(最新整理)2018高考文科数学模拟题1
2018年普通高等学校招生全国统一考试文科数学模拟试题及答案
2018年普通高等学校招生全国统一考试文科数学模拟注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2340A x x x =∈--≤Z ,{}0ln 2B x x =<<,则A B =()A .{}1,2,3,4B .{}3,4C .{}2,3,4D .{}1,0,1,2,3,4-【答案】C【解析】{}{}{}2340141,0,1,2,3,4A x x x x x =∈--≤=∈-≤≤=-Z Z ,{}{}20ln 21e B x x x x =<<=<<,所以{}2,3,4AB =.2.设复数1z =(i 是虚数单位),则z z+的值为()A.B .2C .1D.【答案】B【解析】2z z +=,2z z +=.3.“p q ∧为假”是“p q ∨为假”的()条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要 【答案】B【解析】由“p q ∧为假”得出p ,q 中至少一个为假.当p ,q 为一假一真时,p q ∨为真,故不充分;当“p q ∨为假”时,p ,q 同时为假,所以p q ∧为假,所以是必要的,所以选B .4.已知实数x ,y 满足约束条件222020x x y x y ≤⎧⎪-+≥⎨⎪++≥⎩,则3x z y =-+的最大值为()A .143- B .2- C .43 D .4【答案】C【解析】作出的可行域为三角形(包括边界),把3x z y =-+改写为3xy z =+,当且仅当动直线3x y z =+过点()2,2时,z 取得最大值为43. 5.据有关文献记载:我国古代一座9层塔共挂了126盏灯,且相邻两层中的下一层灯数比上一层灯数都多n (n 为常数)盏,底层的灯数是顶层的13倍,则塔的底层共有灯()盏. A .2 B .3 C .26 D .27 【答案】C【解析】设顶层有灯1a 盏,底层共有9a 盏,由已知得,则()91991132691262a a a a a =⎧⎪⇒=⎨+=⎪⎩, 所以选C .6.如图是一个算法流程图,若输入n 的值是13,输出S 的值是46,则a 的值可以是() A .8 B .9 C .10 D .11【答案】C 【解析】依次运行流程图,结果如下:13S =,12n =;25S =,11n =;36S =,10n =;46S =,9n =,此时退出循环,所以a 的值可以取10.故选C .7.设双曲线()2222:10,0x y C a b a b-=>>的两条渐近线互相垂直,顶点到一条渐近线的距离为1,则双曲线的一个焦点到一条渐近线的距离为() A .2BC.D .4【答案】B【解析】因为双曲线2222:1x y C a b-=的两条渐近线互相垂直,所以渐近线方程为y x =±,所以a b =.因为顶点到一条渐近线的距离为1,所以12a =,所以a b ==,双曲线C 的方程为22122x y -=,所以双曲线的一个焦点到一条渐近线的距离为b =8.已知数据1x ,2x ,,10x ,2的平均值为2,方差为1,则数据1x ,2x ,,10x 相对于原数据() A .一样稳定 B .变得比较稳定 C .变得比较不稳定 D .稳定性不可以判断 【答案】C【解析】因为数据1x ,2x ,,10x ,2的平均值为2,所以数据1x ,2x ,,10x 的平均值也为2,因为数据1x ,2x ,,10x ,2的方差为1,所以()()102211222111i i x =⎡⎤-+-=⎢⎥⎣⎦∑,所以()10212=11i i x =-∑,所以数据1x ,2x ,,10x 的方差为()102112=1.110i i x =-∑,因为1.11>,所以数据1x ,2x ,,10x 相对于原数据变得比较不稳定.9.设n a 表示正整数n 的所有因数中最大的奇数与最小的奇数的等差中项,数列{}n a 的前n 项和为n S ,那么21n S -=()A .122n n +-- B .11222433n n --+⋅- C .2nn - D .22nn +-【答案】B【解析】由已知得,当n 为偶数时,2n n a a =,当n 为奇数时,12n na +=. 因为12342121n n S a a a a a --=+++++,所以1112342121n n S a a a a a ++--=+++++()()111352462122+n n a a a a a a a a ++--=++++++++()1123211113151212222n n a a a a +-⎛⎫++++-=+++++++++ ⎪⎝⎭()()123211232n n a a a a -=+++++++++()211222n nnS -+=+()211242n nn S -=++, 即()121211242n n n n S S +--=++,所以()()()1112211112121111224242422422233n n n n n n nS S --------=+++++++=+⋅-.10.过抛物线2y mx =()0m >的焦点作直线交抛物线于P ,Q 两点,若线段PQ 中点的横坐标为3,54PQ m =,则m =() A .4B .6C .8D .10【答案】C【解析】因为2y mx =,所以焦点到准线的距离2mp =,设P ,Q 的横坐标分别是1x ,2x ,则1232x x +=,126x x +=,因为54PQ m =,所以125+4x x p m +=,即5624m m +=,解得8m =.11.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,1,12,则此三棱锥外接球的表面积为()A .174π B .214π C .4π D .5π【答案】B【解析】由已知条件及三视图得,此三棱锥的四个顶点位于长方体1111ABCD A BC D -的四个顶点,即为三棱锥11A CB D -,且长方体1111ABCD A BC D -的长、宽、高分别为2,1,12, 所以此三棱锥的外接球即为长方体1111ABCD A BC D -的外接球,半径4R ==,所以三棱锥外接球的表面积为22214444S R ⎛π=π=π= ⎝⎭.12.已知点P 是曲线sin ln y x x =+上任意一点,记直线OP (O 为坐标系原点)的斜率为k ,则下列一定成立的为() A .1k <- B .0k < C .1k < D .1k ≥ 【答案】C【解析】任意取x 为一正实数,一方面sin ln ln 1y x x x =+≤+,另一方面容易证ln 1x x +≤成立,所以sin ln y x x x =+≤,因为sin ln ln 1y x x x =+≤+与ln 1x x +≤中两个等号成立条件不一样,所以sin ln y x x x =+<恒成立,所以1k <,所以排除D ;当2x π≤<π时,sin ln 0y x x =+>,所以0k >,所以排除A ,B .所以选C .第Ⅱ卷本卷包括必考题和选考题两部分。
2018年普通高等学校招生全国统一考试仿真卷 文科数学(一)解析版
绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(一)本试题卷共14页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·晋城一模]已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,则集合MN =( )A .{}0,2B .()2,0C .(){}0,2D .(){}2,0【答案】D【解析】解方程组22x y x y +=-=⎧⎨⎩,得2x y =⎧⎨=⎩.故(){}2,0MN =.选D .2.[2018·台州期末](i 为虚数单位)) A .2 B .1C .12D【答案】C11i 22z ∴=-=,选C . 3.[2018·南宁二中]为考察A ,B 两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是( ) A .药物B 的预防效果优于药物A 的预防效果 B .药物A 的预防效果优于药物B 的预防效果C .药物A 、B 对该疾病均有显著的预防效果D .药物A 、B 对该疾病均没有预防效果 【答案】B【解析】由A 、B 两种药物预防某疾病的效果,进行动物试验,分别得到的等高条形图,知:药物A 的预防效果优于药物B 的预防效果.故选B .4.[2018·滁州期末])A .4-B .4C.13- D .13【答案】C【解析】sin 2costan 2ααα-=-⇒=,C .5.[2018·陕西一模]《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已药物A 实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.91药物B实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.91班级 姓名 准考证号 考场号 座位号此卷只装订不密封知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为( )A .2 B.4+C.4+D.4+【答案】C【解析】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,2,且侧棱与底面垂直,侧棱长是2,∴几何体的侧面积C .6.[2018·滁州期末]设变量x ,y 满足约束条件220220 2x y x y y +--+⎧⎪⎨⎪⎩≥≤≤,则目标函数z x y =+的最大值为( ) A .7 B .6C .5D .4【答案】D【解析】画出不等式组表示的可行域(如图阴影部分所示).由z x y =+,得y x z =-+.平移直线y x z =-+,结合图形可得,当直线(图中的虚线)经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最大值.由2 220y x y =-+=⎧⎨⎩,解得22x y ==⎧⎨⎩,故点A 的坐标为(2,2).∴max 224z =+=,即目标函数z x y =+的最大值为4.选D .7.[2018·蚌埠一模]已知()201720162018201721f x x x x =++++,下列程序框图设计的是求()0f x 的值,在“ ”中应填的执行语句是( )A .2018n i =-B .2017n i =-C .2018n i =+D .2017n i =+【答案】A【解析】不妨设01x =,要计算()120182017201621f =+++++,首先201812018S =⨯=,下一个应该加2017,再接着是加2016,故应填2018n i =-. 8.[2018·达州期末]若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( ) A .()0,4 B .()0,+∞C .()3,4D .()3,+∞【答案】C【解析】如图,若()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则()34a ∈,,故选C .9.[2018·朝阳期末]阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B P ,A ,B 不共线时,PAB △面积的最大值是( )A .BC .3D .3【答案】A开始i =1,n =2018结束i ≤2017?是否输入x 0S =2018输出SS =Sx 0S =S+ni =i +1【解析】如图,以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系;则:()10A -,,()10B ,,设()P x y ,,PA PB=,两边平方并整理得:()222261038x y x x y +-+=⇒-+=.∴PAB △面积的最大值是122⨯⨯=A .10.[2018·孝感八校]已知双曲线E :22221x y a b-=(0,0)a b >>的右顶点为A ,右焦点为F ,B 为双曲线在第二象限上的一点,B 关于坐标原点O 的对称点为C ,直线CA 与直线BF的交点M 恰好为线段BF 的中点,则双曲线的离心率为( )A .12B .15C .2D .3【答案】D【解析】不妨设2,b B c a ⎛⎫- ⎪⎝⎭,由此可得(),0A a ,2,b C c a ⎛⎫- ⎪⎝⎭,(),0F c ,20,2b M a ⎛⎫ ⎪⎝⎭,由于A ,C ,M 三点共线,故222b b a a a a c=--,化简得3c a =,故离心率3e =.11.[2018·昆明一中]设锐角ABC △的三个内角A ,B ,C 的对边分别为a ,b ,c ,且1c =,2A C =,则ABC △周长的取值范围为( )A.(0,2 B.(0,3C .(2++ D .(2+【答案】C【解析】因为ABC △为锐角三角形,cos C <<2A C =, 所以sin 2sin cos A C C =,又因为1c =,所以2cos a C =;由sin sin b cB C=, 即2sin sin34cos 1sin sin c B Cb C C C===-,所以24cos 2cos a b c C C ++=+,令cos t C=, 则(,22t ∈⎭,又因为函数242y tt =+在( ,22⎭上单调递增,所以函数值域为(2+,故选:C .12.[2018·菏泽期末]()2f x mx =+有一个零点,则实数m 的取值范围是( ) A ]{64-+B ]{0,64-+C ]{}632-D ]{0,63-【答案】B【解析】由题意函数()f x 的图象与直线2y mx =+有一个交点.如图是()f x 的图象,1x >时,()21f x x =-,,设切点为()00,x y ,则切线为()()02002211y x x x x -=----,把()0,2代入,02x =;1x ≤时,()2e x f x =-,()e x f x '=-,设切点为()00,x y ,则切线为()()002e e x x y x x --=--,把()0,2代入,解得01x =,又()12e f =-,()11e e f '=-=-,所以由图象知当]{0,42-B .第Ⅱ卷本卷包括必考题和选考题两部分。
2018普通高等学校招生全国统一考试仿真卷文科数学一
2018普通高等学校招生全国统一考试仿真卷文科数学(一)一、选择题1.已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,则集合M N =( )A .{}0,2B .()2,0C .(){}0,2D .(){}2,0【解】解方程组22x y x y +=-=⎧⎨⎩,得20x y =⎧⎨=⎩.故(){}2,0MN =.选D .2(i 为虚数单位)) A .2B .1C .12D11i 22z ∴=-=,选C . 3.为考察A ,B 两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图:药物A实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.91药物B 实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.91根据图中信息,在下列各项中,说法最佳的一项是( ) A .药物B 的预防效果优于药物A 的预防效果 B .药物A 的预防效果优于药物B 的预防效果C.药物A、B对该疾病均有显著的预防效果D.药物A、B对该疾病均没有预防效果【解】由A、B两种药物预防某疾病的效果,进行动物试验,分别得到的等高条形图,知:药物A的预防效果优于药物B的预防效果.故选B.4)A.4-B.4C.13-D.13【解】sin2cos tan2ααα-=-⇒=,C.5.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为()A.2 B.4+C.4+D.4+【解】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角2,且侧棱与底面垂直,侧棱长是2,∴几何C.6.设变量x,y满足约束条件2202202x yx yy+--+⎧⎪⎨⎪⎩≥≤≤,则目标函数z x y=+的最大值为A.7 B.6 C.5 D.4【解】画出不等式组表示的可行域(如图阴影部分所示).由z x y =+,得y x z =-+.平移直线y x z =-+,结合图形可得,当直线(图中的虚线)经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最大值.由2 220y x y =-+=⎧⎨⎩,解得22x y ==⎧⎨⎩,故点A 的坐标为(2,2).∴max 224z =+=,即目标函数z x y =+的最大值为4.选D . 7.已知()201720162018201721f x x x x =++++,下列程序框图设计的是求()0f x 的值,在“ ”中应填的执行语句是( )开始i =1,n =2018结束i ≤2017?是否输入x 0S =2018输出SS =Sx 0S =S+ni =i +1A .2018n i =-B .2017n i =-C .2018n i =+D .2017n i =+【解】不妨设01x =,要计算()120182017201621f =+++++,首先201812018S =⨯=,下一个应该加2017,再接着是加2016,故应填2018n i =-. 8.若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( ) A .