总体中生日不相同的概率

合集下载

一些很有趣的概率学问题

一些很有趣的概率学问题

一些很有趣的概率学问题说到概率,有些好玩的东西不得不提。

比如,你知道吗,23个人中至少两个人生日相同的概率竟然超过了1/2;假如你们班上有50个人的话,那更不得了,至少两人生日相同的概率达到97% !如果你会计算这个概率问题的话,你可以亲自证实这一点。

本文适宜的读者是知道上述问题怎么算的高中朋友,上述问题也是高中阶段学的一些基本概率知识。

上面的问题都是简单概率,它包含了一个最基本的原则,即使没有系统地学习过,平常人们也都在无形之中使用它:概率等于你要算的东西除以总的数目。

比如。

我们要计算23个人中任何两个人都不在同一天生的概率。

假设2月29日与其它日期出现概率相同的话(这是为了便于计算我们做出的假设,它有悖于常理),那么它的概率为A(366,23)/366^23。

它约为0.493677。

因此,至少两人在同一天生的概率为1-0.493677=0.506323。

当然,对于“你要算的东西除以总的数目”的认识是片面的,比如“投两个骰子出现的数字和从2到12共有11种可能,问数字和大于10的概率”这一问题的答案并不是2/11,因为这11个点数和出现的概率不是相等的,我们只能从投出的两个数字共6*6=36种情况中进行统计,可能的情况只有(5,6)、(6,5)和(6,6) (不会有人说还有(6,7)之类的吧),答案应该是3/36=1/12。

这些都是废话,我不细说了。

但是,你有想过这个问题吗:要是这些数目是无穷的怎么办?换句话说,统计的东西不是“离散”的怎么办?比如看这样一个问题。

明天早上我要和MM 约会,但是具体见面时间我忘了,好像是8:00-9:00的某个时候。

那么我随便在这个时段中选一个时间去等MM,最多等她半个小时,正好能见到MM的概率是多少(假设MM先到的话不会等我)。

这个问题和我们平时见到的问题不同的地方在于,它的“情况”是连续的,不是离散的,不能逐一统计数目。

咋办呢?我们注意到,我的时间随机取一个,MM的时间随机取一个,对于某些组合我们是有缘分的(这些组合无穷多)。

2015年最新高自考概率选择题去重检索

2015年最新高自考概率选择题去重检索

A1、α=0.01,请根据下表推断显著性(B ))(已知F0.05(1,8)=5.32)B.显著C1、从1,2,…,100中任取一个数,既能被4整除又能被3整除的概率是(C)C.2/252、从1,2,3,4四个数中随机地取一个,用X表示,再从1,…,X中随机取一个,用Y表示。

P(X=3,Y=2)=(D )D.1/123、从某厂生产的滚珠中随机抽取10个,测得滚珠的直径(单位:mm)如下:14.6 15.0 14.7 15.1 14.9 14.8 15.0 15.1 15.2 14.8若滚珠直径服从正态分布,并且已知(mm),求滚珠直径均值μ的置信水平为95%的置信区间(C )C.(14.821,15.019)4、从某厂生产的滚珠中随机抽取10个,测得滚珠的直径(单位:mm)如下:14.6 15.0 14.7 15.1 14.9 14.8 15.0 15.1 15.2 14.8若滚珠直径服从正态分布,求滚珠直径均值的置信水平为95%的置信区间(C)C.(14.782,15.058)D1、当样本含量增大时,以下说法正确的是(B )B.样本均数标准差会变小2、对一组观测值(x i,y i)(i=1,2,…,n),如果y与x间的回归方程为,则(B)B.称y对x的一元线性回归方程3、对总体X~N(μ,σ2)的均值μ作区间估计,得到置信度为95%的置信区间,其意是指这个区间(C)C.有95%的机会含μ的值G1、关于假设检验,下列那一项说法是正确的(B )B.采用配对t检验还是成组t检验是由实验设计方法决定的H1、盒子中有8个红球和4个白球,每次从盒子中任取一球,不放回地抽取两次,试求取出的两个球都是红球的概率(A ).A.14/332、回归分析方法可以判断一个随机变量与另一个变量之间是否存在某种(C)关系。

C.相关J1、将N个球随机地放入n个盒子中(n>N),那么某指定的盒子中恰有m(m (A)2,那么每个盒子最多有一个球的概率(B )2、甲乙两人相约8-12点在预定地点会面。

概率论与数理统计

概率论与数理统计

《概率论与数理统计》姓名:黄淑芹学号:1543201000276班级:数学与应用数学E时间:2017年6月概率论与数理统计摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。

生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。

数理统计在人们的生活中也不断的发挥重要的作用,假如没有统计学,人们在收集资料和进行各项的大型的数据收集工作是特别困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,因此统计也是一门特别实用的科学,应该受到大伙儿的重视。

