流体力学第章流体运动微分方程ppt课件

合集下载

高等流体力学课件

高等流体力学课件
静止流体满足力的平衡条件,即合力为零。
流体静力学的基本概念
流体静力学是研究流体平衡和压力分布的学 科。
压力分布
静止流体的压力分布与重力场和其他外力场 有关,可以通过静力学方程求解。
流体动力学
总结词
流体动力学的基本概念、一维流动、层流与湍流
一维流动
一维流动是指流体沿着一条线的流动,可以用于 描述长距离管道内的流动或某些对称的流动。
水利工程
机械工程
流体动力学在水力发电、水利枢纽设计、 灌溉系统优化等方面具有广泛应用,为水 利工程提供了重要的技术支持。
流体动力学在机械工程领域的应用也十分 广泛,如内燃机、通风 system等的设计和 优化。
流体在自然界中的应用
气候变化
流体动力学在气候变化研究中发挥着重要作用,如风场、洋流等 对气候的影响研究。
详细描述
连续性方程是流体动力学的基本方程之一,它表达了单位时间内流经某一封闭 曲面微元体的流体质量的增加等于该微元体所受质量源的净增量,用于描述流 体运动的连续性。
动量方程
总结词
描述流体动量守恒的方程
详细描述
动量方程是流体动力学的基本方程之一,它表达了流体动量的变化率等于作用在 流体上的外力之和,包括重力、压力、摩擦力等。
方法
02
常用的线性稳定性分析方法包括特征值分析、傅里叶分析和庞
加莱截面法等。
应用
03
线性稳定性分析在气象、海洋、航空航天等领域有广泛应用,
用于预测和控制流体运动的稳定性。
非线性稳定性分析
定义
非线性稳定性分析是研究流体运动在较大扰 动下的响应,需要考虑非线性效应对流体运 动的影响。
方法
非线性稳定性分析需要求解非线性偏微分方程,常 用的方法包括数值模拟和近似解析法。

流体力学流体动力学完美版PPT

流体力学流体动力学完美版PPT

h ' h
气〔ρ〕-液〔ρ’〕 h ' h
解:水温40℃,汽化压强为7.38kPa 大气压强 pa 97.3103 10m
g 99.229.807
汽化压强
pgv 979.3.22891.803070.76m
p 12 v 1 2 ag 注z2意 z :1 z 2-p z2 1 ——2 v 2 2 下 游p 断w面高 度减上游断面高度〔±〕; ——用相对ρ压a-ρ强—计—算外的界气大体气伯密努度利减方管程内
常与连续性微分方程 ux uy uz 0 联立 x y z
2.粘性流体运动微分方程〔粘性作用→切应力〕
f 1 p 2 u d u u u u d t t
——纳维-斯托克斯方程〔N-S方程〕
分量式
X 1 p x 2 u x u tx u x u x x u y u y x u z u z x
pAagz2z1v 2 29v 2 2
1 9 2 .8 1 .2 0 .8 9 .8 4 0 0 0 .8 v 2 9 0 .8 v 2
2
2
1 1 18 528 .6 7 2.48 即 27 2 6.6 724 .48
Y 1 p y 2 u y u ty u x u x y u y u y y u z u z y Z 1 p z 2 u z u tz u x u x z u y u y z u z u z z
元流的伯努利方程
1.理想流体元流的伯努利方程 〔1〕推导方法一
将〔1〕、〔2〕、〔3〕各式分别乘以dx、dy、 dz,并相加
g 2g
单位重量流体的机械能守恒〔总水头不变〕
2.粘性流体元流的伯努利方程
z1pg 12 u1 g 2 z2pg 22 ug 2 2hw'

