使用万用表测量电阻值,并进行了一些电阻的应用实验。

通过实验,我们发现电阻对电流的限制作用,以及电阻对电路中功率的影响。

这些实验为我们理解电阻的基本原理和应用奠定了基础。

实验二:电容与电感的特性研究本实验旨在研究电容和电感的特性。

我们通过测量电容与电感的充放电过程,了解了它们在电路中的作用。

我们还研究了电容和电感对交流电信号的响应,并观察到了相位差和频率对电容和电感的影响。

这些实验结果对于我们设计和优化电路具有重要意义。

实验三:二极管与晶体管的特性分析在这个实验中,我们研究了二极管和晶体管的特性。

通过测量二极管的伏安特性曲线,我们了解了二极管的导通和截止特性。

在晶体管实验中,我们观察到了晶体管的放大作用,并研究了晶体管的放大倍数与输入输出信号的关系。

这些实验结果对于我们理解和应用二极管和晶体管具有重要意义。

实验四:运放的应用与电路设计在这个实验中,我们学习了运放的基本原理和应用。

通过实验,我们研究了运放的放大特性和反馈电路的设计。

我们还实现了一些基本的运放电路,如放大器、滤波器和比较器,并观察了它们在电路中的作用。

这些实验为我们理解和应用运放提供了实际的经验。

实验五:数字电路设计与逻辑门应用本实验旨在研究数字电路的设计和逻辑门的应用。

我们通过实验,学习了数字电路的基本原理和逻辑门的工作方式。

我们实现了一些基本的数字电路,如与门、或门和异或门,并观察了它们在逻辑运算中的应用。

这些实验结果对于我们设计和优化数字电路具有重要意义。

结论:通过这些电路与电子技术实验,我们深入了解了电路的工作原理和电子器件的性能特点。

我们学会了使用仪器测量电路参数,并实践了电路设计和优化的基本原理。

实验一SCR、GTO、GTR、MOSFET、IGBT特性实验

实验一SCR、GTO、GTR、MOSFET、IGBT特性实验

实验一 SCR、GTO、GTR、MOSFET、IGBT特性实验一、实验目的和任务1、掌握各种电力电子器件的工作特性;2、掌握各器件对触发信号的要求。

二、实验内容1、晶闸管(SCR)特性实验;2、可关断晶闸管(GTO)特性实验;3、功率场效应管(MOSFET)特性实验;4、大功率晶闸管(GTR)特性实验;5、绝缘双极性晶体管(IGBT)特性实验。

三、实验仪器、设备及材料1、 DJK01 电源控制屏(该控制屏包含“三相电源输出”等模块);2、 DJK06 给定、负载及吸收电路(该挂件包含“二极管”以及“开关”);3、 DJK07新器件特性实验;4、 DK04滑线变阻器(串联形式:0.65A,2kΩ;并联形式:1.3A,500Ω);5、万用表。

四、实验原理将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT)和负载电阻R 串联后接至直流电源的两端,由DJK06 上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A 特性;图2.1中的电阻R 用DK04 上的滑线变电阻,并接成并联形式,直流电压和电流表可从DJK01 电源控制屏上获得,五种电力电子器件均在DJK07 挂箱上;直流电源从电源控制屏的励磁电源取得。

实验线路的具体接线如图2.1所示。

图2.1 新器件特性实验原理图五、主要技术重点、难点1、确定器件的临界导通和稳定导通;2、分析SCR、GTO、GTR、MOSFET、IGBT特性的异同点。

六、实验步骤1、按图2.1所示接线,首先将晶闸管(SCR)接入主电路,在实验开始时,将DJK06 上的给定电位器RP1 沿逆时针旋到底,关闭励磁电压。

按下“启动”按钮,打开DJK06 的电源开关,然后打开励磁开关,缓慢调节给定输出,同时监视电压表的读数,当直流电压升到40V 时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读数,当电压表指示接近零(表示管子完全导通),停止调节,记录给定电压Ug调节过程中回路电流Id以及器件的管压降Uv,填入表2.1。

