小波包分解PPT课件讲义
小波包PPT课件
引言
小波分解示意图----每层分解只对低频部分细分
S
A1
D1
A2
D2
A3
D3
4
引言
小波包分解,在小波分解的基础上进一步细分高频部分,达 到更优的时频局部化效果
S
A1
D1
A2,1
D2,1
A2,2
D2,2
5
A3,1
D3,1
A3,2
D3,2
A3,3
D3,3
A3,4
D3,4
小波包原理
❖ 所谓小波包,简单地说就是一个函数族。由 它们构造出的规范正交基库。从此库中可以 选出的许多规范正交基,小波正交基只是其 中的一组,所以小波包是小波概念的推广。
包,称为小波包系数。G,H为小波分解滤波器, H与尺度函数 有关,G与 j (t)有关。二进小波包 分解的快速算法为:
p01 (t) p 2i 1
j
f
(t) H (k
2t
)
p
i j
1
(t
)
k
p
2i j
k
G(k
2t
)
p
i j
1
(t
)
9
重构算法为:
p
i j
(t
)
2[
h(t
2k
)
p
2 i 1 j 1
(t
)
g
(t
2k
)
p
2i j 1
(t
)]
k
k
式中,j J 1, J 2,,1,0;i 2 j ,2 j1,,2,1;
J
log
N 2
, h,
g为小波重构滤波器,
《小波变换》课件
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,即将时间和频率轴进 行离散化,使小波变换能够应用 于数字信号处理。
原理
离散小波变换通过将信号进行离 散化,将连续的小波变换转换为 离散的运算,从而能够方便地应 用于数字信号处理系统。
应用
离散小波变换在图像压缩、数字 水印、音频处理等领域有广泛应 用,能够提供较好的压缩效果和 数据隐藏能力。
小波变换的应用拓展
图像处理
研究小波变换在图像压缩、去噪、增强等方面的应用,提高图像 处理的效果和效率。
语音信号处理
将小波变换应用于语音信号的降噪、特征提取等方面,提高语音 识别的准确率。
医学成像
利用小波变换对医学成像数据进行处理,提高医学影像的质量和 诊断准确率。
小波变换的算法优化
快速小波变换算法
《小波变换》ppt课 件 (2)
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
小波变换是一种数学分析方法,它通 过小波基函数的平移和伸缩,将信号 分解成不同频率和时间尺度的分量。
提供较好的特征提取和分类能力。
01
小波变换的算法实 现
常用的小波基函数
Haar小波
Daubechies小波
是最简单的小波,具有快速变换的特性, 但缺乏连续性和平滑性。
具有紧支撑性和良好的数学特性,广泛应 用于信号处理和图像处理。
Morlet小波
具有振荡性,适用于分析非平稳信号。
小波变换与信号的分解重构课件
信号的重构方法
基于小波变换的重构算法
01
利用小波系数进行逆变换,重构出原始信号。
基于内积定理的重构算法
02
利用小波基的内积定理,通过已知的小波系数重构出原始信号
。
重构算法的应用
03
信号恢复、去噪、压缩感知等领域。
BIG DATA EMPOWERS TO CREATE A NEW ERA
04
小波变换在信号处理中的应用
小波变换与信号的分解重
BIG DATA EMPOWERS TO CREATE A NEW
ERA
构课件
• 小波变换概述 • 小波变换原理及方法 • 信号的分解与重构 • 小波变换在信号处理中的应用 • 小波变换的优缺点及改进方向 • 小波变换的实验与实现
目录
CONTENTS
01
小波变换概述
BIG DATA EMPOWERS TO CREATE A NEW
号。
局部适应性
小波基函数具有局部适 应性,能够更好地捕捉
信号的局部特征。
去噪能力强
小波变换能够将信号中 的噪声和干扰分离出来 ,提高信号的纯净度。
应用广泛
小波变换在图像处理、 音频分析、信号处理等 领域都有广泛的应用。
小波变换的历史与发展
小波变换的思想起源于20世纪80年 代,随着计算机技术的发展,小波变 换逐渐成为信号处理领域的重要工具 。
计算效率高