工程流体力学课件-第一章

工程流体力学课件-第一章

二、流体力学在石油化工工业中的应用
流体力学是一门重要的工程学科,它的应用几乎遍及国民经济的各个部门, 尤其在石油工程和石油化工工业中,流体力学是其重要的理论核心之一。
在石油工业中 ,用到流体力学原理分析流体在管内的流动规律,压力、阻 力、流速和输量的关系,据此设计管径,校核管材强度,布置管线及选择泵的类 型和大小,设计泵的安装位置等;在校核油罐和其他储液容器的结构强度,估算 容器、油槽车、油罐的装卸时间,解释气蚀、水击等现象 。
实验方法的优点是能直接解决生产中的复杂问题,能发现流动中的新现象。
它的结果往往可作为检验其他方法是否正确的依据。这种方法的缺点是对不同 情况,需作不同的实验,也即所得结果的普适性较差。
3 、数值计算方法
数值计算方法是按照理论分析方法建立数学模型,在此基础上选择合理 的计算方法,如有限差分法、特征线法、有限元法、边界元法、谱方法等,将 方程组离散化,变成代数方程组,编制程序,然后用计算机计算,得到流动问 题的近似解。数值计算方法是理论分析法的延伸和拓展。
两板间流体沿y方向的速度呈线性分布。
上面的现象说明,当流体中发生了层与层之间的相对运动时,速度快的流层对 速度慢的流层产生了一个拉力使它加速,而速度慢的流层对速度快的流层就有 一个阻止它向前运动的阻力,拉力和阻力是大小相等方向相反的一对力,分别 作用在两个流体层的接触面上,这就是流体黏性的表现,这种力称为内摩擦力 或黏性力。
体积弹性模量:在工程上流体的压缩性也常用p的倒数即体积弹性模量来描述
E 1 dp
p dV /V
2.可压缩流动与不可压缩流动
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。

流体力学中的三大基本方程ppt课件

流体力学中的三大基本方程ppt课件
2 :单位重量流体所具有的动能;
2g
理解:质量为m微团以v 运动,具有mv2/2动能,若用 重量mg除之得v2/2g
三者之和为单位重量流体具有的机械能。
26
物理意义: 理想、不可压缩流体在重力场中作稳定 流动时,沿流线or无旋流场中流束运动 时,单位重量流体的位能,压力能和动 能之和是常数,即机械能是守恒的,且 它们之间可以相互转换 。
27
几何意义:
理想、不可压缩流体在重力场中作稳态流动时,沿一根 流线(微小流束)的总水头是守恒的,同时可互相转换。
28
3.2 伯努利方程的应用
① 可求解流动中的流体v、 P及过某一截面的流量;
② 以伯努利方程为原理测量 流量的装置。
皮托管(毕托管):测量流 场中某一点流速的仪器。
皮托曾用一两端开口弯成 直角的玻璃管测塞那河道 中任一点流速。
理想和实际流体
稳态及非稳态流动
⑵不可压缩性流体的连续性微分方程:
x y z 0
or div 0
x y z
说明流体体变形率为零,即流体不可压缩。或流入 体积流量与流出体积流量相等。
9
⑶稳定流动时:所有流体物性参数均不随时间而变, 0
t

x
x)

y
y)

z
z)
0
div() 0
⑷二维平面流动: x y 0
在皮托管上再接一个静压管,即为皮托静压管,二者差即为动压。
31
列1、2两点的伯努利方程

z1
p1 r1
12
2g
z2
p2 r2
22
2g
z1
z

2
1
0
2

理想流体的运动微分方程

理想流体的运动微分方程
u y y
uz
uz
u x z
u y z
y
1 p
Z
z

du z dz

u z t
ux
u z x
uy
u z y
uz
u z z
写成矢量表达式为:
1 du F p dt
式中哈密顿算子:
i j k x y z
1.3.6.2 总流
对于粘性流体的总流,作稳定流动时的柏努利方程式为:
z1
p1


1 v1
2g
2
z2
p2


2v2
2g
2
hw
式中:
v1 , v 2 为截面的平均流速; 1 , 2为动能修正系数,通常由实验确定。
对于圆形管道中的稳定缓变流: 层流时 =2;
湍流时 =1.05~1.10;
由柏努利积分式:
U

1
dp
2
u
2
2


gz
1
gz
1
p
u
C
2

p
u
2
C
2
2
对于流线上任意两个质点1和2来说,有:
g z1 1

p1
u1
2
2
gz2
1

p2
u2 2
式中各项分别为单位质量的流体具有的位能,静压能及动能, J kg ( )。
1.3.5.2 理想流体稳定流动总流的柏努利方程 任何稳定流动的总流,都可以看成是无穷多微小流束 的总和。在总流中某一微小流束的不同有效截面上的物理 参数不一定相同。 (1)均匀流与缓变流 均匀流:如果有效断面或平均流速沿程不变,且流线为 平行直线这样的稳定流称为均匀流。 非均匀流:如果有效断面沿程变化,或者有效断面不变, 但各断面上速度分布改变,这种流动称为非均匀流。 缓变流:凡有效断面上流线间夹角很小,流线曲率半经 无限大,即流线趋近于平行线的流动称缓变流。