关键词:概率、统计、数学期望、方差、实际问题、应用概率论与数理统计是研究随机现象统计规律的一门数学学科,是对随机现象的统计规律进行演绎和归纳的科学。

随着社会的不断发展,概率论与数理统计的知识越来越重要,运用抽样数据进行推断差不多成为现代社会一种普遍适用同时强有力的考虑方式。

目前,概率论与数理统计的特别多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。

本文将就概率论与数理统计的方法与思想,在日常生活中的应用展开一些讨论,,推导出某些表面上并非直观的结论,从中能够看出概率方法与数理统计的思想在解决问题中的高效性、简捷性和实用性。

(一)、概率要学习与概率有关的知识,首先要明白事件的定义与分类及与它们有关的运算性质:随机事件在抛掷一枚均匀硬币的试验中,“正面向上”是一个随机事件,可用A={正面向上}表示、【1】随机试验中的每一个估计出现的试验结果称为这个试验的一个样本点,记作ωi。

全体样本点组成的集合称为这个试验的样本空间,记作Ω、即Ω={ω1,ω2,…,ωn,…}。

仅含一个样本点的随机事件称为基本事件,含有多个样本点的随机事件称为复合事件。

小谈生活中有趣的数学概率现象

小谈生活中有趣的数学概率现象

小谈生活中有趣的数学概率现象一、概率学科起源与发展关于概率的应用与研究很早就有,但真正正式关于随机现象的概率论的研究出现在15世纪之后,当时保险业已经蓬勃发展但很不成熟,保险公司要承担很大的不确定性风险,渴望有精确的计算方法指导保险风险计算,这新方法的渴望却因为15世纪末大规模赌博现象的出现而得到解决。

法国数学家帕斯卡和费马系统分析了赌徒朋友提出的“分赌注”问题,并在讨论中形成了概率论中的一个重要概念—数学期望。

荷兰数学家惠更斯在听闻他们的讨论过程后整理出版了一本书《赌博中的计算》。

之后伯努利发表了《猜度术》,棣莫弗最早使用正态曲线,拉格朗日提出了误差理论,到了1812年拉普拉斯总结之前概率论的众多论述发表了《概率的解析理论》,将古典概率论和数学强有力的结合在一起,并做了很多数学证明,并在书中讨论了概率在保险业、天文学、度量衡甚至法律等方面的应用,自此概率论开始广泛使用在生活中各个方面。

二、概率统计中的一些常用概念(1)小概率事件小概率事件一般就是指发生概率很小的事件,在具体的事件中小概率有不同的标准,一般根据事件的重要程度多采用0.01和1/ 50.05两个阈值,这两个值也被成为小概率标准。

小概率事件和不可能事件是有很大区别的,小概率事件虽然发生的可能性很小,但依旧存在发生的概率,下面通过一个简单的计算分析下两者的不同。

假设事件甲发生的可能性很小,为小概率事件,可能性为P甲,很小接近于零,但只要这个事件重复进行下去就总会有可能发生。

因为这件事上一次不发生的概率为P=(1-P甲),前n 次都不发生的概率为(1-P甲)n,当事件重复进行下去,即n→∞,则前n次发生事件甲的概率则为1-(1-P甲)n→1,事件甲必然会发生。

(2)墨菲定律墨菲定理是由美国人爱德华·墨菲提出的,它其实是一种心理效应,如果有一种选择方式将导致事件结果变坏,那么无论这种方式被采纳的可能性有多小,则必定有人会做出这种选择。

考研数学三(概率统计)模拟试卷11(题后含答案及解析)

考研数学三(概率统计)模拟试卷11(题后含答案及解析)