()0,4B .()0,+∞C .()3,4D .()3,+∞【解】如图,若()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则()34a ∈,,故选C .9.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B,当P ,A ,B 不共线时,PAB △面积的最大值是( ) A.BCD【解】如图,以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系;则:()10A -,,()10B ,,设()P x y ,,PA PB=两边平方并整理得:()222261038x y x x y +-+=⇒-+=.∴PAB △面积的最大值是122⨯⨯=A .10.已知双曲线E :22221x y a b-=(0,0)a b >>的右顶点为A ,右焦点为F ,B 为双曲线在第二象限上的一点,B 关于坐标原点O 的对称点为C ,直线CA 与直线BF 的交点M 恰好为线段BF 的中点,则双曲线的离心率为( )A .12B .15C .2D .3【解】不妨设2,b B c a ⎛⎫- ⎪⎝⎭,由此可得(),0A a ,2,b C c a ⎛⎫- ⎪⎝⎭,(),0F c ,20,2b M a ⎛⎫ ⎪⎝⎭,由于A ,C ,M 三点共线,故222b b a a a a c=--,化简得3c a =,故离心率3e =.11.设锐角ABC △的三个内角A ,B ,C 的对边分别为a ,b ,c ,且1c =,2A C =,则ABC △周长的取值范围为( ) A.(0,2B.(0,3+C.(2++ D.(2++ 【解】因为ABC △cos C <<因为2A C =,所以sin 2sin cos A C C =,又因为1c =,所以2cos a C =;由sin sin b cB C=, 即2sin sin34cos 1sin sin c B Cb C C C ===-,所以24cos 2cos a b c C C ++=+,令cos t C =,则t ∈⎭,又因为函数242y t t =+在⎭上单调递增,所以函数值域为(2+,故选:C .12()2f x mx =+有一个零点,则实数m 的取值范围是( ) A ]{64-+B ]{0,64-+C ]{}632-D ]{0,63-【解】由题意函数()f x 的图象与直线2y mx =+有一个交点.如图是()f x 的图象,1x >时,()21f x x =-,,设切点为()00,x y ,则切线为()()02002211y x x x x -=----,把()0,2代入,02x =+;1x ≤时,()2e x f x =-,()e x f x '=-,设切点为()00,x y ,则切线为()()002e e x x y x x --=--,把()0,2代入,解得01x =,又()12e f =-,()11e e f '=-=-,所以由图象知当]{0,42-B .13.已知平面向量a 与b 的夹角为.【解】2+=a b ,即224412+⋅+=a a b b ,41cos ⨯⨯a14.已知0a >,0b >,22a b +=,若24a b m +>恒成立,则实数m 的取值范围是__________.【解】,当且仅当1a =,12b =时等号成立,即()min 244a b +=,由恒成立的结论可得:()min 24a b m <+,即实数m 的取值范围是4m <.15.将正整数对作如下分组,第1组为()(){}1,2,2,1,第2组为()(){}1,3,3,1,第3组为()()()(){}1,4,2,3,3,2,4,1,第4组为()()()(){}1,5,2,44,25,1⋅⋅⋅⋅⋅⋅则第30组第16个数对为__________.【解】根据归纳推理可知,每对数字中两个数字不相等,且第一组每一对数字和为3,第二组每一对数字和为4,第三组每对数字和为5,......,第30组每一对数字和为32,∴第30组第一对数为()1,31,第二对数为()2,30,.......,第15对数为()15,17,第16对数为()17,15,故答案为()17,15.16.在三棱椎P ABC -中,底面ABC 是等边三角形,侧面PAB 是直角三角形,且2PA PB ==,PA AC ⊥,则该三棱椎外接球的表面积为________.【解】由于PA PB =,CA CB =,PA AC ⊥,则PB CB ⊥,因此取PC 中点O ,则有OP OC OA OB ===,即O 为三棱锥P ABC -外接球球心,又由2PA PB ==,得三、解答题17.已知数列{}n a 满足2n n S a n =-()*n ∈N . (1)证明:{}1n a +是等比数列; (2)求13521...n a a a a +++++()*n ∈N . 【解】(1)由1121S a =-得:11a =因为()()()11221n n n n S S a n a n ---=----()2n ≥, 所以121n n a a -=+, 从而由()1121n n a a -+=+得1121n n a a -+=+()2n ≥, 所以{}1n a +是以2为首项,2为公比的等比数列. (2)由(1)得21n n a =-,所以()()321135212221n n a a a a n +++++⋅⋅⋅+=++⋅⋅⋅+-+()()1214114n n +-=-+-232353n n +--=. 18.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,得到如图的频率分布直方图(图1).(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数; (2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到图2中数据,根据表中的数据,能否在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系?【解】(1)由图可知,第一组有3人,第二组7人,第三组27人 设后四组的频数构成的等差数列的公差为d , 则()()()2727227363d d d -+-+-=,解得3d =, 所以后四组频数依次为27,24,21,18,所以视力在5.0以下的频数为3+7+27+24+21=82人, 故全年级视力在5.0以下的人数约为1000×0.82=820(人). (2)()2210041183293004.110 3.8415050732773k ⨯⨯-⨯==≈>⨯⨯⨯, 因此能在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系19.如图,在四棱椎E ABCD -中,AE DE ⊥,CD ⊥平面ADE ,AB ⊥平面ADE ,6CD DA ==,2AB =,3DE =.ABCDE(1)求证:平面ACE ⊥平面CDE ;(2)在线段DE 上是否存在一点F ,使AF ∥平面BCE ?若存在,求出EFED的值;若不存在,说明理由.【解】(1)证明:因为CD ⊥平面ADE ,AE ⊂平面ADE ,所以CD AE ⊥,又因为AE DE ⊥,CDDE D =,所以AE ⊥平面CDE ,又因为AE ⊂平面ACE ,所以平面ACE ⊥平面CDE .ABCDEMF(2)结论:在线段DE 上存在一点F ,且13EF ED =,使AF ∥平面BCE . 解:设F 为线段DE 上一点,且13EF ED =,过点F 作FM CD ∥交CE 于M ,则13FM CD =.因为CD ⊥平面ADE ,AB ⊥平面ADE ,所以CD AB ∥. 又因为3CD AB =,所以MF AB =,FM AB ∥, 所以四边形ABMF 为平行四边形,则AF BM ∥.又因为AF ⊄平面BCE ,BM ⊂平面BCE ,所以AF ∥平面BCE .20.已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点与短轴的一个端点连线构成等边三角形,且椭圆C 的短轴长为(1)求椭圆C 的标准方程;(2)是否存在过点()0,2P 的直线l 与椭圆C 相交于不同的两点M ,N ,且满足2OM ON ⋅=(O 为坐标原点)若存在,求出直线l 的方程;若不存在,请说明理由.【解】(1C 的标准方程是22143x y +=(2)当直线l的斜率不存在时,(M,(0,N3OM ON ⋅=-,不符合题意当直线l 的斜率存在时,设直线l 的方程为2y kx =+,()11,M x y ,()22,N x yy 整理得:()22341640k x kx +++=, ()()221616340k k ∆=-+>,解得12k <-或12k >,1221634kx x k+=-+,122434x x k =+, ∴1212OM ON x x y y ⋅=+=()()21212124k x x k x x ++++()222222413216124343434k k k k k k +-=-+=+++ ∵2OM ON ⋅=,∴221612234k k-=+,解得k =,满足0∆>,21.已知函数()()21ln f x a x x =-+,a ∈R .(1)当2a =时,求函数()y f x =在点()()1,1P f 处的切线方程;(2)当1a =-时,令函数()()ln 21g x f x x x m =+-++,若函数()g x有两个零点,求实数m 的取值范围.【解】(1)当2a =时,()()221ln f x x x =-+224ln 2x x x =-++. 当1x =时,()10f =,所以点()()1,1P f 为()1,0P , ,因此()11k f '==. 因此所求切线方程为()0111y x y x -=⨯-⇒=-.(2)当1a =-时,()22ln g x x x m =-+,,所以当()0g x '=时,1x =, 时,()0g x '>;当1e x <<时,()0g x '<; 故()g x 在1x =处取得极大值也即最大值()11g m =-.,()2e 2e g m =+-,()g x 上的最小值为()e g , 故()g x 在区间上有两个零点的条件是所以实数m 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 2sin x m y αα=+=⎧⎨⎩(α为参数),以坐标原点为极点,x 轴为极轴建立极坐标系,曲线2C 的极坐标为2sin 2cos ρθθ=.(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)若曲线1C 和曲线2C 有三个公共点,求以这三个公共点为顶点的三角形的面积.【解】(1)由2cos 2sin x m y αα=+=⎧⎨⎩消去参数α,得()224x m y -+=,即为曲线1C 的普通方程.由2sin 2cos ρθθ=得22sin 2cos ρθρθ=,结合互化公式得22y x =,即为曲线2C 的直角坐标方程.(2)因为曲线1C 和曲线2C 都是关于x 轴对称的图形,它们有三个公共点,所以原点是它们的其中一个公共点,所以()224x m y -+=中2m =, 解()22224 2x y y x -+==⎧⎪⎨⎪⎩得三个交点的坐标分别为()0,0,()2,2,()2,2-,23.选修4-5:不等式选讲已知函数()211f x x x =-++(1)解不等式()3f x ≤;(2)记函数()()1g x f x x =++的值域为M ,若t M ∈【解】(1)于是得()13 33x f x x -⎧=⎨-⎩≤≤≤或解得11x -≤≤,即不等式()3f x ≤的解集为{|11}x x -≤≤.(2当且仅当()()21220x x -+≤时,取等号, ∴[)3,M =+∞,∵t M ∈,∴30t -≥,210t +>,。
【高三数学试题精选】2018年高考数学文科模拟试卷(有答案)
2018年高考数学文科模拟试卷(有答案)
5 c 2018届高三高考模拟数学试题
第Ⅰ卷
一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1已知集合,则
A B
c D
2若,则
A B
c D
3已知,则“”是“”的
A 充分不必要条
B 必要不充分条
c 充要条 D 既不充分也不必要条
4一个几何体的三视图如图所示,则该几何体的体积为
A 4 B
c 8 D
5已知两个不重合的平面和两条不同直线,则下列说法正确的是
A 若则
B 若则
c 若则 D 若则
6若,满足的解中的值为0的概率是
A B
c D
7在中,角所对应的边分别为,若,则
A B 3
c 或3 D 3或
8已知定义域为的函数在区间上单调递减,并且函数为偶函数,则下列不等式关系成立的是。
2018届高考数学(文科)模拟测试卷含答案
2018年高考模拟试卷数学(文)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设全集U 0,1,2,3,4,5,集合{1,3},{3,5}A B ,则U ()C A B U =A .{0,4}B .{1,5}C .{2,0,4}D .{2,0,5}2. 复数z 满足23zi i ,复数z 是A .32iB .32iC .32i D.32i3. 下列函数中,在区间0(,)上为增函数的是A.1y xB.sin y xC. 2x yD. 12log (1)y x 4.已知双曲线22:1169x y C ,它的渐近线的方程A .34y xB .43y x C .916y x D .169y x5.等差数列{}n a 中,前n 项和为n S ,公差0d ,且711S S ,若96a ,则10a =A . 0B .6C .10a 的值不确定D .106a 6.直线01)1(:1y a ax l ,02:2ay x l ,则“2a ”是“21l l ”A.充分不必要条件B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件7. 已知,,a b c 分别为ABC 三个内角,,A B C 的对边,且()(sin sin )()sin a b A B c b C ,则ABC 中A 为A .6B .23C .3D .568. 某电力公司在工程招标中是根据技术、商务、报价三项评分标准进行综合评分的,按照综。
2018年高考文科数学模拟试题及答案
2018年高考文科数学模拟试题注意事项:1.本试卷分第1卷(选择题)和第II 卷(非选择题)两部分。
答题前,考生务必用黑 色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准 条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.回答第1卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第1卷一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的)(1)已知i 为虚数单位,复数i z +=21,i z 212-=,则=+21z z ( ) (A)i +1 (B) i -2 (C) i -3 (D) i -(2)设平面向量3(=,)2,x (=,)4-,如果与平行,那么x 等于( ) (A) 6 (B) 3 (C) 3- (D) 6-(3)设n S 是等差数列}{n a 的前n 项和,若2:1:21=a a ,则=21:S S ( ) (A)3:1 (B) 4:1 (C) 5:1 (D) 6:1 (4)设3log 31=a ,31log 21=b , 2)31(=c ,则下列正确的是 ( )(A)c b a << (B)b c a << (C)c a b << (D)a c b <<(5)某商场在今年春节假期的促销活动中,对大年初一9时至14时的销售金额进行统计,并将销售金额按9时至10时、10时至11时、11时至12时、12时至13时、13时至14 时进行分组,绘制成下图所示的频率分布直方图,已知大年初一9时至10时的销售金额为3万元,则大年初-11时至12时的销售金额为 ( ) (A)4万元 (B)8万元 (C) 10万元 (D) 12万元(6)下图是一个空间几何体的三视图(注:正视图也称主视图,侧视图也称左视图),其中 正视图与侧视图都是边长为6的正三角形,俯视图是直径等于6的圆,则这个空间几何体的 表面积为 ( ) (A) π180.400.35 0.30 0.250.200.15 0.100.05(B) π27(C) 382π(D) 383π(7)已知函数x x x x f cos sin cos 3)(2+=,R 是实数集,若R x ∈∃1,R x ∈∃2,R x ∈∀,)()()(21x f x f x f ≤≤,则12x x -的最小值为 ( )(A)π (B)2π (C) 3π (D) 4π(8)在三棱锥ABC P -中,PA 、PB 、PC 两两互相垂直,3=PA ,5=PB ,2=PC ,若三棱锥ABC P -的顶点都在球O 的球面上,则球0的体积等于 ( ) (A) π36 (B) π25 (C) π16 (D)π34 (9)如图所示的程序框图的功能是 ( )(A)求数列}1{n 的前10项和(B)求数列}1{n 的前11项和(C)求数列}21{n 的前10项和(D)求数列}21{n的前11项和(10)下表提供了某工厂节能降耗技术改造后,一种产品的产量x (单位:吨)与相应的生根据上表提供的数据,求得y 关于x 的线性回归方程为35.07.0ˆ+=x y那么表 格中t 的值为 ( )(A) 5.3 (B) 25.3 (C) 15.3 (D) 3(11)已知0>a ,0>b ,双曲线S :12222=-bx a y 的离心率为3,k 是双曲线S 的一条俯视图渐近线的斜率,如果0>k ,那么b ak+的最小值为 ( ) (A) 2 (B) 23 (C) 24 (D) 6(12)已知23)(x x f y +=的图象关于原点对称,若3)2(=f ,函数x x f x g 3)()(-=, 则)2(-g 的值是 ( )(A) 12 (B) -12 C) -21 (D) -27第Ⅱ卷本卷包括必考题和选考题两部分。