流体力学课件(全)

流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。

工程流体力学课件 第06章 流体流动微分方程 - 4

工程流体力学课件 第06章 流体流动微分方程 - 4
② μ和ρ随温度变化不大时,温度对流场(速度和压力)的影响很小,这
时 可以不考虑温度的影响,因此也不需要考虑能量方程。
③ 能量方程的微分形式,其推导过程与连续性方程和动量方程的推导 微分相方似程,方方法程:的结构也相似,数学上并没有太多的特殊性。 流体力学中,微分方法和积分方法都是为了研究流体的质量守恒、动量 守恒和能量守恒。积分法研究系统整体,揭示总体性能;微分法研究空 间任一点和包含该点的流体微元,揭示三维流场的空间分布细节。两种 分析方法相辅相成,都必须要学、必须学好。 微元体分析方法的核心:将雷诺输运定理应用于流体微元控制体。
t
z方向:vz dxdydz
t
6.2.3 以应力表示的运动方程
分别将微元控制体中x-,y-和z-方向的动量各对应项代入雷诺 输运定理,可得三个方向的运动微分方程。
X-:
vx t
vx
vx x
vy
vx y
vz
vx z
fx
xx
x
yx
y
zx
z
Y-:
vy t
vx
vy x
vy
vy y
、vz z
)和体变形率(
vx x
vy y
vz z
)
正应力包含两部分:
v
①流体静压产生的正应力(压应力-p);
②流体运动变形产生的附加黏性正应力。与三个方向的线变形率
以及体变形率有关。这种关系类似于固体中的虎克定律。
xx
p
2
vx x
2 3
vx x
vy y
vz z
xx p xx
xx 附加黏性正应力(或附加正应力)
连续性方程变为:
t
(vx )

流体力学基础连续性方程、流体运动方程与能量方程.PPT

流体力学基础连续性方程、流体运动方程与能量方程.PPT

14
根据动量定理
ρd d ud x d y d z (F b P x x P y y P z z)d x d y d z
约去 dxdydz ,得
du x d
Fbx
Pxx x
Pyx y
Pzx z
du y d
Fby
Pyx x
Pyy y
Pyz z
du z d
Fbz
Pzx x
同理
y(ρuyu)dzdxdyΔ
z(ρuzu)dxdydzΔ
10
EXIT
经全部控制面的恒定流动量通量的净变化率为
xuxuy uyu zuzudxdydz
ux
x(u)uy
yuuz
uuux uuy
z
x y
uuzzdxdydz
u•uu•udxdydz + (ρu )dxdydz
微元流体系统的动量变化率为:
第一章 流体力学基础 ——流体运动的微分方程
西安建筑科技大学粉体工程研究所 李辉
1
质量传递——连质续量性守方恒程定律 动量传递——纳动维量-定斯理托克斯方程 能量传递——能能量量方守程恒定律 状态方程
流体运 动微分 方程组
所有流体运动传递过程的通解
2
EXIT
1.3 流体运动的微分方程
• 质量守恒定律——连续性方程 • 动量定理——纳维-斯托克斯方程 • 能量守恒定律——能量方程 • 定解条件
3
EXIT
1.3.1 质量守恒定律——连续性方程
• 质量既不能产生,也不会消失,无论经历什么形式的运动, 物质的总质量总是不变的。
• 质量守恒在易变形的流体中的体现——流动连续性。
单组分流体运动过程中质量守恒定律的数学描述: 在控制体内不存在源的情况下,对于任意选定的控制体

