2019年中考数学专题复习专题七类比探究题训练
2019年高考备考:河南中考数学真题(第22题)类比拓展探究题分类汇编-附答案精品
青霄有路终须到,金榜无名誓不还! 2019-2020 年备考 类比、拓展探究题 17 年)如图 1,在 Rt△ABC 中,∠A=90°,AB=AC, 点 D,E 分别在边 AB,AC 上,AD=AE,连接 DC,点 M, P,N 分别为 DE,DC,BC 的中点. (1)观察猜想 图 1 中,线段 PM 与 PN 的数量关系是 PM=PN ,位置关系是 (2)探究证明 把△ADE 绕点 A 逆时针方向旋转到图 2 的位 置,连接 MN,BD,CE,判断△PMN 的形状,并说明 理由; (3)拓展延伸 把△ ADE 绕点 A 在平面内自由旋转,若 AD=4,AB=10,请直接写出△PMN 面积的最大值. PM⊥PN ;
BD
14 年) (1)问题发现 如图 1,△ACB 和△DCE 均为等边三角形,点 A、D、 E 在同一直线上,连接 BE 填空: (1)∠AEB 的度数为 (2) 线段 BE 之间的数量关系是 ; 。
【分析】(1)利用三角形的中位线得出 PM= CE, PN= BD,进而判断出 BD=CE,即可得出结论,另为 利用三角形的中位线得出平行线即可得出结论; (2)先判断出△ABD≌△ACE,得出 BD=CE,同(1) 的方法得出 PM= BD,PN= BD,即可得出 PM=PN,同 (1)的方法即可得出结论; (3)先判断出 MN 最大时,△PMN 的面积最大,进而 求出 AN,AM,即可得出 MN 最大=AM+AN,最后用面积 公式即可得出结论. 【解答】解:(1)∵点 P,N 是 BC,CD 的中点, ∴PN∥BD,PN= BD, ∵点 P,M 是 CD,DE 的中点, ∴PM∥CE,PM= CE, ∵AB=AC,AD=AE, ∴BD=CE, ∴PM=PN, ∵PN∥BD, ∴∠DPN=∠ADC, ∵PM∥CE, ∴∠DPM=∠DCA, ∵∠BAC=90°, ∴∠ADC+∠ACD=90°,
2019-2020年九年级中考数学动态几何、类比探究专项训练
2019-2020年九年级中考数学动态几何、类比探究专项训练三、解答题22. (10分)如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A ,点D 重合),将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP ,BH .(1)求证:∠APB =∠BPH .(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论.(3)设AP 为x ,四边形EFGP 的面积为S ,求出S 与x 的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.(备用图)A EBPDH GF CCFGH DPBEA备用图中考数学动态几何、类比探究专项训练(二)三、解答题22. (10分)数学课上,魏老师出示图1和下面框中条件:(1)①当点C 与点F 重合时,如图2所示,可得的值为______; ②在平移过程中,的值为__________(用含x 的代数式表示).(2)将图2中的三角板ABC 绕点C 逆时针旋转,原题中的其他条件保持不变.当点A 落在线段DF 上时,如图3所示,请计算的值.(3)将图1中的三角板ABC 绕点C 逆时针旋转度,,原题中的其他条件保持不变,如图4所示,请计算的值(用含x 的代数式表示).图3 图4中考数学动态几何、类比探究专项训练(三)三、解答题22. (10分)已知:线段OA ⊥OB ,点C 为OB 中点,D 为线段OA 上一点.连接AC ,BD 交于点P .(1)如图1,当OA =OB ,且D 为OA 中点时,求的值; (2)如图2,当OA =OB ,且时,求tan ∠BPC 的值;(3)如图3,当AD :OA :OB =1:n :时,直接写出tan ∠BPC 的值.lM AB FCEDlMABF (C )ED图3图2图1PD BC OA O DC PBA O D C P BA中考数学动态几何、类比探究专项训练四)三、解答题22.(10分)如图,在矩形ABCD中,点M是AD的中点,AD=,CD=,直角∠PME绕点M进行旋转,其两边分别和BC,CD交于点P和点E,连接PE交MC于点Q.(1)判断线段MP,ME的数量关系,并进行证明;(2)当动点P,E分别在线段BC和CD上运动时,设PC=x,MQ=y,求y与x的函数关系式;(3)在(2)中,当y取最小值时,判断PE与BM的位置关系,并说明理由.PQE M DCBA中考数学动态几何、类比探究专项训练(五)三、解答题22.(10分)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长.(2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2CF2取最大值时,求tan∠DCF的值.F DCB EA中考数学动态几何、类比探究专项训练(六)三、解答题22. (10分)点A ,B 分别是两条平行线m ,n 上任意一点,在直线n 上找一点C ,使BC =kAB ,连接AC ,在线段AC 上任取一点E ,作∠BEF =∠ABC ,EF 交直线m 于点F .(1)如图1,当∠ABC =90°,k =1时,判断线段EF 和EB 之间的数量关系,并证明.(2)如图2,当∠ABC =90°,k ≠1时,(1)中结论还成立吗?若成立,请证明;若不成立,请重新判断线段EF 和EB 之间的数量 关系.