2018年高考(文科)数学模拟试题及答案
2018年高考(文科)数学模拟试题及答案一、选择题共8小题,每小题5分,共40分。
(1)若集合A={x|-5<x <2},B={x|-3<x <3},则A B=( )A. -3<x <2B. -5<x <2C. -3<x <3D. -5<x <3(2)圆心为(1,1)且过原点的圆的方程是( )(A )(x-1)2+(y-1)2=1 (B )(x+1)2+(y+1)2=1(C )(x+1)2+(y+1)2=2 (D )(x-1)2+(y-1)2=2(3)下列函数中为偶函数的是( )(A )y=x ²sinx (B )x x y cos 2= (C )x y ln = (D )x y -=2(4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年人数为( )(A )90 (B )100 (C )180 (D )300类别 人数老年教师 900中年教师 1800青年教师 1600合计 4300(5)执行如果所示的程序框图,输出的k 值为( )(A )3 (B )4 (C)5 (D)6(6)设a ,b 是非零向量,“a ·b=IaIIbI ”是“a//b ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(7)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )(A)1 (B )错误!未找到引用源。
(B )错误!未找到引用源。
(D)2(8)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况。
注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为( )(A )6升 (B )8升 (C )10升 (D )12升二、填空题(共6小题,每小题5分,共30分)(9)复数()i i +1的实部为(10)32- , 213 , log 25三个数中最大数的是 (11)在△ABC 中,a=3,b=错误!未找到引用源。
2018年高考模拟卷数学(文)试题Word版含答案
2018年高考模拟卷数学(文)试题Word版含答案2018年高中毕业班教学质量检测高考模拟数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z满足(1-i)z=1+3i(i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知全集U=Z,A={x∈Z|x^2-x-2≥0},B={-1,0,1,2},则(C∩A)∩B=()A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}3.若-1<sinα+cosα<1,则()A.sinα<cosαB.cosα<sinαC.tanα<cosαD.cos2α<14.已知点(2,3)在双曲线x^2/a^2-y^2/b^2=1(a>0)的一条渐近线上,则a=()A.3B.4C.2D.235.“a^2=1”是“函数f(x)=lg((2+x)/(1-x))+(a^2-1)/2为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.执行以下程序框架,则输出A的值是()int A=0;for(int i=1;i<=6;i++){A=A*10+i;XXX<<A<<endl;A.B.xxxxxxxxC.D.xxxxxxx7.边长为4的正三角形ABC中,点D在边AB上,AD=DB,M是BC的中点,则AM×CD=()A.16B.12√3C.-8/3D.-88.等比数列{a_n}共有2n+1项,其中a_1=1,偶数项和为170,奇数项和为341,则n=()A.3B.4C.7D.99.函数f(x)=x^2cos(x)在(-π/2,π/2)的图象大致是()A。
B。
C。
D。
10.抛物线x^2=4y的焦点为F,过F作斜率为-3的直线l 与抛物线在y轴右侧的部分相交于点A,过A作抛物线准线的垂线,垂足为H,则△AHF的面积是()A.4B.3/3C.4/3D.811.将函数f(x)=sin(ωx)(ω>0)的图象向左平移π/4个单位得到函数g(x)的图象,若函数g(x)的图象关于直线x=ω对称且在区间(-ω,ω)内单调递增,则ω的值为()A.3π/2B.2π/3C.3π/4D.π/212.若函数f(x)={-x-e^(x+1),x≤a。
2018届高考模拟考试试题(一)数学(文科)
2018 届高考模拟考试一试题(一)数学(文科)第Ⅰ卷(共 60 分)一、选择题:本大题共 12 个小题 ,每题 5 分 ,共 60 分 .在每题给出的四个选项中,只有一项是切合题目要求的 .1.已知会合 M x x 2 x 12 0 , Ny y 3x , x1 ,则会合 x x M , 且x N为A . 0,3B. 4,3C . 4,0 D.4,02. 已知向量 AB 1,1 , AC2,3 ,则以下向量中与 BC 垂直的是A . a 3,6B . b 8, 6C . c6,8D. d6,33.在四周体 S ABC 中, AB BC,ABBC2 SA SC SB2 ,则该四周体外接球的表面积是A .4B . 1633C .10D.8334.已知 sin3( , sin 2的值等于,且), 则A .352cos 2 .3B24C .— 3D .—3245.某几何体的三视图以下图,则此几何体的体积为8 A .3B .3C .6 22 6D .6 226.以下命题中正确的选项是A .若 a , , c 是等差数列,则 log 2 , log 2 , log 2 是等比数列b a b cB .若 a, , c 是等比数列,则 log 2 , log 2 , log 2 是等差数列ba b cC .若 a , b ,c 是等差数列,则 2a , 2b , 2 c 是等比数列D .若 a , b ,c 是等比数列,则 2a , 2b , 2c 是等差数列7.为了有效管理学生迟到问题, 某校专对各班迟到现象拟订了相应的等级标准, 此中 D 级标准为 “连续 10 天,每日迟到不超出7 人”,依据过去 10 天 1、 2、3、 4 班的迟到数据,必定切合D 级标准的是A . 1 班:整体均匀值为 3,中位数为 4B . 2 班:整体均匀值为 1,整体方差大于C . .3 班:中位数为 2,众数为 3D . 4 班:整体均匀值为 2,整体方差为 38f x2sin 2 x的图象向右平移个单位, 所得图象对于 y 轴对称, 则.若将函数3的最小正当是A .5B . 12 3C .2D .5369.履行以下图的程序框图,若输入 m 1, n 3 ,输出的 ,则空白判断框内应填的条件为A . C .mn 1m nB .D . mnmn10.若 a > 0, b >0,且函数 f( x)= 4x 3- ax 2 - 2bx - 2 在 x = 1 处有极值,则 a b 的最大值是A .2B . 3C .6D. 911. 设函数 f ( x ) =( x - a ) 2+ (ln x 2- 2a ) 2,此中 x >0, a ∈ R ,存在 x 0 使得 f ( x 0) ≤ b 成立,则实数 b 的最小值为12A. 5B.54C. 512 已知定义在 R 的函数f x 是偶函数,且知足 f x 2 f x 2 ,在 0,2 上的分析1 x2 ,0 x 1 3,0 作斜率为 k 的直线 l ,若直线 l 与函数 fx 的式为 f x1,1 x,过点x 2图象起码有 4 个公共点,则实数 k 的取值范围是1,1B .A. 3 3C .1,6 42D .31,6 4236 4 2,13第Ⅱ卷(共 90 分)本卷包含必考题和选考题两部分.第 (13)~ (21)题为必考题, 每个试题考生都一定作答. 第(22)~ (23)题为选考题,考生依据要求作答.二、填空题:本大题共4 小题,每题5 分,共 20 分.16.13. 已知点 A 1,1 ,B 1,2 ,C2, 1, D 2,2,则向量 AB 在 CD 方向上的投影为________.14. 已知底面边长为4 2 ,侧棱长为 25 的正四棱锥 S ABCD 内接于球 O 1 . 若球 O 2 在球 O 1内且与平面 ABCD 相切,则球 O 2 的直径的最大值为.15. 已知f (x)是定义域为 R 的偶函数, 当 x 0时,f (x) x 22x ,那么,不等式 f ( x) 3的解集是 .16.已知函数 f x4sin2x0≤ x ≤91,若函数 Fx f x3 的全部零点依6 6次记为 x 1, x 2 , x 3 ,... x n , x 1 x 2 x 3x n ,则 x 1 2 x 2 2x 32 x n 1x n__________.三、解答题 (本大题共 6 小题,共 70 分 .解答应写出文字说明、证明过程或演算步骤 .)17. 已知平面向量 a = (3,- 1) ,b = 1,3.22(1) 证明: a ⊥b ;(2) 若存在不一样时为零的实数 k 和 t ,使 c = a + ( t 2-3) b , d =- ka + t b ,且 c ⊥ d ,试求函数关系式 k = f ( t ).18. 为了认识某学校高三年级学生的数学成绩, 从中抽取 n 名学生的数学成绩 (百分制) 作为样本,按成绩分红 5 组: [50 ,60) , [60 ,70) , [70 ,80) , [80 ,90) , [90 ,100] ,频次散布直方图以下图.成绩落在[70 ,80) 中的人数为20 .(Ⅰ)求 a 和 n 的值;(Ⅱ)依据样本预计整体的思想,预计该校高三年级学生数学成绩的均匀数x 和中位数 m ;(Ⅲ)成绩在 80 分以上(含80 分)为优异,样本中成绩落在[50 ,80) 中的男、女生人数比为1: 2 ,成绩落在[80,100]中的男、女生人数比为3:2,达成2 2 列联表,并判断能否有95%的掌握以为数学成绩优异与性别相关.参照公式和数据:K 2 n(ad bc)2 .(a b)(c d )(a c)( b d )P(K 2 ≥ k0 )k0男生女生共计优异不优异共计19.如图 ,在直三棱柱ABC-A1B1C1中 ,平面 A1BC 丄侧面 A1ABB1,且 AA1=AB= 2.(1)求证 :AB 丄 BC;(2) 若直线 AC 与面 A1BC 所成的角为,求四棱锥A1-BB1 C1C 的体积 .20. 已知椭圆C:x2y2 1( a b 0 )的左右焦点分别为F1,F2 ,离心率为1,点A在a2 b2 2椭圆 C 上,|AF1| 2 ,F1 AF2 60 ,过 F 与坐标轴不垂直的直线l 与椭圆 C 交于P, Q2两点, N 为P, Q的中点.(Ⅰ)求椭圆 C 的方程;(Ⅱ)已知点 M (0, 1PQ ,求直线 MN 所在的直线方程.),且 MN821.(本小题满分 12 分)已知函数 f x x2 2 x a ln x a R .( 1)当a 2 时,求函数 f x 在 1, f 1 处的切线方程;( 2)当a 0 时,若函数 f x 有两个极值点 x1 , x2 x1 x2,不等式 f x1 mx2恒成立,务实数 m 取值范围.请考生在第22、 23 两题中任选一题作答,假如多做,则按所做的第一题计分,作答时请写清题号.22.(此题满分 10 分)选修 4 —4:坐标与参数方程在直角坐标系xOy 中,以 O 为极点, x 轴正半轴为极轴成立极坐标系,圆 C 的极坐标方程为ρ= 2 2cosx= t,(t 为参数 ),直线 l 和圆 C 交于 A , B θ+π,直线 l 的参数方程为4 y=- 1+ 2 2t两点, P 是圆 C上不一样于 A, B 的随意一点.(1)求圆心的极坐标;(2)求△ PAB面积的最大值.23.(此题满分 10 分)选修 4-5 :不等式选讲已知函数 f ( x) ln(| 2x 1| | 2x 3|) .( 1)求不等死 f ( x)0 的解集;( 2)当m取何值时, f ( x)m 恒成立.成都龙泉中学2018 届高考模拟考试一试题(一)数学(文科)参照答案1— 5 DDBCB 6—10 CDABD 11— 12 CB1113.13. 5 14. 8 15. ( 3,3) 16. 44517.(1) 证明∵a ·b=1- 1×3= 0,3×22∴a ⊥b .(2)解∵ c= a+ (t2- 3)b, d =- ka + tb ,且 c ⊥d ,∴ c ·d= [a+ (t 2-3)b ] ·(- ka+ tb )=- ka2+ t(t2- 3)b 2+ [t- k(t2- 3)] a·b = 0. 又 a 2= |a|2= 4, b 2=| b|2= 1 ,a ·b= 0 ,∴ c ·d=- 4k+t 3- 3t3-3t= 0 ,∴ k= f(t)=t4 (t≠ 0).18.分析:(Ⅰ)由题意可得10a 1 0.02) 10 ,∴,∴ n20.1040(Ⅱ)由题意,各组的频次分别为0.05 , 0.2 , 0.5 ,,,∴ x 55 75 85 .设中位数为 m ,则 ( m 70) 0.2) ,∴m 75 .(Ⅲ)由题意,优异的男生为 6 人,女生为4 人,不优异的男生为10 人,女生为20人,2 2 列联表男生女生共计优异 6 4 10不优异10 20 30共计16 2410)2 40由表可得K 240 (6 20 4 ,16 24 10 30∴没有 95% 的掌握以为数学成绩优异与性别相关.19. 解: (1) 取 A1 B 的中点为 D ,连结 AD,面面,,面(2) ∠ ACD 即 AC 与面 A 1BC 所成线面角 ,等于;直角 △ ABC 中 A 1A =AB =2,D 为AB的中点,∵,【分析】此题主要考察的是线面垂直的性质以及棱锥体积的计算,意在考察考生的逻辑推理能力和运算求解能力 .(1) 依据线面垂直的判断定理证明,而后依据线面垂直的性质证得 ;(2) 由 (1) 可得∠ ACD 即 AC 与面 A 1 BC 所成线面角 ,解三角形求得 依据棱锥的体积公式即可获得答案 .20. 解:(Ⅰ)由 e12c ,,得 a2由于 | AF 1 | 2 , | AF 2 | 2a 2 ,由余弦定理得 | AF 1 |2 |AF 2| 2| AF 1 | | AF 2 | cos A | F 1F 2 |2 , 解得 c 1 , a 2 , ∴ b 2a 2 c 23 ,∴椭圆 C 的方程为x 2y 21.43(Ⅱ)由于直线 PQ 的斜率存在,设直线方程为y k( x 1) , P( x 1 , y 1 ) , Q( x 2 , y 2 ) ,y k (x 1), 联立 x2y 2 整理得 (3 4k 2 ) x 2 8k 2 x 4k 2 12 0 , 4 3 1,由韦达定理知 x 1x 28k 2, y 1y 2 k( x 1 x 2 ) 2k6k 2 ,3 4k4k234k23k 11 3k24k 34k 2此时 N(,) ,则 k MN 8 3 4k 2 4k 2 4k 2 ),又M(0,4k 2 32k 2 ,3 3 83 4k2113 .∵ MNPQ ,∴ k MN,获得 k 或k22 则 k MN 2 或 k MN2, 3MN 的直线方程为 16 x 8 y 1 0 或 16x 24 y 3 0 .21. 解:( 1)当时,;,则,因此切线方程为,即为. 4 分(2 )令,则当时,,函数在上单一递加,无极值点;当且,即时,由,得当变化时,与的变化状况以下表:00单一递加极大值单一递减极小值单一递加当时,函数有两个极值点,则,.由可得..令.由于,因此,,即在递减,即有,因此实数的取值范围为.22. 解 (1) 圆 C 的一般方程为x2+ y2- 2x+ 2y= 0,即 (x- 1) 2+ (y+1) 2= 2.因此圆心坐标为 (1 ,- 1) ,圆心极坐标为2,5π;4(2)直线 l 的一般方程: 2 2x- y- 1= 0,圆心到直线 l 的距离d=|22+1-1|=22,因此 |AB |= 2 2-8=210 ,点 P 到直线 AB 距离的最大值为r+ d3 3 9 3= 2+232=532,S max=1 2 10 5 2=10 5 2 ×3 ×3 9 .23 .解:( 1 )由 f (x) ≤ 0 有: ln(| 2 x 1| | 2 x 3|) ≤ ln1 ,因此 0 | 2x 1| | 2x 3|≤1 ,即x≤1,或1 x 3 ,或x≥3,2 2 2 20 2 x 1 2x 3 ≤ 1 0 2 x 1 2 x 3 ≤ 1 0 2 x 1 2 x 3 ≤ 1,解得不等式的解集为x 1 x≤3.2 4( 2 )由 f (x) m 恒成立得 f (x)max m 即可 .由(1)0 | 2 x 1| | 2 x 3| 得函数 f ( x) 的定义域为 1 ,,2ln(4 x 2) 1 x 3 ,因此有f ( x)2 2因此 f ( x)max ln 4 ,≥3ln 4,x 2即 m ln 4 .。
2018年高考数学文科(课标版)仿真模拟卷(一)(带答案)