《流体力学实验》PPT课件

《流体力学实验》PPT课件
以无粘性不可压缩势流理论为基础,阐明了机翼升力产生的机理。机翼理 论的正确性,使人们重新认识到了无粘流体理论对指导工程设计的重大意义。
20时40年代开始,航天飞行--气体动力学
随着喷气式发动机和火箭技术的应用,满足超音速飞行的需要。
爆炸波理论,爆炸力学
研究原子弹、炸药爆炸后激波在空气或水中的传播等的需要。
对自然界固有的流动现象或工程全尺寸实物,利用各种仪器进行系统观测, 总结出流体运动规律,预测流动现象的演变。(气象观测、预报) 问题:对现场的流动现象不能控制,发生条件不可能完全重复出现;花费 大量的人力、物力、财力。
2. 实验室模拟
根据数学、物理和流体力学基本理论的指导以及实验室条件,改变研究对 象的尺度建立模型,根据模型实验结果依据相似理论推算出原型的数据。 现场观测是对已有事物已有工程的观测,实验室模拟则可以对还没有出现 的事物及现象进行观察、预测,是一种研究流体力学问题的重要方法。
3. 理论分析
根据流体运动的普遍规律如质量守恒、动量守恒及能量守恒等,利用数学 分析、物理学和基础力学等手段,观测和研究流体的运动规律,解释已知现 象、预测可能发生的现象。
17
理论分析步骤 1)建立力学模型
针对实际的流体力学问题,分析主要矛盾,对问题进行适当简化,使得建 立的力学模型能够反映问题的本质。
2)建立连续性方程、动量方程和能量方程
针对流体运动特点,应用质量、动量、能量守恒定律得到方程组,此外还 要加上某些联系流动参量的关系式或其它方程。
3)求解方程组
结合具体流动,回归解的物理意义,解释流动机理。通常还需将求解结果 与实验结果进行比较,确定解的准确程度及所建力学模型的适用范围。 从基本概念到基本方程的一系列定量研究均涉及到很深的数学问题,因此 流体力学的发展是以数学的发展为前提。对于进行流体力学研究的人来说, 数学基础十分重要!

《流体力学》课件

《流体力学》课件

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。

古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。

流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。

建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。

此后千余年间,流体力学没有重大发展。

15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。

但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。

流体力学的主要发展:17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。

他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。

使流体力学开始成为力学中的一个独立分支。

但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。

之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。

欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。

流体力学课件

流体力学课件

17世纪中叶——18世纪中叶:1687年牛顿的黏性流体 内摩擦定律 1738年伯努利<<水动力学>>,基本概念 1755年欧拉<<流体运动的一般原理>>,理流方程 第三阶段:沿着古典流体力学和水力学两条道路发展 (18世纪中叶——19世纪末)
古典流体力学: 欧拉提出 理想流体 1826年 纳维提出黏性流体运动微分方程 水力学: 达西与魏斯巴赫 沿程水头损失公式 第四阶段:发展成为近代流体力学阶段(19世纪末至今) 理论与实验密切结合: 雷诺于1882年提出相似原理加速理论与实验的结 合、理论与生产实践密切联系: 1904年普朗特提出光辉的边界层理论
P
N N τ
2、特性二:静压强的大小与作用面方向无关,或说作 用于同一点上各方向的静压强大小相等。 证明: z C dz △py A x △pn △px dy B y
(1)作用力 ① 表面力:
0 dx
△pz
1 p x p x SOBC p x dydz 2 1 p y p y SOAC p y dxdz 2 1 p z p z SOAB p Z dxdy 2 p n p S ABC
pN d‘
N O’ d c‘ dx
1 p 0 化简得: X x
同理:
a
1 p Y 0 y
1 p Z 0 z
z dz
b‘
M
b pM dy
c y
0
x
上式用向量表示: f
1

p 0
该方程表明:静止流体中各点单位质量流体 所受质量力和表面力平衡。 2、平衡微分方程的全微分式:
b‘
b p M
c y

《流体力学》课件-(第1章 绪论)

《流体力学》课件-(第1章 绪论)

流体力学
流体
强调水是主要研究对象 比较偏重于工程应用 土建类专业常用
力学
宏观力学分支 遵循三大守恒原 理
水力学

力学
§1.1.1 流体力学的任务和研究对象
二、研究对象 流体 指具有流动性的物体,包括气体和 液体二大类。
流动性
•即 任 一 微 小 剪
切力都能使流体 发生连续的变形