小波变换的计算效率比较高,特别 是在对一维信号进行处理时,其计 算复杂度较低。
小波变换的缺点
信号重构精度问题
小波变换在进行信号分解时,可能会出现信号重构精度不高的情 况,尤其是在处理含有较多细节的信号时。
缺乏明确的物理意义
小波变换ppt课件
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。
最新小波分析及其应用PPT课件
4、离散小波变换的应用
❖ 例子:某电信号如图所示,数据长度1024。利用 sym5小波对信号进行小波变换。分解到第二层并进 行压缩。
❖ 采用阈值:0.05*细节小波系数的绝对值最大值
无忧PPT整理发
4、离散小波变换的应用
❖ 进行小 波变换 后,对 信号进 行重构 恢复信 号。
无忧PPT整理发
❖ 降低采样频率的一种方法。在信号样本中隔 一个点选取一个点。
❖ 做一次隔点采样,信号的采样频率就减少一 半。信号中的数据量也减半。
无忧PPT整理发
❖ 重构算法
A jf( t) 2 h ( t 2 k )A j 1 f( t) g ( t 2 k )D j 1 f( t)
k
k
无忧PPT整理发
❖ 以后说明的离散小波变换一般为二进离散小波变 换。
无忧PPT整理发
2、离散小波变换定义
❖ 定义:
W f( m , n ) f ( t ) ,m ( , n t ) = a 0 m / 2 f ( t )( a 0 m t n b 0 ) d t
❖ 小波变换的思想是:将任意函数和信号表示为小波 函数的线性组合。 W f (m , n ) 为小波系数。
压缩)
滤波)
❖ 1、将原始信号进行小 ❖ 1、将原始信号进行小波 波变换,得到小波系数。 变换,得到小波系数。
❖ 2、将系数中足够小的 ❖ 2、将系数中代表高频率
系数去除得到滤噪后数 信号的系数去除,得到的
据。
数据。
❖ 3、用数据对原始信号 ❖ 3、用数据对原始信号进
进行重构。
行重构。
无忧PPT整理发
k
D
j
f
(t
小波包分解
一、首先,小波包的一些基本的基本要弄懂,就是小波包是从原始信号,分级向下分解。
如下图所示。
这就是小波包树,其中节点的命名规则是从(1,0)开始,叫1号,(1,1)是2号,,,,依此类推,(3,0)是7号,(3,7)是14号。
每个节点都有对应的小波包系数,这个系数决定了频率的大小,也就是说频率信息已经有了,但是时域信息在哪里呢?那就是 order。
这个order就是这些节点的顺序,也就是频率的顺序。
比如,节点的排序是 1,2,3,,,,14,那么频率就按先1号的频率变化,后2号的,再3号的,,,然后14号的。
图1来看一个实例:采样频率为1024Hz,采样时间是1秒,有一个信号s是由频率100和200Hz的正弦波混合的,我们用小波包来分解。
clear allclcfs=1024; %采样频率f1=100; %信号的第一个频率f2=300; %信号第二个频率t=0:1/fs:1;s=sin(2*pi*f1*t)+sin(2*pi*f2*t); %生成混合信号[tt]=wpdec(s,3,'dmey'); %小波包分解,3代表分解3层,像图1那样,'dmey'使用meyr小波plot(tt) %这个就是画出图1那个图,可以用鼠标在上面点wpviewcf(tt,1); %画出时间频率图,如图2图2现在开始解释:x轴很简单,就是1024个点,对应1秒,每个点就代表1/1024秒,x轴诡异一下,最后一个数就是1. y轴上显示的数字对应于图1 中的节点,从下面开始,顺序是7号节点,8号,10号,9号,,,,11号节点,这个顺序是这么排列的,这是小波包自动排列的,不用管。
只要知道怎么查看这个order就可以了。
然后,y轴是频率啊,怎么不是100Hz和300Hz呢?原因就是MATLAB这里没有显示频率,显示的是order,频率我们要自己算,怎么算呢。
我们的采样频率是1024Hz,根据采样定理,奈奎斯特采样频率是512Hz,我们分解了3层,最后一层就是 2^3=8个频率段,每个频率段的频率区间是512/8=64Hz,对吧,那看图2,颜色重的地方一个是在8那里,一个在13那里,8是第二段,也就是 65-128Hz之间,13是第五段,也就是257-320Hz之间。