(3)如图3,当0°<∠ABC <90°,k =1时,探究EF 和EB 之间的数量关系,并证明.mnAF CB Emn A F E CBB CEF Anm图1 图2 图3中考数学动态几何、类比探究专项训练(七)三、解答题22. (10分)如图1,在等腰Rt △ABC 和等腰Rt △CDE (CD >BC )中,点C ,B ,D 在同一直线上,点M是AE 的中点.(1)探究线段MD ,MB 的位置及数量关系,并证明.(2)将图1中的△CDE 绕点C 顺时针旋转45°,使△CDE 的斜边CE 恰好与△ABC 的边BC 垂直,如图2,原问题中的其他条件不变,则(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若将图2中的△ABC 绕点C 逆时针旋转大于0°且小于45°的角,如图3,原问题中的其他条件不变,则(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明. 图1 图2 图3EMD C BAE MDCBAABCDME中考数学动态几何、类比探究专项训练(八)三、解答题22. (10分)如图1,四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF =90°,且EF 交正方形外角∠DCG 的平分线CF 于点F . (1)求证:AE =EF .(2)如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上除B ,C 外的任意一点”,其他条件不变,那么结论“AE =EF ”仍然成立吗?如果成立,写出证明过程;如果不成立,请说明 理由.(3)如图3,点E 是BC 延长线上除C 点外的任意一点,其他条件不变,结论“AE =EF ”仍然成立吗?如果成立,写出证明过程;如果不成立,请说明理由.图 1 图 2 图 3中考数学动态几何、类比探究专项训练(九)三、解答题22. (10分)问题背景(1)如图1,△ABC 中,DE ∥BC ,分别交AB ,AC 于D ,E 两点,过点E 作EF ∥AB ,交BC 于点F .请按图示数据填空:四边形DBFE 的面积S =_________,△EFC 的面积S 1=_________,△ADE 的面积S 2=__________. 探究发现(2)在(1)中,若BF =a ,FC =b ,DE 与BC 间的距离为h .请证明S 2=4S 1S 2. 拓展迁移GAB C DFE E FDC BAG E FDC B A G(3)如图2,□DEFG 的四个顶点在△ABC 的三边上,若△ADG ,△DBE ,△GFC 的面积分别为2,5,3,试利用(2)中的结论求△ABC 的面积.中考数学动态几何、类比探究专项训练(十)三、解答题22. (10分)如图,在△ABC 中,AB =AC =10厘米,BC =12厘米,D 是BC 的中点,点P 从B 出发,以a厘米/秒(a >0)的速度沿BA 匀速向点A 运动,点Q 同时以1厘米/秒的速度从D 出发,沿DB 匀速向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为t 秒. (1)若a =2,△BPQ ∽△BDA ,求t 的值;(2)设点M 在AC 上,四边形PQCM 为平行四边形. ①若a =,求PQ 的长;②是否存在实数a ,使得点P 在∠ACB 的平分线上?若存在,请求出a 的值;若不存在,请说明理由.图2图1CE DGBAFS 1S 2SF E DCBA 362P Q D CB A中考数学动态几何、类比探究专项训练(十一)三、解答题22. (10分)如图,在Rt △ABC 中,∠C =90°,AB =25cm ,AC =20cm .点P 从点A 出发,沿AB 的方向匀速运动,速度为5cm/s ;同时点M 从点C 出发,沿CA 的方向匀速运动,速度为4cm/s .过点M 作MN ∥AB ,交BC 于点N .设运动的时间为t 秒(0<t <5). (1)用含t 的代数式表示线段MN 的长.(2)连接PN ,是否存在某一时刻t ,使得四边形AMNP 为菱形?若存在,求出此时t 的值;若不存在,请说明理由.(3)连接PM ,PN ,是否存在某一时刻t ,使得点P 在线段MN 的垂直平分线上?若存在,求出此时t 的值;若不存在,请说明理由.(备用图)BCACBA(备用图)AC BPNM中考数学动态几何、类比探究专项训练(十二)三、解答题22.(10分)如图,在梯形A B C D中,A D∥B C,A D=3,D C=5,A B=,∠B=45°.动点M从B点出发,沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;(2)当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.中考数学动态几何、类比探究专项训练(一)参考答案22.(1)证明略;NM DCBA(2)△PDH的周长不发生变化,证明略;(3),当x=2时,S存在最小值,最小值为6.中考数学动态几何、类比探究专项训练(二)参考答案22.(1)①1;②;(2);(3).中考数学动态几何、类比探究专项训练(三)参考答案22.(1)=2;(2)tan∠BPC;(3)tan∠BPC.中考数学动态几何、类比探究专项训练(四)参考答案22.(1)MP=ME,证明略;(2);(3)当y取最小值时,PE∥BM,理由略.中考数学动态几何、类比探究专项训练(五)参考答案22.(1)CE=.(2)①存在,k=3;②tan∠DCF.中考数学动态几何、类比探究专项训练(六)参考答案22.(1)EF=EB,证明略;(2)不成立,此时EB=kEF;(3)EF=EB,证明略.中考数学动态几何、类比探究专项训练(七)参考答案22.(1)MD⊥MB,MD=MB,证明略;(2)不发生变化,证明略;(3)不发生变化,证明略.中考数学动态几何、类比探究专项训练(八)参考答案22.(1)证明略;(2)结论仍成立,证明略;(3)结论仍成立,证明略.中考数学动态几何、类比探究专项训练(九)参考答案22.(1)6,9,1;(2)证明略;(3)18.中考数学动态几何、类比探究专项训练(十)参考答案22.(1);(2)①PQ厘米;②不存在,理由略.中考数学动态几何、类比探究专项训练(十一)参考答案22.(1)MN=;(2)存在,;(3)存在,.可编辑修改中考数学动态几何、类比探究专项训练(十二)参考答案22.(1)BC=;(2);(3)..希望能帮到您,欢迎下载。