流体的共性特征
基本特征:具有明显的流动性;气体的流动性大于液体。 流体只能承受压力,不能承受拉力,在即使是很小剪切力
二. 表面力 是指作用在所研究的流体表面上的力,它是相邻流 体之间或固体壁面与流体之间相互作用的结果。 它的大小与流体的表面积成正比; 方向可分解为切向和法向。
• 设 面 积 为 ΔA 的 流 体
nFLeabharlann 面元,法向为 n ,指 向表面力受体外侧, 所受表面力为 ΔF ,则 应力
F f n lim A0 A
第一阶段:古典流体力学阶段 奠基人是瑞士数学家伯努利(Bernoulli,D.)和他的 亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了著 名的伯努利方程,欧拉于1755年建立了理想流体运动微分 方 程 , 以 后 纳 维 (Navier,C .H.) 和 斯 托 克 斯 (Stokes , G.G.)建立了粘性流体运动微分方程。拉格朗日 (Lagrange)、拉普拉斯(Laplace)和高斯(Gosse)等人, 将欧拉和伯努利所开创的新兴的流体动力学推向完美的分 析高度。
第1章 绪论 第2章 流体静力学 第3章 一元流体动力学理论基础 第4章 流动阻力与能量损失 第5章 孔口、管嘴出流和有压管流 第6章 量纲分析与相似原理
第一章 绪论

流体力学第6章流体运动微分方程

流体力学第6章流体运动微分方程
代入式(5)可得
b p C1 2 x
C2 0
38
于是得速度分布
1 p 2 vx (by y ) 2 x
(2)上板以匀速U沿x方向运动 这时的边界条件为
vx | y 0 0, vx | y b U
39
代入式(5)可得
U b p C1 b 2 x
若此流场满足连续性方程和无旋条件,试求
A,B,C,D所满足的条件。不计重力影响。
13
解:由连续方程可知
u=Ax+By, v=Cx+Dy, w=0
u v 0 x y
则有
A D 0
又由于流动无旋,则有
则有
u v y x B C 0
14
练习: 有一个三维不可压流场,已知其x向和y向的分 速度为
yy
x
dx
17
对流体微团应用牛顿第二定律,则沿x轴 方向的运动微分方程为
xx f x dxdydz xx dydz ( xx dx)dydz x yx yx dzdx ( yx dy)dzdx zx dxdy y zx Dv x ( zx dz)dxdy dxdydz z Dt
代入上式的第一式并整理得:
20
Dv x vx vx vx 1 p fx ( 2 2 2 ) Dt x x y z
2 2 2
同 理 Dv z 1 p 2vz 2vz 2vz 得 fz ( 2 2 2 ) Dt z x y z
v x v y 0 x y
9
例题:不可压缩流体的二维平面流动,y方向 的速度分量为 2 y
v y yx
试求x方向的速度分量,假定x=0时,vx=0。

水力学 第3章 流体力学基本方程PPT课件

水力学 第3章 流体力学基本方程PPT课件

积分得:
p u2 gzppρt精选版 2 cons. t
19
例1:已知:u = x+t,v = -y+t, w = 0。
求t=0时,经过点A(-1,-1)的流线方程。
解:t=0时,u=x, v=-y, w=0;代入流线微分方程, 有:
dx dy x y
ln xln yC 1
xyc
流线过点(-1,-1) ∴ C =1
流线方p程 pt精选为 版 x: y 1
这里:
Vuivjwk
aaxiay jazk
2.欧拉法:
以流场作为研究对象,研究各流场空间点上流体质 点的各运动要素随时间与空间的变化的分布规律。
流场:运动流体所占据的空间。
在欧拉法中,是以速度场来描述流体运动的,流体质点的运
动速度(即速度函数)是定义ppt在精选空版 间点上的,它们是空间点坐
标(x, y, z)的函数:
因为: V // ds
因此,两矢量的分量对应成比例:
ppt精选版
dx dy dz
u vw 15
四.流管、流束、元流、总流:
1.流管:
在流场中任意绘一条非流线的封 闭曲线,在该曲线上的每一点作流 线,这些流线所围成的管状面称为 流管。
由于流管的“管壁”是由流线构成的,因而流体质点的 速度总是与“管壁”相切,不会有流体质点穿过“管壁”流 入或者流出流管。流管内的流体就像是在一个真实的管子里 流动一样:从一端流入,从另一端流出。
二.恒定流与非恒定流:
1.恒定流(定常流动):
流场中各点处的所有流动参数均不随时间而变化的流动。
特征 u : v w 0 , p0 等。
t t t
t
2.非恒定流(非定常流动):