小波包分解PPT课件讲义
(
2
)
P0
()ˆ
l
(
2
)
ˆ
2l 1
()
G(
)ˆ l
(
2
)
P1 ( )ˆ
l
(
2
)
递推下去即可。
定理:
由正交尺度函数(x)生成的小波包{ n (x)}
满足:
(1) { n (x k)}是规范正交系。 即 n (x j), n (x k) j,k j, k, n Z (2) 2l (x j), 2l1(x k) 0 j, k, n Z
• 参数j,k,n 的意义。
小波库中的一个函数: n (2 j x k)
参数j : 尺度指标(频域参数) 参数k : 位置指标(时间参数) 参数n : 振荡次数
n (2 j x k)是中心在2-j k, 支集大小
数量级为2 j,振荡次数为n的小波函数。
对小波包的实际意义的分析:
• 当参数j固定时。
0
2、范数。
M ({xk}) {xk}
1
通常选,{xk } =(
xp)p k
k
p0
(范数愈小,能量愈集中。)
常用代价函数:
3、熵
M ({xk }) | xk |2 log | xk |2 k
(与均方意义下恢复原始信号所需的系数个数成 正比。)
常用代价函数:
4、能量对数
M ({xk }) log | xk |2
0 j
U
1 j
定理:
U
nj+1=U
2n j
U
2n1 j
证明要点:
(1) (2) (3)
U
2j n和U
2 j
n1是U
小波变换原理与应用ppt课件
信号的时域表示和频域表示只适用于平稳信号,对于
非平稳信号而言,在时间域各种时间统计量会随着时 间的变化而变化,失去统计意义;而在频率域,由于 非平稳信号频谱结构随时间的变化而变化导致谱值失 去意义
幅度 A |Y(f)|
信 号 x(t)的 时 域 波 形 1
0.5
0
-0.5
2
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1.小波的发展历史——工程到数学
小波变换的概念是由法国从事石油信号处理的工程 师J.Morlet在1974年首先提出的,通过物理的直观和信 号处理的实际需要经验的建立了反演公式,当时未能 得到数学家的认可。幸运的是,1986年著名数学家 Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat 合作建立了构造小波基的同一方法枣多尺度分析之后 ,小波分析才开始蓬勃发展起来。
1.小波的发展历史——工程到数学
1909: Alfred Haar——发现了Haar小波 1980:Morlet——Morlet小波,并分别与20世纪70年代提
出了小波变换的概念,20世纪80年代开发出了连续小 波变换CWT( continuous wavelet transform ) 1986:Y.Meyer——提出了第一个正交小波Meyer小波 1988: Stephane Mallat——Mallat快速算法(塔式分解和 重构算法)
Rx(t1,t2)ExE(t)x(t1)x ( tx2)f(x)dRxx()m,x t2 t1
Ex2(t)
非平稳信号 不满足平稳性条件至少是宽平稳条件的信号
《小波与分形理论》课件
分形在小波分析中的应用
分形理论可以用于理解和描述小波变换 的性质和行为,例如小波变换的分形维
数和小波变换的局部性等。
分形结构可以作为小波基函数,用于构 造具有特定性质的小波,例如具有特定 分形维数的小波或具有特定局部性特征
的小波。
分形理论还可以用于分析和理解小波变 换在处理复杂信号和图像时的性能和特 点,例如小波变换在处理具有分形特征
信号处理与分析
信号降噪
小波变换能够将信号分解成不同频率 的子信号,从而实现对信号的降噪处 理。通过对低频子信号进行阈值处理 ,可以去除信号中的噪声,提高信号 的信噪比。
信号特征提取
分形理论在信号特征提取方面也有应 用。通过计算信号的分形维数,可以 提取出信号中的特征信息,从而用于 信号分类、识别和预测等任务。
小波变换与量子计算
量子计算技术的发展为小波变换提供了新的计算平台,有望加速小波变 换的计算速度,提高算法的实时性。