考研数学三(概率统计)模拟试卷11(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.以下4个结论:(1)教室中有r个学:生,则他们的生日都不相同的概率是(2)教室中有4个学生,则至少两个人的生日在同一个月的概率是(3)将C,C,E,E,J,N,S共7个字母随机地排成一行,恰好排成英文单词SCIENCE的概率是(4)袋中有编号为1到10的10个球,今从袋中任取3个球,则3个球的最小号码为5的概率为正确的个数为( )A.1B.2C.3D.4正确答案:C解析:对于4个结论分别分析如下:(1)这是古典概型中典型的随机占位问题.任意一个学生在365天中任何一天出生具有等可能性,此问题等价于“有365个盒子,每个盒子中可以放任意多个球,求将r个球随机放入不同的r个盒子中的概率”.设A1=“他们的生日都不相同”,则(2)设A2=“至少有两个人的生日在同一个月”,则考虑对立事件,(3)设A1=“恰好排成SCIENCE”,将7个字母排成一列的一种排法看做基本事件,所有的排法:字母C在7个位置中占两个位置,共有C72种占法,字母E在余下的5个位置中占两个位置,共有C52种占法,字母I,N,S剩下的3个位置上全排列的方法共3 !种,故基本事件总数为C72C523 !=1 260,而A3中的基本事件只有一个,故(4)设A4=“最小号码为5”,则综上所述,有3个结论正确,选择(C).知识模块:概率论与数理统计2.设X1,X2为独立的连续型随机变量,分布函数分别为F1(x),F2(x),则一定是某一随机变量的分布函数的为( )A.F1(x)+F2(x)B.F1(x)一F2(x)C.F1(x)F2(x)D.F1(x)/F2(x)正确答案:C解析:用排除法.因为F1(x),F2(x)都是分布函数,所以知识模块:概率论与数理统计3.设二维连续型随机变量(X,Y)的概率密度为f(x,y),则随机变量Z=Y —X的概率密度fZ(z)为( )A.fZ(z)=∫-∞+∞f(x,z-x)dxB.fZ(z)=∫-∞+∞f(x,x-x)dxC.fZ(z)=∫-∞+∞f(x,z+x)dxD.fZ(z)=∫-∞+∞f(-x,z+x)dx正确答案:C解析:记Z的分布函数为FZ(z),则其中Dz={(x,y)|y—x≤z)如图3-1的阴影部分所示,将②代入①得FZ(z)=∫-∞+∞dx∫-∞z f(x,u+x)du=∫-∞z du ∫-∞+∞f(x,u+x)dx.知识模块:概率论与数理统计4.设随机向量(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X与Y的相关系数为,则( )A.B.C.D.正确答案:D解析:知识模块:概率论与数理统计填空题5.事件A与B相互独立,P(A)=a,P(B)=b,如果事件C发生必然导致A 与B同时发生,则A,B,C都不发生的概率为________ .正确答案:(1一a)(1—b)解析:知识模块:概率论与数理统计6.已知每次试验“成功”的概率为p,现进行n次独立试验,则在没有全部失败的条件下,“成功”不止一次的概率为________.正确答案:解析:这是独立重复试验概型,记A=“成功”,则P(A)=p,X=“n次试验中A发生的次数”,则X~B(n,p),“在没有全部失败的条件下,‘成功’不止一次”的概率为知识模块:概率论与数理统计7.设二维随机变量(X,Y)的概率密度为则对x>0,fY|X(y|x)=________.正确答案:解析:由f(x,y)的表达式知X与y相互独立,且关于X与关于Y的边缘概率密度分别为知识模块:概率论与数理统计8.设随机变量X和Y均服从,且D(X+Y)=1,则X与Y的相关系ρ=________.正确答案:1解析:由题设知识模块:概率论与数理统计9.设二维随机变量(X,Y)的分布律为则X与Y的协方差Cov(X,Y)为________.正确答案:解析:关于X与关于Y的边缘分布律分别为知识模块:概率论与数理统计10.设X1,X2是来自总体N(0,σ2)的简单随机样本,则查表得概率等于________ .正确答案:0.9解析:(X1,X2)服从二维正态分布,所以(X1+X2,X1一X2)也服从二维正态分布,并且由X1+X2~N(0,2σ2),X1一X2~N(0,2σ2)知Cov(X1+X2,X1一X2)=D(X1)一D(X2)=0,即X1+X2与X1一X2相互独立.此外,知识模块:概率论与数理统计11.设总体X的概率密度为X1,X2,…,Xn是来自X的样本,则未知参数θ的最大似然估计值为________ .正确答案:解析:似然函数为知识模块:概率论与数理统计12.设总体X~N(a,2),y~N(b,2),且独立,由分别来自总体X和Y 的容量分别为m和n的简单随机样本得样本方差SX2和SY2,则统计量服从的分布是________ .正确答案:γ2(m+n一2)解析:因为由题设条件知,T1和T2分别服从自由度为m一1和n一1的γ2分布且相互独立,所以T服从自由度为(m一1)+(n一1)=m+n一2的γ2分布.知识模块:概率论与数理统计13.设总体X的密度函数为其中θ>0为未知参数,又设x1,x2, (x)是X的一组样本值,则参数θ的最大似然估计值为________ .正确答案:解析:似然函数为知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

概率统计练习册习题解答

概率统计练习册习题解答

苏州科技学院 《概率论与数理统计》活页练习册习题解答信息与计算科学系 概率论与数理统计教材编写组2013年12月习题1-1 样本空间与随机事件1.选择题(1)设,,A B C 为三个事件,则“,,A B C 中至少有一个不发生”这一事件可表示为( D ) (A )ABAC BC (B )A B C (C )ABC ABC ABC (D )A B C(2)设三个元件的寿命分别为123,,T T T ,并联成一个系统,则只要有一个元件正常工作则系统能正常工作,事件“系统的寿命超过t ”可表示为( D )A {}123T T T t ++>B {}123TT T t >C {}{}123min ,,T T T t >D {}{}123max ,,T T T t >2.用集合的形式表示下列随机试验的样本空间Ω与随机事件A :对目标进行射击,击中后便停止射击,观察射击的次数;事件A 表示“射击次数不超过5次”。