2018高考仿真卷·文科数学(一)(考试时间:120分钟试卷满分:150分)一、选择题(本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合M={x|log2x<1},集合N={x|x2-1≤0},则M∩N=()A.{x|1≤x<2}B.{x|0<x≤1}C.{x|-1<x≤1}D.{x|-1≤x<2}2.已知复数z=5i2i−1(i为虚数单位),则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温(℃)18 131 0-1用电量(度) 24343864由表中数据得线性回归方程y^=bx+a中b=-2,预测当气温为-4 ℃时,用电量度数为() A.68 B.67 C.65 D.644.若α∈π2,π,3cos 2α=cosπ4+α,则sin 2α的值为()A.118B.-1718C.1718D.-1185.执行如图的程序框图,那么输出的值是()A.101B.120C.121D.1036.设△ABC的三个内角A,B,C所对的边分别为a,b,c,如果(a+b+c)(b+c-a)=3bc,且a=√3,那么△ABC的外接圆半径为()A.2B.4C.√2D.17.太极图是以黑白两个鱼形纹组成的图形图案,它形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O被y=3sin π4x 的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为()A.136B.118C.112D.188.一个几何体的三视图如图所示,则该几何体的表面积为()A.32+4√3B.36C.32+4√3+4√7D.32+4√79.已知各项都为正数的等比数列{a n },且满足a 3=2a 1+a 2,若存在两项a m ,a n 使得√a m a n =4a 1,则1m +4n 的最小值为 ( )A.2B.32C.13D.110.已知圆C 1:x 2+(y-2)2=4,抛物线C 2:y 2=2px (p>0),C 1与C 2相交于A ,B 两点,且|AB|=8√55,则抛物线C 2的方程为( ) A.y 2=85xB.y 2=165xC.y 2=325xD.y 2=645x11.将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱最大体积为( ) A.π27B.π3C.8π27D.2π912.已知函数g (x )满足g (x )=2g 1x,当x ∈[1,3]时,g (x )=ln x.若函数f (x )=g (x )-mx 在区间13,3上有三个不同的零点,则实数m 的取值范围是( ) A.ln33,1e B.ln 3,3eC.1e ,ln 3 D.0,1e二、填空题(本题共4小题,每小题5分,共20分)13.已知向量a =(1,-2),b =(k ,4),且a ∥b ,则实数k 的值为 . 14.若x ,y 满足约束条件{x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z=x+2y 的最小值为 .15.如果将函数f (x )=sin(3x+φ)(-π<φ<0)的图象向左平移π12个单位长度所得到的图象关于原点对称,那么φ= .16.已知F 1,F 2分别是双曲线x 2a 2−y 2b 2=1的左右焦点,过F 1的直线l 与双曲线的左、右两支分别交于B ,A 两点,若△ABF 2为等边三角形,则△BF 1F 2的面积为 .三、解答题(共70分.解答须写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题都必须作答.第22、23题为选考题,考生根据要求作答) (一)必考题:共60分17.(12分)已知等比数列{a n }中,a 2=2,a 2,a 3+1,a 4成等差数列;数列{b n }的前n 项和为S n ,S n =n 2+n.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n+4}的前n项和.b n b n+118.(12分)中国共产党第十九次全国代表大会于2017年10月18日至10月24日在北京召开.习近平总书记代表第十八届中央委员会向大会作了题为《决胜全面建成小康社会夺取新时代中国特色社会主义伟大胜利》的报告,某电视台想了解通过电视观看报告的观众的年龄分布,电视台随机抽取了当天60名电视观众进行调查,将他们的年龄分组,得到如图所示的频率分布直方图.(1)求60名电视观众中年龄分布在[30,70]的人数;(2)从年龄分布在[30,60]的电视观众中采用分层抽样的方式抽取6人,再从这6人中随机选出2人进行采访,求这2人中恰有一人年龄分布在[40,50]的概率.19.(12分)的正三棱柱,经过AB的截面与上底面相交于PQ,设C1P=λC1A1(0<如图,ABC-A1B1C1是底面边长为2,高为√32λ<1).(1)证明:PQ∥A1B1;时,在图中作出点C在平面ABQP内的正投影F(说明作法及理由),并求四棱锥C-ABQP的表面积.(2)当λ=1220.(12分)已知点1,32在椭圆C:x2a2+y2b2=1(a>b>0)上,且椭圆的离心率为12.(1)求椭圆C的方程;(2)若M为椭圆C的右顶点,点A,B是椭圆C上不同的两点(均异于M)且满足直线MA与MB斜率之积为14.试判断直线AB是否过定点,若是,求出定点坐标,若不是,说明理由.21.(12分)已知函数f(x)=(a-1)x2+2ln x,g(x)=f(x)-2ax(a∈R).(1)当a=0时,求f(x)在点(e,f(e))处的切线方程;(2)若对∀x∈(1,+∞),g(x)<0恒成立,求a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.22.选修4—4:坐标系与参数方程(10分)在平面直角坐标系xOy中,已知曲线C1:x2+y2=1,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cos θ-sin θ)=6.(1)将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的√3倍、2倍后得到曲线C2.试写出直线l的直角坐标方程和曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.23.选修4—5:不等式选讲(10分)设函数f(x)=|x+2|+|x-a|,x∈R.(1)若a<0,且log2f(x)>2对任意x∈R恒成立,求实数a的取值范围;x有解,求实数a的取值范围.(2)若a>0,且关于x的不等式f(x)<322018高考仿真卷·文科数学(一)1.B2.D3.A4.B5.C6.D7.D8.C9.B10.C11.C12.A16.2√3a213.-214.-415.-π417.解(1)设等比数列{a n}的公比为q,因为a2,a3+1,a4成等差数列,故a2+a4=2(a3+1),即a4=2a3,故q=2;=1,所以a n=2n-1;因为a1=a2q因为S n=n2+n,故当n=1时,b1=S1=2;当n≥2时,b n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.综上所述b n=2n.(2)由(1)知4bn b n+1=1n(n+1)=1n −1n+1. 故数列{a n +4b n b n+1}的前n 项和为1×(1−2n )1−2+1-12+12−13+13-…+1n −1n+1=2n -1n+1.18.解 (1)电视观众年龄分布在[30,70]的频率为(0.01+0.02+0.03+0.025)×10=0.85,故电视观众中年龄分布在[30,70]的人数为60×0.85=51(人).(2)由题意知,采用分层抽样的方法选出6人,年龄分布在[30,40]的为1人,年龄分布在[40,50]的为2人,年龄分布在[50,60]的为3人,分别记为a 1,b 1,b 2,c 1,c 2,c 3,从中选出2人的所有基本事件:{a 1,b 1},{a 1,b 2},{a 1,c 1},{a 1,c 2},{a 1,c 3},{b 1,b 2},{b 1,c 1},{b 1,c 2},{b 1,c 3},{b 2,c 1},{b 2,c 2},{b 2,c 3},{c 1,c 2},{c 1,c 3},{c 2,c 3},共15个事件.设事件B 为“从这6人中随机选出2人进行采访,这2人中恰有一人年龄分布在[40,50]”,使得事件B 成立的为{a 1,b 1},{a 1,b 2},{b 1,c 1},{b 1,c 2},{b 1,c 3},{b 2,c 1},{b 2,c 2},{b 2,c 3},共8个,则P (A )=815.19.解 (1)∵平面ABC ∥平面A 1B 1C 1,平面ABC ∩平面ABQP=AB ,平面ABQP ∩平面A 1B 1C 1=QP ,∴AB ∥PQ.又∵AB ∥A 1B 1,∴PQ ∥A 1B 1.(2)如图,F 点是PQ 中点.理由如下:(画出点F )当λ=12时,P ,Q 分别是A 1C 1,A 1B 1的中点,连接CQ 和CP ,∵ABC-A 1B 1C 1是正三棱柱, ∴CQ=CP.∴CF ⊥QP.取AB 中点H ,连接FH ,CH ,CH=√3,在等腰梯形ABQP 中,FH=√62,连接CF ,CF=√62.∴CF 2+FH 2=CH 2.∴CF ⊥FH.∵QP ∩FH=F ,∵CF ⊥平面ABF ,即CF ⊥平面ABQP. ∴F 点是C 在平面ABQP 内的正投影.S=S △CPQ +S △CPA +S △BCQ +S △ABC +S 梯形ABQP =2√3+√6.20.解 (1)由题意可知离心率e=c a =12,故有2c=a ,所以b 2=a 2-c 2=a 2-a24=3a 24.又点1,32在椭圆C :x 2a2+y 2b 2=1上,代入得1a 2+94b 2=1, 解得a=2,b=√3. 故椭圆C 的方程为x 24+y 23=1.(2)由题意,直线AB 的斜率存在,可设直线AB 的方程为y=kx+m (k ≠0),A (x 1,y 1),B (x 2,y 2), 联立{y =kx +m,x 24+y 23=1,得(3+4k 2)x 2+8kmx+4m 2-12=0.∴x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2.∵直线MA 与MB 斜率之积为14,而点M (2,0),∴y 1x 1-2·y 2x 2-2=14. ∴4(kx 1+m )(kx 2+m )=(x 1-2)(x 2-2).化简得(4k 2-1)x 1x 2+(4km+2)(x 1+x 2)+4m 2-4=0,∴(4k 2-1)·4m 2-123+4k 2+(4km+2)·-8km3+4k 2+4m 2-4=0,化简得m 2-2km-8k 2=0,解得m=4k 或m=-2k , 当m=4k 时,直线AB 的方程为y=k (x+4),过定点(-4,0).将m=4k 代入Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,解得-12<k<12(k ≠0); 当m=-2k 时,直线AB 的方程为y=k (x-2),过定点(2,0),不符合题意. 综上所述,直线AB 过定点(-4,0).21.解 (1)当a=0时,f (x )=-x 2+2ln x ,f'(x )=-2x+2x .所以f'(e)=-2e+2e,f(e)=-e2+2.故在点(e,f(e))的切线方程为y-f(e)=f'(e)(x-e),化简得y=2e-2e x+e2.(2)g(x)=f(x)-2ax=(a-1)x2-2ax+2ln x,则g(x)的定义域为(0,+∞).g'(x)=(2a-2)x-2a+2x =(2a-2)x2-2ax+2x=(x-1)[(2a-2)x-2]x.①若a>1,令g'(x)=0,得极值点x1=1,x2=1a-1,当x2>x1=1,即1<a<2时,在(0,1)上有g'(x)>0,在(1,x2)上有g'(x)<0,在(x2,+∞)上有g'(x)>0,此时g(x)在区间(x2,+∞)上是增函数,并且在该区间上有g(x)∈(g(x2),+∞),不符合题意;当x2≤x1=1,即a>2时,同理可知,g(x)在区间(1,+∞)上恒有g'(x)>0,g(x)在区间(1,+∞)上是增函数.有g(x)∈(g(1),+∞),也不符合题意;②若a≤1,则有2a-2≤0,此时在区间(1,+∞)上恒有g'(x)<0.所以g(x)在(1,+∞)上是减函数;要使g(x)<0在此区间上恒成立,只须满足g(1)=a-1-2a≤0即可,可得a≥-1,所以a的取值范围是[-1,1].综合①②可知,当a∈[-1,1]时,对∀x∈(1,+∞),g(x)<0恒成立.22.解(1)由题意知,直线l的直角坐标方程为2x-y-6=0,曲线C2的直角坐标方程为x23+y24=1.所以曲线C2的参数方程为{x=√3cosθ,y=2sinθ(θ为参数).(2)设点P的坐标为(√3cos θ,2sin θ),则点P到直线l的距离为d=√3cosθ√5=|4sin (θ-π3)+6|√5,所以当sinθ-π3=1,θ=5π6时,点P-32,1,此时d max=√5=2√5.23.解(1)f(x)=|x+2|+|x-a|≥|x+2-x+a|=|a+2|.∵log2f(x)>2对任意x∈R恒成立,∴|a+2|>4,解得a<-6或a>2.∵a<0,∴实数a 的取值范围是(-∞,-6).(2)当a>0时,f (x )=|x+2|+|x-a|={-2x -2+a,x <−2,a +2,−2≤x ≤a,2x +2−a,x >a.若关于x 的不等式f (x )<32x 有解,则函数f (x )的图象与直线y=32x 有两个交点, ∴a+2<32a ,解得a>4,∴实数a 的取值范围是(4,+∞).。
2018年普通高等学校招生全国统一考试仿真卷 文科数学
绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(一)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·晋城一模]已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,则集合M N =( )A .{}0,2B .()2,0C .(){}0,2D .(){}2,0【答案】D【解析】解方程组22x y x y +=-=⎧⎨⎩,得20x y =⎧⎨=⎩.故(){}2,0MN =.选D .2.[2018·台州期末](i 为虚数单位)) 班级 姓名 准考证号 考场号 座位号此卷只装订不密封A .2B .1C .12D.2【答案】C11i 22z ∴=-=,选C . 3.[2018·南宁二中]为考察A ,B 两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是( ) A .药物B 的预防效果优于药物A 的预防效果 B .药物A 的预防效果优于药物B 的预防效果 C .药物A 、B 对该疾病均有显著的预防效果 D .药物A 、B 对该疾病均没有预防效果 【答案】B【解析】由A 、B 两种药物预防某疾病的效果,进行动物试验,分别得到的等高条形图,知:药物A 的预防效果优于药物B 的预防效果.故选B .4.[2018·滁州期末])A .4-B .4C .13-D .13【答案】C药物A 实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.91药物B实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.91【解析】sin2cos tan2ααα-=-⇒=,C.5.[2018·陕西一模]《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为()A.2 B.4+C.4+D.4+【答案】C【解析】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三2,且侧棱与底面垂直,侧棱长是2,∴几C.6.[2018·滁州期末]设变量x,y满足约束条件2202202x yx yy+--+⎧⎪⎨⎪⎩≥≤≤,则目标函数z x y=+的最大值为()A.7 B.6 C.5 D.4 【答案】D【解析】画出不等式组表示的可行域(如图阴影部分所示).由z x y =+,得y x z =-+.平移直线y x z =-+,结合图形可得,当直线(图中的虚线)经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最大值.由2 220y x y =-+=⎧⎨⎩,解得22x y ==⎧⎨⎩,故点A 的坐标为(2,2).∴max 224z =+=,即目标函数z x y =+的最大值为4.选D .7.[2018·蚌埠一模]已知()201720162018201721f x x x x =++++,下列程序框图设计的是求()0f x 的值,在“ ”中应填的执行语句是( )A .2018n i =-B .2017n i =-C .2018n i =+D .2017n i =+【答案】A【解析】不妨设01x =,要计算()120182017201621f =+++++,首先201812018S =⨯=,下一个应该加2017,再接着是加2016,故应填2018n i =-.8.[2018·达州期末]若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( ) A .()0,4B .()0,+∞C .()3,4D .()3,+∞开始i =1,n =2018结束i ≤2017?是否输入x 0S =2018输出SS =Sx 0S =S+ni =i +1【答案】C【解析】如图,若()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则()34a ∈,,故选C .9.