当前研究的热点问题
小波变换在医学影像处理中的应用
医学影像数据具有高维度和复杂的空间结构,小波变换在医学影像处理中具有广泛的应用 前景,如图像压缩、特征提取和疾病诊断等。
分形理论在金融市场中的应用
计算机图形学与艺术
计算机动画
小波变换可以用于计算机动画的制 作。通过小波变换,可以将复杂的动 画场景分解成简单的子场景,从而实 现动画的分层制作和细节控制。
数字艺术创作
分形理论在数字艺术创作方面也有应 用。通过分形算法,可以生成具有自 相似性的艺术图案,从而用于数字艺 术作品的创作和设计。
05
未来展望与研究方向
的信号和图像时的优势和局限性。
04
小波与分形理论的实际应用
图像压缩与处理
小波PPT
率为1000 Hz
x=sin(2*pi*50*t)+sin(2*pi*300*t);%产生主要频率 为50 Hz和300 Hz的信号
19 f=x+3.5*randn(1,length(t));%在信号中加入白噪
(1.7)
该性质表明,时间函数f(t)沿t轴向左或向右位移t0的傅里叶 变换等于f(t)的傅里叶变换乘以因子 ei wt 0 或
e
。
傅里叶逆变换亦具有类似的位移性质。
14 3.微分性质
设F(w)为函数f(t)的傅里叶变换,f(t)表示函数f(t)的微
分,则有
f (t) jwF(w)
(1.8)
功率谱图(图1.1(b))中,我们可以明显地看出该信号是由频
率为50 Hz和300 Hz的正弦信号和频率分布广泛的白噪声信 号组成的,也可以明显地看出信号的频率特性。
23 虽然傅里叶变换能够将信号的时域特征和频域特征联
系起来,能分别从信号的时域和频域观察,但不能把二者
有机地结合起来。这是因为信号的时域波形中不包含任何 频域信息,而其傅里叶谱是信号的统计特性。从其表达式
为序列{ fn}的离散傅里叶变换,称
i
2πk n N
(1.3)
9
1 fn N
X (k )e
k 0
N 1
i
2πk n N
k 0,1,, N 1
(1.4)
为序列{X(k)}的离散傅里叶逆变换(IDFT)。
在式(1.4)中,n相当于对时间域的离散化,k相当于频
率域的离散化,且它们都是以N点为周期的。离散傅里叶 变换序列{X(k)}是以2p为周期的,且具有共轭对称性。
小波变换与信号的分解重构PPT课件
(2)正变换
l1=wfilters('db4','l')*sqrt(2)/2;
% 参考低通滤波器
l1_zeros=[l1,zeros(1,T-length(l1))]; % 低通滤波器1
h1=wfilters('db4','h')*sqrt(2)/2;
% 参考高通滤波器
h1_zeros=[h1,zeros(1,T-length(h1))]; % 高通滤波器1
2)缺点:
其窗口函数
通过函数时间
轴的平移与频率限制得到,由此得到的时频分析
窗口具有固定的大小。
-
5
S1. 傅立叶变换与小波
Gabor变换及其应用示例 Gabor变换是海森伯(Heisenberg )
测不准原理下的最优的短时傅立叶变换。 高斯窗函数是短时傅里叶变换同时追求时 间分辨率与频率分辨率时的最优窗函数。 具有高斯窗函数的短时傅里叶变换就是 Gabor变换。
j = [1+floor([0:a*xmax]/(a*dx))];
if length(j)==1 , j = [1 1]; end
f = fliplr(psi_integ(j));
coefs(ind,:) =-sqrt(a)*wkeep(diff(conv(signal,f)),len);
%计算公式(*)
-
6
S1. 傅立叶变换与小波
Gabor变换应用示例 (1)高斯窗函数
(2)信号函数
-
7
S1. 傅立叶变换与小波
(3)平移后的高斯窗函数 (4)归一化 (5) Gabor变换
-
8
S1. 傅立叶变换与小波
《小波分析》PPT课件
级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
a ,b
a ,b
a ,b
b aE a , b + aE a
E a a , E a a