电子技术实验报告

电子技术实验报告

电子技术实验报告一、实验目的:1.了解并掌握电子技术的基本概念和实验方法;2.学习并熟悉电子元器件的使用方法;3.掌握不同电路的搭建和测试方法。

二、实验原理:本次实验主要涉及到以下几个实验内容:二极管的正向、反向工作状态;晶体管的放大特性;电源、稳压二极管、LED的特性;负反馈放大电路;运放反相、非反相运算放大器的特性。

三、实验器材和器件:1.万用表2.直流电源3.电阻、电容4.二极管、三极管5.LED6.运算放大器四、实验过程:1.实验一:二极管的正向、反向工作状态a.将二极管与万用表连接,测量正向压降和反向电流;b.在实验过程中,依次改变电阻值,观察二极管的亮度和电流变化。

2.实验二:晶体管的放大特性a.搭建共射极(CE)的晶体管放大电路;b.改变输入电压,测量输出电压,并记录数据;c.根据测得的数据,绘制输入输出特性曲线。

3.实验三:电源、稳压二极管、LED的特性a.搭建电源与稳压二极管电路,测量电源输出电压和稳压二极管的电压;b.将LED连接到电路中,测量LED的正向电压和电流;c.根据测得的数据,绘制稳压二极管和LED的特性曲线。

4.实验四:负反馈放大电路a.搭建负反馈电路,调整电路参数,测量反馈系数;b.改变输入信号频率,测量输入输出幅度,并记录数据;c.根据测得的数据,绘制输入输出特性曲线。

5.实验五:运放反相、非反相运算放大器的特性a.搭建反相运放电路,输入不同幅度的信号,测量输出信号;b.搭建非反相运放电路,输入不同幅度的信号,测量输出信号;c.根据测得的数据,绘制输入输出特性曲线。

五、实验结果与分析:1.实验一:二极管的正向、反向工作状态a.根据实验数据,绘制正向工作状态和反向工作状态下的电流-电压特性曲线;b.分析曲线特点,验证理论知识,并说明实验误差。

2.实验二:晶体管的放大特性a.根据实验数据,绘制输入输出特性曲线;b.计算放大倍数,并与理论值进行比较,分析误差产生的原因。

模电实验实训报告范文模板

模电实验实训报告范文模板

一、实验名称模电实验一:晶体二极管特性分析二、实验目的1. 熟悉仿真软件Multisim的使用,掌握基于软件的电路设计和仿真分析方法;2. 熟悉pocket lab硬件实验平台,掌握基本功能的使用方法;3. 通过软件仿真和硬件实验验证,掌握晶体二极管的基本特性。

三、实验原理晶体二极管是一种具有单向导电特性的半导体器件,其伏安特性曲线反映了二极管在不同电压下的电流变化。

本实验通过测量二极管的正向和反向电压、电流,绘制伏安特性曲线,分析二极管的工作原理。

四、实验仪器与设备1. 电脑:一台,用于运行仿真软件Multisim和pocket lab硬件实验平台;2. 仿真软件:Multisim;3. 硬件实验平台:pocket lab;4. 信号发生器;5. 数字万用表;6. 电阻;7. 二极管。

五、实验步骤1. 打开Multisim软件,搭建实验电路,如图1-1所示;2. 设置仿真参数,对直流电压源V1进行DC扫描,扫描范围0~1V,步长0.01V;3. 测量二极管中的电流,记录数据;4. 根据测量数据,绘制二极管伏安特性曲线;5. 打开pocket lab硬件实验平台,搭建实验电路,如图1-2所示;6. 设置信号发生器参数,进行实验;7. 使用数字万用表测量电压、电流,记录数据;8. 根据测量数据,分析二极管的基本特性。