解:{} ,,,=321Ω;{}54321A ,,,,=。

3.设某工人连续生产了4个零件,i A 表示他生产的第i 个零件是正品(4,3,2,1=i ),试用i A 表示下列各事件:(1)只有一个是次品;(2习题1-2 随机事件的概率及计算1.填空题(1)已知B A ⊂,4.0)(=A P ,6.0)(=B P ,则)(A P)(AB P=)(B A P 0 ,)(B A P(2)设事件A 与B 互不相容,()0.4,()0.3P A P B ==,则()P AB ()P A B 0.62.选择题(1)如果()0P AB =,则( C )(A) A 与B 互不相容 (B) A 与B 互不相容(C) ()()P A B P A -= (D) ()()()P A B P A P B -=- (2) 两个事件A 与B 是对立事件的充要条件是( C )(A ) )()()(B P A P AB P = (B )1)(0)(==B A P AB P 且 (C ) Ω=∅=B A AB 且 (D )∅=AB 3.一批晶体管共40只,其中3只是坏的,今从中任取5只,求 (1)5只全是好的的概率; (2)5只中有两只坏的的概率; (3)5只中至多有一只坏的概率。

《概率论与数理统计》习题及答案__第一章 2

《概率论与数理统计》习题及答案__第一章 2
《概率论与数理统计》习题及答案
第 一 章
1.写出下列随机试验的样本空间及下列事件中的样本点:
(1)掷一颗骰子,记录出现的点数. ‘出现奇数点’;
(2)将一颗骰子掷两次,记录出现点数. ‘两次点数之和为10ห้องสมุดไป่ตู้, ‘第一次的点数,比第二次的点数大2’;
(3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果, ‘球的最小号码为1’;
12.设事件 与 互不相容, ,求 与

因为 不相容,所以 ,于是
13.若 且 ,求 .

由 得
14.设事件 及 的概率分别为 ,求 及

.
15.设 ,且 仅发生一个的概率为0.5,求 都发生的概率。
解1由题意有
,
所以
.
解2 仅发生一个可表示为 ,故
所以

16.设 ,求 与 .
解 ,
所以
,



所以
(4)将 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况, ‘甲盒中至少有一球’;
(5)记录在一段时间内,通过某桥的汽车流量, ‘通过汽车不足5台’, ‘通过的汽车不少于3台’。
解(1) 其中 ‘出现 点’ ,

(2)
};
;

(3)
(4)
,其中‘ ’表示空盒;

(5) 。
2.设 是随机试验 的三个事件,试用 表示下列事件:
解:半圆域如图
设 ‘原点与该点连线与 轴夹角小于 ’
由几何概率的定义
21.把长为 的棒任意折成三段,求它们可以构成三角形的概率.
解1设 ‘三段可构成三角形’,又三段的长分别为 ,则 ,不等式构成平面域 .

李章颂 关于“生日中的概率问题”的研究方案

李章颂 关于“生日中的概率问题”的研究方案

关于“生日中的概率问题”的研究方案
一、问题提出
在我们班,我和戴雨希是同一天生日,另外,黄烁祺和刘婕琳也是同一天生日的。

这件事让我觉得很奇怪。

咦,一年足足有365天呀,我们班才不过42人,怎么两个人同一天生日的几率那么大呢?在简单地学习了概率之后,我想展开一次调查。

二、研究方法
(1)找到我校25个班同学生日情况的资料。

(2)分别看各班女生组中,男生组中,全班组中是否有两人生日相同,进行配对。

(3)了解概率的相关资料并进行计算。

三、具体实施步骤
(1)实地走访各个班级,询问各个同学的生日;
(2)统计,做图表:
第一方案:以25个班的男生,女生组为调查对象,每组人数20人,统计其中多少组存在生日相同的情况。

第二方案:以25个班全体人数为调查对象,每组40人,统计其中多
少组存在生日相同的情况。

(3)分别计算20人,40人组存在相同生日的概率。

(4)查找资料,为统计的结果找到数学依据。

(5)撰写研究报告。

四、具体时间安排
南浦小学五(10)班李章颂。

概率统计练习题

概率统计练习题

第一章 随机事件及其概率习题一 、填空题:1.设A ,B ,C 为三个事件,用A 、B 、C 的运算关系表示(1)A 和B 都发生,而C 不发生为 ,(2)A 、B 、C 至少有两个发生的事件为 。