中考数学复习专题7几何综合题、几何与代数综合题 (2)
≥0的解集. 9.阅读下列材料,并用相关的思想方法解决问题. 计算:(1﹣ ﹣ ﹣ )×( + + + )﹣(1﹣ ﹣ ﹣ ﹣
)×( + + ). 令 + + =t,则 原式=(1﹣t)(t+ )﹣(1﹣t﹣ )t =t+ ﹣t2﹣ t﹣ t+t2 = 问题: (1)计算 (1﹣
﹣ ﹣ ﹣…﹣ )×( + + + +…+ + )﹣(1﹣ ﹣ ﹣ ﹣ ﹣…﹣
的代数式表示 ); (2)设该格点多边形外的格点数为 ,则 =
二、应用题 3.定义运算max{a, b}:当a≥b时,max{a,b}=a;当a<b时,max{a, b}=b.如max{﹣3,2}=2. (1)max{ , 3}= 3 ; (2)已知y1= 和y2=k2x+b在同一坐标系中的图象如图所示,若max{ ,k2x+b}= ,结合图象,直接写出x的取值范围; (3)用分类讨论的方法,求max{2x+1,x﹣2}的值.
归纳证明 (2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等 式表示出来,请利用图3证明你发现的关系式; 拓展应用 (3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中 点,BE⊥EG,AD= ,AB=3.求AF的长.
5.阅读理解 材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行 的两边叫梯形的底边,不平行的两边叫梯形的底边,不平行的两边叫梯 形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有 以下性质: 梯形的中位线平行于两底和,并且等于两底和的一半. 如图(1):在梯形ABCD中:AD∥BC ∵E、F是AB、CD的中点 ∴EF∥AD∥BC EF=
2019年全国中考数学真题分类汇编:几何综合探究题(压轴)
专题复习(八)几何综合探究题(压轴)类型1 类比探究的几何综合题类型2 与图形变换有关的几何综合题类型3 与动点有关的几何综合题类型4 与实际操作有关的几何综合题类型5 其他类型的几何综合题类型1 类比探究的几何综合题(2019河南)(2019吉林)(2019烟台)(2019广西北部湾)(2019武汉)在△ABC 中,∠ABC =90°,,M 是BC 上一点,连接AM n BCAB =(1) 如图1,若n =1,N 是AB 延长线上一点,CN 与AM 垂直,求证:BM =BN(2) 过点B 作BP ⊥AM ,P 为垂足,连接CP 并延长交AB 于点Q① 如图2,若n =1,求证:BQBM PQ CP =② 如图3,若M 是BC 的中点,直接写出tan ∠BPQ 的值(用含n 的式子表示)(2019襄阳)(2019常德)(2019岳阳)(2019 德州)(2019 青岛)23.(本小题满分10 分)问题提出:如图,图①是一张由三个边长为 1 的小正方形组成的“L”形纸片,图②是一张a⨯b 的方格纸(a⨯ b的方格纸指边长分别为a,b 的矩形,被分成a⨯b个边长为 1 的小正方形,其中a≥2 ,b≥2,且a,b 为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在 2 ⨯2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2⨯2的方格纸,要用图①盖住其中的三个小正方形,显然有4 种不同的放置方法.探究二:把图①放置在3⨯2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3⨯2的方格纸中,共可以找到 2 个位置不同的 2 2 ⨯方格,依据探究一的结论可知,把图①放置在3⨯2 的方格纸中,使它恰好盖住其中的三个小正方形,共有2 ⨯ 4=8种不同的放置方法.探究三:把图①放置在 a ⨯ 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在 a ⨯ 2 的方格纸中,共可以找到_________个位置不同的2⨯2方格,依据探究一的结论可知,把图①放置在 a ⨯ 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有_________种不同的放置方法.探究四:把图①放置在 a ⨯ 3 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a⨯ 3 的方格纸中,共可以找到_________个位置不同的2⨯ 2方格,依据探究一的结论可知,把图①放置在 a ⨯ 3 的方格纸中,使它恰好盖住其中的三个小正方形,共有_________种不同的放置方法.……问题解决:把图①放置在 a ⨯ b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由 4 个棱长为 1 的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b ,c (a≥2 ,b≥2 ,c≥2 ,且a,b,c 是正整数)的长方体,被分成了 a ⨯b ⨯c 个棱长为 1 的小立方体.