六、实验数据与结果1. Multisim仿真实验结果- 电压扫描范围:0~1V- 步长:0.01V- 二极管电流测量数据(部分):电压(V) | 电流(mA)----------|----------0.0 | 0.00.1 | 0.010.2 | 0.05...1.0 | 1.0- 二极管伏安特性曲线(如图1-3所示)2. pocket lab硬件实验结果- 信号发生器参数:频率:50Hz振幅:5V直流电压:0V负载电容:C110F- 负载电阻与输出电压、纹波电压数据(部分):负载电阻(kΩ) | 输出电压(V) | 输出纹波峰峰值(V)----------------|--------------|-----------------1.0 |2.15 | 0.110.0 | 3.85 | 0.2100.0 | 4.31 | 0.3(表格中数据可根据实际测量结果填写)七、实验分析与讨论1. 分析Multisim仿真实验结果,得出二极管伏安特性曲线;2. 分析pocket lab硬件实验结果,得出二极管的基本特性;3. 对比仿真实验和硬件实验结果,分析误差产生的原因;4. 讨论二极管在实际电路中的应用。

电工电子实验报告

电工电子实验报告

电工电子实验报告电工电子实验报告电工电子实验是电子工程学生必修的实验之一,通过实验可以加深对电子学原理的理解,提高实验能力和动手能力。

以下是三个电工电子实验案例的报告。

案例一:二极管特性实验实验目的:通过实验了解二极管的基本结构和特性。

实验器材:示波器、可变电阻器、半导体二极管、直流电源。

实验步骤:1、将二极管连接好,接入直流电源。

2、使用示波器观察二极管的正向和反向电压的变化。

3、随着正向电压升高,可以观察到二极管的电流也随之升高,但是反向电压升高时,二极管处于截止状态。

实验结论:通过实验可以知道,二极管是一种可以实现正向导电,反向截止的半导体器件。

在实际中,二极管常被用于整流、放大、开关等电路中。

案例二:晶体管放大电路实验实验目的:通过实验了解晶体管放大电路的基本原理和特性。

实验器材:示波器、晶体管、电阻、直流电源。

实验步骤:1、按照电路原理图连接好晶体管放大电路。

2、接入直流电源,使用示波器观察输入和输出信号的变化。

3、调节电位器使输出信号的幅度尽量大。

实验结论:通过实验可以知道,晶体管是一种可以进行信号放大的半导体器件。

在实际中,晶体管常被用于放大、开关、振荡等电路中。

案例三:555计时器实验实验目的:通过实验了解555计时器的基本原理和工作特性。

实验器材:可变电阻、电解电容、LED灯、555计时器、直流电源。

实验步骤:1、按照电路原理图连接好555计时器电路。

2、调节可变电阻和电解电容的值,改变输出信号的频率和占空比。

3、将LED灯连接到输出端口,观察LED灯的闪烁情况。

实验结论:通过实验可以知道,555计时器是一种可以进行频率调节、占空比调节的定时器器件。

在实际中,555计时器常被用于脉冲调制、计时、振荡等电路中。

综上所述,电工电子实验对于电子工程学生来说是非常重要的,通过实验可以更加深入地了解电子学原理,提高实验能力和动手能力。

以上三个案例是电工电子实验中较为常见的实验内容,希望可以帮助其他同学更好地完成实验任务。

(完整版)伏安法测二极管的特性(最新整理)

(完整版)伏安法测二极管的特性(最新整理)

实验三 伏安法测二极管的特性电路中有各种电学元件,如线性电阻、半导体二极管和三极管,以及光敏、热敏和压敏元件等。

知道这些元件的伏安特性,对正确地使用它们是至关重要的。

利用滑线变阻器的分压接法,通过电压和电流表正确地测出它们的电压与电流的变化关系称为伏安测量法(简称伏安法)。

伏安法是电学中常用的一种基本测量方法。

1、教学目标(1)了解分压器电路的调节特性;(2)掌握测量伏安特性的基本方法;(3)了解二极管的正向伏安特性。

2、实验原理2.1 电学元件的伏安特性在某一电学元件两端加上直流电压,在元件内就会有电流通过,通过元件的电流与端电压之间的关系称为电学元件的伏安特性。

在欧姆定律U=IR 式中,电压U 的单位为V ,电流I 的单位为A ,电阻R 的单位为Ω。

一般以电压为横坐标和电流为纵坐标作出元件的电压-电流关系曲线,称为该元件的伏安特性曲线。

对于碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流与加在元件两端的电压成正比关系变化,即其伏安特性曲线为一直线。

