2016矩阵论试题A20170109 (1)
矩阵理论习题答案
习 题 一1. 设λ为的任一特征值,则因 λλ22- 为A =-A 22O 的特征值, 故022=-λλ. 即 λ=0或2.2. A ~B , C ~D 时, 分别存在可逆矩阵P 和Q , 使得 P 1-AP =B , Q 1-CQ =D .令T =⎪⎪⎭⎫⎝⎛Q O O P 则 T 是可逆矩阵,且T 1-⎪⎪⎭⎫⎝⎛C O O A T =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--Q O O P C O O A Q O O P 11=⎪⎪⎭⎫ ⎝⎛D O O B 3. 设i x 是对应于特征值i λ的特征向量, 则 A i x =i λi x , 用1-A 左乘得i i i x A x 1-λ=.即i i i x x A 11--λ= 故 1-i λ是A 的特征值, i =1,2,, n .4. (1) 可以. A E -λ=)2)(1)(1(-+-λλλ,=P ⎪⎪⎪⎭⎫ ⎝⎛--104003214, ⎪⎪⎪⎭⎫ ⎝⎛-=-2111AP P .(2) 不可以.(3) ⎪⎪⎪⎭⎫ ⎝⎛=110101010P , ⎪⎪⎪⎭⎫⎝⎛=-1221AP P .5. (1) A 的特征值是0, 1, 2. 故A =-(b -a )2=0. 从而 b =a .又11111-λ----λ----λ=-λaa aa A I =)223(22+---a λλλ将λ=1, 2 代入上式求得 a=0.(2) P =⎪⎪⎪⎭⎫ ⎝⎛-101010101.6. A I -λ=)1()2(2+-λλ, A 有特征值 2, 2, -1.λ=2所对应的方程组 (2I -A )x =0 有解向量p 1=⎪⎪⎪⎭⎫ ⎝⎛041, p 2=⎪⎪⎪⎭⎫ ⎝⎛401λ=-1所对应的方程组 (I +A )x =0 有解向量p 3=⎪⎪⎪⎭⎫⎝⎛101令 P =(p ,1p ,2p 3)=⎪⎪⎪⎭⎫ ⎝⎛140004111, 则 P 1-=⎪⎪⎪⎭⎫ ⎝⎛---4416414030121. 于是有A 100=P ⎪⎪⎪⎭⎫ ⎝⎛122100100P 1-=⎪⎪⎪⎭⎫⎝⎛-⋅-⋅-⋅---12412244023012122431100100100100100100100. 7. (1)A I -λ=)1(2+λλ=D 3(λ), λI -A 有2阶子式172111----λ=λ-4λ-4不是D 3(λ)的因子, 所以D 2(λ)=D 1(λ)=1, A 的初等因子为λ-1, 2λ. A 的Jordan 标准形为J =⎪⎪⎪⎭⎫ ⎝⎛-000100001设A 的相似变换矩阵为P =(p 1,p 2,p 3), 则由AP =PJ 得 ⎪⎩⎪⎨⎧==-=23211pAp Ap p Ap 0 解出P =⎪⎪⎪⎭⎫ ⎝⎛-----241231111; (2) 因为),2()1()(23--=λλλD 1)()(12==λλD D ,故A ~J =⎪⎪⎪⎭⎫ ⎝⎛200010011设变换矩阵为 P =(321,,p p p ), 则⎪⎩⎪⎨⎧=+==33212112p Ap p p Ap p Ap ⇒P =⎪⎪⎪⎭⎫ ⎝⎛---502513803 (3) ),2()1()(23-+=-=λλλλA I D ,1)(2+=λλD 1)(1=λD .A 的不变因子是,11=d ,12+=λd )2)(1(3-+=λλdA ~J =⎪⎪⎪⎭⎫ ⎝⎛--211 因为A 可对角化,可分别求出特征值-1,2所对应的三个线性无关的特征向量:当λ=-1时,解方程组 ,0)(=+x A I 求得两个线性无关的特征向量,1011⎪⎪⎪⎭⎫ ⎝⎛-=p ⎪⎪⎪⎭⎫ ⎝⎛-=0122p当λ=2时,解方程组 ,0)2(=-x A I 得⎪⎪⎪⎭⎫ ⎝⎛-=1123p , P =⎪⎪⎪⎭⎫ ⎝⎛---101110221(4) 因⎪⎪⎪⎭⎫ ⎝⎛---+=-41131621λλλλA I ~⎪⎪⎪⎭⎫ ⎝⎛--2)1(11λλ, 故A ~J =⎪⎪⎪⎭⎫ ⎝⎛10111设变换矩阵为P =),,(321p p p , 则⎪⎩⎪⎨⎧+===3232211pp Ap p Ap p Ap 21,p p 是线性方程组 0=-x A I )(的解向量,此方程仴的一般解形为p =⎪⎪⎪⎭⎫ ⎝⎛+-t s t s 3 取⎪⎪⎪⎭⎫ ⎝⎛-=0111p , ⎪⎪⎪⎭⎫ ⎝⎛=1032p为求滿足方程 23)(p p A I -=-的解向量3p , 再取 ,2p p = 根据 ⎪⎪⎪⎭⎫ ⎝⎛------t s t s 3113113622~⎪⎪⎪⎭⎫⎝⎛----t s t s s 00033000311 由此可得 s =t , 从而向量 T 3213),,(x x x =p 的坐标应満足方程s x x x -=-+3213取 T 3)0,0,1(-=p , 最后得P =⎪⎪⎪⎭⎫ ⎝⎛--010001131 8. 设 f (λ)=4322458-++-λλλλ. A 的最小多项式为 12)(3+-=λλλA m ,作带余除法得 f (λ)=(149542235-+-+λλλλ))(λA m +1037242+-λλ, 于是f (A )=I A A 1037242+-=⎪⎪⎪⎭⎫ ⎝⎛----346106195026483.9. A 的最小多项式为 76)(2+-=λλλA m , 设 f(λ)=372919122234+-+-λλλλ,则f (λ)=)()52(2λλA m ++2+λ. 于是 [f (A )]1-=1)2(-+I A .由此求出[f (A )]1-=⎪⎪⎭⎫ ⎝⎛-3217231 10. (1) λI -A =⎪⎪⎪⎭⎫ ⎝⎛---+41131621λλλ标准形⎪⎪⎪⎭⎫ ⎝⎛--2)1(00010001λλ, A 的最小多项式为 2)1(-λ;2) )1)(1(+-λλ; (3) 2λ.11. 将方程组写成矩阵形式:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛321321188034011d d d d d d x x x t x t x t x , ⎪⎪⎪⎭⎫ ⎝⎛=321x x x x , ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=t x t x t x t d d d d d d d d 321x , A =⎪⎪⎪⎭⎫ ⎝⎛----188034011则有J =PAP 1-=⎪⎪⎪⎭⎫ ⎝⎛-100010011, .其中 P =⎪⎪⎪⎭⎫⎝⎛124012001.令 x =Py , 将原方程组改写成 : ,d d Jy y=t 则⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+==3321211d d d d d d yty y y ty y t y 解此方程组得: y 1=C 1e t +C 2T e t , y 2=C 2e t , y 3=C 3e t -. 于是x =Py =⎪⎪⎪⎭⎫ ⎝⎛++++++-t t t tt t t c )t (c c )t (c c t c c e e 24e 4e 12e 2e e 3212121.12. (1) A 是实对称矩阵. A I -λ=2)1)(10(--λλ,A 有特征值 10, 2, 2.当λ=10时. 对应的齐次线性方程组 (10I -A )x =0的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--542452228~⎪⎪⎪⎭⎫ ⎝⎛000110102由此求出特征向量p 1=(-1, -2, 2)T , 单位化后得 e 1= (32,32,31--)T . 当λ=1时, 对应的齐次线性方程组 (I -A )x =0的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛-----442442221~⎪⎪⎪⎭⎫ ⎝⎛-000000221 由此求出特征向量 p 2=(-2, 1, 0)T , p 3=(2, 0, 1)T . 单位化后得e 2=(0,51,52-)T , e 3=(535,534,532)T. 令 U =⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---53503253451325325231, 则 U 1-AU =⎪⎪⎪⎭⎫⎝⎛1110.(2) A 是Hermit 矩阵. 同理可求出相似变换矩阵U =⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---2121212i 2i 2i 21210, U 1-AU =⎪⎪⎪⎭⎫⎝⎛-22. 13. 若A 是Hermit 正定矩阵,则由定理1.24可知存在n 阶酉矩阵U , 使得U H AU =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21, i λ﹥0, I =1, 2, , n . 于是A =U ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21U H = U ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ 21U H U ⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21U H 令B =U ⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21U H 则 A =B 2.反之,当 A =B 2且B 是Hermit 正定矩阵时,则因Hermit 正定矩阵的乘积仍为Hermit 正定矩阵,故A 是Hermit 正定的. 14. (1)⇒(2). 因A 是Hermit 矩阵,则存在酉矩阵U,使得U H AU =diag(n λλλ,,,21 )令x =Uy , 其中 y =e k . 则 x ≠0. 于是x H Ax =y H (U H AU )y =k λ≧0 (k =1, 2, , n ).(2)⇒(3).A =U diag(n λλλ,,,21 )U H =U diag(n λλλ,,,21 )diag(n λλλ,,,21 )U H令 P =diag(n λλλ,,,21 )U H , 则 A =P H P . (3)⇒(1). 任取x ≠0, 有x H Ax =x H P H Px =22Px ≧0.习 题 二1. 1x =01i 42i 1+++-++=7+2,2x =1i)4i(4)2(i)1i)(1(2+-+-+-+=23, ∞x =max {}1i 42i 1,,,-+=4.2. 当 x ≠0时, 有 x ﹥0; 当 x ﹦0时, 显然有 x =0. 对任意∈λC , 有x λ=x nk kk nk kk λξωλλξω==∑∑==1212.为证明三角不等式成立,先证明Minkowski 不等式: 设 1≦p ﹤∞, 则对任意实数 x k ,y k (k =1, 2, , n )有pnk pk k y x 11)(∑=+≦∑∑==+nk ppk nk ppk y x 1111)()(证 当 p =1时,此不等式显然成立. 下设 p ﹥1, 则有∑=+nk pkk y x 1≦∑∑=-=-+++nk p kk k nk p kk k y x y y x x 1111对上式右边的每一个加式分别使用H ölder 不等式, 并由 (p -1)q =p , 得∑=+nk pkky x1≦qnk q p kk pnk pk qnk q p kk pnk pk y x y y x x 11)1(1111)1(11)()()()(∑∑∑∑=-==-=+++=qnk p k k pnk pk pnk p k y x y x 111111)]()()[(∑∑∑===++再用 qnk p k k y x 11)(∑=+ 除上式两边,即得 Minkowski 不等式.现设任意 y =(n ηηη,,,21 )T ∈C n , 则有∑=+=+nk kk k y x 12ηξω=∑=+nk k k k 12)(ηξω≦∑=+nk k k k k 12)(ηωξω≦∑∑==+nk j k nk k k 1212()(ηωξω=y x +.3. (1) 函数的非负性与齐次性是显然的,我们只证三角不等式.利用最大函数的等价定义:max(A , B )=)(21b a b a -++max(),b a y x y x ++≦max(b b a a y x y x ++,)=)(21b b a a b a b a y x y x y y x x --+++++≦)(21b a b a b a b a y y x x y y x x -+-++++ =)(21)(21b a b a b a b a y y y y x x x x -+++-++ =max( b a x x ,)+max( b a y y ,)(2) 只证三角不等式.k 1a y x ++k 2b y x +≦k 1a x +k 1a y +k 2b x +k 2b y =( k 1a x +k 2b x )+( k 1a y +k 2b y ) .4. 218132i 453i 11m +=+++++++=A ;66132i 453i 1222222F =+++++++=A ; 15m =∞A ;=1A 列和范数(最大列模和)=27+;∞A =行和范数(最大行模和)=9 ;5. 非负性: A ≠O 时S 1-AS ≠O , 于是 m 1AS S A -=>0. A =O 时, 显然A =0;齐次性: 设λ∈C , 则 λλλ==-m1)(S A S A m1ASS -=λA ;三角不等式: m11m1)(BSS AS S S B A S B A ---+=+=+≦B A BSS AS S +=+--m 1m 1;相容性: m11m1)(BS ASS S SAB S AB ---==≦m1m1BSS AS S --=A B .6. 因为I n ≠O , 所以n I >0.从而利用矩阵范数的相容性得:n n n I I I =≦n I n I ,即n I ≧1.7. 设 A =(A ij )∈C n n ⨯, x =∈ξξξT 21),,,(n C n , 且 A =ij ji a ,max , 则∑∑=ikk ik Ax ξa 1≦∑∑ikk ik a ξ=∑∑kiik k a ][ξ≦n A ∑kk ξ=∞m A 1x ;∑∑=ikk ikAx 22ξa≦∑∑ikk ika2][ξ=∑∑ikka 22][ξ=n A 2x ≦n A =∞m A 2x .8. 非负性与齐次性是显然的, 我们先证三角不等式和相容性成立. A =(a ij ), B =(b ij )∈C n m ⨯, C =(c st )∈C l n ⨯且 A =ij ji a ,max , B =ij ji a ,max , C =st ts c ,max . 则MBA +=max{m ,n }ij ij ji b a +,max ≦max{m ,n })(m ax ,ij ij ji b a +≦max{m ,n }(A +B )=max{m ,n }A +max{m ,n }B =M M B A +;MAC=max{m ,l }∑kkt ik ti c a ,max ≦max{m ,n }}{max ,∑kkt ik ti c a ≦max{m ,n }}{max 22,∑∑⋅kkt kikti c a (Minkowski 不等式)=max{m ,n }n AC ≦max{m ,n }max{n ,l }AC =M M C A .下证与相应的向量范数的相容性.设 x =∈ξξξT 21),,,(n C n , d =kmax {k ξ}, 则有∑∑=ikk ik a Ax ξ1≦∑∑ikk ik a ξ=∑∑ki ikka)(ξ≦∑kk na ξ=n A ∑kk ξ≦max{m ,n }A ∑kk ξ=1M x A ;2Ax =∑∑ikkik a2ξ≦∑∑ik k ik a 2)(ξ≦∑∑∑ikkkika )(22ξ(H ölder 不等式)=∑∑∑⋅kk ikik a 22ξ≦mn A 2x≦max{m ,n }A 2x =2M x A ;}{max 1∑=∞=n k k ik iAxξa ≦∑=nk k ik ia 1}{max ξ≦}{max 22∑∑⋅kk kik ia ξ≦}max{22nd na i⋅=n AD ≦max{m ,n }AD =∞x A M .9. 只证范数的相容性公理及与向量2–范数的相容性. 设 A =(a ij )∈C n m ⨯, B =(b st )∈C l n ⨯,x =∈ξξξT 21),,,(n C n 且 A =ij ji a ,max , B =st ts b ,max , 则∑=≤≤≤≤=nk ktik lt m i AB11,1Gmaxb aml ≦}{max ,kt kik t i b a ml ∑≦}{max 22,∑∑⋅kkt kikti b a ml (Minkowski 不等式)≦ml n ab =))((b nl a mn =G G B A .∑∑===m i nk k ikAx1212ξa≦∑∑ik k ika2)(ξ≦∑∑∑⋅ikkk ik a )(22ξ (H ölder 不等式)≦∑∑⋅ikkna )(22ξ=mn A 2x=2G x A .10. 利用定理2.12得122H 2===nI UU U.11.A 1-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0110211214321cond 1(A )=225255111=⋅=-A A ; cond ∞(A )=10251=⋅=∞-∞A A .12.设x 是对应于λ的特征向量, 则A x x m m λ=.又设 v ⋅是C n 上与矩阵范数⋅相容的向量范数,那么vm vm v mx A x x ==λλ≦v m x A因 v x >0, 故由上式可得 mλ≦m A ⇒λ≦m m A .习 题 三1. 2c λc λλ))(2(+-=-A I , 当c λρ=)(﹤1时, 根据定理3.3, A 为收敛矩阵.2. 令S )N (=∑=N0)(k k A , )(lim N N S +∞→=S , 则 0)(lim lim )()()(=-=+∞→+∞→k k k k k S S A .反例: 设 A )(k =k⎪⎪⎭⎫ ⎝⎛0001k, 则因 ∑+∞=01k k发散, 故 ∑+∞=0)(k k A发散, 但)(lim k k A +∞→=O .3. 设 A =⎪⎪⎭⎫⎝⎛6.03.07.01.0, 则 )(A ρ≦=∞A 行和范数=0.9<1, 根据定理3.7,∑∞+=⎪⎪⎭⎫ ⎝⎛06.03.07.01.0k k=(I -A )1-=⎪⎪⎭⎫ ⎝⎛937432.4. 我们用用两种方法求矩阵函数e A : 相似对角化法. 22a λλ+=-A I , a -a i ,i =λ当 =λi a 时, 解方程组 (i a -A )x =0, 得解向量 p 1=(i, 1)T .当 λ=-i a 时, 解方程组 (i a +A )x =0, 得解向量 p 2=(-i, 1)T .令 P =⎪⎪⎭⎫⎝⎛-11i i , 则P 1-=⎪⎪⎭⎫ ⎝⎛-i 1i 1i 21, 于是 e A =P ⎪⎪⎭⎫⎝⎛-a ai 00i P 1-=⎪⎪⎭⎫ ⎝⎛a a a -a cos sin sin cos . 利用待定系数法. 设e λ=(2λ+a 2)q (λ)+r (λ), 且 r (λ)=b 0+b 1λ, 则由⎩⎨⎧=-=+-aaa b b a b b i 10i 10ei e i ⇒b 0=cos a , b 1=a1sin a .于是e A =b 0I +b 1A =cos a ⎪⎪⎭⎫ ⎝⎛11+a 1sin a ⎪⎪⎭⎫ ⎝⎛-a a =⎪⎪⎭⎫ ⎝⎛-a a a a cos sin sin cos . 后一求法显然比前一种方法更简便, 以后我们多用待定系数法. 设f (λ)=cos λ, 或 sin λ则有⎩⎨⎧=-=+a-a b b aa b b sini i sini i 1010 与 ⎩⎨⎧=-=+aa b b aa b b i cos i i cos i 1010 由此可得⎪⎩⎪⎨⎧-==a a b b sini i 010 与 ⎩⎨⎧==0i cos 10b ab 故 (a 2isini a )A =⎪⎪⎭⎫ ⎝⎛-0isini isini 0a a =sin A 与(cosi a )I =⎪⎪⎭⎫⎝⎛a acosi 00cosi =cos A .5. 