[2018·朝阳期末]阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B当P ,A ,B 不共线时,PAB △面积的最大值是( ) A.BCD【答案】A【解析】如图,以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系;则:()10A -,,()10B ,,设()P x y ,,PA PB=两边平方并整理得:()222261038x y x x y +-+=⇒-+=.∴PAB △面积的最大值是122⨯⨯=A .10.[2018·孝感八校]已知双曲线E :22221x y a b-=(0,0)a b >>的右顶点为A,右焦点为F ,B 为双曲线在第二象限上的一点,B 关于坐标原点O 的对称点为C ,直线CA 与直线BF 的交点M 恰好为线段BF 的中点,则双曲线的离心率为( )A .12B .15C .2D .3【答案】D【解析】不妨设2,b B c a ⎛⎫- ⎪⎝⎭,由此可得(),0A a ,2,b C c a ⎛⎫- ⎪⎝⎭,(),0F c ,20,2b M a ⎛⎫ ⎪⎝⎭,由于A ,C ,M 三点共线,故222b b a a a a c =--,化简得3c a =,故离心率3e =.11.[2018·昆明一中]设锐角ABC △的三个内角A ,B ,C 的对边分别为a ,b ,c ,且1c =,2A C =,则ABC △周长的取值范围为( ) A.(0,2 B.(0,3C.(2 D.(2+【答案】C【解析】因为ABC △为锐角三角形,所以cos 22C <<;又因为2A C =,所以sin 2sin cos A C C =,又因为1c =,所以2cos a C =;由sin sin b cB C=, 即2sin sin34cos 1sin sin c B Cb C C C ===-,所以24cos 2cos a b c C C ++=+,令cos t C =,则t ∈⎭,又因为函数242y t t =+在⎭上单调递增,所以函数值域为(2+,故选:C .12.[2018·菏泽期末]()2f x mx =+有一个零点,则实数m 的取值范围是( ) A ]{64-+B ]{0,64-+C ]{}632-D ]{0,63-【答案】B【解析】由题意函数()f x 的图象与直线2y mx =+有一个交点.如图是()f x 的图象,1x >时,()21f x x =-设切点为()00,x y ,则切线为()()02002211y x x x x -=----,把()0,2代入,02x =;1x ≤时,()2e x f x =-,()e x f x '=-,设切点为()00,x y ,则切线为()()0002e e x x y x x --=--,把()0,2代入,解得01x =,又()12ef =-,()11e e f '=-=-,]{0,42-满足题意,故选B .第Ⅱ卷本卷包括必考题和选考题两部分。
(完整word版)2018年高考数学模拟试卷(文科)
2018年高考数学模拟试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. (5 分)已知集合A={X|X2W 1} , B={x|0v x v 1},则A H B=()A. [ - 1, 1)B・(0, 1) C. [ - 1, 1] D. (- 1,1)2. (5分)若i为虚数单位,则复数z= _在复平面上对应的点位于()丄*A.第一象限B.第二象限C第三象限D.第四象限3. (5分)已知等差数列{a n}前3项的和为6, a5=8,则a20=()A. 40B. 39 C 38 D . 374 . (5分)若向量的夹角为一,且|打|=4, |.・|=1,则「41-|=()A . 2B . 3 C. 4 D . 52 25. (5分)已知双曲线C: ———(a>0, b>0)的渐近线与圆(X+4)2+y2=8a2b2无交点,则双曲线离心率的取值范围是()A. (1,二)B. (一,1■'■')C. (1, 2)D. (2, +x)6. (5分)已知实数x,y满足约束条件\ i-2y+4>0,则z=x+2y的最大值为A . 6B . 7 C. 8 D . 97. (5分)函数y=log 〔(X2-4X+3)的单调递增区间为()TA. (3, +x)B. (-X, 1)C. (-X, 1)U(3, +x) D . (0, +x)8. (5分)宜宾市组织歌颂党,歌颂祖国”的歌咏比赛,有甲、乙、丙、丁四个单位进入决赛,只评一个特等奖,在评奖揭晓前,四位评委A, B, C, D对比赛预测如下:A说:是甲或乙获得特等奖”B说:丁作品获得特等奖”C说:丙、乙未获得特等奖”D说:是甲获得特等奖”比赛结果公布时,发现这四位评委有三位的话是对的,则获得特等奖的是()A .甲 B.乙 C.丙 D . 丁9. (5分)某几何组合体的三视图如图所示,则该几何组合体的体积为(A . 4 B. 5 C. 6 D . 711. (5分)分别从写标有1, 2, 3, 4, 5, 6, 7的7个小球中随机摸取两个小 球,则摸得的两个小球上的数字之和能被 3整除的概率为()A•寻B 寻C 骨D.寺10.(5分)若输入S=12 A=4, B=16, n=1,执行如图所示的程序框图,则输出的结果为(12. (5分)已知函数f(x)是定义在R上的奇函数,当x v0时,f(x)=e x(x+1), 给出下列命题:①当x>0 时,f (x)=e x(x+1);②? X I, X2€ R,都有| f (X1)— f (X2)| V2;③f (x)> 0 的解集为(—1, 0)u, (1, +x);④方程2[f (x) ]2-f (x) =0有3个根.其中正确命题的序号是( )A.①③ B •②③C•②④ D •③④二、填空题:本大题共4个小题,每小题5分,共20分.13. (5分)在等比数列{a n}中,若a2+a4丄,a3丄,且公比q V1,则该数列的通项公式a n= ______ .14. (5 分)已知y=f (x)是偶函数,且f (x) =g (x)- 2x, g (3) =3,则g (3) = ______ .15. (5分)三棱锥P- ABC中,底面△ ABC是边长为.二的等边三角形,PA=PB=PC PB丄平面PAC则三棱锥P- ABC外接球的表面积为_______ .16. (5 分)在厶ABC中,D 为AC上一点,若AB=AC AD*D, BD=4 ,则厶ABCu-n面积的最大值为_______ .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤•第17〜21题为必考题,每个试题考生都必须答•第22、23题为选考题,考生根据要求作答.(一)必做题:共60分.17. (12分)在厶ABC中,a, b, c分别为A, B, C的对边,且sinA=2sinB(1)若C^—, △ ABC的面积为「,求a的值;4 4(2)求亟竽■—沁迥嗚的值.SLED 218. (12分)每年4月15至21日是全国肿瘤防治宣传周,全国每天有超1万人确诊为癌症,其中肺癌位列发病首位,吸烟人群是不吸烟人群患肺癌的10倍•某 调查小组为了调查中学生吸烟与家庭中有无成人吸烟的关系,发放了 500份不记名调查表,据统计中学生吸烟的频率是0.08,家庭中成人吸烟人数的频率分布条 形图如图.(1) 根据题意,求出a 并完善以下2X 2列联表;家中有成人吸烟家中无成人吸烟合计学生吸烟人数 28学生不吸烟人数合计(2) 能否据此判断有97.5%的把握认为中学生吸烟与家庭中有成人吸烟有关? 附表及公式: P (K 2>k 0)0.100 0.050 0.025 0.010 0.005 k 02.7063.8415.0246.6357.879Q=Ca+b) (c+d) Ca-Fc) (b+d)'19. ( 12分)如图,四棱锥P -ABCD 的底面ABCD 是直角梯形,AD // BC, / ADC=90 ,n=a+b+c+d平面PAD丄平面ABCDQ是AD的中点,M是棱PC上的点,PA=PD=2AD=2BC=2CD=:(1)求证:平面BMQ丄平面PAD;(2)当M是PC的中点时,过B,M,Q的平面去截四棱锥P-ABCD求这个截面的面积.20. (12分)已知抛物线C的焦点在x轴上,顶点在原点且过点p (2,1),过点(2,0)的直线I交抛物线C于A,B两点,M是线段AB的中点,过点M作y 轴的垂线交C于点N.(1)求抛物线C的方程;(2)是否存在直线I,使得以AB为直径的圆M经过点N?若存在,求出直线I 的方程;若不存在,说明理由.21. (12 分)已知函数f (x) =e x+x- 2, g (x) =alnx+x.(1)函数y=g (x)有两个零点,求a的取值范围;(2)当a=1 时,证明:f (x)> g (x).(二)选做题:共10分•请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22. (10分)在直角坐标系xOy中,圆C的参数方程为—,(参数©[y=2sin$€ R).以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,(I)求圆C的极坐标方程;(II)直线I,射线OM的极坐标方程分别是旦)二还,。
2018届全国高考模拟试卷(一)数学(文)试题
2018届全国高考模拟试卷(一)文科数学试卷本试题卷共10页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数131iz i-=-,则zz =( )A . D .52.已知集合{}(){}10,20A x x B x x x =+>=+>,则下列结论正确的是( )A .AB ⊆ B .B A ⊆ C. {}0A B x x ⋂=> D .{}1A B x x ⋃=>- 3.2017年年终,某IT 公司对20名优秀员工进行表彰,这20名员工工龄的众数与平均数相等,则实数a 的值为( )A .0B .1 C.40 D .414.已知等差数列{}n a 的前n 项和为n S ,若数列{}n a 的公差0d ≠,且存在a R ∈,使得2n S an =,则5a d=( ) A .5 B .9 C.52 D .925.已知双曲线()2222:10,0a x y C a b b >->=的右支上的点到直线1b y x a =+的距离恒大于12,则双曲线C 的离心率的取值范围为( )A .(]1,2B .()1,2 C.()2,+∞ D .[)2,+∞6.已知函数()()2231,32,3x a x a x f x a x -⎧-++≤⎪=⎨>⎪⎩(0a >且1a ≠),若()f x 有最小值,则实数a 的取值范围是( )A .50,6⎛⎤ ⎥⎝⎦B .51,4⎛⎫ ⎪⎝⎭ C.550,1,64⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦ D .()50,1,4⎡⎫⋃+∞⎪⎢⎣⎭7.我国东汉时期的数学名著《九章算术》中有这样个问题:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?设总人数为x ,鸡的总价为y ,如图的程序框图给出了此问题的一种解法,则输出的,x y 的值分别为( )A .7,58B .8,64 C.9,70 D .10,768.函数()x x f x e ae -=+与()2g x x ax =+在同一坐标系内的图象不可能是( )A .B . C.D .9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则这几何体的表面积为( )A .32B .16+.48+10.已知圆锥的侧面展开图是一个半径为的半圆,若该圆锥的顶点及底面圆周在球O 的表面上,则球O 的体积为( )A .323π B .163π C. 12516π D 11.已知抛物线2:4C y x =的焦点为F ,过点F 且斜率为1的直线与抛物线C 交于点,A B ,以线段AB 为直径的圆E 上存在点,P Q ,使得以PQ 为直径的圆过点()2,D t -,则实数t 的取值范围为( )A .(][),13,-∞-⋃+∞B .[]1,3- C. (),22⎡-∞⋃+∞⎣D .2⎡⎣12.已知()()2212ln 22f x x ax x x ax =+--在()0,+∞上是增函数,则实数a 的取值范围是( )A .{}1B .{}1- C. (]0,1 D .[)1,0-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知菱形ABCD 中,3AC =,则AB AC ⋅= _ .14.设,x y 满足约束条件33123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则()()()22x a y a a R -++∈的最小值是_ .15.某校为保证学生夜晚安全,实行教师值夜班制度,已知,,,,A B C D E 共5名教师每周一到周五都要值一次夜班,每周如此,且没有两人同时值夜班,周六和周日不值夜班,若A 昨天值夜班,从今天起,B C 至少连续4天不值夜班,D 周四值夜班,则今天是周_ . 16.已知数列{}n a 满足当()1**2121,k k n k N n N --<≤-∈∈时2n kka =,若数列{}n a 的前n 项和为n S ,则满足10n S >的n 的最小值为_ .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,且99cos c a b A -=. (1)求cos B ;(2)若角B 的平分线与AC 交于点D ,且1BD =,求11a c+的值. 18. 如图,在四棱锥A BCDE -中,底面BCDE是平行四边形,2330ED EA EB AC ADE ====∠=︒,,,平面ACD ⊥平面AED ,F 为AD 中点.(1)求证:AC BF ⊥; (2)求四棱锥A BCDE -的体积.19.前几年随着网购的普及,线下零售遭遇挑战,但随着新零售模式的不断出现,零售行业近几年呈现增长趋势,下表为20142017年中国百货零售业销售额(单位:亿元,数据经过处理,14分别对应20142017):(1)由上表数据可知,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明; (2)建立y 关于x 的回归方程,并预测2018年我国百货零售业销售额;(3)从20142017年这4年的百货零售业销售额及2018年预测销售额这5个数据中任取2个数据,求这2个数据之差的绝对值大于200亿元的概率. 参考数据:4411800,2355i i i i i y x y ====∑∑2.236≈参考公式:相关系数()()nii xx y yr --∑y a bx =+中斜率和截距的最小二乘估计公式分别为()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-.20.已知椭圆()2222:10x y C a b a b +=>>及点()2,1D,若直线OD 与椭圆C 交于点,A B ,且AB ( O 为坐标原点),椭圆C . (1)求椭圆C 的标准方程; (2)若斜率为12的直线l 交椭圆C 于不同的两点,M N ,求DMN ∆面积的最大值. 21.已知函数()xxe f x x a=-.(1)若曲线()y f x =在2x =处的切线过原点,求实数a 的值; (2)若12a <<,求证当(),1x a a ∈+时,()32f x x x >+. 参考数据: 2.7e ≈.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线1C 的参数方程为2cos sin x r y r ϕϕ=+⎧⎨=⎩(0,r ϕ>为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 经过点2,3P π⎛⎫⎪⎝⎭,曲线2C 的极坐标方程为()22cos26ρθ+=.(1)求曲线1C 的极坐标方程;(2)若()12,,,2A B πραρα⎛⎫+ ⎪⎝⎭是曲线2C 上两点,求2211OA OB+的值. 23.选修4-5:不等式选讲已知函数()()2,1f x x a g x bx =-=+.(1)当1b =时,若()()12f xg x +的最小值为3,求实数a 的值; (2)当1b =-时,若不等式()()1f x g x +<的解集包含1,12⎡⎤⎢⎥⎣⎦,求实数a 的取值范围.2018届全国高考模拟试卷(一)参考答案一、选择题1-5: DCADA 6-10: CCCDA 11、12:DB 二、填空题 13.92 14. 1215.四 16.58 三、解答题17.(1)方法一:由99cos c a b A -=及余弦定理得222992b c a c a b bc+--=⋅,整理得22229a c b ac +-=,所以2221cos 29a cb B ac +-==.方法二:由99cos c a b A -=及正弦定理得為9sin 9sin cos sinC A B A -=, 又()sinC sin A B sinAcosB cosAsinB =+=+,所以1909sinAcosB sinA cosB -=⇒=.(2)由(1)可知21cos cos212sin 9ABC ABD ABD ∠=∠=-∠=,且sin 0ABD ∠>,所以2sin 3ABD ∠=,同理可得2sin 3CBD ∠=, 设,ABC ABD CBD ∆∆∆,的面积分别为12,,S S S ,则111sin 222S ac ABC =∠==,111sin 23S c BD ABD c =⋅∠=,211sin 23S a BD CBD a =⋅∠=,由12S S S +=得1133c a +=,所以11a c +=.18.