这类元件称为线性元件。

半导体二极管、稳压管等元件,通过元件的电流与加在元件两端的电压不成线性关系变化,其伏安特性为一曲线。

这类元件称为非线性元件,如图1所示为某二极管元件的伏安特性。

在设计测量电学元件伏安特性的线路时,必须了解待测元件的规格,使加在它上面的电压和通过的电流均不超过额定值。

此外,还必须了解测量时所需其它仪器的规格(如电源、电压表、电流表、滑线变阻器等的规格),也不得超过其量程或使用范围。

根据这些条件所设计的线路,可以将测量误差减到最小。

2.2 二极管测量电路的比较与选择电路的比较和说明可参考教材p56自己分析。

3、实验室提供的仪器和用具直流电源,滑线变阻器(1A ,190Ω),直流电压表(0.5级,1.5-15V 四量程),直流电流表(0.5级,25-50mA 二量程),两个电阻箱(ZX21型),直流检流计(AC5型),待测二极管,单刀双掷开关及导线若干等。

物理实验二极管特性曲线

物理实验二极管特性曲线

(2)试验设备及仪器
(3)实验原理
(4)实验步骤及内容
(5)实验数据及处理
实验目的:
(1)学习电学基本测量方法/步骤及注意事项 (2)测绘二极管的I~V曲线 (3)学习作图法及最小二乘法处理数据 (4)学习滑动变阻器的分压特性和限流特性 (5)学习电表的内/外接条件和方法
注意的要点:
(1). 测晶体二极管正向伏安特性时,毫安表读数 不得超过二极管允许通过的最大正向电流值,加在 晶体二极管上的电压不得超过管子允许的最大电压 值。
如图所示, 曲线某一点 切线的斜率 表示在该电 压下二极管 的电阻大小
如图中P点 斜率: K=Tan∂=Rx
0.300
I(mA)
0.04 0.03
0.02
P
0.01

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
U(v)
误差分析:
伏安采用法 测试二极管正向特性曲线时采用电流表外接法,会产生电流的测量误差,这些 接入误差属于系统误差,必须对测量结果加以 修正,操作起来比较繁琐。对于半导体整流二极管,正向导通电流为 mA数量级,而反向电流仅为数量级,所以在选择测量电路和仪表 时必须加以考虑
(4).用作图法处理数据,在图纸上画出二极管正向I-V曲 线图。
数据记录表:
非线性电阻(二极管正向)的数据记录表
电压表量程:0~10.0V
电流表量程:0~25mA
U(V)
0.1 0.2
0.3
0.4
0.5
0.6
0.7
0.8
I(mA)
0
0
0
0
0.001 0.003 0.023 0.190
实验数据处理:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一实验报告
实验名称:晶体二极管特性分析
实验目的:
1.熟悉仿真软件MULTISIM的使用,掌控基于软件的电路设计和仿真分析方法;
2.熟悉PocketLab硬件实验平台,掌握基本功能的使用方法;
3.通过软件仿真和硬件实验验证,掌握基本二极管的基本特性。