上海交通大学精品课程流体力学课件 325页PPT文档

上海交通大学精品课程流体力学课件 325页PPT文档

§1-2 流体的概念及其模型化
一、流体的物质属性
1、流体与固体 流体:可承受压力,几乎不可承受拉力,承受剪 切力的能力极弱。
易流性 —— 在极小剪切力的作用下,流体就将产 生无休止的(连续的)剪切变形(流动),直到 剪切力消失为止。
流体没有一定的形状。固体具有一定的形状。
固体:既可承受压力,又可承受拉力和剪切力,在 一定范围内变形将随外力的消失而消失。
温度内聚力 粘度 温度变化时对流体粘度的影响必须给于重视。
4、理想流体的概念 理想流体——假想的没有粘性的流体。
µ= 0 = 0
实际流体——事实上具有粘性的流体。


1、流体力学的任务是研究流体的平衡与宏观机械运动规律。
2、引入流体质点和流体的连续介质模型假设,把流体看成没有间隙 的连续介质,则流体的一切物理量都可看作时空的连续函数,可 采用连续函数理论作为分析工具。
dv dy
代表了粘性的大小
µ 的物理意义:产生单位速度梯度,相邻流 层在单位面积上所作用的内摩擦力(切应力)的 大小。
常用粘度表示方法有三种:
<1>动力粘度 µ 单位 : Pa s (帕 • 秒) 1 Pa s = 1 N/m2 s
<2>运动粘度:
单位:m2 / s
工程上常用:10 – 6 m2 / s (厘斯) mm2 / s 油液的牌号:摄氏 40ºC 时油液运动粘度的 平均厘斯( mm2 /s )值。
体积: dVdxdydz
分析微小正平行六面体微团受力:
一、质量力
dFmx = dxdydz fx dFmy = dxdydz fy dFmz = dxdydz fz
二、表面力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

fx
1
p x
(
2vx x2
2vx y 2
2vx z 2
)
同 理
Dvy Dt
fy
1
p y
(
2vy x2
2vy y 2
2vy z 2
)

Dvz Dt
fz
1
p z
(
2vz x2
2vz y 2
2vz z 2
)
Dv
v
(v)v
Dt t
——不可压缩粘性流体的运动微分方程,也
叫Navier-Stokes方程,简称N-S方程。 21
同理得
fy
1
(
yy
y
zy
z
xy
x
)
Dvy Dt
fz
1(
zz
z
xz
x
yz
y
)
Dvz Dt
——以应力表示的运动方程 19
将切应力和法向应力的关系式
xy
(vx
y
vy x
)
yz
(vz
y
vy z
)
zx
(vx
z
vz x
)
xx
p
2
vx x
yy
p
2
vy y
z
z
p
2
vz z
代入上式的第一式并整理得:
20
Dvx Dt
N-S方程
理想流体 欧拉运动 微分方程
欧拉平衡 微分方程
24
N-S方程的矢量形式为
tv( v) v f1p2 v