在图⑧的不同位置共可以找到_________个图⑦这样的几何体.答案:(2019 威海)(2019 台州)(2019 绍兴)答案:(2019 绍兴)答案:(2019 嘉兴)23.小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图 1,在△中,⊥ 于点,正方形 的边在上,顶点 , 分ABC AD BC D PQMN QM BC P N 别在,AB 上,若 ,,求正方形 的边长.AC 6BC =4AD =PQMN (2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图 2,任意画△,在上任取一点,画正方形 ,使,在边上, 在△ 内,连结 并延ABC AB P 'P Q M N ''''Q 'M 'BC N 'ABC BN '长交 于点N ,画⊥于点,⊥ 交于点,⊥ 于点,得到四边形AC NM BC M NP NM AB P PQ BC QP .小波把线段 称为“波利亚线”.PQMN BN (3)推理:证明图2 中的四边形 是正方形.PQMN (4)拓展:在(2)的条件下,于波利业线 上截取 ,连结 ,(如图 3).当 BN NE NM -EQ EM 3tan 4NBM ∠=时,猜想∠的度数,并尝试证明.QEM 请帮助小波解决“温故”、“推理”、“拓展”中的问题.答案:(2019 南京)答案:(2019 连云港)27.(本题满分14分)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE 的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上,(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF 的度数;(2)如图3,当垂足P 在正方形ABCD 的对角线BD 上时,连接AN ,将△APN 沿着AN 翻折,点P 落在点P'处.若正方形ABCD 的边长为4 ,AD 的中点为S ,求P'S 的最小值.问题拓展:如图4,在边长为4的正方形ABCD 中,点M 、N 分别为边AB 、CD 上的点,将正方形ABCD 沿着MN 翻折,使得BC 的对应边B'C'恰好经过点A ,C'N 交AD 于点F .分别过点A 、F 作AG ⊥MN ,FH ⊥MN ,垂足分别为G 、H .若AG =,请直接写出FH 的长.52答案:(2019淄博)(2019贵港)(2019齐齐哈尔)(2019绥化)(2019黑龙江龙东)1.(2019德州)(1)如图1,菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,请直接写出HD:GC:EB的结果(不必写计算过程)(2)将图1中的菱形AEGH绕点A旋转一定角度,如图2,求HD:GC:EB;(3)把图2中的菱形都换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.解:(1)连接AG,∵菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,∴∠GAE=∠CAB=30°,AE=AH,AB=AD,∴A,G,C共线,AB-AE=AD-AH,∴HD=EB,延长HG交BC于点M,延长EG交DC于点N,连接MN,交GC于点O,则GMCN也为菱形,∴GC⊥MN,∠NGO=∠AGE=30°,∴=cos30°=,∵GC=2OG,∴=,∵HGND为平行四边形,∴HD=GN,∴HD:GC:EB=1::1.(2)如图2,连接AG,AC,∵△ADC和△AHG都是等腰三角形,∴AD:AC=AH:AG=1:,∠DAC=∠HAG=30°,∴∠DAH=∠CAG,∴△DAH∽△CAG,∴HD:GC=AD:AC=1:,∵∠DAB=∠HAE=60°,∴∠DAH=∠BAE,在△DAH和△BAE中,∴△DAH≌△BAE(SAS)∴HD=EB,∴HD:GC:EB=1::1.(3)有变化.如图3,连接AG,AC,∵AD:AB=AH:AE=1:2,∠ADC=∠AHG=90°,∴△ADC∽△AHG,∴AD:AC=AH:AG=1:,∵∠DAC=∠HAG,∴∠DAH=∠CAG,∴△DAH∽△CAG,∴HD:GC=AD:AC=1:,∵∠DAB=∠HAE=90°,∴∠DAH=∠BAE,∵DA:AB=HA:AE=1:2,∴△ADH∽△ABE,∴DH:BE=AD:AB=1:2,∴HD:GC:EB=1::2类型2 与图形变换有关的几何综合题(2019十堰)(2019山西),把△ADE 沿D E翻折,点A的对应(2019郴州)如图1,矩形A BCD 中,点E为A B 边上的动点(不与A,B 重合)点为A1 ,延长EA1交直线D C 于点F,再把∠BEF 折叠,使点B的对应点B1落在E F 上,折痕EH 交直线B C 于点H.(1)求证:△A1DE∽△B1EH;(2)如图2,直线M N 是矩形A BCD 的对称轴,若点A1恰好落在直线M N 上,试判断△DEF 的形状,并说明理由;(3)如图3,在(2)的条件下,点G为△DEF 内一点,且∠DGF=150°,试探究DG,EG,FG 的数量关系.图1 图2 图3(2019淮安)(2019吉林)(2019包头)(2019自贡)25.(本题满分12分)(1)如图1,E 是正方形ABCD 边AB 上的一点,连接BD 、DE ,将∠BDE 绕点D 逆时针旋转90°,旋转后角的两边分别与射线BC 交于点F 和点G .①线段DB 和DG 之间的数量关系是 DB=DG ;②写出线段BE ,BF 和DB 之间的数量关系.BDBF BE 2=+(2)当四边形ABCD 为菱形,∠ADC =60°,点E 是菱形ABCD 边AB 所在直线上的一点,连接BD 、DE ,将∠BDE 绕点D 逆时针旋转120°,旋转后角的两边分别与射线BC 交于点F 和点G .