对A 求得P = ⎪⎪⎪⎭⎫ ⎝⎛--013013111, P 1-=⎪⎪⎪⎭⎫ ⎝⎛-24633011061, P 1-AP =⎪⎪⎪⎭⎫ ⎝⎛-211根据p69方法二,e At =P diag(e t -,e t ,e t 2)P 1-=⎪⎪⎪⎭⎫⎝⎛+--++---------t t t t tt tt t t t t t t e 3e 3e 3e 30e 3e 3e 3e 30e e 3e 2e e 3e 4e 661222tsin A =P diag(sin(-1),sin1,sin2)P 1-=⎪⎪⎪⎭⎫⎝⎛--01sin 601sin 6001sin 42sin 21sin 22sin 42sin 616. D 3(λ)=101011----λλλ=2)1(-λλ, D 2(λ)=D 1(λ)=1, A ~J =⎪⎪⎪⎭⎫⎝⎛000010011.现设r (λ,t )=b 0+b 1λ+b 2λ2, 则有⎪⎩⎪⎨⎧==+=++1e 2e 021210b t b b b b b t t ⇒b 0=1, b 1=2e t -t e t -2, b 2=t e t -e t +1. 于是e t A =r (A , t )=b 0I +b 1A +b 2A 2=I +(2e `t -t e t -2)⎪⎪⎪⎭⎫⎝⎛100100011+(t e t -e t +1)⎪⎪⎪⎭⎫ ⎝⎛100100111=⎪⎪⎪⎭⎫ ⎝⎛-+--tt e 001e 101e e 1e e tt t t t同理,由⎪⎩⎪⎨⎧=-=+=++1sin 2cos 021210b t t b b t b b b ⇒b 0=1, b 1=t sin t +2cos t -2, b 2=1-t sin t -cos t . 将其代入cos A t =b 0I +b 1A +b 2A 2, 求出cos A t =⎪⎪⎪⎭⎫ ⎝⎛----t t t t t t t cos 001cos 10cos sin 11cos cos7. 设 f (A )=∑+∞=0k k A ka ,S N=∑=Nk k A 0k a .则 f (A )=N N S +∞→lim 并且由于(S N)T=T)(∑=N k k k A a =∑=Nk k k A 0T )(a所以, f (A T )=T )(lim N N S +∞→=f (A )T .8, (1) 对A 求得P =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1111, P 1-=P , J =⎪⎪⎪⎪⎪⎭⎫⎝⎛1111111 则有e t A =P ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛t t tt t tt ttt t t t t t t e e e e 2e e e 6e 2e 232eP 1-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛t ttt t t tt t e e e 2e 60e e e 200e e 000e 232t t t t t t tsin A t =P ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---t t t t t t t t t t t t t t t t sin cos sin sin 2cos sin cos 6sin 2cos sin 232P 1-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---t t t t t t t t t t t t t t t t sin cos sin 2cos 6sin cos sin 2sin cos sin 232cos A t =P ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----t t t tt t t t tt t t t t t t cos sin cos cos 2sin cos sin 6cos 2sin cos 232P=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----t t t t t t t t t t t t t t t t cos sin cos 2sin 60cos sin cos 200cos sin 000cos 232(2) 对A 求出P =P 1-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0100100000100001, J =⎪⎪⎪⎪⎪⎭⎫⎝⎛--010212 则有e At =P ⎪⎪⎪⎪⎪⎭⎫⎝⎛---11e e e 222t t tt t P 1-=⎪⎪⎪⎪⎪⎭⎫⎝⎛---100010000e 000e e 222t t tt tsin A t =P ⎪⎪⎪⎪⎪⎭⎫⎝⎛--002sin 2cos 2sin t t tt tP 1-=⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000000002sin 0002cos 2sin t t tt tcos A t =P ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1012cos 2sin 2cos t t t t P 1-=⎪⎪⎪⎪⎪⎭⎫⎝⎛10000100002cos 0002sin 2cos t t t t 9. (1) sin 2A +cos `2A =[)e (e i 21i i A A --]2=[)(e 21i i A A e -+]2=)e e e (e 41)e e e (e 41i 2i 2i 2i 2O O A A O O A A ++++--+---=e O =I(2) sin(A +2πI )=sin A cos(2πI )+cos A sin(2πI )=sin A [I -!21(2πI )2+!41(2πI )4-…]+cos A [2πI -!31(2πI )3+!51(2πI )5-…]= sin A [1-!21(2π)2+!41(2π)4-…]I +cos A [2π-!31(2π)3+!51(2π)5-…]I=sin A cos2π+cos A sin2π (3)的证明同上.(4) 因为 A (2πi I )=(2πi I )A ,所以根据定理3.10可得 e I A i π2+=e A e I πi 2=e A [I +(2πI )+!21(2πi I )2+!31(2πi I )3+…]=e A {[1-!21(2π)2+!41(2π)4-…]+i[2π-!31(2π)3+!51(2π)5-…]}I=e A {cos2π+isin2π}I =e A此题还可用下列方法证明:e I A πi 2+=e ⋅A e I i π2=e ⋅A P ⎪⎪⎪⎪⎪⎭⎫⎝⎛i π2iπ2πi 2e e e P 1-=e ⋅A PIP 1-=e A用同样的方法可证: e I A πi 2-=e A e I πi 2-.10. A T =-A , 根据第7题的结果得 (e A )T =e TA =e A -, 于是有e A (e A )T =e A e TA =e A A -=e O =I11. 因A 是Herm(i A )H =-i A H =-i A , 于是有e A i (e A i )H =e A i e A i -=e O =I12. 根据定理3.13, A 1-tt A e d d =e At , 利用定理3.14得 ⎰tA 0d e ττ=⎰-t A A 01d e d d τττ=A 1-τττd e d d 0A t ⎰=A 1-(e -At I ). 13. t d d A (t )=⎪⎪⎭⎫ ⎝⎛---t t t t sin cos cos sin , t d d (det A (t ))=t d d (1)=0, det(t d dA (t ))=1, A 1-(t )=⎪⎪⎭⎫ ⎝⎛-t t t t cos sin sin cos , t d d A 1-(t )=⎪⎪⎭⎫⎝⎛---t t t t sin cos cos sin14. ⎰t A 0d )(ττ=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎰⎰⎰⎰⎰⎰-00d 30d e 2d e d d e d e 002002002t t t t t t τττττττττττττ=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+---002301e e1311e e )1(e 212232t t t t t t t t 15. 取 m =2, A (t )=⎪⎪⎭⎫⎝⎛t t t 02, 则 A 2(t )=⎪⎪⎭⎫ ⎝⎛+22340t t t t , t d d (A (t ))2=⎪⎪⎭⎫ ⎝⎛+t t t t 2023423≠2A (t )t d dA (t )=⎪⎪⎭⎫⎝⎛+t t t t 2022423. 困为++==--21)]()[(d d)()]()[(d d )]()()([d d )]([d d m m A A A A A A A A A t t tt t t t t t t t t t m +)(d d)]([1t tt A A m -所以当(t d d A (t ))A (t )=A (t )t d dA (t )时, 有)(d d)]([)(d d )]([)(d d )]([)]([d d 111t tt t t t t t t t t A A A A A A A m m m m ---++= =m [A (t )])(d d1t tA m -16. (1) 设 B =(ij b )n m ⨯, X =(ij ξ)m n ⨯, 则 BX =(∑=nk kj ik 1ξb )m m ⨯,于是有tr(BX )=∑∑∑===++++nk km mk n k kj jk n k k k 11111ξξξb b bijBX ξ∂∂)tr(=ji b (i =1,2,…,n ;j =1,2,…,m ) ⎪⎪⎪⎭⎫ ⎝⎛=mn n m BX X b b b b 1111)(tr(d d=T B 由于 BX 与 T T T )(B X BX =的迹相同,所以T T T ))(tr(d d ))(tr(d d B BX XB X X == (2) 设A =(ij a )n n ⨯,f=tr(AX X T ), 则有⎪⎪⎪⎭⎫ ⎝⎛=nm mn X ξξξξ1111T ,AX =⎪⎪⎪⎪⎪⎭⎫⎝⎛∑∑∑∑k km nk k k nk km k k k k ξξξξa a a a 1111f =∑∑∑∑∑∑++++l kkm lk lm l k kj lk lj l kk lk l ξξξξξξa a a 11)]()([][∑∑∑∑∑∂∂⋅+⋅∂∂=∂∂=∂∂k kj lk l k ijlj kj lk ij lj l k kj lk lj ij ij ξξξξξξξξξξa a a f =∑∑+klj li kkj ik ξξa amn ij X ⨯⎪⎪⎭⎫⎝⎛∂∂=ξff d d =X A A X A AX )(T T +=+ 17. 设A =(ij a )m n ⨯, 则 F (x )=(∑∑∑===nk kn k nk k nk k k 1211,,,a a a 1k ξξξ ),且A d F F F x F nn n n n n n =⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=a a aa a a a a a 21222211121121d d d d d d d ξξξ 18. ()⎪⎪⎪⎭⎫⎝⎛---------=='t t tt t t tt t t t t t t t t tt AtAt A 222222222e 4e 3e 3e 6e 3e 6e 2e e e 4e e 2e 2e e e 2e e 4e e在上式中令t =0, 则有A =⎪⎪⎪⎭⎫ ⎝⎛---=133131113e OA19. A =⎪⎪⎪⎭⎫ ⎝⎛---502613803, x (0)=⎪⎪⎪⎭⎫⎝⎛111, A 的最小多项式为 2)1()(+=λλϕ. 记f (λ)=t λe ,并设f (λ)=g(λ))(λϕ+)(10λb b +, 则⎩⎨⎧==---tte e 110t b b b ⇒ tt --=+=e ,)1(10t b e t b 于是⎪⎪⎪⎭⎫ ⎝⎛--+=++=---t t t t t t t t 41026138041e e e )1(e t t t At A I , x (t )=Ate x (0)=⎪⎪⎪⎭⎫ ⎝⎛-++-t t t 6191121e t20. A =⎪⎪⎪⎭⎫ ⎝⎛--101024012, f (t )=⎪⎪⎪⎭⎫ ⎝⎛-1e 21t , x (0)=⎪⎪⎪⎭⎫ ⎝⎛-111, =)(λϕdet(λI -A)=23λλ-. 根据O A =)(ϕ,可得; 252423,,A A A A A A ===,….于是23232)!31!21()(!31)(!21)(e A A I A A A I At ++++=++++=t t t t t t=2)1(e A A I t t t --++=⎪⎪⎪⎭⎫⎝⎛---++--t t t e 1e e 210124021t t t t ttx (t )=⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+=+⎰⎰-t t t t f e )1(11]02111[e ]d 021)0([]d )(e )0([e 00At t At tA At x e x ττττ习 题 四1. Doolite 分解的说明,以3阶矩阵为例: 11r 12r 13r 第1框 21l 22r 23r 第2框 31l 32l 33r 第3框 计算方法如下: (ⅰ) 先i 框,后i +1框,先r 后l .第1框中行元素为A 的第1行元素; (ⅱ)第2框中的j r 2为A 中的对应元素j a 2减去第1框中同行的21l 与同列的j r 1之积.第3框中的33r 为A 中的对应元素33a 先减去第1框中同行的31l 与同列的13r 之积,再减去第2框中同行的32l 与同列的23r 之积; (ⅲ)第2框中的32l 为A 中的对应元素32a 先减去第1框中同行的31l 与同列的12r 之积,再除以22r . 计算如下:1 3 02 -3 0 2 2 -6A =⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛600030031122012001 2.Crout 分解的说明,以3阶矩阵为例:11l 12u 13u 第1框 21l 22l 23u 第2框 31l 32l 33l 第3框(ⅰ) 先i 框,后i +1框.每框中先l 后r .第1框中的列元素为A 的第1列的对应元素;(ⅱ)第2框中的2i l 为A 中对应元素2i a 减去第1框中同行的1i l 与同列的12u 之积;(ⅲ)第2框中的23u 为A 中的对应元素23a 减去第1框中同行的21l 与同列的13u 之积,再除以22l .第3框中的33l 为A 中的对应元素33a 先减去第1框中同行的31l 与同列的13u 之积,再减去第2框中同行的32l 与同列的23u 之积.计算如下:1 3 02 -3 02 -6 -6A =⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---100010031662032001 2. 先看下三角矩阵的一种写法:⎪⎪⎪⎭⎫⎝⎛333231222111000a a a a a a =⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛332211223211311121000000101001a a a a a a a a a , ii a ≠0 对本题中的矩阵A 求得Crout 分解为A =⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--1002105452115240512005 利用下三角矩阵的写法对上面的分解变形可得A =⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10021054521100051000512540152001 =⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10021054521100510005100051000512540152001=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10052510545251525405152005 3.对A 的第1列向量)1(β, 构造Householder 矩阵1H 使得 =)1(1βH 12)1(e β, 31C e ∈⎪⎪⎪⎭⎫ ⎝⎛=010)1(β, ⎪⎪⎪⎭⎫ ⎝⎛-=-01112)1()1(e ββ, u =⎪⎪⎪⎭⎫ ⎝⎛-=--01121212)1()1(12)1()1(e e ββββ⎪⎪⎪⎭⎫ ⎝⎛=-=1000010102T 1uu I H , ⎪⎪⎪⎭⎫⎝⎛=2301401111A H , ⎪⎪⎭⎫⎝⎛=23141A对1A 的第1列向量⎪⎪⎭⎫ ⎝⎛=34)2(β, 类似构造Householder 矩阵2H :⎪⎪⎭⎫ ⎝⎛-=--=3110122)2)2(12)2()2ββββe u , 21C e ∈, ⎪⎪⎭⎫ ⎝⎛-=-=4334512T 22uu I H ⎪⎪⎭⎫⎝⎛-=102512A H令12001H H H ⎪⎪⎭⎫⎝⎛=, 则有 ⎪⎪⎪⎭⎫ ⎝⎛-=100250111HA =R 并且⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==---1002501115453000153540001001T2T 112111R H H R H H R H A =QR4. 对A 的第1列向量⎪⎪⎪⎭⎫⎝⎛=202)1(β, 构造Givens 矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210210102102113T , ⎪⎪⎪⎪⎭⎫⎝⎛=0022)1(13βT , ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1132221210220232322A O A T 对1A 的第1列向量⎪⎪⎪⎭⎫⎝⎛-=212)2(β, 构造 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=3223131322~12T , ⎪⎪⎪⎭⎫ ⎝⎛=023~)2(12βT , ⎪⎪⎪⎪⎭⎫⎝⎛=34023723~112A T 令 ⎪⎪⎭⎫ ⎝⎛=12T12~1T O O T , 则有 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==34002372302323221312R A T T . 于是 QR R T T A =⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--==340023723023232232231213123403223121H13H 125. 设A =),,(i i 0i 0i 0i 1321ααα=⎪⎪⎪⎭⎫ ⎝⎛----, 对向量组321,,ααα施行正交化, 令⎪⎪⎪⎭⎫ ⎝⎛--==0i 111αβ, ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛=-=i 212i 0i 12i i 0i ],[],[1111222ββββααβ,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛--=--=323i232i 212i 3i 0i 1211i 0],[],[],[],[222231111333ββββαββββααβ于是⎪⎪⎪⎩⎪⎪⎪⎨⎧++=+-==3213212113i 212iβββαββαβα 写成矩阵行式K ),,(1003i 10212i 1),,(),,(321321321ββββββααα=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-= ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=32632316i 203i 612i 316i 21),,(321βββ 最后得A =K ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----32632316i 203i 612i 316i 21=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----32006i 630212i 2316i 203i 612i 316i 21=QR 6. 令⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-==10005152********T T 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=011000520550114022011000515*******A T 再令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==305061010610305132T T , ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=3010305000061061612A T T 最后令⎪⎪⎪⎭⎫⎝⎛=0101000013T , R A T T T =⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=00030103050610616123 A =⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=0003010305061061603056151302625230161H 3H 2H 3R T T T =QR 7. =)1(β(0, 1)T , 12)1(=β, u =2121)1(1)1(=--e e ββ(-1, 1)T ,H 1=⎪⎪⎭⎫⎝⎛=-01102T2uu I , H =⎪⎪⎭⎫⎝⎛1001H 则有HAH T =⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛010100001111210121010100001=⎪⎪⎪⎭⎫ ⎝⎛--120111211, H 是Householder 矩阵.同理, 对)1(β, 取 c =0, s =1, T 12=⎪⎪⎭⎫⎝⎛-0110, T =⎪⎪⎭⎫ ⎝⎛12001T , 则 ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=='-0101000011112101210101000011TAT T TA=⎪⎪⎪⎭⎫ ⎝⎛---120111211, T 是Givens 矩阵.8. 对 ⎪⎪⎭⎫⎝⎛=1612)1(β, 计算u =⎪⎪⎭⎫ ⎝⎛-=--2151202021)1(1)1(e e ββ, H =I -2uu T=⎪⎪⎭⎫ ⎝⎛-344351 令 Q =⎪⎪⎭⎫⎝⎛H 001, 则⎪⎪⎪⎭⎫⎝⎛=075075600200200TQAQ同理,对)1(β,为构造Givens 矩阵,令c =53, s =54, ⎪⎪⎪⎪⎭⎫ ⎝⎛-=5354545312T ,则当⎪⎪⎭⎫⎝⎛=12001T T 时,='T TA ⎪⎪⎪⎭⎫ ⎝⎛--075075600200200.1. (1) 对A 施行初等行变换⎪⎪⎪⎭⎫ ⎝⎛----100424201011200010321~⎪⎪⎪⎪⎭⎫ ⎝⎛---142000002102121100111201 S=,1420210011⎪⎪⎪⎪⎭⎫ ⎝⎛-- A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-2121101201422021(2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛--------10001111010011110010111100011111~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----11000000001100000210211110021021001 S=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---11000011021021021021, A =⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛----1110000111111111(3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1000126420100632100101264200016321~⎪⎪⎪⎪⎪⎭⎫⎝⎛---10100000010100000011000000016321 ⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1010010100110001S, ()63212121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A 10. (1) ⎪⎪⎪⎭⎫⎝⎛=000000005T A A 的特征值是5,0,0. 分别对应特征向量321,,e e e ,从而V=I,),(11p V =∑=(5), 11AV U =∑1-=⎪⎪⎭⎫ ⎝⎛2151. 令,12512⎪⎪⎭⎫⎝⎛-=U ()21U U U =, 则I U A ⎪⎪⎭⎫⎝⎛=000005(2)⎪⎪⎭⎫⎝⎛=2112T A A 的特征值是,,1321==λλ对应的特征向量分别为TT11,11⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛.于是 ∑=⎪⎪⎭⎫⎝⎛1003, ⎪⎪⎪⎪⎭⎫⎝⎛-=21212121V =1V , 11AV U =∑1-=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-06221612161取 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=3131312U , 构造正交矩阵()21U U U ==⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---31062312161312161‘所以,A 的奇异值分解为T 001003V U A ⎪⎪⎪⎪⎭⎫ ⎝⎛=11. 根据第一章定理1.5, A A H 的特征值之和为其迹,而由第二章2.7 F-范数的定义A A A A A HH2F )tr(==的特征值之和=∑=ri i 12σ习 题 五1.设x =T 21),,,(n ηηη 为对应于特征值λ的单位特征向量,即(QD )x =λx两边取转置共轭:H H H H x Q D x λ=与上式左乘得2H H λ=Dx D x 即 22222221212n n ηηηd d d λ+++= ,由此立即有 2min iid ≤2λ≤2max i id从而i d imin ≤λ≤i d imax .后一不等式的另一证明:根据定理2.13,λ≤)(QD ρ≤2QD i d imax 最大特征值的H 22.11定理==D D D2. A 的四个盖尔园是 1G : 9-z ≤6, 2G : 8-z ≤2, 3G : 4-z ≤1, 4G : 1-z ≤1.由于4G 是一个单独的连通区域,故其中必有一个实特征值.321G G G ⋃⋃是连通区域,其中恰有三个特征值,因而含有一个实特征值 .3. A 的四个盖尔园:1G 1-z ≤2713, :2G 2-z ≤2713, :3G 3-z ≤2713, :4G 4-z ≤2713 是互相隔离的,并且都在右半平面,从而每个盖尔园中恰有一个特征值且为正实数.4.设 =λβαi +为A 的待征值,则有盖尔园k G ,使得k G ∈λ.若α≤0, 则kk a -α≤βαi )(+-kk a ≤k R 故 kk a +-)(α≤k R ,即 kk a ≤α+kk R ≤kk R , 这与A 是严格对角占优的条件矛盾.5. (1)当两个盖尔园的交集中含有两个特征值时; (2) 当两个盖尔园相切且切点是A 的单特征值时.6. A 的盖尔园 2:1-z G ≤3, 10:2-z G ≤2, 20:3-z G ≤10. 因1G 是与32G G ⋃分离的,故1G 中恰有一个实特征值∈1λ[-1, 5].A 的列盖尔园 :'1G 2-z ≤9, 10:'2-z G ≤4, 20:'3-z G ≤2. 因'3G 是与'2'1G G ⋃分离的,故 '3G 中恰有一个实特征值 ∈3λ[18, 22]. 选取 D =diag(1, 1,21), 则 1-DAD 的盖尔园 ''G 1 : 2-z ≤4, :''2G 10-z ≤3, :''3G20-z ≤5. 这三个盖尔园是相互独立的,故必然有∈1λ[-2, 6], ∈2λ[7, 13], ∈3λ[15, 25]与上面所得的结果对照可知利用Gerschgorin 定理,特征值的最隹估计区间为∈1λ[-1, 5], ∈2λ[7, 13], ∈3λ[18, 22]7. 因为det(λB -A )=)23)(2(422+-=----λλλλλλ所以广义特征值为1λ=2, 2λ=-32.分别求解齐次线性方程组0=-x A B )(1λ , 0=-x A B )(2λ可得对应于1λ与2λ的特征向量分别为⎪⎪⎭⎫⎝⎛121k (01≠k ), ⎪⎪⎭⎫ ⎝⎛-122k (02≠k ) 8. 先证明一个结果:若A 是Hermit 矩阵,n λλ,1分别是A 的最大、最小特征值,则)(m ax )(m ax 112x R x R x x =≠==λ, )(m ax )(m ax 12x R x R =≠==x x n λ事实上,Ax x x x x Axx x x x Axx x x x x H 1H 22H 220H H 002max 11max max )(max =≠≠≠===x R下证1λ>1μ, n λ>n μ. 令 Q =A -B , 则)(m ax m ax H H 1H 1122Qx x Bx x Ax x x x +====λ>Bx x x H 12max ==1μ( Q 正定,Qx x H >0 )同理可证 n λ>n μ.现在设 1<s <n , 则根据定理5.10及上面的结果,有)m ax (m in m ax m in H H H 1021Qx x Bx x Ax x x x P s +====λ>s x x P Bx x μ===H 1021max min 9. 显然,A B 1-的特征值就是A 相对于B 的广义特征值. 设为n λλλ,,,21 且j j j Bq Aq λ=, 0≠j q , j =1, 2, …,n 其中 n q q q ,,,21 是按B 标准正交的广义特征向量. 当 )(1A B -ρ<1时,对任意 x =0≠+++n n q q q c c c 2211)()(2211HH 22H 11H n n n n q q q A q q q Ax x c c c c c c ++++++==))((222111HH 22H 11n n n n n Bq Bq Bq q q q λλλc c c c c c ++++++ =2222211n n c c c λλλ+++ ≤i iλmax )(22221n c c c ++⋅=Bx x A B H 1)(-ρ<Bx x H反之,若对任意 x ≠0, Ax x H <Bx x H 成立,并且 )(1A B -=ρλ,Bq Aq λ=,0≠q ,则取 x=q , 于是有λ=Aq q H <1H =Bq q10. 若λ是BA 的特征值,q 是对应于λ的特征向量,即(BA )q =λq =λIq由此可知,λ是BA 的相对于单位矩阵I 的广义特征值 ,因此BAx x Ix x BAxx x R BA x x I x H 1H H 111222max max )(max )(======λ=)(maxH H 12Ax Bxx x x =≤)(max )(max H 1H 122Ax x Bx x x x == =)()(11A B λλ同理)(m in )(m in )(H H 1122Ax Bxx x x R BA x I x n ====λ≥)(m in )(m in H 1H 122Ax x Bx x x x == =)()(A B n n λλ11. 由于x ≠0时,12)()(==x x R x R ,从而5.24式等价于}0,1)(m in{m ax H 22)(2===-⨯∈x P x x R r n n P r C λ我们约定,下面的最小值都是对12=x 来取的. 令x =Qy , 则y y Ax x x R Qy P x P x P ΛH H H 2H 2H 2m in m in )(m in 0=====由于 n r n Q P ⨯-∈)(H 2C , 则在齐次线性方程组 0=Qy P H 2中,方程的个数小于未知量的个数,根据 Cramer 法则,它必有非零解. 设),,,,0,,0(~1n r r y ηηη +=,(1~2=y )为满足方程的解(容易证明这种形式的解必存在),则)(min ~min 22112~H ~H 2H 2n n r r r r y Q P y Q P y y ηληληλ ++=++==0Λ≤r λ 注意到 ⊆==}1~,~~{2H 2y y Q P y 0}1,{2H 2==y Qy P y 0,从而)(min H 2x R x P 0==)(min H 2y R Qy P 0=≤y y y R y Q P y Q P ΛH ~~~m in )~(m in H 2H 20===≤r λ 特别地,取),,(12n r q q P +=时,根据定理5.9)(min H 2x R x P r 0==λ故(5.24)式成立. 12. 我们约定:以下的最小值是对单位向量来取的,即证},1)(min{max H 22)(20C ===-⨯∈Bx P x x R r n n P r λ成立. 令 x =Qy , 则有y y x R BQy P B Bx P ΛHH2H 2m in )(m in === 设齐次线性方程组 0=BQy P H 2有形如 1~),,,,,0,,0(~21==+y y n r r ηηη 的解(不难证明这样的解一定存在),则因})({}~)(~{H 2H 200=⊆=y BQ P y y BQ P y所以)(min H 2x R B BxP ≤22112H ~~~min H 2n n r r r r y BQ P y y ηληληλ+++=++= Λ0≤r λ 特别地,取 ),,,(21H 2n r r q q q P ++=时,根据定理5.12可得r B Bx P x R λ==)(min H 20由此即知(5.44)成立.习 题 六求广义逆矩阵{1}的一般方法: 1)行变换、列置换法利用行变换矩阵S 和列置换矩阵P , 将矩阵A 化成SAP =⎪⎪⎭⎫⎝⎛O O K I r则。
矩阵理论(16-17)试卷
2016——2017学年第一学期 《矩阵理论》考试试卷试卷审核人: 考试时间: 2016.12.4注意事项:1.本试卷适用于16级研究生学生考试使用。
2.本试卷共8页,满分100分。
答题时间150分钟。
学院: 姓名:_________________学号:一.(本题满分12分) 设3[]P x 是次数不超过3的实系数多项式空间,{}2301233()(1)0;()[]W f x f a x a x a x f x a P x ==+++∈=,1. 证明W 按照多项式的加法与数乘运算构成3[]P x 的线性子空间;2. 求W 的维数及其一组基.二. (本题满8分)求矩阵524212425A⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-=---的LU分解和LDU分解.三.(本题满分12分) 设T 为线性空间22R ⨯的一个线性变换 ,对任意的22a b R c d ⨯⎡⎤∈⎢⎥⎣⎦, 232a b a b b T c d c d d ⎛⎫+⎡⎤⎡⎤= ⎪⎢⎥⎢⎥+⎣⎦⎣⎦⎝⎭ ; 1. 求T 在22R⨯的标准基 111221100100,,,000010E E E ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦220001E ⎡⎤=⎢⎥⎣⎦下的矩阵; 2. 求T 在22R ⨯的另一基 123110100,,,111111G G G ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦40001G ⎡⎤=⎢⎥⎣⎦下的矩阵.四.(本题满分8分)设A()λ为6阶λ矩阵,其秩为4,初等因子为3212111,,,,,,,()λλλλλλλλ--+++,试求A()λ的不变因子与Smith 标准型.五.(本题满分15分) 已知微分方程组112321233123++3+dx =3x x x dt dx =x x x dt dx =3x 3x x dt ⎧⎪⎪⎪⎨⎪⎪⎪⎩---可简记为d x Ax dt =, 写出A 并求满足初始条件1(0)11x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=的解.六.(本题满分10分)设1011131,11Ai⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-=---作出A的盖尔圆, 并判断哪些盖尔圆相交, 应用圆盘定理隔离A的特征值.七.(本题满分10分)设矩阵0311A-⎡⎤=⎢⎥⎣⎦,试计算矩阵多项式32()2272g A A A A E=-++并求1A.八. (本题满分10分)已知010001230A⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求矩阵A的Jordan标准形J,并求10A.九.(本题满分15分) 设10010112,10012111A b⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-==-,1.求A的满秩分解;2.求A+;3.判断线性方程组Ax b=是否有解;4.求线性方程组Ax b=的极小范数解或极小范数最小二乘解(并指出所求的是哪种解).。
矩阵理论 (A-B卷)及答案
矩阵理论矩阵理论 2006-2007 学年第 一 学期末考试试题(A 卷)及答案一、 填空题(共20分,每空2分)1、 在欧氏空间4R 中,与三个向量(1,1,1,1),(1,1,1,1),(2,1,1,3)---都正交的单位向量为:)3,1,0,4(261-±2、 已知122212221A ⎛⎫⎪= ⎪ ⎪⎝⎭, 则12__________;__________;__________;F A A A A ∞====3、 已知三阶方阵A 的初等因子为()()21,1λλ--,则A 的约当标准形为:⎪⎪⎪⎭⎫⎝⎛1100100014、 已知cos sin ()sin cos t t A x t t ⎛⎫=⎪-⎝⎭,则1()______________;()______________;|()|______________;|()|______________.d dA t A t dt dtd dA t A t dt dt-====.1,0,s i n c o s c o s s i n ,s i n c o s c o s s i n ⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛---t t t t t t t t 二、解答下列各题((共48分,每小题8分)1. 用最小二乘法求解线性方程组121312312312021x x x x x x x x x x +=⎧⎪+=⎪⎨++=⎪⎪+-=-⎩解:⎪⎪⎪⎪⎪⎭⎫⎝⎛-=121111101011A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-=1021,111021011111b A T,-------------(3’) 所以b A x x x Ax A TT =⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=312311164144321-----------------------(7’)求得最小二乘解为.64,613,617321-=-==x x x -------------------------------------(8’) 2. 设111111111A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,试计算43()322A A A A E φ=-++。
矩阵引论试题及答案