(32)
Appendix B Fig.2. 小波在时-频相平面上的窗
1
0
2 t
t0
t1
2.3.4. 小波的时-频特性
小 波 时 - 频 窗 的 面 4积 恒 等
于
;
小波的时-频窗是时-频相平面中的
注释
注释:如果小波母函数 x
的
Fourier
0
变换
在原0点 0
是于连是续
明
x的d,x 那 0么公式(2)说
R
,
这说明函数 x 有波动的特点,公
式(1)又说明函x数
有衰减的特
点,因此 ,x称函数
为“小
1.2 小波变换(Wavelet Transform)
对 于 任 意 的 函 数f x或L2R者 信
对于正交小波 x , k, j x; k, j Z 2
是一个标准正交基,所以,对于任何信号 f(X),可以展开成小波级数:
f x
k, j k, j x
k j
(35)
Matlab中的小波分析工具箱PPT课件讲义
Orthogonal
yes
Biorthogonal
yes
Compact support no
DWT
possible but without FWT
CWT
possible
Support width
infinite
Effective support [-8 8]
Regularity
indefinitely derivable
其中:cA :低频分量, cD:高频分量 X:输入信号。 wname:小波基名称 H:低通滤波器 G:高通滤波器
多层小波分解:
[A,L]=wavedec(X,N,’wname’) [A,L]=wavedec(X,N,H,G) 其中:A :各层分量, L:各层分量长度
N:分解层数 X:输入信号。 wname:小波基名称 H:低通滤波器 G:高通滤波器
• 提升小波变换(Lifting scheme wavelet transform)
多小波变换:
• 在图像处理和信号分析的实际应用中,我们需要小波 具有正交性和对称性。可是,实数域中,紧支、对称、 正交的非平凡单小波是不存在的,这使人们不得不在 正交性与对称性之间进行折衷。
• Goodman等提出多小波的概念,其基本思想是将单小 波中由单个尺度函数生成的多分辨分析空间,扩展为 由多个尺度函数生成,以此来获得更大的自由度。 1994年,Geronimo,Hardin和Massopus构造了著名的 GHM多小波。它既保持了单小波所具有的良好的时域 与频域的局部化特性,又克服了单小波的缺陷,将实 际应用中十分重要的光滑性、紧支性、对称性、正交 性完美地结合在一起。与此同时,在信号处理领域, 人们将传统的滤波器组推广至矢值滤波器组、块滤波 器组,初步形成了矢值滤波器组的理论体系,并建立 了它和多小波变换的关系。
专题讲座——小波变换PPT课件
第10页/共79页
部分小波波形
第11页/共79页
小波基函数
将小波母函数(t)进行伸缩和平移,
令伸缩因子(称尺度因子)为a,平移因子为,则:
a( , t)
a12(t
),a0,R
a
则称a( , t)是依赖参数a,的小波基函数。
将信号在这个函数系上分解,就得到连续小波变换
第12页/共79页
小波分析
• 小波变换通过平移母小波(mother wavelet) 可获得信号的时间信息,而通过缩放小波的 宽度(或者叫做尺度)可获得信号的频率特性。 对母小波的缩放和平移操作是为了计算小波 的系数,这些系数代表小波和局部信号之间 的相互关系。
第15页/共79页
CWT的变换过程图示
第16页/共79页
CWT小结
• 小波的缩放因子与信号频率之间的关系可以 这样来理解。缩放因子小,表示小波比较窄,
度量的是信号细节,表示频率w 比较高;相
反,缩放因子大,表示小波比较宽,度量的
是信号的粗糙程度,表示频率w 比较低。
第17页/共79页
离散小波变换
第18页/共79页
离散小波变换定义
任意L2(R)空间中的x(t)的DWT为:
__________
Wx ( j, k) R x(t) j,k (t) dt其中Biblioteka j( ,k t) 1 2j
(
t 2
j
k)
需要强调指出的是,这一离散化都是针对连续 的尺度参数和连续平移参数的,而不是针对时 间变量t的。