①如图2,点E 在线段AB 上时,请探究线段BE 、BF 和BD 之间的数量关系,写出结论并给出证明;②如图3,点E 在线段AB 的延长线上时,DE 交射线BC 于点M ,若BE =1,AB =2,直接写出线段GM 的长度.图1图2 图3(2)①BDBF BE 3=+理由如下:在菱形ABCD 中,∠ABD=∠CBD=∠ABC=30°,由旋转120°可得,∠EDF=∠BDG=120°,∴∠EDF-21∠BDF=∠BDG-∠BDF ,即∠FDG=∠BDE.在△DBG 中,∠G=180°-∠BDG-∠DBG=30°,∴∠DBG=∠G=30°,∴BD=DG.在△BDE 和△GDF 中∴△BDE ≌△△GDF (ASA ),∴BE=GF⎪⎩⎪⎨⎧∠=∠=∠=∠DGF DBE DG BD BDE GDF ∴BE+BF=BF+GF=BG.过点D 作DM ⊥BG 于点M 如图所示:∵BD=DG ,∴BG=2BM.在Rt △BMD 中,∠DBM=30°,∴BD=2DM ,设DM=a ,则BD=2a ,BM=.∴BG=,∴a 3a 323232==aa BD BG ∴BF+BE=BD.3②GM 的长度为.理由:∵,FC=2DC=4,CM=BC=,∴GM=3191==BE GF 3234319(2019济宁)(2019 金华)24.如图,在等腰Rt△ABC中,∠ACB=90°,AB=14 。
中考复习数学--类比探究专题
类比探究专题1. 如图1,在Rt △ABC 中,∠BAC =90°,AB =AC ,点D ,E 分别在边AB ,AC上,AD =AE ,连接DC ,BE ,点P 为DC 的中点. (1)观察猜想图1中,线段AP 与BE 的数量关系是________,位置关系是________; (2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,小航猜想(1)中的结论仍然成立,请你证明小航的猜想; (3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出线段AP 的取值范围.(1)操作:如图1,点O 为线段MN 的中点,直线PQ 与MN 相交于点O ,请利用图1画出一对以点O 为对称中心的全等三角形.(不写画法)根据上述操作得到的经验完成下列探究活动:(2)探究一:如图2,在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE =∠EAF ,AF 与DC 的延长线相交于点F .试探究线段AB 与AF ,CF 之间的等量关系,并证明你的结论. (3)探究二:如图3,DE ,BC 相交于点E ,BA 交DE 于点A ,且BE :EC =1:2,∠BAE =∠EDF ,CF ∥AB .若AB =5,CF =1,求DF 的长度.PEDA BC 图1PEDABC图2图1M NQ PO图2F EDC B AAB C D E F图32.特殊:(1)如图1,在等腰直角三角形ABC中,∠ACB=90°.作CM平分∠ACB交AB于点M,点D为射线CM上一点,以点C为旋转中心将线段CD逆时针旋转90°得到线段CE,连接DE交射线CB于点F,连接BD,BE.填空:①线段BD,BE的数量关系为_________________;②线段BC,DE的位置关系为_________________.一般:(2)如图2,在等腰三角形ABC中,∠ACB=α,作CM平分∠ACB交AB于点M,点D为△ABC外部射线CM上一点,以点C为旋转中心将线段CD逆时针旋转α度得到线段CE,连接DE,BD,BE.请判断(1)中的结论是否成立,请说明理由.特殊:(3)如图3,在等边三角形ABC中,作BM平分∠ABC交AC于点M,点D为射线BM上一点,以点B为旋转中心将线段BD逆时针旋转60°得到线段BE,连接DE交射线BA于点F,连接AD,AE.若AB=4,当△ADM 与△AFD全等时,请直接写出DE的值.M F ED CB A图1EMDCBA图2MFEDC BA图33. 已知△ABC 中,CA =CB ,0°<∠ACB ≤90°.点M ,N 分别在边CA ,CB 上(不与端点重合),BN =AM ,射线AG ∥BC 交BM 延长线于点D ,点E 在直线AN 上,EA =ED .(1)【观察猜想】如图1,点E 在射线NA 上,当∠ACB =45°时, ①线段BM 与AN 的数量关系是_________; ②∠BDE 的度数是____________.(2)【探究证明】如图2,点E 在射线AN 上,当∠ACB =30°时,判断并证明线段BM 与AN 的数量关系,求∠BDE 的度数;(3)【拓展延伸】如图3,点E 在直线AN 上,当∠ACB =60°时,AB =3,点N 是BC 边上的三等分点,直线ED 与直线BC 交于点F ,请直接写出线段CF 的长.图1A B CD ENMG图2AB CD MN EG 图3A BCG4.如图,在Rt△ABC中,∠ACB=90°,BC mAC n=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF=__________.(2)数学思考:①如图2,若点E在线段AC上,则DEDF=__________(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明.(3)拓展应用:若ACBC=DF=CE的长.FEDC BA图1图2ABCDEFDB FECA图3DC BA备用图5. (1)【问题发现】如图1,△ABC 和△CEF 都是等腰直角三角形,∠BAC =∠EFC =90°,点E 与点A 重合,则线段BE 与AF 的数量关系为__________; (2)【拓展研究】在(1)的条件下,将△CEF 绕点C 旋转,连接BE ,AF ,线段BE 与AF 的数量关系有无变化?