矩阵引论试题及答案一、选择题(每题5分,共20分)1. 矩阵的元素全部为0的矩阵称为:A. 零矩阵B. 单位矩阵C. 对角矩阵D. 标量矩阵答案:A2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行(列)的最大数目D. 矩阵的元素个数答案:C3. 矩阵的转置是指:A. 矩阵的行列互换B. 矩阵的行数变为列数C. 矩阵的列数变为行数D. 矩阵的元素不变答案:A4. 两个矩阵相乘的结果称为:A. 矩阵的和B. 矩阵的差C. 矩阵的积D. 矩阵的逆答案:C二、填空题(每题5分,共20分)1. 如果矩阵A的行列式为0,则称矩阵A为________。
答案:奇异矩阵2. 矩阵A的逆矩阵记作________。
答案:A^(-1)3. 矩阵A与矩阵B相乘,记作________。
答案:AB4. 对于任意矩阵A,矩阵A与单位矩阵相乘的结果仍然是________。
答案:A三、简答题(每题10分,共30分)1. 请简述矩阵的行列式是什么?答案:矩阵的行列式是一个标量值,它提供了关于矩阵的一些重要信息,如矩阵是否可逆(行列式非零则可逆)、线性方程组是否有解等。
2. 矩阵的逆矩阵有什么性质?答案:矩阵的逆矩阵具有以下性质:(A^(-1))^(-1) = A,(AB)^(-1) = B^(-1)A^(-1),以及单位矩阵I的逆矩阵仍然是I。
3. 矩阵的转置矩阵有什么特点?答案:矩阵的转置矩阵具有以下特点:(A^T)^T = A,(AB)^T =B^TA^T,以及矩阵A的转置矩阵的行列式等于矩阵A的行列式。
四、计算题(每题15分,共30分)1. 给定矩阵A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix}\],计算A的行列式。
答案:\[ \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2 \]2. 给定矩阵B = \[\begin{bmatrix} 2 & 3 \\ 4 & 5\end{bmatrix}\],计算B的逆矩阵。
矩阵论试题及答案
一.(10分)已知n n C ⨯中的两种范数a ⋅和b ⋅,对于n n C A ⨯∈,证明b a A A A +=是n n C ⨯中的范数. 解:⑴非负性:由于b a ⋅⋅,是两种范数,故当A=0时,0,0==b a A A ,所以000=+=+=b a A A A ; 当A ≠0时,0,0>>b a A A ,所以0>+=b a A A A⑵齐性:()A A A A A A A A b a b a b a ααααααα=+=+=+= ⑶三角不等式:B A B A B A B A B A B A b b a a b a +=+++≤+++=+二.(每小题10分,共20分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101121103A ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=002t e t b , 1. 求At e2. 用矩阵函数方法求微分方程()()()()()⎪⎩⎪⎨⎧-=+=T x t b t Ax t x dt d1,0,10的解.解:1. ()1112113det ----=-λλλλA I ()()3211132-=----=λλλλ显然, )det(A I -λ的一阶子式的公因子为1, 容易知道)det(A I -λ 的二阶子式的公因子为2-λ,所以A的最小多项式为()()()23222-=--=λλλλm ,即()()022=-=I A A m ,设()()()b a g m e f t ++==λλλλλ,则()a te f t =='λλ 对于特征值2=λ有()()⎩⎨⎧=='+==a te f b a e f t t 22222,()⎩⎨⎧+-==ttet b te a 2212 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+=+=t t t t t t e bI aA e t At1010122. ()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰⎰--ds e s s s ss s e e ds s b e x e t x s t s At t As At 001010110102020 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t e t e t At 1001012三.(15分)用Givens 变换求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100421132403100A 的QR 分解. 解:()T01001=β,构造()s c T ,13=,1101sin ,0100cos 22232132223211=+=+===+=+==xx x s x x x c θθ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=210031002340421121421132403100100000010010010013A T⎥⎦⎤⎢⎣⎡--=21312A , 构造),(12s c T , ()21sin ,21111cos 222122222211=+==-=+--=+==x x x s x x x c θθ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---=1052212131111121212A T⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2/1002/12/1002/10010010013122T T I T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==2/12/100000100102/12/100TT Q ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/12/522344211R四.(10分)用Gerschgorin 定理证明⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=8110260110410100A 至少有两个实特征值. 解:A 的4个盖尔圆为:{}1|1≤=z z G ,{}2114|2=+≤-=z z G , {}3216|3=+≤-=z z G , {}2118|4=+≤-=z z G ,它们构成的两个连通部分为11G S =,4322G G G S =.易见,1S ,2S 都关于实轴对称且各含有1个和3个特征值,因为实矩阵的复特征值必成对出现, 故1S ,2S 必各含有一个实特征值,从而A 至少含有2个实特征值.五.(20分)已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=221221*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=44111b 1. 求A 的满秩分解.2. 求+A3. 用广义逆矩阵的方法判别方程组b Ax =是否相容.4. 求方程组b Ax =的极小范数解或极小范数最小二乘解并指出所求解的类型.解 1。
矩阵论习题答案
自测题一一、解:因为齐次方程0211211=++x x x 的基础解系为T T T )1,0,0,0(,)0,1,0,1(,)0,0,1,1(321=-=-=ααα,所以V 的一组基为⎥⎦⎤⎢⎣⎡-=00111A ,⎥⎦⎤⎢⎣⎡-=01012A ,⎥⎦⎤⎢⎣⎡=10003A ,显然A 1,A 2,A 3线性无关.V a a a a A ∈⎥⎦⎤⎢⎣⎡=∀22211211,有211211a a a --=,于是有 322221112A a A a A a A ++=,即A 可由A 1,A 2,A 3线性表示,故A 1,A 2,A 3为V 的一组基;且dimV=3.二、解:(1)R V X X ∈∈∀λ,.21,有21212122112211(2211)(X X X X X X ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+⎥⎦⎤⎢⎣⎡=+)=+)(1X )(2X,λλλλ=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=11122112211)(X XX )(1X .又因任意两个二阶方阵的乘积、和仍为二阶方阵,故V V '=,即为从V 到V (自身)的线性算子,所以为线性变换.(2)先求的自然基22211211,,,E E E E 下的矩阵A :2221121111020020100012211)(E E E E E +++=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=2221121112200)(E E E E E +++=2221121121020)(E E E E E +++=2221121122200)(E E E E E +++=故⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2020020210100101A . 显然, 从自然基到所给基4321,,,E E E E 的过渡过阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000110011101111C ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-10001100011000111C , 所以在4321,,,E E E E 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==-40200202231201011AC C B .三、解:(1)不是内积. 因为)(,A A tr A A +=)(2)(22211a a A tr +==并不一定大于零.(2)因为1),(10==⎰dt te g f t ,⎰===1021231)(),(dt t f f f ,⎰-===1212212)21()(),(e dt e g g g t,g f g f ⋅≤),( ,即212)21(311-⋅≤e .四、解:(1)2)2)(1(--=-λλλA I ,2,1321===λλλ.行列式因子:1,1,)2)(1(1223==--=D D D λλ ; 不变因子:2321)2)(1()(,1)()(--===λλλλλd d d ; 初等因子:2)2(),1(--λλ .(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=2121~21J JJ A ; (3)对T X A I )1,1,0(0)(,1111==-=ξλ得;T X A I )1,0,1(0)2(,2222==-=ξλ得.再求22=λ的一个广义特征向量: 由23)2(X X A I -=-得T )1,1,1(3=ξ .取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-111110111,1111011101P P , :,)(则令SinA A f =[][]⎥⎦⎤⎢⎣⎡===2sin 02cos 2sin )(,1sin )()(22111λλλJ f f J f , 故12211)])([)],([(sin -⋅=P J f J f Pdiag A λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1111101112sin 2cos 2sin 1sin 111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+----+=2cos 1sin 1sin 2cos 1sin 2cos 2sin 2sin 1sin 1sin 2sin 1sin 2sin 2cos 2cos 2sin 2cos .五、解:(1)130143014,83,3014max max 31<=⎭⎬⎫⎩⎨⎧==∑=∞j ij ia A , 故0lim =∞→k k A ;(2)∑∞=0k k x 的收敛半径为1,而1<∞A 若在其收敛域内,故∑∞=0k kA绝对收敛,且∑∞=--=01)(k k A I A .六、解:(1)6,5,15,511====∞∞m m A A A A ;又因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-322232223511A ,571=∞-A . 所以7557)(1=⨯==∞∞-∞A A A cond ;1,5,)1)(5(3212-===+-=-λλλλλλA I .故5lim )(==i iA λρ. (2)因为031221,0121≠-==∆≠=∆,故可分解. (3)-+-r B B B ,,均可取1-B .七、证:设T n T n y y y Y x x x X ),,,(,),,,(2121 ==分别为在两组基下的坐标,则CY X =,当Y X =时有:θ=-X C I )(,则0=-C I ,故C 有特征值1.反之,由于1是过渡过阵C 的一个特征值,设其对应的特征向量为X ,即X CX ⋅=1,由坐标变换公式知,在基1β,2β,n β, 下的坐标CX Y =,故有X Y =.八、证: A 对称正定,∴存在正交矩阵C ,使D diag AC C n T ==),,,(21λλλ其中特征值)n i i ,,2,1(0 =>λ.对θ≠∀X ,有CX Y =,使DY Y y y y AX X T n n T =+++=2222211λλλ ,其中θ≠y .令n nn z y z y z y λλλ1,,1,1222111===.于是θλλλ≠=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=Z BZ Z Y n ,11121故Z Z Z DB B Z DY Y T T T T ==)(. 而)(P B C PZ BZ C Y C X T T T ====令,所以Z Z Z AP P Z AX X DY Y T T T T T ===)(.因Z 的任意性,知I AP P T =,即A 与I 相合.自测题二一、解:I a A a I A I A k k k k k k λλλ===,,,I a a a A a A a A a I a n n k n )(102210λλ+++=++++∀ ,其中R a a a n n ∈+++λλ 10,故取V 的基为I ,1dim =V .二、解:(1)从基2,,1x x 到基22,,1x x x x ++的过渡矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110011001C ,所以在新基下的坐标为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--0111011C .(2)不是线性变换.因为≠++++++=+),,2()(33221121111b a b a b a b b a a βα+)(α)(β.(3)不是内积. 如0341212121<-=-==),),(,(),,(α,不具有非负性.三、解:(1)利用Schmidt 正交化方法,得T e )1,1,1(1=,T e )1,0,1(2-=,T e )61,31,61(3-=.(2)从321,,ααα到321,,e e e 的过渡阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=610021103421C , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-6003102211C ,故所求⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--==-00000034211AC C B .四、解:(1)由于A 实对称,所以存在正交阵Q ,使⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∧=n AQ Q T21. 故2)1+=∧==n n AQ Q A F F T F (;n A =)('ρ;n A =2;n A cond =2)(;1)(21=-mA .(2)取⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000111A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=111 α,得n aA n A ===212,1,α,即有212ααA A >.五、解:(1)3)1(201335212+=+-+---=-λλλλλA I ;1321-===λλλ. 33)1()(+=λλD ,所以,不变因子为3321)1()(,1)()(+===λλλλd d d ;初等因子为3)1(+λ. 故A 的Jordan标准形⎪⎪⎪⎭⎫ ⎝⎛=100110011J .(2)cos A 的Jordan标准形为:J =⎪⎪⎪⎪⎪⎭⎫⎝⎛------)1cos(00)1sin()1cos(0)1cos(21)1sin()1cos(.六、证:(1)因173.01<=A ;故;0lim =∞→kk A(2)因A 有范数小于1,故∑∞=0k k A 绝对收敛;且其和的形式为1)(--A I .七、解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=00032103101~230121121A ;取⎪⎪⎪⎭⎫ ⎝⎛--=302121B ,⎪⎪⎪⎪⎭⎫ ⎝⎛=32103101C ; 则有BC A =(最大秩分解);1)()(12==λλD DT T B B B B 1)(-+=, 1)(-+=T T CC C C ,则 +++=B C A ,所以,方程b AX =的极小范数最小二乘解为b A X +=.八、证:(1)因为A C A AC C A n T 2)1(,=-=-所以,则有,0)1(2>-=n C n 必为偶数.(2)设T n x x x X X AX ],,,[,21 ==λ的分量中绝对值最大者为kx ,则X AX λ=的第k 个方程∑==nj jkj k x a x 1λ;∑∑==≤=nj jkjnj j kj k x a x a x 11λ;∑∑==<≤≤nj nj kj kj kja x x a 111λ,故有1<λ.自测题三一、 解:(1)不是. 设B B A A T T -==,,则)(T T B A B A -=+=T T B A B A )()(+≠-(一般情况下), 又)()(B A B A B A T +-≠-=+(一般情况下),即V B A ∈+.(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=+++∀001)(111010 n n n n d a d a a D a D a I a⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++100)(10 n n n n d a d a a , 故得一组基为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100,,001 ,且n V =dim .二、解:(1)123)(22++=x x x,12)(+=x x, 43)1(+=x,在基1,,2x x 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛=411322003A .(2))5)(1)(3(411322003---=-------=-λλλλλλλA I ,可见矩阵A 有三个不同的单根1,3,5,故 A 可以对角化,即可以对角化.(3)设度量矩阵33)(⨯=ij C C ,则⎰⎰====1010213124114151C dx x C dx x C , ⎰⎰=====1102223121331,31dx x C C dx x C ,⎰⎰=====10331032231,21dx C xdx C C . 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=12131213141314151C .三、解:设3322113)(ααααx x x ++=,使得)(1α,)(2α,)(3α是标准正交的.∵)(1α,)(2α已标准正交化,∴()(1α,)(2α)=()(2α,)(3α)=0,)(3α=1,即得⎪⎩⎪⎨⎧=++=+-=-+1022022232221321321x x x x x x x x x ;解得:32,32,31321==-=x x x ; 即()().22313213αααα++-=.