第4页/共79页
短时傅里叶变换STFT
确定信号局部频率特性的比较简单的方法是 在时刻ґ附近对信号加窗,然后计算傅里叶变 换。
小波基本理论及应用PPT课件
小波变换的应用领域
信号处理
小波变换在信号处理领域应用广泛,可 以用于信号的降噪、压缩、识别和分类
等。
模式识别
小波变换可以用于模式识别中的特征 提取和分类器设计,如人脸识别、语
小波基本理论及应用ppt课 件
目录
• 小波理论概述 • 小波变换的数学基础 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换在其他领域的应用
01
小波理论概述
小波的定义与特性
小波的定义
小波是一种特殊的函数,其时间窗和频率窗都可以改变,且在时间域和频率域 都具有很好的局部化特性。
在信号处理中,通过调整小波变换的尺度和平移参数,可 以得到信号在不同时间和频率下的局部信息,从而更好地 理解信号的特征和性质。
03
小波变换的算法实现
一维小波变换算法
一维小波变换算法是实现小波变换的基本方法之一,它通过对一维信号进行多尺度分析,将信号分解 成不同频率和不同时间分辨率的成分。
一维小波变换算法可以分为连续小波变换和离散小波变换两种,其中离散小波变换在实际应用中更为广 泛。
量子纠缠的检测
小波变换可以用于检测量子纠缠,有 助于理解和应用量子纠缠的性质。
量子计算中的优化问题
小波变换可以用于优化量子计算中的 某些问题,提高量子计算的效率。
量子模拟中的近似方法
小波变换可以用于近似求解某些量子 模拟问题,提供一种有效的近似方法。
在金融领域的应用
金融数据分析
小波变换可以用于金融数据分析,如股票价 格、外汇汇率和商品价格等的分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G
H
U12 U13
G
U
3 0
空间的小波包分解
c N
HHc N
H
H
G
H
N c
G
Gc N
G
H
GHc HGc
N
N
GGc N
x1 x2 x3 x4 x5 x6 x7 x8
H
G
h1 h2 h3 h4 g1 g2 g3 g4
H
G
H
G
hh1 hh2 gh1 gh2 hg1 hg2 gg1 gg2
对小波包的实际意义的分析:
1
2
2
ei(k j) d
0
j,k
(2)的证明:
2l (x
j), 2l1(x k)
1 2
ˆ 2l ()ˆ 2l1()ei(k j) d
1 2
l
( 2
)
2
P0
(ei
/
2
)
P1
(e
i
/
2
)ei
(
k
j
)
d
1 2
4 (l 1)
l 4l
l(2
2
2l) P0 (ei / 2 )P1(ei / 2 )ei(k j) d
代价函数M:
• 对一个输入数列,我们从其小波包变换中选出一个输出数列,并 计算其代价函数;则代价函数最小的输出数列所对应的基,则是 对应与输入数列的“最优基”。
• 代价函数的基本要求; 1.单调性。 2.可加性(次可加性)
1 4 ( 2l) 2 H (ei / 2 )G(ei / 2 )ei(k j) d
2 0 l
2
பைடு நூலகம்
1
4
H (ei / 2 )G(ei / 2 )ei(k j) d
2 0
1
2
(H (ei / 2 )G(ei / 2 ) H (ei( / 2 ) )G(ei( / 2 ) ))ei(k j) d
小波分解: L2 Wj1 Wj Wj1
H
G
U j,1 U j,2
小波包的定义:
设(x)和 (x)分别是尺度函数和小波函数, 令 0 (x)= (x) 1(x)= (x)
2l (x) hk(l 2x k) k
2l1(x) gk(l 2x k) k
定义的函数{ n}称为关于尺度函数(x)的
推论:
对j 1,2,3,有
WWj=j=UU4j22j1 UU5j3j21 U
6 j2
U
7 j2
W j=U
2k jk
U
2k 1 jk
U
2k1 1 jk
W
j=U
2 0
j
U
2 0
j
1
U
2 0
j1
1
小波包变换的算法:
V0
H H
G
V1
W1
G
V2 W2