(1)如图,连接EF ,由2,30ED EA ADE ==∠=︒,易得AD = 因为四边形BCDE 是平行四边形,所以3DC EB ==,又AC ACD ∆中22212DC AC AD +==, 所以AC DC AC BE ⊥⊥,,由F 为AD 中点,ED EA =可得EF AD ⊥,因为平面ACD ⊥平面AED ,且平面ACD ⋂平面AED AD =, 所以EF ⊥平面ACD ,因为AC ⊂平面ACD ,所以EF AC ⊥, 因为EF EB E ⋂=,所以AC ⊥平面BEF , 因为BF ⊂平面BEF ,所以AC BF ⊥.(2)如图,连接,CE EF ,因为四边形BCDE 是平行四边形, 所以22A BCDE A CDE E ACD V V V ---==,由(1)知CD AC ⊥,且3,CD AC =所以132ACD S ∆=⨯=, 又112EF DE ==,且EF ⊥平面ACD ,所以11133E ACD ACD V EF S -∆=⨯⨯=⨯=,所以A BCDE V -,即四棱锥A BCDE -19.(1)由表中的数据和参考数据得2.5,200x y ==,()421158.9i i x x=-=∑,()()4441112355 2.5800355ii i i i i i i xx y y x y x y ===--=-=-⨯=∑∑∑,∴3550.9992.236158.90r ≈≈⨯.因为y 与x 的相关系数近似为0.999,说明y 与x 的线性相关程度相当高,从而可以用线性回归模型拟合y 与x 的关系.(2)由200y =及(1)得()()()41421355715ii i i i xx y y b x x==--===-∑∑, 20071 2.522.5a y bx =-=-⨯=, 所以y 关于x 的回归方程为22.571y x =+.将2018年对应的5x =代入回归方程得22.5715377.5y =+⨯=. 所以预测2018年我国百货零售业销售额为377.5亿元. (3)从这5个数据中任取2个数据,结果有:()()()()()()()95,165,95,230,95,310,95,377.5,165,230,165,310,165,377.5,()()()230,310,230,377.5,310,377.5共 10个.所取2个数据之差的绝对值大于200亿元的结果有:()()()95,310,95,377.5,165,377.5,共3个,所以所求概率310P =. 20.(1)由椭圆C =,所以224a b =.设点A在第一象限,由椭圆的对称性可知OA OB =,所以2OA OD =, 因为点D 坐标为()2,1,所以点A 坐标为⎭, 代入椭圆C 的方程得222112a b+=,与224a b =联立, 可得224,1a b ==,所以椭圆C 的标准方程为2214x y +=.(2)设直线l 的方程为()102y x t t =+≠,由221214y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩得222220x tx t ++-=.由题意得,()2244220t t ∆=-->,整理得22t ->0,所以0t <<或0t <<设()()1122,,,M x y N x y ,则212122,22x x t x x t +=-=-, 所以12MN x =-==又由题意得,()2,1D 到直线12y x t =+的距离d =DMN ∆的面积221121222t t S d MN -+===当且仅当222t t -=,即1t =±时取等号,且此时满足0∆>, 所以DMN ∆面积的最大值为1.21.(1)因为()xxe f x x a=-,所以()()()()()()2221xx x x ax a e x e x a xe f x x a x a --+⋅--'==--,由题意知,曲线()y f x =在2x =处的切线过原点, 则切线斜率()()20220f k f -'==-,即()()22220432202e a e a a ---=--,整理得4312aa -=-,所以1a =. (2)由12a <<,且(),1x a a ∈+,得0x >,所以()3220xe f x x x x x x a>+⇔-->-.设()2x e g x x x x a =---,则()()()2121x e x a g x x x a --'=---, 由0x >且1a x a <<+,可知()0g x '<, 所以()g x 在(),1a a +上单调递减,所以当(),1x a a ∈+时,1()(2)()1a g x e a a +>-++. 设1t a =+,则()2,3t ∈,设()()1t h t e t t =-+,则()21t h t e t '=--,令()21t t e t ϕ=--,则()2t t e ϕ'=-,易知当()2,3t ∈时,()0t ϕ'>, 所以()h t '在()2,3上单调递増,所以()2212210t h t e t e '=-->-⨯->,- 11 - 所以()h t 在()2,3上单调递増,所以()260h t e >->, 所以()01 t e t t -+>,即11()()20a e a a +-++>, 所以当(),1x a a ∈+时,()0g x >,即当(),1x a a ∈+时,32()f x x x >+.22.(1)将曲线1C 的参数方程2cos sin x r y r ϕϕ=+⎧⎨=⎩化为普通方程为()2222x y r -+=, 即222440x y x r +-+-=,由222,cos x y x ρρθ=+=,可得曲线1C 的极坐标方程为224cos 40r ρρθ-+-=,因为曲线1C 经过点2,3P π⎛⎫ ⎪⎝⎭,所以22242403cos r π-⨯⨯+-=, 解得2r =(负值舍去),所以曲线1C 的极坐标方程为4cos ρθ=.(2)因为()12,,,2A B πραρα⎛⎫+ ⎪⎝⎭在曲线()22:2cos26C ρθ+=上, 所以()212cos26ρα+=,()222cos 22cos 262παρα⎡⎤⎛⎫++=+= ⎪⎢⎥⎝⎭⎣⎦, 所以22221211112cos 22cos 22663OA OB ααρρ+-+=+=+=. 23.(1)当1b =时,()()11112222a a a f x g x x x x x +=-++≥---=+, 因为()()12f xg x +的最小值为3,所以132a +=,解得8a =-或4. (2)当1b =-时,()()1f x g x +<即211x a x -+-<, 当1,12x ⎡⎤∈⎢⎥⎣⎦时,211x a x -+-<2112x a x x a x ⇔-+-<⇔-<,即3a x a <<, 因为不等式()()1f x g x +<的解集包含1,12⎡⎤⎢⎥⎣⎦,所以1a >且132a <, 即312a <<,故实数a 的取值范围是31,2⎛⎫ ⎪⎝⎭.。
2018年高考数学模拟试卷(文科)带答案精讲
2018年高考数学模拟试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分,每小题只有一个选项是符合要求的.1.(5分)若A={x|y=log2(x﹣2)},B={y|y=|x|},则A∩B=()A.(0,+∞)B.[0,+∞)C.(2,+∞)D.[0,2)2.(5分)已知命题p:“∀x∈R,x2+1>0”命题q:“∃x∈R,tanx=2”,则下列判断正确的是()A.p∨q为真,¬p为真B.p∨q为假,¬p为假C.p∧q为真,¬p为真D.p∧q为真,¬p为假3.(5分)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为()A.480 B.481 C.482 D.4834.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥n B.若α∥β,m⊂α,n⊂β,则m∥n C.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β5.(5分)对于任意实数x,符号[x]表示不超过x的最大整数,如:[1]=1,[1.5]=1,[﹣1.5]=﹣2,则[log21]+[log22]+[log23]+[log24]+…+[log232]=()A.103 B.104 C.128 D.1296.(5分)函数f(x)的导函数f′(x)的图象是如图所示的一条直线l,l与x轴交点的坐标为(1,0),则f(0)和f(3)的大小关系为()A.f(0)<f(3)B.f(0)>f(3)C.f(0)=f(3)D.不能确定7.(5分)如图所示计算机程序的打印结果为()A.B.C.D.8.(5分)已知cosα=﹣,tanβ=2,且α,β∈(0,π),则α+β=()A.B. C. D.9.(5分)已知f(x)满足f(x+4)=f(x)且f(4+x)=f(4﹣x),若2≤x≤6时,f(x)=|x﹣b|+c,f(4)=2,则f(lnb)与f(lnc)的大小关系是()A.f(lnb)≤f(lnc)B.f(lnb)≥f(lnc)C.f(lnb)>f(lnc)D.f (lnb)<f(lnc)10.(5分)如图,已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上的一点,F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=1,则双曲线的离心率是()A.3 B.2 C.D.二、填空题:本大题共7小题,每小题5分共35分,把答案填在答题卡中对应题号后的横线上.11.(5分)已知i为虚数单位,如果复数z=的实部和虚部互为相反数,那么实数b的值为.12.(5分)将某选手的6个得分去掉1个最高分,去掉一个最低分,4个剩余分数的平均分为91.现场作的6个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示:则4个剩余分数的方差为.13.(5分)已知直线l与曲线f(x)=x2+3x﹣3+2lnx相切,则直线l的斜率的最小值为.14.(5分)设△ABC的内角A,B,C所对边的长分别为a,b,c,若a,b,c成等差数列,且3sinB=5sinA,则∠C等于.15.(5分)已知圆x2+y2=8,直线l:y=x+b,若圆x2+y2=8上恰有3个点到直线l 的距离都等于,则b=.16.(5分)已知点O是边长为1的等边三角形ABC的中心,则(+)•(+)=.17.(5分)若函数y=f(x)(x∈D)同时满足下列条件:①f(x)在D内为单调函数;②f(x)的值域为D的子集,则称此函数为D内的“保值函数”.(Ⅰ)f(x)=是[1,+∞)内的“保值函数”,则b的最小值为;(Ⅱ)当﹣1≤a≤1,且a≠0,﹣1≤b≤1时,g(x)=ax2+b是[0,1]内的“保值函数”的概率为.三、解答题:本大题共5小题,共65分,解答应写出文字说明、证明过程或演算步骤.18.(12分)已知向量=(,sinx),=(cos2x,﹣cosx),x∈R,设函数f (x)=•(Ⅰ)求f(x)的最小正周期及在区间[0,π]上的单调区间;(Ⅱ)若f(θ)=1,求cos2(﹣θ)+sinθcosθ的值.19.(13分)已知函数f(x)=4x,数列{a n}中,2a n+1﹣2a n+a n+1a n=0,a1=1且a n ≠0,若数列{b n}中,b1=2且b n=f()(n≥2).(Ⅰ)求证:数列{}是等差数列,并求出数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.20.(13分)一个简单多面体的直观图和三视图如图所示,它的正视图和侧视图都是腰长为1的等腰直角三角形,俯视图为正方形.(Ⅰ)求证:PC⊥BD;(Ⅱ)试在线段PD上确定一点E,使得PB∥面ACE;(Ⅲ)求这个简单多面体的表面积.21.(13分)设函数f(x)=a(x﹣1),g(x)=(x+b)lnx(a,b是实数,且a >0)(Ⅰ)若g(x)在其定义域内为单调增函数,求b的取值范围;(Ⅱ)当b=1时,若f(x)≤g(x)在[1,+∞)上恒成立,求a的取值范围.22.(14分)若椭圆C:+=1(a>b>0)的离心率e为,且椭圆C的一个焦点与抛物线y2=﹣12x的焦点重合.(1)求椭圆C的方程;(2)设点M(2,0),点Q是椭圆上一点,当|MQ|最小时,试求点Q的坐标;(3)设P(m,0)为椭圆C长轴(含端点)上的一个动点,过P点斜率为k的直线l交椭圆与A,B两点,若|PA|2+|PB|2的值仅依赖于k而与m无关,求k 的值.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题只有一个选项是符合要求的.1.(5分)若A={x|y=log2(x﹣2)},B={y|y=|x|},则A∩B=()A.(0,+∞)B.[0,+∞)C.(2,+∞)D.[0,2)【分析】求出集合A,B,利用集合的基本运算即可得到结论.【解答】解:A={x|y=log2(x﹣2)}={x|x>2},B={y|y=|x|}={y|y≥0},则A∩B={x|x>2},故选:C【点评】本题主要考查集合的基本运算,根据条件求出A,B是解决本题的关键,比较基础.2.(5分)已知命题p:“∀x∈R,x2+1>0”命题q:“∃x∈R,tanx=2”,则下列判断正确的是()A.p∨q为真,¬p为真B.p∨q为假,¬p为假C.p∧q为真,¬p为真D.p∧q为真,¬p为假【分析】先判断命题p和命题q的真假,然后判断¬P和¬q的真假,由此判断复合命题“p∧q”,“p∧¬q”,“¬p∨q”和“¬p∨¬q”的真假.【解答】解:命题p:“∀x∈R,x2+1>0”,为真命题,则¬p为假命题;命题q:∃x∈R,使tanx=2,为真命题,¬q为假命题;∴p∨q为真命题¬p为假命题,故选:D.【点评】本题主要考查了命题真假判断的应用,简单复合命题的真假判断,属于基础试题3.(5分)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为()A.480 B.481 C.482 D.483【分析】根据系统抽样的定义得到,编号之间的关系,即可得到结论.【解答】解:∵样本中编号最小的两个编号分别为007,032,∴样本数据组距为32﹣07=25,则样本容量为,则对应的号码数x=7+25(n﹣1),当n=20时,x取得最大值为x=7+25×19=482,故选:C.【点评】本题主要考查系统抽样的应用,根据条件确定组距是解决本题的关键,比较基础.4.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥n B.若α∥β,m⊂α,n⊂β,则m∥n C.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β【分析】由α⊥β,m⊂α,n⊂β,可推得m⊥n,m∥n,或m,n异面;由α∥β,m⊂α,n⊂β,可得m∥n,或m,n异面;由m⊥n,m⊂α,n⊂β,可得α与β可能相交或平行;由m⊥α,m∥n,则n⊥α,再由n∥β可得α⊥β.【解答】解:选项A,若α⊥β,m⊂α,n⊂β,则可能m⊥n,m∥n,或m,n 异面,故A错误;选项B,若α∥β,m⊂α,n⊂β,则m∥n,或m,n异面,故B错误;选项C,若m⊥n,m⊂α,n⊂β,则α与β可能相交,也可能平行,故C错误;选项D,若m⊥α,m∥n,则n⊥α,再由n∥β可得α⊥β,故D正确.故选D.【点评】本题考查命题真假的判断与应用,涉及空间中直线与平面的位置关系,属基础题.5.(5分)对于任意实数x,符号[x]表示不超过x的最大整数,如:[1]=1,[1.5]=1,[﹣1.5]=﹣2,则[log21]+[log22]+[log23]+[log24]+…+[log232]=()A.103 B.104 C.128 D.129【分析】利用符号[x]的意义和对数的运算性质即可得出.【解答】解:∵[log21]=0,[log22]=[log23]=1,[log24]=[log25]|=…=[log27]=2,[log28]=[log29]=…=[log215]=3,[log216]=[log217]=…=[log231]=4,[log232]=5.∴[log21]+[log22]+[log23]+[log24]+…+[log232]=0+1×2+2×4+3×8+4×16+5=103.故选:A.【点评】本题考查了符号[x]的意义和对数的运算性质,属于中档题.6.(5分)函数f(x)的导函数f′(x)的图象是如图所示的一条直线l,l与x轴交点的坐标为(1,0),则f(0)和f(3)的大小关系为()A.f(0)<f(3)B.f(0)>f(3)C.f(0)=f(3)D.不能确定【分析】根据导函数的图象,写出函数f(x)的单调区间,由导函数图象是一条直线知原函数是二次函数,对称轴是x=1,从而将f(0),f(3)转换到单调区间,就能比较大小了.【解答】解:由导函数f′(x)的图象可知:函数f(x)的增区间为(﹣∞,1),减区间为(1,+∞),又导函数f′(x)的图象是一条直线l,∴原函数是二次项系数小于0的二次函数,其图象的对称轴是x=1.∴f(x)=f(2﹣x),∴f(0)=f(2),由函数f(x)在(1,+∞)上是减函数,得f(2)>f(3),即f(0)>f(3).故选B.【点评】本题主要考查利用导数研究函数的性质:单调性,进而比较两数大小,解题时应注意导函数的图象与原函数的关系是解决问题的关键.7.(5分)如图所示计算机程序的打印结果为()A.B.C.D.【分析】根据框图的流程依次计算程序运行的结果,直到不满足条件z≤30,计算输出的值.【解答】解:由程序框图知:x=1,y=1,z=2,第一次循环x=1,y=2,z=1+2=3;第二次循环x=2,y=3,z=2+3=5;第三次循环x=3,y=5,z=3+5=8;第四次循环x=5,y=8,z=5+8=13;第五次循环x=8,y=13,z=8+13=21;第六次循环x=13,y=21,z=34.