因为)(1α,)(2α,)(3α为标准正交基,且把标准正交基变为标准正交基,故为正交变换, 它在基321,,ααα下的矩阵表示为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=32321323132313232A .四、解:由自测题一中第四题(2)知A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J ,相似变换矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110T . 由T )321321,,(),,(αααβββ=,求得3V 的一组基为3213312321,,αααβααβααβ++=+=+=,则在该基下的矩阵为J .五、证:当0=X 时,000===F F X α;当θ≠X 时,0≠T X α ;从而0>=FTX X α. ,C k ∈∀FT FTX k kx kX αα()(===X k X k FT=α,FTFTFT T FTY X Y X Y X Y X ααααα+≤+=+=+)(=Y X +,因此 , X 是向量范数. 又因为FT T FTA X AX AX )()(αα==X AA X FFTFT=≤α,因此 , F A 与X 相容.六、解:)6(2-=-λλλA I ,特征根为0,6321===λλλ;则6)(=A ρ.由于A A 62=,故A 可以对角化, 即存在可逆矩阵C ,使1006-⎪⎪⎪⎭⎫⎝⎛=C C A ;1001)(-⎪⎪⎪⎭⎫ ⎝⎛=C C A Aρ. 故得.61001001lim )(lim 11A C C C C A A kk kk =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛--∞→∞→ρ七、证:⇒设1)(<A ρ,取0)](1[21>-=A ρε,对于矩阵A ,存在矩阵范数⋅,使121)()(<+=+≤A e A A ερ. 1)(<≤⇐A A ρ便得证.八、证:(1)1-====AB B A B A B A T T , 同理,有1-==T T T B A AB .(2)B A B A B A B A B A T T +=+=+--)(11=AB ()AB B A T -=+, 得2即有,0=+B A 0=+B A .自测题四一、 解:(1)21111011201010011)(E E E E E T +=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,21222011200110101)(E E E E E T+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,33332200010001000)(E E E E T=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+=, 所以在E 1,E 2,E 3下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A . (2) 设有一组基321,,e e e ,从E 1 ,E 2 ,E 3到e 1 ,e 2 ,e 3的过渡矩阵设为C ,即C E E E e e e ),,(),,(321321=再设A 在e 1 ,e 2 ,e 3下的矩阵为B ,则AC C B 1-=.要使B 为对角阵,即找一个可逆矩阵C ,使AC C 1-为对角阵. 因为2)2(211011-=-----=-λλλλλλA I ,对0=λ,求得特征向量()T 0,1,1-,对λ=2,求得两个线性无关的特征向量()T 0,1,1,T )1,0,0(.令⎪⎪⎪⎭⎫ ⎝⎛-=100011011C ,得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-10002121021211C ,则AC C B 1-=为对角阵. 由()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100011011,,,,321321E E E e e e ,可得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+-=011001010011211E E e⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=011201010011212E E e ⎥⎦⎤⎢⎣⎡==100033E e .二、证:易得()()()122111,,,1,αααααα==0=,()()()()()(),1,,0,,,1,,0,,332332221331======αααααααααααα即11)(α=e ,22)(α=e ,33)(α=e 也是标准正交基,故是正交变换.三、解:(1)令T Y )0,,0,,(21 ηξ=,由Y HX =,知X HX Y ==; 取 Y X YX Y X X Y X X --=--=0η ; Y YY 10=,构造初等反射矩阵 T I H ηη2-=,则有Y Y X HX ==0.(2))3)(5(16)1(12812--=--=--=-λλλλλλA I . 因此3,521==λλ,所以5m ax)(==i iA λρ;因为65)(<=A ρ,故矩阵幂级数收敛.四、解:由正交矩阵行(列)向量组标准正交,得12122=+⎪⎭⎫⎝⎛a12122=+⎪⎭⎫ ⎝⎛b 02=+bc a四组解是:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=212121c b a .五、解: (1){}∑====31162,4,6m ax m axi ijja A ;{}∑=∞===3153,4,5m ax m ax j ij ia A;{}9max =⋅=∞ij m a n A.因为()()221--=-λλλA I ,2,1321===λλλ , 故2m ax )(==i iA λρ.(2) 031≠=∆,0521132≠==∆,故可以进行LU 分解 .(3)易得2)(,3)(==B R A R ,所以6)(=⊗B A R ,B 的特征根为2,121==μμ,故B A ⊗的特征根为4,2,4,2,2,1231322122111======μλμλμλμλμλμλ.2)(B A ⊗的特征根为:1,4,4,16,4,16.(4)∵02≠=B ∴B 可逆,且⎥⎦⎤⎢⎣⎡-=-1032211B ,所以-+-r B B B ,,均可取为:⎥⎦⎤⎢⎣⎡-=-1032211B . (5)A 的Jordan标准形为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J . (6)对应于11=λ的特征向量T )11,0(,,对应于22=λ的线性无关的特征向量只有一个T )1,0,1(,再求一个广义特征向量T )1,1,1(. 令TT ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1111101111T . 令 AA f 1)(=, 则1))((11=λJ f ;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=214121)((22λJ f . 12211))(),(()(-⋅⋅=T J J diay T A f λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111110111210041210001111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=53322211141.六、解:(1)由X AX λ=,即0)(=-X I A λ,若λ不是A 的特征根,则0≠-I A λ,所以0)(=-X I A λ只有零解,故0dim =λV .若λ是A 的特征根,则0=-IA λ,所以0)(=-X I A λ有非零解.设r I A R =-)(λ,则r n V -=λdim .(2) 设T I A ωω2-= 其中ω为单位向量1=ωωT .则)2)(2(2T T I I A ωωωω--=T T T T w I ωωωωωωωω422+--=I I T T =+-=ωωωω44.七、证:(1)设()由于二,0≠∈m R X 次型()()0≥==AX AX AX A X BX X TT T T ,所以B 为半正定矩阵.(2)当A 的列向量组线性无关时,若X ≠0,则AX ≠0, 故())(AX AX BX X T T =>0 ,即A 为正定矩阵.八、证:(1)λ为非奇异,λ为A 的特征值,故λ≠0 , 而λ1为1-A 的特征值,据特征值上界原理, 有11-≤A λ,即11-≥Aλ. (2) 对0≠∀X ,由已知有BXA X XB A A 11)(--+=+BXA X 1--≥XB A X 1--≥XB A )1(1--=由已知11-<AB , 即11<-A B ,故知0≠∀X , 0)1()(11>-≥+--X B A X B A A ;即对0≠∀X , 有0)(1≠+-X B A A ,即0)(1=+-X B A A 无非零解.故0)(11≠+=+--B A A B A A , 从而0≠+B A ,即A +B 可逆.自测题五一、 解:(1) 在V 1中,⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫ ⎝⎛=4324324321x x x x x x x xx x A ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=100101010011432x x x . 令⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=1001,0101,0011321E E E , 因321,,E E E 线性无关,由定义知,它们是1V 的基,且3dim 1=V .(2)[]212,BB L V = 因为21,B B 线性无关; 2dim 2=V .),,,,(2132121B B E E E L V V =+在22⨯R 的标准基下,将21321,,,,B B E E E 对应的坐标向量21321,,,,ββααα排成矩阵, 并做初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛--=10000031000111001111~13100020102000101111),,,,(21321ββααα, 可见4)dim(21=+V V .由维数定理145)dim (dim dim )dim (212121=-=+-+=V V V V V V .二、解:(1) 因为,过渡阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111C ,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-111111C ,所以α在α1,α2,α3下的坐标为=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-3211a a a C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--23121a a a a a .(2)设,21λλV V X ∈则有()X X A 1λ=与()X X A 2λ=,两式相减得()021=-X λλ,由于21λλ≠,所在地只有X=0,故[]0dim 21=λλV V .三、解:取[]3X P 中的简单基,,,,132x x x 由于)1(=,12x-,)(3x x x -=221)(x x +=, 33)(x x x +-= ,则在1,x ,32,x x 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101A . A 的特征值为:2,04321====λλλλ , 相应的特征向量为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1010,0101,1010,0101. 令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1010010110100101C , 则Λ=-AC C 1. 再由()()C x x x f f f f 324321,,,1,,,= , 求得[]3x P 中另一组基:()34233221)(,1)()(,1x x x f x x f x x x f x x f -=-=+=+=,.四、解: (1) ⎰⎰⎪⎪⎭⎫⎝⎛=-1101dt dt de Adt e AtAt)(1I e A A -=-.(2)当j i ≠时0)(=j i εε;故度量矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n A 21.五、解:(1),9,1,3,3121====∞m T XX XXX3,4,3===∞∞X X XX XX T m T FT .(2))1()(23+=λλλD ,易得1)()(12==λλD D . ∴ 不变因子)1()(,1)()(2321+===λλλλλd d d ;初等因子)1(,2+λλ.A 的Jordan标准形为:⎪⎪⎪⎭⎫⎝⎛-=100000010J .六、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000001101101112101101011行变换A ,令⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01101101,211011C B , 则 A=BC . 其中B 为列最大秩矩阵, C 为行最大秩矩阵 .(2)⎥⎦⎤⎢⎣⎡--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==--+121033312111016332)(11TT B B B B ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛-==--+1221311251211301111001)(11T T CC C C , 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-==+++14527533014515112103312213112151B C A .(3)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==+10111501515151413145275330145151b A X .七、证明提示:类似习题4.1第16题(1)的证明.八、证明:AC A B A ++=⇒因为两边左乘矩阵A ,有C A AA B A AA )()(++=,故 AB=AC .AC AB =⇐因为,设+A 为A 的加号定则,两边左乘+A ,有AC A AB A ++=.自测题六一、解:(1)当V x x x x X ∈⎪⎭⎫⎝⎛=22211211时,由02112=+x x 得⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=011010000001212211X X X X .取 ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0110,1000,0001321E E E , 因线性无关,则它们是V的一个基.(2)⎪⎪⎭⎫⎝⎛-=-=0110)(111B E E B E T T ;⎪⎪⎭⎫ ⎝⎛=-=0000)(222B E E B E TT ;⎪⎪⎭⎫ ⎝⎛-=-=0220)(333B E E B E TT ;故在基321,,E E E 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛-=201000000A .(3)将A对角化,取⎪⎪⎪⎭⎫ ⎝⎛=110001020C 使⎪⎪⎪⎭⎫⎝⎛=-2001AC C ;设所求基为321,,Y Y Y ,有:()()C E E E Y Y Y 321321,,,,=.得⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛=0110,0112,1000321Y Y Y ,则在基321,,Y Y Y 下的矩阵为对角形.二、解: (1))1(4963752542-=---+---=-λλλλλλA I,A 的特征根1,0321===λλλ;行列式因子)1()(23-=λλλD ,易得1)()(12==λλD D ; 不变因子)1()(1)()(2321-===λλλλλd d d ;初等因子1,2-λλ.(2) A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100000010J ;(3) ∵01621511,0121≠-=--=∆≠-=∆;∴ A 能进行LU 分解.三、解:(1).13214,1010,00022322122⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=-t t t dt dA t dt dA dt A d .(2)⎥⎦⎤⎢⎣⎡=00032121312x x dX df .四、解:(1) 由)(21I B A +=,得I A A I A B I A B +-=-=-=44)2(,2222,显然, 当且仅当I B =2时,有A A =2.(2) 因B A B BA AB A B BA AB A B A +=+++=+++=+222)(,得,0=+BA AB 即,BA AB -=两端右乘B 得BAB AB -=2, 从而AB B AB )(-=,由于幂等阵B 的任意性,故0=AB .五、解: (1)∵ m x x x 21两两正交的单位向量.∴)(21m x x x A =为列满秩矩阵,故T T T A A A A A ==-+1)(. (2)∵⎪⎭⎫ ⎝⎛=101k A k ,且∑∞=-12)1(k k k与∑∞=-1)1(k kk 都收敛;∴ ∑∞=-12)1(k kk A k 收敛.(3)∵ 762+-=-λλλA I ,而)2()52)(76(37291912222234++++-=+-+-λλλλλλλλ;由于0762=+-I A A ;∴原式⎪⎭⎫⎝⎛-=+=-3217231)2(1I A . (4)∵ A 的特征根为n)2,1(,,i i =;B 的特征根为m )21(,,,j j =λ;∴B A ⊗的特征根为j i λn;2,1(,,i =m)21,,,j =.六、证: (1) 当0=A 时,设A 的最大秩分解为A=BC.则 C B C B B C B C B A A D ~=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛= . 而[]()H HHH B BB B B B B 1~-+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛=()[][]++-==B B B BB B H HH21211.[]++++++⋅==B B C B C D 21~[]++=A A 21.当A =0时上式也成立.(2) 经计算A a a a A )(2321213++-= . 于是A A a a a AXA =++-=-31232221)(,A a a a X 1232221)(-++-=是A 的一个减号逆.(3)()I e e e e e e A A A A AT A TA A T ===-=-,..,所以因为.故A e 为正交矩阵.七、证:(1) 设R V n ∈∀∈μλβα,,,,,则00),()(ααμβλαμβλαμβλα+++=+k)),(()),((0000ααββμααααλk k +++==λ)(α+μ)(β.所以是线性变换.(2)是正交变换),(),(αααα=⇔T T ,即 ),(),(),(),(2),(0020220αααααααααα=++k k ,得[]0),(2),(0020=+ααααk k .由n V ∈α的任意性,上式等价于0),(20=+ααk ,所以22200212),(2n k +++=-= αα .八、证:由舒尔定理知,存在西矩阵U 及上三角矩阵()ij r R =,使得R AU U H =,因此有H H H R U A U =,从而得H H H RR U AA U =.