空间的小波分解
V0
H
G
V1
W1
H
H
G
V2
W2
U
2 0
小波库中的函数{ n (2 j0 x k)}n,k 构成L2的正交
基,此时,变换类似与一个加窗Fourier变换。
当参数n固定时。
小波库中的函数{ n0 (2 j x k)}j,k 构成L2的正交
基,此时,变换是一个小波变换。
基的选择问题
• 在对函数或信号进行小波包分解时,由于Wj有不同的分解方式, 即Wj有不同的正交基,因此,我们面临“最优基”的选择问题。
0 j
U
1 j
定理:
U
nj+1=U
2n j
U
2n1 j
证明要点:
(1) (2) (3)
U
2j n和U
2 j
n1是U
nj+1的子空间。
U
2n j
U
2 j
n1
U nj+1的基可由{ 2n (2 j x k )}和{ 2n+1(2 j x k )}
的线性组合表示。
(可参看《小波分析导论》第334页或《小波分析算法 与应用》第160页。)
1
2
4 (l 1) l 4l
P1
(e
i
/
2
)
2
n1
(
2
)
2
e
i
(
k
j
)
d
1
2
4
P1 (ei / 2 ) 2
0
l
n1
(
2
2l)
2
ei(k j) d
1
2
4 0
P1 (ei / 2 ) 2 ei(k j) d
1
2
2
( P1 (ei / 2 ) 2
0
P1 (ei( / 2 ) ) 2 )ei(k j) d
(
2
)
P0
()ˆ
l
(
2
)
ˆ
2l 1
()
G(
)ˆ l
(
2
)
P1 ( )ˆ
l
(
2
)
递推下去即可。
定理:
由正交尺度函数(x)生成的小波包{ n (x)}
满足:
(1) { n (x k)}是规范正交系。 即 n (x j), n (x k) j,k j, k, n Z (2) 2l (x j), 2l1(x k) 0 j, k, n Z
小波包。
设(x)和 (x)分别是尺度函数和小波函数,
令 0 (x)=(x) 1(x)= (x)
2l (x) hk (2 2l1 x k) k
2l
(
1
x)
gk (2 2l1 x k )
k
定义的函数{ n}称为关于尺度函数(x)的
缩短小波包。
小波包函数的Fourier变换:
设n的二进制表示为:
用数学归证纳法明。 :
1. n 0时,因为 0=,结论成立。
2. 假设对0 n 2s 成立。
3. 对2s n 2s1,
取n1
[
n ],则n 2
2n1
1
n (x
j), n (x k)
1
2
n () 2 ei(k j) d
1
2
P1
(ei
/
2
)
2
n1
( 2
)
2
ei(k
j )
d
2 0
0
函数族{2-2j n (2 j x k)}称为由尺度 函数 ( x)生成的小波库。
j
讨论函数族{22 n (2 j x k)}对空间的分解。
j
令
U
n j
span{22 n (2 j
x
k )kZ }
j,n Z
则: U 0j=Vj
U 1j=Wj
我们可以将:Vj1 Vj Wj
改写为
U
0j+1=U
• 参数j,k,n 的意义。
小波库中的一个函数: n (2 j x k)
参数j : 尺度指标(频域参数) 参数k : 位置指标(时间参数) 参数n : 振荡次数
n (2 j x k)是中心在2-j k, 支集大小
数量级为2 j,振荡次数为n的小波函数。
对小波包的实际意义的分析:
• 当参数j固定时。
n j 2 j1 j 1
j {0,1}
当 2s n 2s1时,我们有
j=10 P0 () H ()
则:
j s 1 j s 1
P1() G()
s 1
ˆ n () P j (ei / 2 j ) j 1
证明:
由小波包的双尺度关系式,两边作Fourier变换:
ˆ
2l
()
H
( )ˆ l
小波包分解
各种变换的适合处理对象:
小波变换
加窗Fourier变换
Fourier变换
(1)处理突变信 号或具有孤立奇异 性的函数。
(2)自适应信号 处理。
(1)处理渐变信 号。
(2)实时信号处 理。
(1)处理稳定和 渐变信号。
(2)实时信号处 理。
小波变换对频域的分解情况
小波包分解:对信号高频部分的再分解