各项意义为:①非定常项; ②对流项; ③单位质量流体的体积力; ④单位质量流体的压力差; ⑤扩散项或粘性力项
26
由于引入了广义牛顿剪切定律,故N-S方 程只适用于牛顿流体,处理非牛顿流体问题 时可用以应力表示的运动方程。
0 (1 2 y) 0f(y)
故有 f (y)0
所以
vx(12y)xx2xy
12
例题:不可压缩流体的速度分布为
u=Ax+By, v=Cx+Dy, w=0
若此流场满足连续性方程和无旋条件,试求 A,B,C,D所满足的条件。不计重力影响。
13
解:由连续方程可知
u=Ax+By, v=Cx+Dy, w=0
ρvy
vy
(vy
y
)
dy
vx
(vx
x
)dx ρvz
y
x
4
输入微元体的质量流量:
vxdy dvzydx dvzzdxdy
输出微元体的质量流量为:
(vx
(xvx)dx)dydz(vy
(vy)dy)dxdz
y
(vz
(vz)dz)dxdy
z
z
vz
(vz)
z
dz
ρvx
ρvy
vy
(vy
y
)
dy
vx
(vx
x
)dx
9
例题:不可压缩流体的二维平面流动,y方向 的速度分量为
vy y2yx
试求x方向的速度分量,假定x=0时,vx=0。
10
vy=y2-y-x 解:不可压缩流体的平面运动满足连续性方程
vx vy 0 x y
由已知条件得
vx 2y10 x
积分得 vx(12y)xf(y)
11
根据边界条件x=0时vx=0代入上式得
u v 0 x y
则有
AD0
又由于流动无旋,则有
u v y x
则有 BC0
14
练习:
有一个三维不可压流场,已知其x向和y向的分 速度为
vx x2 y2z3
vy (xyyzzx)
求其z向的分速度的表达式。当x=0,z=0时,
vz=2y。 答案v: z z22 zx2y 15
6.2不可压缩粘性流体运动微分方程 在运动着的不可压缩粘性流体中取微元平
t
对不可压缩流体,ρ=常数,有әρ/әt=0,则 连续性方程为
v 0
不可压缩流体的连续性方程不仅形式简单,而 且应用广泛,很多可压缩流体的流动也可按常 密度流动处理。
8
在直角坐标系中可表示为
vx vy vz 0 x y z
(柱坐标和球坐标下的连续性方程自学。) 对平面流动
vx vy 0 x y
这一章中我们将推导微分形式的守恒方程。
2
流体流动微分方程包括: 连续性方程 运动方程
连续性方程是流体质量守恒的数学描述。 运动方程是流体动量守恒的数学描述。 二者都是基于流场中的点建立的微分方程。
3
6.1 连续性方程
连续性方程反映流动过程遵循质量守恒。 现取微元体如图。
z
vz
(vz
z
)
dz
ρvx
σxx+
xz+
әxz
әx dx
dz
әσxx
әx
dx
dx zx
17
对流体微团应用牛顿第二定律,则沿x轴 方向的运动微分方程为
fx
dxdydzxxd
ydz
(xx
xx
x
dx)dydz
yxdzdx
(
yx
yx
y
dy)dzdx
z
xdxd
y
(
z
x
z x
z
dz)dxdy
dxdydzDvx
Dt
18
化简后得
fx1( xxx yyx zzx)D Dxvt
ρvz
x
y
5
则输出与输入之差为:
((vx)(vy)(vz))dxdyd
x
y
z
微元体内质量变化率为:
dxdydz
t
6
根据质量守恒原理有:
(vx)(vy)(vz)0
x y z t

( v)0
t
该式即为直角坐标系下的连续性方程。由于 未作任何假设,该方程适用于层流和湍流、 牛顿和非牛顿流体。
7
( v)0
行六面体流体微团,作用在流体微元上的各法 向应力和切向应力如图所示。
16
σyy+
әσyy
әy
dy
әyx yx+ әy dy
dy y
yz+
әyz
әy dy
zx
σzz
σxx xz
zy+
әzy
әz dz
xy
fy
zy
fz fx
σzz+
әσzz
әz
zx+
әzx
әz dz
yz
dz yx σyy
xy+
әxy
әx dx
Navier-Stokes方程是不可压流体理论中 最根本的非线性偏微分方程组,是描述不可 压缩粘性流体运动最完整的方程,是现代流 体力学的主干方程 。
27
6.3基本微分方程组的定解条件
N-S方程有四个未知数,vx、vy、vz和p,将 N-S方程和不可压缩流体的连续性方程联立,理 论上可通过积分求解,得到四个未知量。一般 而言,通过积分得到的是微分方程的通解,再 结合基本微分方程组的定解条件,即初始条件 和边界条件,确定积分常数,才能得到具体流 动问题的特解。
6 流体流动微分方程
基本内容:
掌握连续性方程及其推导※ 熟悉Navier-Stokes方程 了解Euler方程
1
控制体分析 最大优点在于对定常流动,当已知控制面
上流动的有关信息后,就能求出总力的分量和 平均速度,而不必深究控制体内各处流动的详 细情况,给一些工程问题的求解带来方便。
缺点不能得到控制体内各处流动的细节, 而这对深入研究流体运动是非常重要的。
28
1.初始条件
对非定常流动,要求给定变量初始时刻t=t0 的空间分布
vx vx0(x, y, z)
vy vz
v v
y z
0 0
( (
x x
, ,
y , z )
显然,对于定 常流动,不需 要初始条件。
29
2.边界条件
所谓边界条件,是包围流场每一条边界上的流场 数值。不同种类的流动,边界条件也不相同。流体流 动分析中最常遇到的三类边界条件如下:
相关文档
最新文档