仅就图2的情形给出证明; (3)【问题发现】当AB =AC =2,△CEF 旋转到B ,E ,F 三点共线时,直接写出线段AF 的长.(1)问题发现:如图1,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 的中点,以点D 为顶点作正方形DFGE ,使点A ,C 分别在DE 和DF 上,连接BE ,AF ,则线段BE 和AF 数量关系是________.(2)类比探究:如图2,保持△ABC 固定不动,将正方形DFGE 绕点D 旋转α(0<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.(3)解决问题:若BC =DF =2,在(2)的旋转过程中,连接AE ,请直接写出AE 的最大值.F图1CBA (E )EABC图2F备用图CBA图1A BC DEF G图2GFED CB A 备用图A BC DEFG6.在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是__________,CE与AD的位置关系是__________.(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明).(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=BE= ADPE的面积.(直接写出结果)P EDCBA图1图2ABCDEPPEDCBA图3图4ABCDEP7. (1)操作发现如图1,AD 是等边三角形ABC 的角平分线,请你按下列要求画图:过点A 作AM ⊥AB ,过点C 作CN ∥AB ,AM 与CN 相交于点E .则AD 与AE 的数量关系是________,∠EAC =________°. (2)问题探究将图1中的△AEC 绕点A 逆时针旋转,点C 落在点F 的位置,连接EC ,DF ,如图2所示,请你探究DF 与EC 的数量关系并说明理由. (3)拓展延伸若(2)中等边△ABC 的边长为2,当F A ⊥AC 时,请直接写出DF 2的值.在Rt △ABC 中,∠BAC =90°,AC =AB =4,D ,E 分别是边AB ,AC 的中点,若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)问题发现如图1,当α=90°时,线段BD 1的长等于__________,线段CE 1的长等于__________. (2)探究证明如图2,当α=135°时,求证:BD 1=CE 1,且BD 1⊥CE 1. (3)问题解决求点P 到AB 所在直线的距离的最大值.(直接写出结果)图1AB CD图2EFDCBA备用图CBAE1(D1)ABCDE PEDCBAD1E1图2图18. 如图1,在正方形ABCD 和正方形AB′C′D′中,AB =2,AB′=,连接CC′.(1)问题发现:CC BB'='__________;(2)拓展探究:将正方形AB′C′D′绕点A 逆时针旋转,记旋转角为θ,连接BB′,试判断:当0°≤θ<360°时,CC BB ''的值有无变化?请仅就图2中的情形给出你的证明;(3)问题解决:请直接写出在旋转过程中,当C ,C′,D′三点共线时BB′的长.问题发现:如图1,△ABC 是等边三角形,点D 是边AB 上的一点,过点D 作DE ∥BC 交AC 于E ,则线段BD 与CE 的数量关系为___________;拓展探究:如图2,将△ADE 绕点A 逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明;问题解决:如果△ABC的边长等于AD =2,直接写出当△ADE 旋转到DE 与AC 所在的直线垂直时BD 的长.D′C′B′ABCD 图1图2DCBA B′C′D′A BCD备用图图1EDCBA 图2ABCDE备用图E D A9. 如图1,已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F . (1)证明与推断:①求证:四边形CEGF 是正方形;②推断AGBE的值为_______.(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由. (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图3所示,延长CG 交AD 于点H .若AG =6,GH=BC =________.GFDC BAE图1ABCD EFG图2H GF EDCBA 图310. (1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P 是等边三角形ABC 内一点,P A =1,PB,PC =2.求∠BPC 的度数. 为利用已知条件,不妨把△BPC 绕点C 顺时针旋转60°得△AP′C ,连接PP′,则PP′的长为__________;在△P AP′中,易证∠P AP′=90°,且∠PP′A 的度数为__________,综上可得∠BPC 的度数为__________. (2)类比迁移 如图2,点P 是等腰Rt △ABC 内一点,∠ACB =90°,P A =2,PB,PC =1.求∠APC 的度数. (3)拓展应用如图3,在四边形ABCD 中,BC =3,CD =5,AB =AC =12AD ,∠BAC =2∠ADC ,请直接写出BD 的长.P′ABCP图1图2P CBAD图3C BA11. 如图,在□ABCD 中,AC 与BD 交于点O ,以点O 为顶点的∠EOF 的两边分别与边AB ,AD 交于点E ,F ,且∠EOF 与∠BAD 互补. (1)观察猜想若四边形ABCD 是正方形,则线段OE 与OF 有何数量关系?