又因为()()()H H H H RR tr U AA U tr AA tr ==, ①由于R 主对角线上的元素都是A 的特征值,故由①式得2112121ij nj ni ij ni i ni r r ∑∑∑∑====≤=λ, ②而②式端是R 的Frobenius 范数的平方,又因在酉相似(即R AU U H =)下矩阵的F 范数不变,所以211211ij ni ni ijni n i a r ∑∑∑∑=====③综合②、③两式便得到所需证的不等式.又不等式②取等号当用仅当i≠j 时都有0=ij r ,即A 酉相似于能角形矩阵,也就是A 为正规矩阵.自测题七一、 解:(1)由02421=-+a a a ,得基础解系)0,0,1,2(1-=α,)0,1,0,0(2=α,)1,0,0,1(3=α;所以V 1的一组基为321,,ααα,且3dim 1=V .因为),(),,(2132121ββαααL L V V +=+),,,,(21321ββαααL =,易知1321,,,βααα是21321,,,,ββααα的一个极大无关组,故4)dim (21=+V V ,21V V +的一组基为1321,,,βααα.(2)251433221121,ββξαααξξk k k k k V V +=++=⇔∈∀ .所以025********=--++ββαααk k k k k . 解此方程组得),,133,2,2(),,,,(54321---=k k k k k . 所以21V V 的一组基为)3,2,21---=,(ξ,且1)dim (21=V V .二、解:(1)211111)(cE aE E +=221212)(cE aE E +=211121)(dE bE E +=221222)(dE bE E +=即⎪⎪⎪⎪⎪⎭⎫⎝⎛=d cd c b a b aE E E E E E E E 00000000),,,(),,,(2221121122211211, 故A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡d cd c b a b a000000; (2) 由,B A AB +=得到I I B A AB B A AB =+--=--,0 ,即I I B I A =--))((,显然I A -与I B -均为阶可逆方阵,于是有I I A I B =--))((,即I I B A BA =+--,亦即0=--B A BA , 故B A BA +=,从而AB BA =.三、解:(1))2()1(2320110012λλλλλλ--=---=-E A ,)2()1()(23λλλ--=D ,1)(2=λD ,1)(1=λD .)2()1()()()(,1)()()(,1)(22331221λλλλλλλλλ--=====D D d D D d d , 所以初等因子为:λλ--2,)1(2.A 的Jordan标准形为⎪⎪⎪⎭⎫ ⎝⎛200010011.(2)()n I A tr dAd=. (3)两边求导数,利用,At AtAe e dtd =且,0Ie = 得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=133131113A .四、解:(1)∑==iij ja A 5m ax 1;∑==∞jij ia A 5m ax .(2)122212221---------=-λλλλA I )5()1(2-+=λλ ,5,1321=-==λλλ;故5m ax )(==i iA λρ;⎪⎪⎭⎫ ⎝⎛--=-3122411B ,故∞-∞∞⋅=1)(B B B cond 54145=⨯⨯=. (3)2,3==rankB rankA ;623)(=⨯=⊗B A rank .)4)(1(26521232--=-+-=----=-λλλλλλλB I ,所以4,121==λλ,故B A ⊗的特征值为:20,4,4,5,1,1'6'5'4'3'2'1=-=-==-=-=λλλλλλ(4) ∵0≠A ,1-A 存在,∴ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===--+-3222322235112221222111A A A .五、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000032102101~321043211111A , BC A =⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=32102101102111. (2)∵ 2=rankA ;2):(=b A rank ;∴ b AX =相容.(3)∵⎪⎪⎪⎭⎫ ⎝⎛=142062*********T AA ;⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---==--21103001052152011070)(T T m AA A A , ∴ 极小范数解⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-1234101b A X m.六、解: (1)0max≠=x P A 2121022maxmax--≠≠===PAP yy PAP PXPAX XAX x x PP .(2)A 的4个盖尔圆为它们构成的两个连通部分为11G S =, G G G S 322=4.易见,1S 与S 2都关于实轴对称.由于实矩阵的复特征值必成共轭出现,所以S 1中含A 的一个实特征值,而S 2中至少含A 的一个实特征值.因此A 至少有两个实特征值.七.证:(1)设为正交变换,λ为的特征值 , 则有()0()≠=αλαα,),(αα=()(α,)(α)),(),(2ααλλαλα==.∵),(>αα, ∴12=λ,故1±=λ;(2)设λ为的任一特征根,α为的属于λ的一个特征向量,即0,)(≠=αλαα,则1,11)(2,1222-=⇒=⇒==λλααλα.记11=λ的特征子空间为,1V 12-=λ的特征子空间为1-V .对V ∈∀α有=α(+α)(α) 2 + (-α)(α) 2 ,而 (+α)(α) 2∈,1V (-α)(α) 2 ∈1-V ,所以11-+=V V V . 又 ⇒∈∀-11V V α,)(αα=且,)(αα-=;得αα-=,即0=α,故11-⊕=V V V .自测题八{}{}{}{},28,36,24,14321≤-=≤-=≤-=≤=g g G g g G g g G g g G一、解:(1)在已知基)(),(),(321t f t f t f 下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛------=111323221A ;(2) (⎪⎪⎪⎭⎫ ⎝⎛=321),,1())(2t t t f ;基2,,1t t 且到基)(),(),(321t f t f t f 的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛=101110102C ;则21321234321))(),(,)(())((t t C t f t f t f t f -+-=⎪⎪⎪⎭⎫ ⎝⎛=-.(3) 设度量矩阵33)(⨯=ij d D , 则⎰⎰=====10121121121,11tdt d d dt d ; ⎰⎰=====1012222311331,31dt t d dt t d d ; ⎰⎰=====1014333322351,41dt t d dt t d d ; 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=51413141312131211D .二、解:(1) 令矩阵,3)(I A A f -=若A 的特征值为λ,则)(A f 的特征值是3)(-=λλf ,故)(A f n 的个特征值为32)2(,,3)6(,1)4(,1)2(-===-=n n f f f f .从而))32(531(3)(-⋅⋅-=-=n I A A f .(2) 2)1)(2(224023638--=+-+---=-λλλλλλA I ;特征根为1,2321===λλλ.行列式因子:23)1)(2()(--=λλλD ,1)()(12==λλD D ; 不变因子:2321)1)(2()(;1)()(--===λλλλλd d d ;初等因子: 2)1(),2(--λλ; 故A 的Jordan标准形为⎪⎪⎪⎭⎫⎝⎛=100110002J .三、解:(1)由于A 实对称,所以易求得非奇异矩阵P ,使Λ=-AP P 1, 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1001011001101001P ,于是12211-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=P e e P e t t At=12111000011--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡P P e P P t =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-+--+-+t t ttttt te ee e e e e e 2222222210101100110100121. (2) X ()()Tt t At e e X e t ⎪⎪⎭⎫ ⎝⎛-==22,0,0,0.四、解:(1)6=∞A ;2)4)(2(224)4(31213232-+=--=--=-λλλλλλλλλA I ; 特征根为4,2321==-=λλλ;则 4)(=A ρ.(2)2)3(,3)(==R A R∴ 6)(=⊗B A R ;B 的特征根3,421==μμ,∴ B A ⊗的全部特征根为:-8,-6,16,16,12,12. (3)∵⎪⎪⎪⎪⎭⎫ ⎝⎛-=-310125411B ,∴ +-B B l ,可取1-B .五、解:α1()T 4,0,3=,构造⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=3040504035113R ,113140430735A A R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=. 同理,构造R A R R =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=5135165735,3404300055112323.令()==T R R Q 2313⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---012202015012161551, 则A=QR.六、证:(1)∵ A 为对称正定矩阵, ∴≠∀α有:>Aα,当且仅当0≠α时,有0=Aα;对R R ∈∀有:A T AkAk k αααα==;βββαααβαβαβαA A A T T T A++=++=+),(2)()(AAAAβαβα+=+≤2)(, (2)∵ IAA AA AA A A T T T T ==--11))(())((;∴1)(-T T AA A 是A 的右逆.(3)因为1-=A ,且A 为正交矩阵,所以有T T T A I A A I A A AA A I )()(+=+=+=+,则 AI A I A A I T +-=+=+)(,即 0=+A I .故A 一定有特征根-1.七、证:()(),1111A a a A I f n n n n -++++=-=--λλλλλ 因为 由()0=A f 得()01111=-++++--I A A a A a A nn n n ,即A ()()I A I a A a A n n n n 112111+----=+++ ,故()()I a A a AAA n n n 12111111--++-+++-=.自测题九一、解:不是. 如取α=(1,2),β=(3,4),()().,4,3,2,1αββααββα⊕≠⊕=⊕=⊕则有.二、解:(1)令⎥⎦⎤⎢⎣⎡--=1111A ,则V X AX X ∈=,)(.V Y X ∈∀,,P k ∈∀,则=+=+)()(Y X A YX )(X +)(Y ,kkX =)()(X ,所以是线性变换. (2)⎥⎦⎤⎢⎣⎡-==0101)(1111AE E ,⎥⎦⎤⎢⎣⎡-==1010)(1212AE E ,⎥⎦⎤⎢⎣⎡-==0101)(2121AE E,⎥⎦⎤⎢⎣⎡-==1010)(2222AE E ,设在基22211211,,,E E E E 下的矩阵为B ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101B . (3)令),,,(4321ββββ=B 其中i β为B 的列向量,由于2)(=B rank ,且21,ββ是4321,,,ββββ的一个极大线性无关组, 所以dim2)(=V ,且),()(21B B L V =,其中⎥⎦⎤⎢⎣⎡-==0101),,,(1222112111βE E E E B ,⎥⎦⎤⎢⎣⎡-==1010),,,(2222112112βE E E E B , 且21,B B 为)(V 的一组基,得dimKer =4-dim (V)=2.令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00004321x x x x B ,得基础解系⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1010,010121ξξ. 记 ⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡==1010),,,(,0101),,,(22221121141222112113ξξE E E E B E E E E B , 则ker),(43B B L =,且43,B B 为Ker的一组基.三、解:非负性.A=0时,A 0,0,0,0;0,0,0〉=〉≠===A A A A A A bHa bHa 从而时从而.相容性. 设A ,B ∈C n n ⨯,则有()()().B A BBAA AB BAAB AB AB bHabHa bHbHaa bHa ⋅=++≤+≤+=同样可验证齐次性与三角不等式.在此A 是矩阵范数.四、解:(1)FG A ,A =⎥⎦⎤⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−11101101412101000011101101行. (2)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--==--+303241012120663)(11TT T F F F F F . ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡==--+11111001313003)(11TT T G GG G G .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==+++54131473032410361F G A . (3)b b AA b A T =-=++,)1,1,0,1(,故b AX =有解,极小范数解为T b A X )1,1,0,1(0-==+.五、解:(1)因2,3==rankB rankA ,得623)()()(=⨯=⋅=⊗B rank A rank B A rank .令0)2)(7(=+-=-λλλB I ,特征值2,721-==μμ.所以B A ⊗的所有特征值为:4,14,14,2,7,7161514321=-=-=-='='='λλλλλλ;10976)14()2(3232-=-⋅-==⊗B A B A .(2)∵ B 的特征值2,721-==λλ,∴I B B B f 3)(2+-=的特征值453772'1=+-=λ;113)2()2(2'2=+---=λ.六、解:,11120013221111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-e ββ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=122212221312,111311111T I H ωωω 令,1102003131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= A H ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=-⎥⎦⎤⎢⎣⎡=1101110210,11201221e A ββ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=-=⎥⎦⎤⎢⎣⎡-=2011,01102,1121122222A H I H Tωωω 所以取QR A R H H Q =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=得211313,21212222131121.七、证:(1)令),,(11-=n L W αα ,其中11,,-n αα 线性无关.通过标准正交化,将11,,-n αα 变为W 的一个标准正交基11,,-n ηη .由已知可得1,,2,10,-=>=<n i i ηα;因而11,,-n ηη ,α线性无关.把α单位化,令ααη||1=n ,于是{}n n ηηη--,,,11 与{}n n ηηη,,,11- 均为V 的标准正交基.同时,由题设,1,,2,1,)(-==n i i i ηη,而n n ηη-=)(,则把标准正交基{}n n ηηη,,,11- 变为标准正交基,故为正交变换. (2)因为为正交变换,(n ααα,,,21 )=(n ααα,,,21 )A ,所以A 为正交矩阵.又 A 的所有特征值n λλλ,,,21 都为实数,故有,T T AA I A A ==即A 为实的正规矩阵,从而存在正交矩阵Q ,使得Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321λλλAQ Q T , 则A =()A Q Q Q Q A Q Q Y TT T T =Λ=Λ=Λ,,即A 为实对称矩阵,故A是对称变换.八、证:(1)设A 的特征根是n λλ,,1 ,令λλ-=1)(f ,则AI A f -=)(的特征根是,1,,11n λλ-- 由题设i λ-1〈1,n i ,,1 =,故,111 --i λ即20 i λ,因此,,,,1,20n i i =λ进而n n 2||||01<<λλ ,然而n d A λλ 1||==,故n n d 2|,|||01<=<λλ .(2)设A 的三个特征根为321,,λλλ,则32132312123213)()(||)(λλλλλλλλλλλλλλλλλ-+++++-=-=A I f ,由于A 是奇数阶正交方阵,且1||=A ,易证奇数维欧氏空间中的旋转变换一定有特征值1,因此不妨设11=λ,则1||32321===A λλλλλ,于是323231213211λλλλλλλλλλλ++=++=++,从而1||)(23-+-=-=λλλλλt t A I f .其中321λλ++=t 为实数(因32,λλ或均为实数或为一对共轭复数).又由于正交方阵的特征根的模为1.故有22,)(32323232≤+≤-+≤+≤+-λλλλλλλλ,所以31132≤++≤-λλ,即31≤≤-t .由哈密顿-凯莱定理知:023=-+-I tA tA A .自测题十一、解:(1)因为,2=rankA 求得θ=AX 的基础解系()(),9,0,21,2,0,9,24,121T T -=-=ξξ即为V 的一组基,且dimV =2.(2) 设A 为P 上任一n 阶方阵,则)(21T A A +为对称阵,)(21T A A -为反对称阵,且A=)(21T A A ++)(21T A A -,得21V V P n n +=⨯. 又若21V V B ∈∀ , 则有T B B =, 且T B B -=, 从而θ=B , 则{}θ=21V V , 故21V V P n n ⊕=⨯.二、解:(1)∈∀ξ⇒-)(1θθξ=)(.设ξ在基4321,,,εεεε下的坐标为),,,(4321x x x x,则(ξ)在基4321,,,εεεε下的坐标为⎪⎪⎪⎪⎭⎫⎝⎛4321x x x x A .且(ξ)θ=及⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0004321x x x x A , 其中 ⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎭⎫⎝⎛--------=00000000101001011111111111111111A . 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛1010,0101;取)(1θ-中两个线性无关的解向量⎩⎨⎧+=+=422311εεξεεξ, 所以),()(211ξξθL =-,dim2)(1=-θ.(2)由于)(1θ-中有一组基1ξ,2ξ,所以取432121,,,,,εεεεξξ,易知4321,,,εεξξ线性无关,则4321,,,εεξξ构成V 的一组基.设由基4321,,,εεεε到基4321,,,εεξξ的过渡矩阵为C ,则⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛=-101001010010001,10100101001000011=C C , 所以在4321,,,εεξξ下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-22002200110011001AC C .三、解:(1)先由rankA=n ,即A 的列向量组线性无关,证A T A 是正定矩阵(见自测题四中第七题),再由习题2-1第7题知,R n 构成一个欧氏空间.(2)令C=A T A =(c ij ),()ij j i j i c C ==εεεε,所以自然基在该内积定义下的度量矩阵为C=A T A.四、(1)证:∵A 是幂收敛的,∴()()B A A A B n n n ===22lim lim lim .(2)解:令⎪⎪⎭⎫ ⎝⎛-==014112B A ,1212<⇒-=-λλλB I , ∴B 是幂收敛.∴原级数和为()⎪⎪⎭⎫⎝⎛-=--04141B I . (3)解:设A的最大秩分解式为:⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛===10010110012AI FG A ,则⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==1002011001010101A A F F H H .显然()⎪⎪⎭⎫⎝⎛==⎪⎪⎭⎫⎝⎛=--1001)(,10021211I GG F F HH,.0102102101010110021)()(1111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==----+F F F F GG G A H H H五、解:令⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛----=7610,122121211142b A , ⎪⎪⎪⎪⎭⎫⎝⎛----=+561651224112331A ,。