不满足条件z≤30,跳出循环体,输出=.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程依次计算程序运行的结果是解答此类问题的常用方法.8.(5分)已知cosα=﹣,tanβ=2,且α,β∈(0,π),则α+β=()A.B. C. D.【分析】由条件求得tanα=﹣,α∈(,π)、β∈(,).求得tan(α+β)的值,结合α+β的范围,求得α+β的值【解答】解:∵cosα=﹣,tanβ=2,且α,β∈(0,π),∴sinα=,tanα==﹣,α∈(,π)、β∈(,).∴tan(α+β)===1,结合α+β∈(,),可得α+β=,故选:C.【点评】本题主要考查同角三角函数的基本关系的应用,两角和的正切公式的应用,要注意角的范围,属于中档题.9.(5分)已知f(x)满足f(x+4)=f(x)且f(4+x)=f(4﹣x),若2≤x≤6时,f(x)=|x﹣b|+c,f(4)=2,则f(lnb)与f(lnc)的大小关系是()A.f(lnb)≤f(lnc)B.f(lnb)≥f(lnc)C.f(lnb)>f(lnc)D.f (lnb)<f(lnc)【分析】由f(x+4)=f(x)且f(4+x)=f(4﹣x),得到函数f(x)的最小正周期为4,关于x=4对称,再由2≤x≤6时,f(x)=|x﹣b|+c,f(4)=2,得到b=4,c=2,再求出﹣2≤x≤2时,f(x)的表达式,从而运用函数f(x)在(0,2)的单调性判断f(lnb)和f(lnc)的大小.【解答】解:∵对x∈R,f(x+4)=f(x),∴函数f(x)是最小正周期为4的函数,∵对x∈R,f(4+x)=f(4﹣x),∴函数的对称轴为x=4,又f(x)=f(4﹣x),则函数的对称轴也为x=2,∵2≤x≤6时,f(x)=|x﹣b|+c,f(4)=2,∴b=4,c=2,∴2≤x≤6时,f(x)=|x﹣4|+2,令﹣2≤x≤2,则2≤x+4≤6,f(x+4)=|x+4﹣4|+2=|x|+2,又f(x+4)=f(x),∴﹣2≤x≤2时,f(x)=|x|+2,当0≤x≤2时,f(x)=x+2,是增函数,∵lnb=ln4,lnc=ln2,0<ln2<ln4<2,∴f(ln2)<f(ln4)即f(lnc)<f(lnb).故选:C.【点评】本题主要考查函数的性质及应用,考查函数的周期性及运用,函数的对称性和单调性及运用,属于中档题.10.(5分)如图,已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上的一点,F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=1,则双曲线的离心率是()A.3 B.2 C.D.【分析】由|PQ|=1,△APF1的内切圆在边PF1上的切点为Q,根据切线长定理,可得|PF1|﹣|PF2|=2,结合|F1F2|=4,即可得出结论.【解答】解:由题意,∵|PQ|=1,△APF1的内切圆在边PF1上的切点为Q,∴根据切线长定理可得AM=AN,F1M=F1Q,PN=PQ,∵|AF1|=|AF2|,∴AM+F1M=AN+PN+NF2,∴F1M=PN+NF2=PQ+PF2∴|PF1|﹣|PF2|=F1Q+PQ﹣PF2=F1M+PQ﹣PF2=PQ+PF2+PQ﹣PF2=2PQ=2,∵|F1F2|=4,∴双曲线的离心率是e==2.故选:B.【点评】本题考查双曲线的离心率,考查三角形内切圆的性质,考查切线长定理,考查学生的计算能力,属于基础题.二、填空题:本大题共7小题,每小题5分共35分,把答案填在答题卡中对应题号后的横线上.11.(5分)已知i为虚数单位,如果复数z=的实部和虚部互为相反数,那么实数b的值为0.【分析】化简复数z,求出复数的实部与虚部,根据题意,求出b的值.【解答】解:∵复数z===﹣i,又它的实部和虚部互为相反数,∴+(﹣)=0,∴b=0.故答案为:0.【点评】本题考查了复数的化简与运算问题,解题时应按照复数的概念以及运算法则,进行计算即可,是基础题.12.(5分)将某选手的6个得分去掉1个最高分,去掉一个最低分,4个剩余分数的平均分为91.现场作的6个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示:则4个剩余分数的方差为.【分析】根据茎叶图求出平均数,即可计算方差的大小.【解答】解:去掉最低分87,若x≥3,则90+x被去掉,此时剩余的分数为90,90,91,93,平均数为91,满足条件,此时对应的方差为[(90﹣91)2+(90﹣91)2+(91﹣91)2+(93﹣91)2]=(1+1+4)=,故答案为:.【点评】本题主要考查茎叶图的应用,根据条件确定x的范围是解决本题的关键,要求熟练掌握方差的定义和公式.13.(5分)已知直线l与曲线f(x)=x2+3x﹣3+2lnx相切,则直线l的斜率的最小值为7.【分析】求出原函数的导函数,结合函数定义域利用基本不等式求导函数的最小值,则曲线的切线的斜率的最小值可求.【解答】解:函数f(x)=x2+3x﹣3+2lnx的定义域为(0,+∞),其导函数为:,而,当且仅当2x=,即x=1时上式取等号.∴f′(x)min=7.∵直线l与曲线f(x)=x2+3x﹣3+2lnx相切,∴直线l的斜率的最小值为7.故答案为:7.【点评】本题考查利用导数求曲线上过某点的切线方程,曲线上过某点的切线的斜率,就是函数在该点处的导数值,是中档题.14.(5分)设△ABC的内角A,B,C所对边的长分别为a,b,c,若a,b,c成等差数列,且3sinB=5sinA,则∠C等于.【分析】根据a,b,c成等差数列得2b=a+c,再由正弦定理将3sinB=5sinA转化为3b=5a,从而将b、c用a表示,代入余弦定理即可求出cosC,即可得出∠C.【解答】解:∵a,b,c成等差数列,∴2b=a+c,由正弦定理知,3sinB=5sinA可化为:3b=5a,即b=,代入2b=a+c得,c=,由余弦定理得,cosC===,∴C=,故答案为:.【点评】本题考查等差数列的性质,正弦定理和余弦定理的应用,属于中档题.15.(5分)已知圆x2+y2=8,直线l:y=x+b,若圆x2+y2=8上恰有3个点到直线l 的距离都等于,则b=±2.【分析】由题意可得,圆心到直线的距离等于r,即=,由此求得b 的值.【解答】解:∵圆x2+y2=8的圆心为O(0,0),半径r=2,圆x2+y2=8上恰有3个点到直线l的距离都等于,故圆心到直线的距离等于r,即=,∴b=±,故答案为:±2.【点评】本题主要考查直线和圆相交的性质,点到直线的距离公式的应用,判断圆心到直线的距离等于r,是解题的关键,属于中档题.16.(5分)已知点O是边长为1的等边三角形ABC的中心,则(+)•(+)=﹣.【分析】取边长为1的等边三角形ABC的边AB的中点为D,边AC的中点为E,则由题意可得=2,+=2.求得∠AOD=∠AOE=,再根据OD=OE=,利用两个向量的数量积的定义求得(+)•(+)的值.【解答】解:取边长为1的等边三角形ABC的边AB的中点为D,边AC的中点为E,则由题意可得=2,+=2.而由等边三角形的性质可得,OA=2OD,OD⊥AB,∴∠AOD=,同理可得,∠AOE=.再根据OD=OE=•=,可得(+)•(+)=2••2=4=4×××cos=﹣,故答案为:﹣.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,属于基础题.17.(5分)若函数y=f(x)(x∈D)同时满足下列条件:①f(x)在D内为单调函数;②f(x)的值域为D的子集,则称此函数为D内的“保值函数”.(Ⅰ)f(x)=是[1,+∞)内的“保值函数”,则b的最小值为2+ln2;(Ⅱ)当﹣1≤a≤1,且a≠0,﹣1≤b≤1时,g(x)=ax2+b是[0,1]内的“保值函数”的概率为.【分析】(Ⅰ)由求导判断可得f(x)为增函数,进而可得f(x)的值域,根据题意中保值函数的定义,可得≥1,解可得b的范围,即可得答案.(Ⅱ)根据题意,由a、b的范围分析可得其表示的平面区域,计算可得其面积,对于函数f(x),分﹣1≤a<0与0<a≤1两种情况,先分析出f(x)的单调性,由此得到f(x)的值域,进而由保值函数的定义,可得关于a、b的不等式组,分析可得其对应的平面区域,易得其面积,综合两种情况可得f(x)为保值函数对应的平面区域即面积,由几何概型公式计算可得答案.【解答】解:(Ⅰ)根据题意,f′(x)=2x>0,则f(x)在[1,+∞)为增函数,故f(x)的最小值为f(1)=,其最大值不存在,则f(x)的值域为[,+∞),又由f(x)在[1,+∞)是“保值函数”,则有≥1,解可得b≥2+ln2;故b的最小值为2+ln2.(Ⅱ)根据题意,﹣1≤a≤1,且a≠0,﹣1≤b≤1,则a、b确定的区域为边长为2的正方形,其面积为4;对于f(x),有f′(x)=2ax,x∈[0,1],当﹣1≤a<0时,f′(x)<0,f(x)为减函数,则f(x)的最大值为f(0)=b,最小值为f(1)=a+b,则f(x)的值域为[a+b,a],若f(x)为保值函数,则有,其表示的区域为阴影三角形A,面积为,当0<a≤1时,f′(x)>0,f(x)为增函数,则f(x)的最小值为f(0)=b,最大值为f(1)=a+b,则f(x)的值域为[a,a+b],若f(x)为保值函数,则有,其表示的区域为阴影三角形B,面积为;f(x)为保值函数对应区域的面积为1;则f(x)为保值函数的概率为;故答案为:2+ln2;.【点评】本题考查几何概型的计算以及函数单调性的应用,关键是理解保值函数的定义.三、解答题:本大题共5小题,共65分,解答应写出文字说明、证明过程或演算步骤.18.(12分)已知向量=(,sinx),=(cos2x,﹣cosx),x∈R,设函数f (x)=•(Ⅰ)求f(x)的最小正周期及在区间[0,π]上的单调区间;(Ⅱ)若f(θ)=1,求cos2(﹣θ)+sinθcosθ的值.【分析】(Ⅰ)利用向量积的知识,求得f(x)的解析式,进而化简,利用三角函数的图象和性质求得函数的最小正周期T和在区间[0,π]上的单调区间.(Ⅱ)通过f(θ)=1,求得cos(2θ+)的值,代入原式求得答案.【解答】解:(Ⅰ)f(x)=•=cos2x﹣sinxcosx=cos2x﹣sin2x=cos(2x+),∴T==π,当,即时,函数单调增,∵x∈[0,π]∴f(x)在区间[0,π]上的单调减区间为,单调增区间为.(Ⅱ)∵f(θ)=1,∴∴=.【点评】本题主要考查了三角函数恒等变换的应用,三角函数图象和性质.19.(13分)已知函数f(x)=4x,数列{a n}中,2a n+1﹣2a n+a n+1a n=0,a1=1且a n ≠0,若数列{b n}中,b1=2且b n=f()(n≥2).(Ⅰ)求证:数列{}是等差数列,并求出数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.【分析】(Ⅰ)由2a n﹣2a n+a n+1a n=0,得,,由此能证明数列+1{}是首项为1,公差为的等差数列,从而能求出.(Ⅱ)b1=2,当n≥2时,==2n,从而得到,由此利用错位相减法能求出数列{}的前n项和T n.﹣2a n+a n+1a n=0,两边同时除以2a n+1a n,【解答】解:(Ⅰ)由2a n+1得,,∴数列{}是首项为1,公差为的等差数列,(3分)∴,∴.(6分)(Ⅱ)b1=2,当n≥2时==2n当n=1时b1=2也符合∴b n=2n(n∈N*)∴(8分)+4×22+…+(n+1)×2n﹣1①2T n=2×21+3×22+…+n×2n﹣1+(n+1)×2n②(10分)①﹣②得∴(12分)【点评】本题考查等差数列的证明,考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.20.(13分)一个简单多面体的直观图和三视图如图所示,它的正视图和侧视图都是腰长为1的等腰直角三角形,俯视图为正方形.(Ⅰ)求证:PC⊥BD;(Ⅱ)试在线段PD上确定一点E,使得PB∥面ACE;(Ⅲ)求这个简单多面体的表面积.【分析】(Ⅰ)先证明BD⊥面PAC,PC⊂面PAC∴BD⊥PC;(Ⅱ)连接BD交于点O,连接EO.∵EO∥PB,EO⊂面PEC∴PB∥面PEC;(Ⅲ)S表=S△PAB+S△PAD+S四ABCD+S△PBC +S△PDC根据条件计算三角形的面积即可.【解答】(Ⅰ)连接BD,∵俯视图ABCD是正方形∴BD⊥AC又PA⊥面ABCD∴PA⊥BDPA∩AC=A∴BD⊥面PAC PC⊂面PAC∴BD⊥PC (4分)(Ⅱ)存在点E是PD的中点使PB∥面ACE,连接BD交于点O,连接EO.∵EO∥PB,EO⊂面PEC∴PB ∥面PEC (8分) (Ⅲ)S △PAB =S △PAD =×1×1=S 四ABCD =1…(11分) ∵BC ⊥BA BC ⊥PA ∴BC ⊥面PAB∴BC ⊥PB ,S △PBC =×BC ×PB=×1×=…(13分)同理S △PDC =×CD ×PD=×1×=∴S 表=S △PAB +S △PAD +S 四ABCD +S △PBC +S △PDC =++1++=2+…(13分)【点评】本题考查线线垂直,线面平行,及几何体的表面积,考查空间想象能力,及运算能力.21.(13分)设函数f (x )=a (x ﹣1),g (x )=(x +b )lnx (a ,b 是实数,且a >0)(Ⅰ)若g (x )在其定义域内为单调增函数,求b 的取值范围;(Ⅱ)当b=1时,若f (x )≤g (x )在[1,+∞)上恒成立,求a 的取值范围. 【分析】(Ⅰ)求函数的导数,利用g (x )在其定义域内为单调增函数,转化为g′(x )≥0在(0,+∞)上恒成立 ,即可求b 的取值范围;(Ⅱ)将不等式恒成立,转化为求函数的最值问题,利用导数即可得到结论. 【解答】解:(Ⅰ)由题意得g′(x )≥0在(0,+∞)上恒成立, 即g′(x )=在(0,+∞)上恒成立.∴(x >0).∴b≥﹣xlnx﹣x.令h(x)=﹣xlnx﹣x,只需b≥h(x)max h′(x)=﹣lnx﹣1﹣1=﹣lnx﹣2.令h′(x)>0,得0<x<e﹣2.令h′(x)<0,得x>e﹣2.∴h(x)在(0,e﹣2)递增,在(e﹣2,+∞)递减.∴.∴b≥e﹣2.(Ⅱ)当b=1时,a(x﹣1)≤(x+1)lnx在[1,+∞)上恒成立,等价于在[1,+∞)上恒成立,令,则ϕ(1)=0且,因x2项系数为1,则由△=4(1﹣a)2﹣4≤0,得0<a≤2,故当0<a≤2时,ϕ′(x)≥0恒成立,∴ϕ(x)在[1,+∞)上单调递增.∴ϕ(x)≥ϕ(1)=0,即ϕ(x)≥0在[1,+∞)上单调递增.当a>2时,令ϕ′(x)=0,得.∵a>2,∴x1>1而x2<1,∴,故当时,ϕ'(x)<0∴使得ϕ(x0)<0综上可得0<a≤2即为所求.【点评】本题主要考查函数单调性和最值与导数之间的关系,考查学生的运算能力,综合性较强,难度较大.22.(14分)若椭圆C:+=1(a>b>0)的离心率e为,且椭圆C的一个焦点与抛物线y2=﹣12x的焦点重合.(1)求椭圆C的方程;(2)设点M(2,0),点Q是椭圆上一点,当|MQ|最小时,试求点Q的坐标;(3)设P(m,0)为椭圆C长轴(含端点)上的一个动点,过P点斜率为k的直线l交椭圆与A,B两点,若|PA|2+|PB|2的值仅依赖于k而与m无关,求k 的值.【分析】(1)先求出焦点的坐标,再由离心率求得半长轴的长,从而得到短半轴长,即可写出椭圆的标准方程;(2)用坐标表示出|MQ|2,利用配方法可得结论;(3)设出直线方程,代入椭圆方程,利用韦达定理,表示出|PA|2+|PB|2,根据|PA|2+|PB|2的值仅依赖于k而与m无关,可得等式,从而可求k的值.【解答】解:(1)由题意可得:抛物线y2=﹣12x的焦点(﹣3,0),∵=,∴a=5,∴=4∴椭圆C的方程为;(2)设Q(x,y),﹣5≤x≤5∴|MQ|2=(x﹣2)2+y2=∵对称轴为x=>5,∴x=5时,|MQ|2取得最小值∴当|MQ|最小时,点Q的坐标为(5,0);(3)设A(x1,y1),B(x2,y2),直线l:y=k(x﹣m)直线代入椭圆方程,消去y可得(25k2+16)x2﹣50mk2x+25m2k2﹣400=0∴x1+x2=,x1x2=∴y1+y2=k(x1+x2)﹣2km=﹣,y1y2=∴|PA|2+|PB|2=+=(k2+1)•∵|PA|2+|PB|2的值仅依赖于k而与m无关,∴512﹣800k2=0,解得k=.【点评】本题考查椭圆的标准方程,考查配方法的运用,考查直线与椭圆的位置关系,考查学生的计算能力,正确运用韦达定理是关键.。
2018年普通高等学校招生全国统一考试高中数学模拟测试试题文