请直接写出结论.(2)延伸探究若四边形ABCD 是菱形,那么(1)中的结论是否成立?若成立,请画出图形并给出证明;若不成立,请说明理由. (3)拓展证明若AB :AD =m :n ,探索线段OE 与OF 的数量关系,并证明你的结论.(1)阅读理解:如图1,在四边形ABCD 中,AB ∥DC ,E 是BC 的中点,若AE 是∠BAD 的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证△AEB ≌△FEC ,得到AB =FC ,从而把AB ,AD ,DC 转化在一个三角形中即可判断.AB ,AD ,DC 之间的等量关系为_____________;(2)问题探究:如图2,在四边形ABCD 中,AB ∥DC ,AF 与DC 的延长线交于点F ,E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.(3)问题解决:如图3,AB ∥CF ,AE 与BC 交于点E ,BE :EC =2:3,点D 在线段AE 上,且∠EDF =∠BAE ,试判断AB ,DF ,CF 之间的数量关系,并证明你的结论.A BCDOEFABCD EF图1ABCDE F图2A BCDE F图312. 如图1,菱形ABCD 与菱形GECF 的顶点C 重合,点G 在对角线AC 上,且∠BCD =∠ECF =60°. (1)问题发现: AGBE的值为__________. (2)探究与证明:将菱形GECF 绕点C 按顺时针方向旋转α角(0°<α<60°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由. (3)拓展与运用:菱形GECF 在旋转过程中,当点A ,G ,F 三点在一条直线上时,如图3所示,连接CG 并延长,交AD 于点H ,若CE =2,GHAH 的长为__________.已知∠AOB =90°,点C 是∠AOB 的角平分线OP 上的任意一点,现有一个直角∠MCN 绕点C 旋转,两直角边CM ,CN 分别与直线OA ,OB 相交于点D ,点E .(1)如图1,若CD ⊥OA ,猜想线段OD ,OE ,OC 之间的数量关系,并说明理由.(2)如图2,若点D 在射线OA 上,且CD 与OA 不垂直,则(1)中的数量关系是否仍成立?如成立,请说明理由;如不成立,请写出线段OD ,OE ,OC 之间的数量关系,并加以证明.图1AB CDEFGG FE DCB A图2H图3AB CD E FG(3)如图3,若点D 在射线OA 的反向延长线上,且OD =2,OE =8,请直接写出线段CE 的长度.图1OABC D EMPN N PMED CBAO图2图3O ABCD E MPN13.如图,在矩形ABCD中,AB=8,AD=6,点E,F分别是边DC,DA的中点,四边形DFGE为矩形,连接BG.(1)问题发现在图1中,CEBG__________.(2)拓展探究将图1中的矩形DFGE绕点D旋转一周,在旋转过程中,CEBG的大小有无变化?请仅就图2的情形给出证明. (3)问题解决当矩形DFGE 旋转至B ,G ,E 三点共线时,请直接写出线段CE 的长.GFED CBA 图1图2ABCDEFG备用图ABCD14. 四边形是我们在学习和生活中常见的图形,而对角线互相垂直的四边形也比较常见,比如筝形、菱形、图1中的四边形ABCD 等.它们给我们的学习和生活带来了很多的乐趣和美感.(1)如图2,在四边形ABCD 中,AB =AD ,CB =CD ,则AC 与BD 的位置关系是__________,请说明理由.(2)试探究图1中四边形ABCD 的两组对边AB ,CD 与BC ,AD 之间的数量关系,请写出证明过程.(3)问题解决:如图3,分别以Rt △ACB 的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连接CE ,BG ,GE ,已知AC =4,AB =5,求GE 的长.观察猜想(1)如图1,在Rt △ABC 中,∠BAC =90°,AB =AC =3,点D 与点A 重合,点E 在边BC 上,连接DE ,将线段DE 绕点D 顺时针旋转90°得到线段DF ,连接BF ,BE 与BF 的位置关系是_________,BE +BF =_________; 探究证明(2)在(1)中,如果将点D 沿AB 方向移动,使AD =1,其余条件不变,如图2,判断BE 与BF 的位置关系,并求BE +BF 的值,请写出你的理由或计算过程; 拓展延伸ABCD图1图2DCB AABCDEFG图3(3)如图3,在△ABC 中,AB =AC ,∠BAC =α,点D 在边BA 的延长线上,BD =n ,连接DE ,将线段DE 绕着点D 顺时针旋转,旋转角∠EDF =α,连接BF ,则BE +BF 的值是多少?请用含有n ,α的式子直接写出结论.图1A (D )B CE FD FE C B A 图2图3A C D E F。
中考数学压轴题之几何类比探究问题综合训练