实验内容:
一.仿真实验
1.根据如图所示电路,在Multisim中进行仿真分析,得到二极管的伏安特性。

仿真任务:二极管选取型号 1N3064,对直流电压源V1进行DC扫描,扫描范围0~1V,步长0.01V,测量二极管中的电流,得到二极管的伏安特性曲线。

仿真设置:Simulate->Analyses->DC Sweep,设置电压扫描范围和输出变量。

实验结果:
在软件中绘得电路图如下:
对直流电压源V1进行DC扫描,得到二极管的伏安特性曲线如下:
实验结论:
1)在V1电压很小的情况下,二极管不导通。

2)该二极管的导通电压大约为0.7V.
3)导通后二极管呈现低阻性,截止时为高阻性。

2.根据如图所示的半波整流电路,在Multisim 中进行仿真分析,得到输出电压随不
同参数的变化情况。

仿真任务及分析方法:
a.固定输入信号频率50HZ,振幅5V,直流电压0V,负载电容C1=10uf,改变负载电阻,
采用Agilent 示波器观察输入输出波形,测量输出电压的平均值和纹波电压,完成表1-1。

b.固定输入信号频率50HZ,振幅5V,直流电压0V,负载电阻R1=10K欧,改变负载电阻,
采用Agilent 示波器观察输入输出波形,测量输出电压的平均值和纹波电压,完成表1-2。

c.根据仿真实验数据,给出输出电压的平均值和纹波电压与负载电阻和负载电容的相
互关系。

仿真设置方法:
1)双击信号源设置输入信号,双击示波器观测波形。

2)Simulate->run
3)Simulate->Analyses->Transient Analysis
实验结果:
在软件中绘得电路图如下:
分别根据要求改变电阻和电容值,调节示波器得到两通道即输出电压和纹波电压的波形,如下图所示:(10K 10uf)
将测得的结果填入表中:
表1-1
表1-2
结论:
1)输出电压随负载电阻的增大而增大。

2)输出电压随负载电容的增大而增大。

3)负载电阻越大,输出纹波电压峰峰值越小,整流效果越好。

4)负载电容越大,输出纹波电压峰峰值越小,整流效果越好。

3.根据如图所示的二极管交流特性实验电路,在Multisim 中进行仿真分析,得到二
极管电路在不同输入信号幅度情况下对的失真情况,认识二极管的非线性特性。

仿真任务:输入信号信号源频率为10KHZ,直流电压2V,负载电阻1K欧,限流电阻100欧,改变输入信号幅度,观察和测量在不同输入信号幅度的情况下输出信号失真情况。

用示波器观察输入输出瞬态波形,采用频谱分析仪测量基波和谐波幅度,完成表1-3,根据测试结果给出二极管电路输出信号失真度与输入信号幅度的定性关系。

实验结果:
在软件中绘得电路图如下:
用示波器和波特仪观察到的结果如下:
0.05V 0.1V
0.2V
结论:
1)输入信号越大,二极管电路的输出信号失真度越大。

思考:若改变二极管的直流工作电压,输出信号的失真情况会有什么变化?
若增大二极管的直流工作电压,输出信号的失真度会变大。

反之减小。

二.硬件实验
1.根据下图在面包板上设计电路,直流电压源采用信号源代替,交流幅度设置为0,改变信号源的直流电压获得不同的直流电压输入,测量二极管两端电压,计算二极管中电流,完成表格1-4,并通过描点的方式绘制实际的二极管伏安特性曲线。

实验结果:
表格1-4
V/(V)
二极管福安特性曲线图
2.有一信号源,频率1000HZ,直流电压3V,信号振幅1V,在仿真实验2电路的基础上通过增加稳压管XXX(1/2W,2V)对信号进行整流和稳压,获得稳定的直流电压。

具体要求如下:
a.负载电阻R1=60K欧
b.输出电压纹波<200mV
c.负载短路峰值电流<10mA
根据以上要求设计稳压电路,给出电路图和期间参数,并在面包板上设计电路,采用Pocketlab实验系统对电路进行激励和测量,获得实际电路的输出电压波形,并采用标尺测量和标注输出电压的最大最小值。

实验结果:
仿真电路图如下:
测得该电路的负载短路电流小于10mA。

观测到纹波示波器波形如下
观测可知其纹波电压小于200mv.
结论:电容越大,整流效果越好;增大纹波电压也会减小纹波电压。

相关文档
最新文档