矩阵理论2015试卷
2015——2016学年第一学期 《矩阵理论》考试试卷试卷审核人: 考试时间: 2015.12.20注意事项:1.本试卷适用于15级研究生学生考试使用。
2.本试卷共8页,满分100分。
答题时间150分钟。
学院: 姓名:________________学号:23320()[]20a b c d V f t a bt ct dt R t b c d ⎧⎫+-+=⎧⎪⎪==+++∈⎨⎨⎬+-=⎩⎪⎪⎩⎭1.证明V 按照多项式的加法与数乘运算构成3[]R t 的学习子空间;2.求V 的维数与一组基.二. (本题满分12分) 在线性空间22R ⨯ 中, 1. 证明 123410000101,,,00011010A A A A ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭是22R ⨯的一组基;2. 设有线性变换,使得 2212,21TA A A R ⨯⎛⎫=∀∈ ⎪-⎝⎭,求该线性变换在基123410000101,,,00011010A A A A ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭下的矩阵.三.(本题满分10分)求矩阵031042212A⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的QR分解.四.(本题满分15分)已知 12261313At t t tt e e t tt t t t --⎛⎫⎪=-- ⎪ ⎪--+⎝⎭, 1. 求矩阵 A ;2. 求矩阵A 的Jordan 标准形J ,并求相似变换矩阵,P 使得1P AP J -=.五.(本题满分8分)作出矩阵011131118A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的盖尔圆,并应用圆盘定理隔离其特征值.六.(本题满分8分)求多项式矩阵222212+1()=A λλλλλλλλλλλ⎛⎫++-⎪ ⎪ ⎪-⎝⎭的Smith 标准形.七.(本题满分10分)设矩阵⎪⎪⎭⎫⎝⎛-=0311A ,试计算矩阵多项式 E A A A A g 272)(23++-=.八.(本题满分12分) 已知95421452,()1,2280t A f t e →⎡⎤⎛⎫⎪⎢⎥=-= ⎪⎢⎥⎪⎢⎥-⎣⎦⎝⎭1. 求矩阵函数 ;Ate2. 求微分方程组()()()d x t A x t f t dt→→→=+满足初始条件1(0)02x →⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的解.九. (本题满分15分) 设11121101,00110012A b-⎛⎫⎛⎫⎪ ⎪⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,1. 求A的满秩分解;2.求A+;3. 求矛盾方程组Ax b=的极小范数最小二乘解,并计算其两种范数.。
戴华《矩阵论》习题答案
第一章第一章第6题实数域R 上的全体n 阶对称(反对称)矩阵,对矩阵的加法和数量乘法。
解:实数域R 上的全体n 阶矩阵,对矩阵的加法和数量乘法构成R 上的线性空间n n R ⨯,记 {}{}A A R A A W A A R A A V T n n T n n -=∈==∈=⨯⨯,/;,/ 以为,对任意的,,,,B B A A V B A T T ==∈则(),B A B A T+=+即V B A ∈+,所以V 对加法运算是封闭的;对任意的A A R k V A T =∈∈,,,则(),,V kA kA kA T∈=即所以V 对数乘运算封闭;所以,V 是n n R ⨯的一个线性子空间,故V 构成实数域R 上的一个线性空间。
同理可证,W 也是一个线性空间。
P41第一章第8题(参考P10例题 1.2.5) 证明:存在1k ,2k ,3k ,4k 使得112233440k k k k αααα+++=即11111k ⎡⎤⎢⎥⎣⎦+21101k ⎡⎤⎢⎥⎣⎦+31110k ⎡⎤⎢⎥⎣⎦+41011k ⎡⎤⎢⎥⎣⎦=0 解12341231341240000k k k k k k k k k k k k k +++=⎧⎪++=⎪⎨++=⎪⎪++=⎩ 得12340k k k k ====所以1α,2α,3α,4α线性无关P42第1章第12题解:因为A=x 1α1+x 2α2+x33α+x 4α4即x 1+x 2+x 3+x 4=1x 1+x 2+x 3=2x 1+x 3+x 4=-2x 1+x 2+x 4=0⇒x 1=-2x2=3x 3=1 x 4=-1所以A 的坐标为[x 1,x 2,x 3,x 4]T=[-2,3,1,-1]TP42第一章第13题 答案 f(x)=3+1-n 2x ( 泰勒展开))(f x '=2(n-1)2-n x(x)f ''=2(n-1)(n-2)3-n x ……)1(f -n (x)=2(n-1)! )(f n (x)=0f(1)=5 )1(f '=2(n-1) (1)f ''=2(n-1)(n-2) …… )1(f -n (1)=2(n-1)!f(x)=f(1)+ )1(f '(x-1)+!21(1)f ''2)1(-x +……+)!1(1-n )1(f -n (1)1)1(--n x =5+2(n-1)(n-2)+!2)2)(1(2--n n 2)1(-x +……+)!1()1(2--n n !1)1(--n x=5+211-n C (x-1)+221-n C 2)1(-x +……+211--n n C 1)1(--n x 取f(x)=3+1-n 2x在基1, (x-1), 2)1(-x , ……,1)1(--n x 下的坐标为(5 , 211-n C , 221-n C ,…… , 211--n n C T ) 教材P42习题14:求基T )0,0,0,1(1=α,T )0,0,1,0(2=α,T )0,1,0,0(3=α,T)1,0,0,0(4=α,到基T )1,1,1,2(1-=β,T )0,1,3,0(2=β,T )1,2,3,5(3=β,T )3,1,6,6(4=β的过度矩阵,确定向量Tx x x x ),,,(4321=ξ在基1β,2β,3β,4β,下的坐标,并求一非零向量,使它在这两组基下的坐标相同。
矩阵试题及答案
矩阵试题及答案一、选择题(每题4分,共20分)1. 矩阵的秩是指:A. 矩阵中非零元素的个数B. 矩阵中最大的线性无关行(列)向量组的个数C. 矩阵的行数D. 矩阵的列数答案:B2. 若矩阵A与矩阵B相等,则下列说法正确的是:A. A和B的行列式相等B. A和B的迹相等C. A和B的行列式和迹都相等D. A和B的行列式和迹都不相等答案:C3. 矩阵的转置是指:A. 将矩阵的行变成列B. 将矩阵的列变成行C. 将矩阵的行和列互换D. 将矩阵的元素取相反数答案:C4. 对于任意矩阵A,下列说法正确的是:A. A的行列式等于A的转置的行列式B. A的行列式等于A的逆矩阵的行列式C. A的行列式等于A的逆矩阵的转置的行列式D. 以上说法都不正确答案:A5. 若矩阵A是可逆矩阵,则下列说法正确的是:A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式可以是任意非零值答案:A二、填空题(每题5分,共20分)1. 若矩阵A的行列式为-2,则矩阵A的逆矩阵的行列式为____。
答案:1/22. 设矩阵A为2x2矩阵,且A的行列式为3,则矩阵A的转置的行列式为____。
答案:33. 若矩阵A的秩为2,则矩阵A的行向量组的____。
答案:线性无关4. 设矩阵A为3x3矩阵,且A的行列式为0,则矩阵A是____。
答案:奇异矩阵三、解答题(每题10分,共30分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],求矩阵A的行列式。
答案:\(\begin{vmatrix}1 & 2\\3 & 4\end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2\)2. 设矩阵B=\[\begin{bmatrix}2 & 0\\0 & 2\end{bmatrix}\],求矩阵B的逆矩阵。
矩阵论复习题 带答案1
矩阵论复习题1设A 、B 均为n 阶正规矩阵,试证A 与B 酉相似的充分必要条件是A 与B 的特征值相同。
证明: 充分性:A 与B 的特征值相同,A 、B 均为n 阶正规矩阵,则有11,A P IP B Q IQ --== 故11111,,A P QIQ P R Q P R P Q -----==令= A 与B 酉相似 必要性:A,B 为n 阶正规矩阵,存在初等变换R,1A RBR -=11,,,I E PQ A P IP B Q EQ --==为对角矩阵,存在初等变换111,I PAP E QRAR Q ---== ,因为I,E 为对角矩阵,故I=E 。
因此A 与B 的特征值相同。
#2 作出下列矩阵的奇异值分解10(1)A 0111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦011(2)A 200-⎡⎤=⎢⎥⎣⎦ (1)632- 6 3 2101263011,130 2 6 311206333T B AA ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 2221 2 2,131222 2 2TC A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应故263 2 6 32210263 2 203 2 6 3220063 2 20 33HA ⎡⎤-⎢⎥⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦(2) 2010,240401T B AA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应, 0040012201-1,2-400- 2 20-11022- 2 2T C A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 0101022200A 001 2202022022H⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦3.求下列矩阵A 的满秩分解123002111021A ⎛⎫⎪=- ⎪⎪⎝⎭112211001230010,021110102111001230010,021101100001001230=010021-11-11L L A L L L A A ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦故4 设A 、B 均为n 阶Hermite 正定矩阵,证明:若B A ≥且BA AB =,则33B A ≥.证明:由于A 、B 均为n 阶Hermite 正定矩阵,且BA AB =,则AB 与BA 均为n 阶Hermite 正定矩阵。
矩阵论引论 习题答案
矩阵论引论习题答案矩阵论引论习题答案矩阵论是线性代数中的重要分支,它研究的是矩阵的性质和运算规律。
在实际应用中,矩阵论有着广泛的应用,涉及到各个领域,如物理学、经济学、计算机科学等。
在学习矩阵论时,习题是巩固知识和提高技能的重要途径。
下面,我将为大家提供一些矩阵论引论的习题答案。
1. 习题一已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求A的转置矩阵AT。
解答:A的转置矩阵AT = [1 4 7; 2 5 8; 3 6 9]。
2. 习题二已知矩阵A = [2 4; 6 8],求A的逆矩阵A-1。
解答:由于A是一个2x2的矩阵,我们可以使用伴随矩阵法来求解A的逆矩阵。
首先,计算A的行列式det(A) = 2*8 - 4*6 = 16 - 24 = -8。
然后,计算A的伴随矩阵adj(A) = [8 -4; -6 2]。
最后,计算A的逆矩阵A-1 = adj(A)/det(A) = [8/(-8) -4/(-8); -6/(-8) 2/(-8)] = [-1/2 1/2; 3/4 -1/4]。
3. 习题三已知矩阵A = [1 2 3; 4 5 6],矩阵B = [1 0; 0 1; 1 1],求矩阵C = AB。
解答:由于A是一个2x3的矩阵,B是一个3x2的矩阵,所以C是一个2x2的矩阵。
计算C的每个元素,C = [1*1 + 2*0 + 3*1 1*0 + 2*1 + 3*1; 4*1 + 5*0 + 6*1 4*0 + 5*1 + 6*1] = [4 5; 10 11]。
4. 习题四已知矩阵A = [1 2; 3 4],求A的特征值和特征向量。
解答:首先,求A的特征值λ。
计算A的特征多项式det(A - λI) = (1-λ)(4-λ) - 2*3 = λ^2 - 5λ + 2。
解特征多项式得到λ1 = (5 + √17)/2,λ2 = (5 - √17)/2。
然后,求A的特征向量v。
矩阵论习题一
矩阵论习题一习题一1.判断下列集合对指定的运算是否构成R 上的线性空间(1)11{()|0}nij n n iii V A a a====∑,对矩阵加法和数乘运算;(2)2{|,}n nT V A A RA A ?=∈=-,对矩阵加法和数乘运算;(3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα?∈∈=;(4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。
2.求线性空间{|}n nT V A R A A ?=∈=的维数和一组基。
3.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ?,证明:U 1=U 2。
4.设111213315A ??= ? ???,讨论向量(2,3,4)T α=是否在R (A )中。
5.讨论线性空间P 4[x ]中向量3211P x x x =+++,32223Px x x =-+,323452P x x x =+++的线性相关性。
6.设m nA R ?∈,证明dim R (A )+dim N (A )=n 。
7.设113021211152A -?? ?=-- ? ?--??,求矩阵A 的列空间R (A )和零空间N (A )。
8.在22R中,已知两组基11000E ??= ,20100E ??= ,30010E ??= ,40001E ?? =10111G ??= ?,21011G ??= ,31101G ??= ,41110G ??=求基{E i }到基{G i }的过渡矩阵,并求矩阵0123??-??在基{G i }下的坐标X 。
9.判别下列集合是否构成子空间。
(1)2221{(,,)|1,,,}W x y z x y z x y z R α==++≤∈;(2)22{|,}n nW A A I A R==∈;(3)3R 中,231231230{(,,)|(}0}tW x x x x x x d ατττ==++=?;(4)411{()|0}m nij m n iji j W A a a=====∑∑。
关于矩阵考试题及答案
关于矩阵考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵的行列式为0,说明该矩阵是:A. 可逆的B. 不可逆的C. 正交的D. 对称的答案:B2. 矩阵A与矩阵B相乘的结果为零矩阵,那么矩阵A和矩阵B:A. 至少有一个是零矩阵B. 都是零矩阵C. 都是单位矩阵D. 至少有一个不可逆答案:D3. 矩阵的秩是指:A. 矩阵中非零元素的数量B. 矩阵中线性无关的行或列的最大数量C. 矩阵的行数D. 矩阵的列数答案:B4. 矩阵的特征值是:A. 矩阵的对角线元素B. 矩阵的非对角线元素C. 满足特征方程的λ值D. 矩阵的转置答案:C5. 矩阵的迹是指:A. 矩阵的行列式B. 矩阵的秩C. 矩阵对角线元素的和D. 矩阵的逆矩阵答案:C二、填空题(每题3分,共15分)1. 如果矩阵A的行列式为-5,则矩阵A的逆矩阵的行列式为______。
答案:-1/52. 矩阵A和矩阵B相乘得到单位矩阵,那么矩阵A和矩阵B互为______。
答案:逆矩阵3. 对于一个3x3的矩阵,其秩最大为______。
答案:34. 如果一个矩阵的所有行(或列)都线性相关,则该矩阵的秩为______。
答案:05. 矩阵的特征值可以通过求解特征方程______得到。
答案:det(A-λI)=0三、计算题(每题10分,共20分)1. 给定矩阵A=[1 2; 3 4],求矩阵A的行列式。
答案:det(A) = 1*4 - 2*3 = -22. 给定矩阵B=[2 0; 0 3],求矩阵B的逆矩阵。
答案:B^(-1) = [1/2 0; 0 1/3]四、证明题(每题15分,共30分)1. 证明:如果矩阵A和矩阵B可交换,即AB=BA,那么它们的特征值可以同时对角化。
答案:略2. 证明:对于任意的方阵A,有tr(A) = tr(A^T)。
答案:略。
第二章-矩阵(历年真题+答案)
A (a1 , a2 , a3 ) ,若矩阵 B (a1 a2 ,2a2 , a3 ) ,则 B
A.0 B. a
C. 2a D. 3a
【解析】答案:C 【选择】 【201604】 【2 分】4.若向量 a1 , a2 ,, as 可由向量组 1 , 2 , , t 线性表出,则
【计算】 【201610】 【9 分】
A11 【解析】 A A12 A13
*
A21 A22 A23
A31 A32 ;A11=0, A12=0, A13=-1, A21=0, A22=-1, A23=-2, A31= A33
-1, A32=2, A33=-1.