2018年普通高等学校招生全国统一考试模拟卷文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若集合{}1,2lg<=⎭⎬⎫⎩⎨⎧-==x x N x x y x M ,则=⋂N C M R A.)2,0( B.(]2,0 C.[)2,1 D. ()+∞,02. 已知复数()z a i a R =+∈,若4z z +=,则复数z 的共轭复数z = A .2i + B .2i - C .2i -+ D .2i --3. 设等差数列{}n a 的前n 项和为n S ,若81126a a =+,则9S = A .27 B .36 C.45 D .544. 已知命题p :“a b >”是“22ab>”的充要条件;q :x R ∃∈,ln x e x <,则A .¬p ∨q 为真命题B .p ∧¬q 为假命题C .p ∧q 为真命题D .p ∨q 为真命题5.已知角α的终边经过点()12,5--P ,则⎪⎭⎫⎝⎛+απ23sin 的值等于 A .513- B .1213- C .513 D .12136.某几何体的三视图如图所示,图中每一个小方格均为正方形,且边长为1,则该几何体的体积为A .8π B.323πC .283π D .12π 7. 若程序框图如图所示,则该程序运行后输出k 的值是 A .5 B .6 C.7 D .88.一组数据共有7个数,记得其中有10、2、5、2、4、2,还有一个数没记清,但知道这组数的平均值、中位数、众数依次成等差数列,这个数的所有可能值的和为A. 11- B. 3 C. 9 D. 179. 函数2()(3)lnf x x x=-⋅的大致图象为10.正方体的棱长为1,点P,Q,R分别是棱,,的中点,以为底面作正三棱柱,若此三棱柱另一底面的三个顶点也都在该正方体的表面上,则这个正三棱柱的高为A.22B. 2C.33D.3211.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y﹣4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是A.B.C.D.12.已知()f x是定义在R上的偶函数,且x R∈时,均有()()32f x f x+=-,()28f x≤≤,则满足条件的()f x可以是A.()2,8,Rx Qf xx C Q∈⎧=⎨∈⎩B.()53cos5xf xπ=+C. ()263cos5xf xπ=+ D.()2,08,0xf xx≤⎧=⎨>⎩二.填空题:(本题共4小题,每小题5分,共20分)13.某校今年计划招聘女教师x人,男教师y人,若,x y满足2526x yx yx-≥⎧⎪-≤⎨⎪<⎩,则该学校今年计划招聘教师最多人.14. 已知双曲线﹣=1(a >0,b >0)的右焦点为F ,焦距为8,左顶点为A ,在y 轴上有一点B (0,b ),满足•=2a ,则该双曲线的离心率的值为 .15. 已知ABC ∆的内角,,A B C 的对边分别是a b c 、、,且222()a b c +-(cos cos )a B b A ⋅+abc =,若2a b +=,则c 的取值范围为 .16.已知数列{}n a 的前n 项和为2n S tn =()t ∈R ,且81215,1n n a b a +==+,若不等式512n b n p p a +>+恒成立,则正实数p 的取值范围是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分) 已知向量()1cos 3sin cos 22a x b x x x R ⎛⎫=-=∈ ⎪⎝⎭,,,,,设函数()f x a b =.(I )求()f x 的表达式并完成下面的表格和画出()f x 在[]0π,范围内的大致图象;0 2ππ32πxπ()f x(II )若方程()0f x m -=在[]0π,上有两个根α、β,求m 的取值范围及αβ+的值. 18.(本小题满分12分)已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查.抽取的100人的数学与地理的水平测试成绩如下表:人数数学 优秀良好 及格 地理优秀 7 20 5 良好 9 18 6 及格a4b中数学成绩为良好的共有20+18+4=42人.(I )在该样本中,数学成绩优秀率是30%,求a ,b 的值;(II )在地理成绩及格的学生中,已知a ≥10,b ≥7,求数学成绩优秀的人数比及格的人数少的概率.19.(本小题满分12分)如图,三棱柱111ABC A B C -中, AB ⊥平面11AAC C , 1AA AC =.过1AA 的平面 交11B C 于点E ,交BC 于点F .(I )求证: 1A C ⊥平面1ABC ; (II )求证: 1//AA EF ;(III )记四棱锥11B AA EF -的体积为1V ,三棱柱111ABC A B C -的体积为V .若116V V =,求BFBC的值.20. (本小题满分12分)在平面直角坐标系xOy 中,已知椭圆E :1by a x 2222=+(a >b >0),圆O :x 2+y 2=r 2(0<r <b ).当圆O 的一条切线l :y=kx+m 与椭圆E 相交于A ,B 两点. (I )当k=﹣21,r=1时,若点A ,B 都在坐标轴的正半轴上,求椭圆E 的方程; (II )若以AB 为直径的圆经过坐标原点O ,探究a ,b ,r 是否满足222r 1b 1a 1=+,并说明理由.21.(本小题满分12分)已知函数()ln x x f x =,()g x x a =+.(I )设()()()h f x x g x =-,求函数()y h x =的单调区间; (II )若10a -<<,函数()()()x g x M x f x ⋅=,试判断是否存在0(1,)x ∈+∞,使得0x 为函数()M x 的极小值点.(二)选考题:共10分。
2018届普通高等学校招生全国统一考试高三数学模拟试题(一)文
普通高等学校招生全国统一考试模拟试题文科数学(一)本试卷满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上.2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题纸上,写在本试卷上无效.3.考试结束后,将本试卷和答题纸一并交回.一、选择题:本题共12小题。
每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,420,A x x B x x =>=-≤则A .{}1AB x x ⋂=>B .A B ⋂=∅C .{}1A B x x ⋃=>D .A B R ⋃=2.已知数据12340,,,x x x x ⋅⋅⋅,是某班40名同学某次月考的化学成绩(单位:分),现将这40名同学的化学成绩的平均数x 与这40个数据合在一起,并将这41个数据的平均数、中位数、众数分别与原来的平均数、中位数、众数相比较,则下列说法中正确的是A .平均数不变,中位数、众数变大B .平均数变大,中位数、众数可能不变C .平均数变小,中位数、众数可能不变D .平均数不变,中位数、众数可能不变3.下列各式的运算结果中,在复平面内对应的点位于第二象限的是A .()1i i -+B .i(1+i)2C .()()2211i i -+D .1i i-4.剪影是我国剪纸艺术中的一种古老形式,通过外轮廓表现人物和物象的形状,由于受轮廓造型的局限,一般以表现人物或其他物体的侧面居多.如图是一幅长50cm 、宽40cm 的矩形剪影,为估算剪影中美女图案的面积,现向剪影内随机投掷1200粒芝麻(假设芝麻均落在剪影内),其中恰有300粒芝麻落在美女图案内,据此估计美女图案的面积为A .250cm 2B .500cm 2C .1000cm 2D .20003cm 2 5.已知双曲线22:14x C y -=的左、右焦点分别为12,F F ,点A 在双曲线C 上,且2AF x ⊥轴,点B 与点A 关于原点O 对称,则四边形12AF BF 的面积为ABCD6.已知实数,x y 满足约束条件10,40,20,x y y x y z x y --≤⎧⎪+-≥≤⎨⎪-≤⎩若恒成立,则实数z 的最大值为 A .35 B .23 C .1 D .537.如图,在正方体ABCD —A 1B 1C 1D 1中,P 为线段AD 的中点,Q 为线段B 1C 1上的动点,则下列说法中错误的是A .线段PQ 与平面CDD 1C 1可能平行B .当Q 为线段B 1C 1的中点时,线段PQ 与DD 1所成的角为4π C.PQ ≥D .1CD PQ 与不可能垂直8.函数()2cos sin 2x x f x x-=的部分图像大致为9.已知函数()ln 4x f x x =-,则下列说法中正确的是 A .()f x 在区间(),0-∞内单调递增 B .()f x 在区间(4,+∞)内单调递增C .()f x 的图像关于点(2,0)对称D .()f x 的图像关于直线x =2对称 10.执行如图所示的程序框图,若输出的S 的值为负数,则①②中可以分别填入A .“S=1”“n <9?”B .“S=1”“n <8?”C .“S=2”“n <99?”D .“S=2”“n<100?”11.如图,在平面四边形ABCD 中,AD=2,sin sin 14CAD BAC ∠=∠+ cos 2,BC B BC B D ABC π=+=∆且,则的面积的最大值为A B C .7 D .1412.已知椭圆()2221024x y C b b+=<<:的左焦点为F ,点()4,0M -,斜率不为0的直线l 经过点F 与椭圆C 交于A ,B 两点,若直线MA 与直线MB 关于x 轴对称,则椭圆C 的离心率是A .14B .12C .34D 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()()1,1,3,a b x ==,若a b a -在方向上的投影是0,则x 的值为_________.14.曲线()24f x x x=-在点()()1,1f 处的切线l 与坐标轴围成的三角形的面积为_________. 15.已知()3,,tan 20183,cos 24ππαππαα⎛⎫⎛⎫∈-=+= ⎪ ⎪⎝⎭⎝⎭则___________. 16.已知菱形ABCD 的边长为2,A=60°,将△ABD 沿对角线BD 折起,使得AC=3,则四面体ABCD 的外接球的表面积为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题.每个试题考生都必须作答.第22,23题为选考题。
最新整理2018年高考文科数学模拟试卷(共七套)(含答案)汇总
的产品为优质品,与中位数误差在± 15 范围内(含± 15)的产品为合格品(不 包括优质品),与中位数误差超过± 15 的产品为次品.企业生产一件优质品可获
利润 20 元,生产一件合格品可获利润 10 元,生产一件次品要亏损 10 元 (Ⅰ)求该企业 2016 年一年生产一件产品的利润为 10 的概率;
(Ⅰ)求椭圆方程;
(Ⅱ)过点 P(0, )的动直线 l 与椭圆 E 交于的两点 M,N(不是的椭圆顶点) .求
证: ? ﹣7
是定值,并求出这个定值.
21.已知曲线 f (x)=aex﹣ x+b 在 x=1 处的切线方程为 y=(e﹣1)x﹣ 1 (Ⅰ)求 f( x)的极值;
(Ⅱ)证明: x>0 时,
A.
B.
C.
D.
3.设命题 p: ? x> 0, x﹣ lnx>0,则¬ p 为( ) A.? x> 0, x﹣lnx≤0 B.? x>0,x﹣lnx<0 C.? x0>0,x0﹣lnx0> 0 D.? x0>0,x0﹣lnx0≤0
4.已知 2sin2 α =+1cos2 α,则 tan(α+ )的值为( )
(Ⅰ)求曲线 C 在极坐标系中的方程; (Ⅱ)求直线 l 被曲线 C 截得的弦长.
[ 选修 4-5:不等式选讲 ] 23.已知函数 f (x)=| x﹣ |+| x+2a| ( a∈ R,且 a≠0) (Ⅰ)当 a=﹣1 时,求不等式 f(x)≥ 5 的解集; (Ⅱ)证明: f(x)≥ 2 .
2018 年高考文科数学模拟试卷(一)
(考试时间 120 分钟 满分 150 分) 一、选择题(本题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个 选项中,只有一项是符合题目要求的) 1.设集合 A={ x| x2﹣3x< 0} ,B={ x| x2>4} ,则 A∩B=( ) A.(﹣ 2,0) B.(﹣ 2,3) C.(0,2) D.(2,3) 2.复数 z 满足:( 3﹣ 4i)z=1+2i,则 z=( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AC= BC=
1 2 AA1
,D 是侧棱
(Ⅰ)证明:平面 BDC1⊥平面 (Ⅱ)平面 BDC1 分此棱柱为
第 5 页 共 12 页
2018 高考文科数学模拟题 1
cab
(7)某同学想求斐波那契数列 0,1,1,2,3,5 …(从第三项起每一项
S Sc
等于前两项的和)的前 10 项的和,他设计了一个程序框图,那么在
ab
空白矩形框和判断框内应分别填入的语句是( )
i i 1
A. b c,i 10 C. b c,i 9
B. c a,i 10 D. c a,i 9
=( ) (A)
3
(B) 2 3
(C)
(10)如图是 表面积为
A.7π cm2 C.9π cm2
B.8π cm2 D.11π cm2
(11)已知函数
f
x
1 2
a
3
sin
x
3 2
a
1
2018 高考文科数学模拟题 1
到函数 g x 的图象,若对任意 x R
,都有 g x
g
4
成立,则 a 的值为(
(14)已知抛物
线与双曲
线
焦点 F,O 为坐标
有共同的
原点,P 在 X 轴上方且在双曲线
上,则 的最小值为__________________
(15)在某条件下的汽车测试中,驾驶员在一次加满油后的连续行驶过程中从汽车仪表盘
第 4 页 共 12 页
得到如下信息: 时间 油耗(升/100 公里) 10: 9。5 00 11:00 9.6
1 2
, bn1
n 1 2n bn
。
(1)求数列an ,bn 的通项公式;
(2)记
Tn
为数列{bn}的前
n
项和,
ห้องสมุดไป่ตู้
f
(n)
2Sn (2 Tn ) n2
,试问
f
(n)
是否存在最大值,若存
在,求出最大值,若不存在请说明理由.
(18)(本小题满分 12 分)
某班同学利用国庆节进行社会实践,对
岁的人群随机抽取 人进行了一次生活习惯
是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低
碳族”,得到如下统计表和各年龄段人数频率分布直方图:
(Ⅰ)补全频率分布直方图并求 、 、 的值;
(Ⅱ)从年龄段在
的“低碳族”中采用分层
选取 人作为领队,求选取的 名领队中恰有 1 人
(19)(本小题满分 12 分)如图:三棱柱 ABC-A
第 1 页 共 12 页
2018 高考文科数学模拟题 1
016 年全国高考文科数学模拟试题五
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至 5 页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。 3。全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回。
2018 高考文科数学模拟题 1
2018 高考文科数学模拟题 1 编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我 们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018 高考文科数学 模拟题 1)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈, 这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步, 以下为 2018 高考文科数学模拟题 1 的全部内容。
)
A. 1
B. 1
C. 2
D. 2
(12)已知函数
f
x
x
1 2
x
0
若函数 g x f x x a 在 R 上恰有两个相异零点,
f x 1 x 0
则实数 a 的取值范围为( )
A.1,
B. 1,
C. , 0
D. ,1
第Ⅱ卷
二、填空题(本大题共 4 小题,每小题 5 分) (13)《九章算术》中有一题:今有女子善织,日自倍,五日织五尺,问日织几何。该女子 首日织布为________________________(尺)
第Ⅰ卷 一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的。 (1)已知全集 U 为实数集,集合 A={x|x2﹣2x﹣3<0},B={x|y=ln(1﹣x)},则图中 阴影部分表示的集合为( )
(2)已知 为虚数单位,若复数 满 足 Z 是复数 Z
2018 高考文科数学模拟题 1
(6)设 关 于 x,y 的 不 等
式组表示的平面区域内存在点 P(x0,y0),
满足 x0-2y0=2,则 m 的取值范围是(
A.(-∞, 4 ) 3
C.(-∞, 2 ) 3
)
B.(-∞, 1 ) 3
D.(-∞, 5 ) 3
出出 a 0,b 1,i 3
S ab
可继续行驶距 300
220
注:
,
. ①行驶了 80 公里; ②行驶不足 80 公里; ③平均油耗超过 9。6 升/100 公里; ④平均油耗恰为 9.6 升/100 公里; ⑤平均车速超过 80 公里/小时. 从以上信息可以推断在 10:00—11:00 这一小时 号).
2018 高考文科数学模拟题 1
A.
B.
C.
D.
(3) 空间四边形 OABC 中,
,
,
的中点,则 =( )
A.
B.
C.
D.
(4)如图,用一边长为 三角形,做成一个蛋巢,将
蛋巢形状保持不变,则鸡
A.{x|1≤x<3} B.{x|x<3}
C.{x|x≤﹣1}
D.{x|﹣1<x<1}
第 2 页 共 12 页
A.
(5)函数
B.
C.
的图象大致是(
出
出 出出 S
出出
(8)若函数 y ax2 1 ( a 0 且 a 1)的图象经过定点 m, n ,且过点 Q m 1, n 的直线 l
第 3 页 共 12 页
被圆 C : x2 y2 2x 2 y 7 0 截得的弦长为 3 2 ,
A. 1或 7
B. 7 或 4
C.
3
(9) 设 ABC 的 内 角 A, B,C 所 对 边 的 长 分 别 为
(16)设 a,b > 0, a +b = 5 ,则 a +1+ b+3 的最大值为 ________。
三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)
(17)(本小题满分 12 分)
已知等差数列an
,的前
n
项和为
Sn,且
a2=2,S5=15,数列bn 满足 b1