2.设A ,B 为两个互不相容的事件,P(A)=0.2, P(B)=0.4, P(A+B)= 。

3.设A ,B ,C 为三个相互独立的事件,已知P(A)=a, P(B)=b, P(C)=c,则A ,B ,C 至少有一个发生的概率为 。

4.把一枚硬币抛四次,则无反面的概率为 ,有反面的概率为 。

5.电话号码由0,1,……9中的8数字排列而成,则电话号码后四位数字全都不相同的概率表示为 。

6.设公寓中的每一个房间都有4名学生,任意挑选一个房间,则这4人生日无重复的概率表示为 (一年以365天计算)。

7. 设A ,B 为两个事件,P(A)=0.4, ,P(B)=0.8,P(B A )=0.5,则P(B|A)= 。

8.设A ,B ,C 构成一个随机试验的样本空间的一个划分,且7.0)(,5.0)(==B P A P ,则P(C)= ,P(AB)= 。

9.设A ,B 为两个相互独立的事件,P(A)=0.4,P(A+B)=0.7,则P(B)= 。

10.3个人独立地猜一谜语,他们能够猜出的概率都是31,则此谜语被猜出的概率为 。

二 、选择题 :1. 设A 与B 是两随机事件,则AB 表示( )(A )A 与B 都不发生 (B )A 与B 同时发生(C )A 与B 中至少有一个发生 (D )A 与B 中至少有一个不发生 2.设c B A P b B P a A P =⋃==)(,)(,)(,则)(B A P 为 (A )b a -(B )b c -(C ))1(b a -(D ))1(c a -3.若A ,B 是两个互不相容的事件,P (A )>0,P (B )>0,则一定有( ) (A )P (A )=1—P (B ) (B ) P (A|B )=0 (C ) P (A|B )=1 (D )P (A |B )=04. 每次试验失败的概率为p (0<p<1),则在3次重复试验中至少成功一次的概率为( )(A ))1(3p - (B)3)1(p -(C) 31p - (D)13C 3)1(p p -三、计算:1.掷两颗质地均匀的骰子,求出现的两个点数之和等于5的概率。

概率统计练习册习题解答

概率统计练习册习题解答

WORD格式.整理版苏州科技学院《概率论与数理统计》活页练习册习题解答信息与计算科学系概率论与数理统计教材编写组2013年12月习题1-1 样本空间与随机事件1.选择题(1)设,,A B C 为三个事件,则“,,A B C 中至少有一个不发生”这一事件可表示为( D ) (A )ABAC BC (B )A B C (C )ABC ABC ABC (D )A B C(2)设三个元件的寿命分别为123,,T T T ,并联成一个系统,则只要有一个元件正常工作则系统能正常工作,事件“系统的寿命超过t ”可表示为( D )A {}123T T T t ++>B {}123TT T t >C {}{}123min ,,T T T t >D {}{}123max ,,T T T t > 2.用集合的形式表示下列随机试验的样本空间Ω与随机事件A :对目标进行射击,击中后便停止射击,观察射击的次数;事件A 表示“射击次数不超过5次”。

解:{} ,,,=321Ω;{}54321A ,,,,=。

3.设某工人连续生产了4个零件,i A 表示他生产的第i 个零件是正品(4,3,2,1=i ),试用i A 表示下列各事件:(1)只有一个是次品;(2习题1-2 随机事件的概率及计算1.填空题(1)已知B A ⊂,4.0)(=A P ,6.0)(=B P ,则)(A P )(AB P=)(B A P 0 ,)(B A P(2)设事件A 与B 互不相容,()0.4,()0.3P A P B ==,则()P AB ()P A B 0.62.选择题(1)如果()0P AB =,则( C )(A) A 与B 互不相容 (B) A 与B 互不相容(C) ()()P A B P A -= (D) ()()()P A B P A P B -=-(2) 两个事件A 与B 是对立事件的充要条件是( C )(A ) )()()(B P A P AB P = (B )1)(0)(==B A P AB P 且 (C ) Ω=∅=B A AB 且 (D )∅=AB 3.一批晶体管共40只,其中3只是坏的,今从中任取5只,求 (1)5只全是好的的概率; (2)5只中有两只坏的的概率; (3)5只中至多有一只坏的概率。

求这n个人生日各不相同的概率是多少

求这n个人生日各不相同的概率是多少

Ai


1
1
Cn2
nn 1

nn
Cn3
1n

2


1 n1
n!


n k 0
1k
k!
特别地,当n较大时, p0 e 1。
因此,可随机模拟出没有人拿到自己枪的频率,根据频率的 稳定性,近似当做概率,然后去估计自然对数e。并考虑估计精 度与人数是否有关系,为什么。算法如下:
内容介绍
一、古典概型 MATLAB常用的及与随机数产生相关的函数 实验1:计算超几何分布 实验2:频率稳定性实验 实验3:利用频率估计自然对数底e 实验4:蒲丰投针实验,利用频率估计圆周率 实验5:生日悖论实验
1/21
一、古典概型
利用MATLAB 软件的图形可视功能将概率统计的内容用图形表示出来, 以加深对概率的理解
4/21
实验2 频率稳定性实验
随机投掷均匀硬币,观察国徽朝上与国徽朝下的频率

>> n= 3000~100000000;m=0;
for i=1:n
t=randperm(2); %生成一个1~2的随机整数排列
x=t-1; %生成一个0~1的随机整数排列
y=x(1); %取x排列的第一个值
3.randperm(m):生成一个1~m的随机整数排列
4.perms(1:n):生成一个1~n的全排列,共n!个
5.取整函数系列:
(1)fix(x):截尾法取整;
(2)floor(x):退一法取整(不超过x的最大整数);向负方向舍入
(3)ceil(x):进一法取整(= floor(x)+1);