AC CB , 其 中
【解析】
(提示:A3=CB(C-1C)B(C-1C)BC-1=CBEBEBC-1=CB3C-1;计算的 B3=B) 【计算】 【201604】 【9 分】18.设 A 为 3 阶矩阵,将 A 的第 1 列与第 2 列互换得到矩阵
B ,再将 B 的第 2 列加到第 3 列得到单位矩阵 E ,求矩阵 A . 【解析】
0 0 1 0 0 1 A* 1 -1 所以 A 0 1 2 , A 1 0, 所以 A 存在且 A = 0 1 -2 。 A 1 2 1 1 -2 1
*
【计算】 【201610】 【9 分】 18.设 A 为三阶矩阵,将 A 第一行的 2 倍加到第 3 行得到矩阵 B,再将 B 第 2 列 与第 3 列互换得到单位矩阵 E,求矩阵 A. 【解析】 :由题设可知,存在初等矩阵
1 1 1 【计算】 【201410】 【9 分】18.设矩阵 A 1 1 0 ,且矩阵 X 满足 AX E A3 X , 0 1 1
矩阵理论历年试题汇总及答案
矩阵理论历年试题汇总及答案矩阵理论是线性代数中的一个重要分支,它涉及到矩阵的运算、性质以及矩阵在不同领域中的应用。
历年来的矩阵理论试题通常包括矩阵的基本运算、矩阵的特征值和特征向量、矩阵的分解等重要概念。
以下是对矩阵理论历年试题的汇总及答案解析。
矩阵的基本运算试题1:给定两个矩阵 \( A \) 和 \( B \),其中 \( A =\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \),\( B =\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \),求 \( A + B \) 和 \( AB \)。
答案:首先计算矩阵的加法 \( A + B \),根据矩阵加法的定义,对应元素相加,得到 \( A + B = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \)。
接着计算矩阵乘法 \( AB \),根据矩阵乘法的定义,得到 \( AB = \begin{bmatrix} 1\cdot5 + 2\cdot7 & 1\cdot6 + 2\cdot8 \\ 3\cdot5 + 4\cdot7 & 3\cdot6 + 4\cdot8\end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50\end{bmatrix} \)。
特征值和特征向量试题2:已知矩阵 \( C = \begin{bmatrix} 4 & -2 \\ 1 & -1\end{bmatrix} \),求 \( C \) 的特征值和对应的特征向量。
答案:首先求特征值,我们需要解方程 \( \det(C - \lambda I) = 0 \),其中 \( I \) 是单位矩阵。
计算得到 \( \det(\begin{bmatrix}4-\lambda & -2 \\ 1 & -1-\lambda \end{bmatrix}) = (4-\lambda)(-1-\lambda) - (-2)(1) = \lambda^2 - 3\lambda - 2 \)。
矩阵论试题(整理)(完整版)实用资料
矩阵论试题(整理)(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)矩阵论试题(06,12)一.(18分填空:设1.A-B的Jordan标准形为J=2.是否可将A看作线性空间V2中某两个基之间的过渡矩阵()。
3.是否可将B看作欧式空间V2中某个基的度量矩阵。
()4.(),其中。
5.若常数k使得kA为收敛矩阵,则k应满足的条件是()。
6.AB的全体特征值是()。
7.()。
8.B的两个不同秩的{1}-逆为。
二.(10分设,对于矩阵的2-范数和F-范数,定义实数,(任意)验证是中的矩阵范数,且与向量的2-范数相容。
三.(15分已知。
1.求;2.用矩阵函数方法求微分方程满足初始条件x(0的解。
四.(10分用Householder变换求矩阵的QR分解。
五.(10分)用Gerschgorin定理隔离矩阵的特征值。
(要求画图表示)六.(15分已知。
1.求A的满秩分解;2.求A+;3.用广义逆矩阵方法判断线性方程组Ax=b是否有解;4.求线性方程组Ax=b的极小范数解,或者极小范数最小二乘解x0。
(要求指出所求的是哪种解)七.(15分已知欧式空间R22的子空间R22中的内积为V中的线性变换为T(X=XP+XT, 任意XV,1.给出子空间V的一个标准正交基;2.验证T是V中的对称变换;3.求V的一个标准正交基,使T在该基下的矩阵为对角矩阵.八.(7分设线性空间V n的线性变换T在基下的矩阵为A,T e表示V n的单位变换,证明:存在x00,使得T(x0=(T e-T(x0的充要条件是为A的特征值.矩阵论试题(07,12)一.(18分填空:1.矩阵的Jordan标准形为J=2.设则3.若A是正交矩阵,则cos(A=4.设,A+是A的Moore-Penrose逆,则(-2A, A+=5.设,则AB+I2I3的全体特征值是()。
6.设向量空间R2按照某种内积构成欧式空间,它的两组基为和且与的内积为则基的度量矩阵为()。
矩阵论试卷2
1 求矩阵20111113A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的不变因子、初等因子与Jordan 标准形。
(15分)2 已知矩阵211111113A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦和酉阵U ,求22||||2||||max Ux Ax = (10分)4 利用广义逆的知识判别方程组123123123443221x x x x x x x x x -+=⎧⎪-+=⎨⎪++=⎩ 是否有解,如果有解,求出通解和极小范数解;否则求出最小二乘解和极小范数最小二乘解。
(10分)5 已知矩阵202131113A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,求At e 。
(15分) 6 设矩阵ij n nA a ⨯⎡⎤=⎣⎦,110a ≠,经过一步Gauss 消去得到(2)11120T aA A α⎡⎤=⎢⎥⎣⎦,其中(2)(2)2222(2)(2)2n n nn a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦证明:若A 对称,则2A 对称。
(10分)7已知202131113A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,且31,b b R ∈。
估计线性方程组Ax b=的解x 与1Ax b =的解1x 的相对误差111||||||||x x x -。
(10分)1 解: (15分)220011111310002000(2)I A λλλλλλ-⎡⎤⎢⎥-=---⎢⎥⎢⎥--⎣⎦⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦2λλ∴不变因子是 1,-2,(-2)2λλ∴初等因子是 -2,(-2)200Jordan 02102J ⎡⎤⎢⎥∴=⎢⎥⎢⎥⎣⎦标准形 2 解:(10分)A A 是对称矩阵,的特征值是1,1,102222222||||2||||2||||122||||2max ||||max ||||max ||2||2max ||||2||||20Ux x y y Ax Ax A y Ay A ====∴=====4 解:(15分)1114111,3111111111119111A b A +⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥∴=⎢⎥⎢⎥⎣⎦81838AA b b +⎡⎤⎢⎥∴=≠⎢⎥⎢⎥⎣⎦∴方程组无解312321133381121893338112333A b I A A y y R y y y ++∴-∀∈--⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎢⎥⎢⎥⎣⎦最小二乘解为 +()81898A b +⎡⎤⎢⎥∴⎢⎥⎢⎥⎣⎦极小范数最小二乘解为 =5 解:(15分)310det()440(2)2122I A λλλλλλ---=---∴= =2210()(,)x f x e r t a a a λλλ==++ 设2210''2212''''222(2)(2,)42(2)(2,)4(2)(2,)2t t t f t r t a a a e tf t r t a a te t f t r t a t e ⎧=++=⎧⎪⎪∴=+=⎨⎨⎪⎪==⎩⎩即22220222122222212t t t t tta e te t e a te t e a t e ⎧⎪=-+⎪∴=-⎨⎪⎪=⎩22210120412021At t tt e a A a A a I e t t t t -⎡⎤⎢⎥∴=++=-+⎢⎥⎢⎥-⎣⎦6 解:(10分)i jj i A a a ∴ 是对称矩阵 =1(2)(2)1111111j i ijij j ji ji i a a a a a a a a a a =- ,=-(2)(2)(2)ij jia a A ∴∴ = 是对称矩阵7 解: (10分)11111513888111()||||||||6444113888A cond A A A ----⎡⎤⎢⎥⎢⎥-⎢⎥∴==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦=2111111||||||||()610||||||||x x b cond A x b δ--∴≤≤⨯。
矩阵论典型试题解析
习题11.计算下列方阵的幂(1)n cos sin sin cos θθ⎡⎤⎢⎥-θθ⎣⎦; (2)1111n ⎡⎤⎢⎥-⎣⎦; (3)1111na a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 解:(1)由 cos sin sin cos n n n n ⎡⎤⎢⎥-⎣⎦θθθθcos sin sin cos θθ⎡⎤⎢⎥-θθ⎣⎦= cos(1) sin(1)sin(1) cos(1)n n n n ++⎡⎤⎢⎥-++⎣⎦θθθθ,故由归纳法知cos sin sin cos nn n A n n ⎡⎤=⎢⎥-⎣⎦θθθθ。
法2:由矩阵cos sin sin cos A ⎡⎤=⎢⎥-⎣⎦θθθθθ为正交矩阵,且二维平面中任一向量x y ⎛⎫α= ⎪⎝⎭.则向量cos sin x A sin cos y θθθ⎡⎤⎛⎫α= ⎪⎢⎥-θθ⎣⎦⎝⎭相当于将向量x y ⎛⎫α= ⎪⎝⎭顺时针针旋转θ角度,故由此几何意义,有:() cos sin sin cos n n n n A A n n ⎡⎤==⎢⎥-⎣⎦θθθθθθ (2)由11441144cos sin A sin cos ππ⎡⎤⎥⎡⎤==⎥⎢⎥-ππ⎣⎦⎥-⎢⎥⎣⎦,得11441144n n n n cos sin(n n sin cos ππ⎡⎤⎢⎥⎡⎤=⎢⎥⎢⎥-ππ⎣⎦⎢⎥-⎢⎥⎣⎦ (3)记J=0 1 0 1 1 0 ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,则由于B J J J E ⋅==⋅,2010010100101001010000J ,J ,,⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 0K J =其中5K ≥112244113311 () n n n n n n n n n n n n n nk k n k n n n n n a C a C a C a a C a C a A aE J C a J a C a a -------⎡⎤⎢⎥⎢⎥⎢⎥=+==⎢⎥⎢⎢⎢⎣⎦40k =⎥⎥⎥∑(规定:0k n C (n k )=<)2. 求平方等于单位阵的所有二阶方阵 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 4 页 (A 卷)
学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线…………………………………
考试方式:闭卷
太原理工大学 矩阵分析 试卷(A )
适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页
一、填空选择题(每小题3分,共30分)
1-5题为填空题:
1. 已知⎪⎪⎪
⎭
⎫ ⎝⎛--=304021101A ,则______||||1=A 。
2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________.
3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β,
T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为_______=A
4. 设矩阵⎪⎪⎪
⎭
⎫ ⎝⎛--=304021101A ,则
_______
3332345=-++-A A A A A . 5.⎪⎪⎪
⎭
⎫
⎝
⎛-=λλλλλ0010
1)(2A 的Smith 标准形为 _________ 6-10题为单项选择题:
6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )⇔=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )⇔-=H A A A 的特征值全为零或纯虚数。
7.设矩阵A 的谱半径1)(<A ρ,则下列命题不正确的是 ( )
题 号 一 二 三 四 总 分 得 分
得 分
第 2 页 共 4 页 (A 卷)
(A )A
E A E -=
--1
)(1; (B )0lim =∞→k k A ;
(C )10
)(-∞
=-=∑A E A k k ; (D )m ∃,使0=m A .
8.设A 是实的反对称矩阵(A A T -=),则下列命题正确的是 ( )
(A )A e 是实的反对称矩阵; (B )A e 是正交矩阵; (C )A cos 是实的反对称矩阵; (D )A sin 是实的对称矩阵.
9. 如果实对称矩阵A 满足0≠+E A ,而0)2)((=-+E A E A ,则=2||||A ( ) (A )0 (B )1; (C )2; (D )4.
10. 若矩阵⎪⎪⎪
⎭
⎫
⎝⎛=100101A ,则矩阵A 的奇异值为 ( )
(A )1,2 (B )1,2; (C )1,2,0; (D )1,2,0
二、解答题(10分)
11. 求矩阵⎪⎪⎪
⎭
⎫ ⎝⎛--=200121001A 的Jordan 标准型J 。
三、证明题(每小题10分, 共20分)
12. 设线性变换33:R R T →,对任意的3321),,(R x x x ∈,
)2,2,(),,(32132321321x x x x x x x x x x x T +-++-=
(1)求T 在基T )1,0,1(1=α,T )0,0,1(2-=α,T
)1,1,0(3=α,下的矩阵 (2)求)(T N 的基。
13. 设n ααα ,,21是实数域R 上的线性空间n V 的一个基,且,如果对任意的n V ∈α有
得 分
得 分
第 3 页 共 4 页 (A 卷)
学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线…………………………………
⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n x x x 2121),,(αααα,⎪⎪⎪
⎪
⎪⎭⎫ ⎝⎛=n x x x x 21,
(1)证明:2||||||||x =α 是n V 的向量范数,其中2||||x 表示n R 中的2-范数; (2)当2=n ,i +=11α,i -=12α时,计算||||yi x +
四.解答题(每小题10分, 共20分)
14. 已知T )0,1,2,1(1=α,T )1,1,1,1(2-=α,T )1,0,1,2(1-=β,T )7,3,1,1(2-=β,求
},{21ααspan 与},{21ββspan 的和空间与交空间的基和维数
15. 设⎪⎪⎪⎭⎫ ⎝⎛=544322111A ,⎪⎪⎪
⎭
⎫ ⎝⎛=201b
(1)求b Ax =的通解; (2)求b Ax =的最小范数解。
五.解答题(每小题10分, 共20分)
16. 已知⎪⎪⎪
⎭
⎫ ⎝⎛--=101110001A , (1) 求A 的最小多项式; (2) 求At e 。
得 分
第 4 页 共 4 页 (A 卷)
17. 验证矩阵⎪⎪⎪
⎭
⎫ ⎝⎛-=0000110i i A 是正规矩阵,并求酉矩阵U ,使AU U T 为对角阵.。