数学建模生日问题

数学建模生日问题

数学建模实验报告试验名称:生日问题问题背景描述:在100个人的团体中,如果不考虑年龄的差异,研究是否有两个以上的人生日相同。

假设每人的生日在一年365天中的任意一天是等可能的,那么随机找n个人(不超过365人)。

求这n个人生日各不相同的概率是多少?从而求这n个人中至少有两个人生日相同这一随机事件发生的概率是多少?实验目的:用计算机求解概率计算问题;当幂方次数较大时用多项式拟合方法确定求概率的近似计算公式;了解随机现象的计算机模拟技术。

实验原理与数学模型:这是一个古典概率问题,n个人中每一人的生日都可能在365天中任何一天,样本空间中样本点总数为365n,考虑n个人的生日两两不同,第一个人的生日可能在365天中任一天,第二个人的生日不能与第一个人生日相同,第二个人生日可能在364天中任何一天,类推可得,n个人生日两两不同的这一事件的总共有365*364*……*(365-n+1). 故这n个人的生日各不相同的概率(可能性)以下面公式计算:Pn n365)1 365(*......*364*365+-=(1)因而,n个人中至少有两人生日相同这一随机事件发生的概率为:P(n)=1-n n365)1 365(*......*364*365+-(2)但是在利用公式进行计算时,所用的乘法次数和除法次数较多,可以考虑用多项式做近似计算。

这需要解决多项式拟合问题。

主要内容(要点):1、求出n个人中至少有两个人生日相同的概率P(n)的近似公式;2、根据P(n)的近似公式,用计算机分别计算出当团体人数取n=1,2,……,100时的概率值:P(1),P(2),……,P(100)。

在Matlab环境下用指令plot(p)绘制图形,描述概率值随团体人数变化的规律;3、特殊概率值的计算。

在有40个学生的班上,至少有2个同学生日相同的概率是多少?60个人的团体中,至少有两个人生日在同一天的概率又是多少?在80个人的团体中,情况又如何?4、用5次多项式拟合方法寻找一个近似计算概率的公式;5、考虑团体总人数对概率值的影响;计算机仿真(数值模拟)。

概率

概率
基本事件总数 基本事件总数
n 10!
mA C 9!
1 3
mA C 9! 3 P( A) n 10! 10
1 3
第五个学生抽 到入场券
另外9个学生抽 取剩下9张
古典概率的计算:数字排列
用1,2,3,4,5这五个数字构成三位数
没有相同数字的三位数的概率
n5
3
mA P
f n ( A B) f n ( A) f n ( B). P ( A B ) P ( A) P ( B ).
概率的公理化定义
定义: 设E是随机试验, S是它的样本空间, 对于 E的每一件事件A赋予一个实数P(A), 若P(A)满 足下列三个条件:
1. 非负性: 对每一个事件A, 有 P ( A) 0;
古典概率的计算:投球入盒
把3个小球随机地投入5个盒内。设球与盒
都是可识别的。
A=“指定的三个盒内各有一球
n 53
mA 3!
3! P ( A) 3 5
B =“存在三个盒,其中各有一球
n 53
a
mB C 3!
3 5
3 C5 3! P( B) 3 5
b
c
d
e
1
2
3
试验
抛掷一颗匀质骰子,观察出现的点数
样本空间
Ω ={1,2,3,4,5,6} 事件A
事件A的概率
n=6
A=“出现的点数是不小于3的偶数”={4,6} m=2
m 2 1 P( A) n 6 3
古典概率的计算:正品率和次品率
设在100 件产品中,有 4 件次品,其余均为正 品.
任取一件,是次品的概率

概率论与数理统计

概率论与数理统计

《概率论与数理统计》试题(1)二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。

三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤.x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________.2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________.4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>eX P ,则=λ_________,}1),{min(≤Y X P =_________.5. 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________.二、单项选择题(每小题3分,共15分)1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是 (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则AC 与B 也独立.(C )若()0P C =,则A C 与B 也独立.(D )若C B ⊂,则A 与C 也独立. ( ) 2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为(A )2[1(2)]-Φ. (B )2(2)1Φ-.(C )2(2)-Φ. (D )12(2)-Φ. ( ) 3.设随机变量X 和Y 不相关,则下列结论中正确的是(A )X 与Y 独立. (B )()D X Y DX DY -=+.(C )()D X Y DX DY -=-. (D )()D XY DXDY =. ( ) 4.设离散型随机变量X 和Y 的联合概率分布为 若,X Y 独立,则,αβ的值为(A )21,99αβ==. (A )12,99αβ==. (C ) 11,66αβ== (D )51,1818αβ==. ( )5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. ( )三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率. .四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X 为途中遇到红灯的次数,求X 的分布列、分布函数、数学期望和方差.五、(10分)设二维随机变量(,)X Y 在区域{(,)|0,0,1}D x y x y x y =≥≥+≤ 上服从均匀分布. 求(1)(,)X Y 关于X 的边缘概率密度;(2)Z X Y =+的分布函数与概率密度.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标Y 相互独立,且均服从2(0,2)N 分布. 求(1)命中环形区域22{(,)|12}D x y x y =≤+≤的概率;(2)命中点到目标中心距离Z =的数学期望..七、(11分)设某机器生产的零件长度(单位:cm )2~(,)X N μσ,今抽取容量为16的样本,测得样本均值10x =,样本方差20.16s =. (1)求μ的置信度为0.95的置信区间;(2)检验假设20:0.1H σ≤(显著性水平为0.05).(附注)0.050.050.025(16) 1.746,(15) 1.753,(15) 2.132,t t t ===《概率论与数理统计》期末试题(3)与解答一、填空题(每小题3分,共15分)(1) 设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且()()0.5P A P B ==,()0.2P C =,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为___________.(2) 甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取2个球,发现它们是同一颜色的,则这颜色是黑色的概率为___________.(3) 设随机变量X 的概率密度为2,01,()0,x x f x <<⎧=⎨⎩其它, 现对X 进行四次独立重复观察,用Y 表示观察值不大于0.5的次数,则2EY =___________. (4) 设二维离散型随机变量(,)X Y 的分布列为若0.8EXY =,则Cov(,)X Y =____________. (5) 设1217,,,X X X 是总体(,4)N μ的样本,2S 是样本方差,若2()0.01P S a >=,则a =____________.(注:20.01(17)33.4χ=, 20.005(17)35.7χ=, 20.01(16)32.0χ=, 20.005(16)34.2χ=) 二、单项选择题(每小题3分,共15分)(1)设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有 (A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤(C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥ ( )(2)设随机变量X 的概率密度为且~(0,1)Y aX b N =+,则在下列各组数中应取(A )1/2, 1.a b == (B )2,a b ==(C )1/2,1a b ==-. (D )2,a b == ( )(3)设随机变量X 与Y 相互独立,其概率分布分别为 则有(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == ( ) (4)对任意随机变量X ,若EX 存在,则[()]E E EX 等于(A )0. (B ).X (C ).EX (D )3().EX ( ) (5)设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为(A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ ( ) 三、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都 是一等品,求丢失的也是一等品的概率。

第一章 概率论的基本理论

第一章  概率论的基本理论

第一章 概率论的基本理论前苏联数学家柯尔莫哥洛夫,1933年创立概率公理化体系。

⎧⎨⎩确定现象随机现象§1. 随机试验例:1E :抛一枚硬币,观察正反面出现情况; {}1,H T Ω=2E :将一枚硬币抛三次,观察正反面出现情况;{}2,,,,,,,HHH HHT HTH THH HTT THT TTH TTT Ω=3E :抛两颗色子,观察出现点数和; {}32,3,4,,12Ω=4E :在一批灯管中任取一只,测试它的寿命; {}40t t Ω=≥ 5E :将一尺之棰折成三段,观察各段长度;(){}5,,0,0,0,1x y z x y z x y z Ω=>>>++=特点:()()()123⎧⎪⎨⎪⎩试验可以在相同条件下重复进行;试验结果具有多种可能性,但能事先知道所有可能结果;进行试验前不能确定哪一结果出现。

满足上述特点的试验称之为随机试验,通过随机试验来研究随机现象。

§2. 样本空间 随机事件一、 样本空间随机试验E 的所有可能结果组成的集合,称为E 的样本空间。

样本空间通常用S 或Ω来表示。

(见上节)样本空间的元素——样本点。

二、 随机事件样本空间S 的子集——随机事件(事件),用,,A B C 表示;基本事件,必然事件,不可能事件。

事件A 发生⇔A 中有一样本点出现。

例1、 2E 2S1A :第一次出现H {}1,,,A H H H H H T H T H HT T = 2A :三个均出现T {}2A T T T =三、 事件间关系与事件的运算E S ,A B k A S ⊂1. A B ⊂ 事件B 包含事件A A 发生导致B 发生 A B =⇔A ⊂B 且B A ⊂。

2. A B ⋃1nk k A =1k k A ∞=3. A B A B ⋂1nk k A =1k k A ∞=4. A B A B -=5. A B ⋂=∅ ,A B 不相容,互斥6. A B S ⋃=且A B ⋂=∅——,A B 互逆,或对立事件 A B = A S A =- 算律同集合论例 设,,A B C 表示三个随机事件:○1 A 出现,,B C 都不出现 ABC ○2 ,A B 都出现,C 不出现 ABC ○3 三个事件均出现 ABC ○4 三个事件至少有一个出现 A B C ⋃⋃ ○5 三个事件均不出现 A B C ○6 不多于一个事件出现 ABC ABC ABC ABC 或AB BC AC○7 不多于两个事件出现 ABC ABC ABC ABC ABC ABC ABC or ABC ○8 三个事件至少有两个出现 ABC ABCABCABC○9 ,A B 至少有一个出现,C 不出现 ()A B C +⋅ ○10 ,,A B C 中恰好有两个出现 ABC ABC ABC§3. 频率与概率一、 排列、组合复习1. 不可重复排列(不放回) ()()()()!121!rn n A n n n n r n r =---+=-2. 可重复排列 (放回)n 个不同元素取r 个(未必不同)组成的排列种数 rn 3. 不可重复组合rnC n r ⎛⎫ ⎪⎝⎭4. 乘法原理、加法原理二、 频率1、E, n 次,A, A n()An n f A n=2、性质11121.0()12()13()()()()n n k n k n n n k f A f S A A f A A f A f A f A ≤≤⎧⎪=⎨⎪⎩=++……、、均不相容………… 例1, P8 例2, P9可见,n 逐渐增大-------()n f A 逐渐趋于一个常数-------------------频率稳定性-------- 统计规律性------- 概率(事件发生可能性的) -----------------概率定义三、 概率 Probability1. 定义: E S A E ⊂ 实数()P A 满足:()()()()()()()1210213,,,,,n i j P A P S A A A i j A A ⎧≥⎪⎪=⎨⎪≠⋅=∅⎪⎩非负性规范性设两两互不相容,即:时则()()()()1212nn P A A A P A P A P A =++++(可列可加性)则称P 为概率,()P A 为事件A 的概率。

(完整版)概率论题库

(完整版)概率论题库

选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是(B ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C U 与B 也独立. (C )若()0P C =,则A C U 与B 也独立.(D )若C B ⊂,则A 与C 也独立. 2.设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( B ) (A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤U (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥U 3. 设,则下列结论成立的是( D )(A ) 事件A 和B 互不相容; (B ) 事件A 和B 互相对立; (C ) 事件A 和B 互不独立; (D ) 事件A 和B 互相独立。

4.将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为( A )。

A. 2242B. 2412C C C. 24!2P D. !4!25.某人连续向一目标射击,每次命中目标的概率为43,他连续射击直到命中为止,则射 击次数为3的概率是( C )。

A. 343)(B. 41432⨯)(C. 43412⨯)(D. 22441C )( 6.设随机事件A 、B 互不相容,q B P p A P ==)( ,)(,则)(B A P =( A )。

A. q p )1(- B. pqC. qD.p7.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( A ) (A )2[1(2)]-Φ. (B )2(2)1Φ-.(C )2(2)-Φ. (D )12(2)-Φ. 8. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞且~(0,1)Y aX b N =+,则在下列各组数中应取( A ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b ==9. 设随机变量X 的分布函数为()X F x ,则35Y X =-的分布函数为()Y F y =( D )(A )(53)X F y -. (B )5()3X F y -.(C )3()5X y F +. (D )31()5X yF --. 10.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为( D )。

对概率的理解

对概率的理解

对概率的理解上大学的时候,概率论老师开宗明义就说,学好了概率,打赌就不会输,这不是说每次都会赢,是指总体上不会输,因为掌握了概率,就会懂得控制风险。

但是,学习以后才发现,概率论,作为一门数学课程,有大量抽象计算的公式,要把这些抽象的东西,转化为实际的应用,不仅很难,而且很容易错,有时候还不如直觉来得可靠些。

换句话说,只有真正理解了概率,把概率上升到哲学的高度去看待和认识,这个工具才能发挥出效用。

一、可能性与不可能性我们常常更关注事情发生的可能性,忽视事情发生的不可能性,这实际上是个思维误区。

我们应该以辩证的观点全面看待一件事物,才能把握住事物的本质。

何谓辩证?辩证就是应该一分为二,既要分析事物发生的可能性,也要分析事物发生的不可能性。

概率研究的是事物发生的可能性,但是只有把握了事物发生的不可能性,这个可能性的研究,才会是准确和可靠的。

概率论中的概率空间,实际上就是框定可能性的范围,排除不可能性的过程。

黑白天鹅之说,就是主观上的不可能性犯错,除了黑天鹅被发现,褐天鹅甚至绿天鹅都是有可能存在的。

研究概率,概率空间不恰当,后续的结果都是白费劲。

二、可能性与必然性概率就是研究可能性的,但是必须把可能性建立在必然性的基础上,这个可能性才是可靠的。

换句话说,可能性必须来自于必然性。

这是我们在计算概率过程中最容易犯的错误。

比如计算掷2次骰子出现6的概率。

第一次的概率自然是1/6,那么第二次呢?单独的一次自然也是1/6,合在一起的两次,是1/6×1/6呢?还是1/6+1/6呢?结果都不对,错误在于计算概率,不能从数学到数学,而是要分析可能性与必然性,把可能性建立在必然性的基础之上。

思维的过程如下:1.分析掷2次骰子有多少种可能性每一次是6种可能性,两次之间的关系是排列组合的,1和2与2和1是不同的组合,即两次有6×6,共36种组合的可能性。

2.分析不可能性每一次掷骰子有6中可能性,其中一种是6,其余的就是非6,即不可能为6的情况是5种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档