中考数学压轴题之几何类比探究问题综合训练1.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:如图1,∠MON=90°,点A为边OM上一定点,点B为边ON上一动点,以AB为一边在∠MON的内部作正方形ABCD,过点C作CF⊥OM,垂足为点F(在点O、A之间),交BD于点E,试探究△AEF的周长与OA的长度之间的等量关系.该兴趣小组进行了如下探索.【动手操作,归纳发现】(1)通过测量图1、2、3中线段AE、AF、EF和OA的长,他们猜想△AEF的周长是OA长的倍.请你完善这个猜想.【推理探索,尝试证明】为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程:(2)如图4,过点C作CG⊥ON,垂足为点G,则∠CGB=90°,∴∠GCB+∠CBG=90°.又∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,则∠CBG+∠ABO=90°,∴∠GCB=∠ABO.在△CBE与△ABE中,……【类比探究,拓展延伸】(3)如图5,当点F在线段OA的延长线上时,直接写出线段AE、EF、AF与OA长度之间的等量关系为.2.小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边△ABC外角平分线CE所在直线于点E,试探究AD与DE的数量关系.小明发现,过点D作DF∥AC,交AB于点F,通过构造全等三角形,经过推理论证,能够得到AD与DE的数量关系.(1)AD与DE相等吗?请你说明理由;【类比探究】(2)当点D是线段BC上(不与点B,C重合)任意一点时,其它条件不变,如图2,试猜想AD与DE之间的数量关系,并证明你的结论;【拓展应用】(3)当点D在BC的延长线上,且满足CD=BC,连接AE,其它条件不变,如图3,若AD=6,求DE的长.3.已知:Rt△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,点P是BC边上的一个动点,(1)如图①,若点P与点D重合,连接AP,则AP与BC的位置关系是;(2)如图②,若点P在线段BD上,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,则CF,BE和EF这三条线段之间的数量关系是;(3)如图③,在(2)的条件下若BE的延长线交直线AD于点M,找出图中与CP相等的线段,并加以证明.(4)如图④,已知BC=4,AD=2,若点P从点B出发沿着BC向点C运动,过点B 作BE⊥AP于点E,过点C作CF⊥AP于点F,设线段BE的长度为d1,线段CF的长度为d2,试求出点P在运动的过程中d1+d2的最大值.4.如图1,△ABC为等边三角形,点M是射线AE上任意一点(M不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转60°得到线段CN,连接BN,直线BN交射线AE 于点D.(1)直接写出直线BD与射线AE相交所成锐角的度数;(2)如图2,当射线AE与AC的夹角∠EAC为钝角时,其他条件不变,(1)中结论是否发生变化?如果不变,加以证明;如果变化,请说明理由;(3)如图3,在等腰Rt△ABC中,∠ACB=90°,射线AE交BC于点H,∠EAC=15°,点M是射线AE上任意一点(M不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,连接BN,直线BN交射线AE于点D.G,F分别是AH,AB 的中点.求证:CD=GF.5.【问题探索】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在AC、BC 边上,DC=EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.探索BE与MN的数量关系.聪明的小华推理发现PM与PN的关系为,最后推理得到BE与MN的数量关系为.【深入探究】将△DEC绕点C逆时针旋转到如图2的位置,判断(1)中的BE与MN的数量关系是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;【解决问题】若CB=8,CE=2,在将图1中的△DEC绕点C逆时针旋转一周的过程中,当B、E、D三点在一条直线上时,求MN的长度.6.已知:△ABC是等腰直角三角形,∠ACB=90°,动点P在斜边AB所在的直线上,把线段CP绕着点C逆时针旋转90°得到CQ,连接PQ,探究并解决下列问题:(1)如图1,若点P在线段AB上,请直接写出P A2,PB2,PQ2三者之间的数量关系:;(2)如图2,若点P在线段AB的延长线上,(1)中的结论是否仍然成立,若成立请给予证明;若不成立请说明理由;(3)若动点P满足=,求的值.7.在△ABC中,CA=CB,∠ACB=α(0°<α<180°).点P是平面内不与A,C重合的任意一点,连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,CP.点M是AB的中点,点N是AD的中点.(1)问题发现如图1,当α=60°时,的值是,直线MN与直线PC相交所成的较小角的度数是.(2)类比探究如图2,当α=120°时,请写出的值及直线MN与直线PC相交所成的较小角的度数,并就图2的情形说明理由.(3)解决问题如图3,当α=90°时,若点E是CB的中点,点P在直线ME上,请直接写出点B,P,D在同一条直线上时的值.8.如图1所示,矩形ABCD中,点E,F分别为边AB,AD的中点,将△AEF绕点A逆时针旋转α(0°<α≤360°),直线BE、DF相交于点P.(1)若AB=AD,将△AEF绕点A逆时针旋转至如图2所示的位置,则线段BE与DF 的数量关系是.(2)若AD=nAB(n≠1),将△AEF绕点A逆时针旋转,则(1)中的结论是否仍然成立?若成立,请就图3所示的情况加以证明,若不成立,请写出正确结论,并说明理由.(3)若AB=8,BC=12,将△AEF旋转至AE⊥BE,请算出DP的长.9.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB的中点,点P为直线BC 上的动点(不与点B点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)观察猜想:如图①,线段BQ与CP的数量关系是;∠CBQ=;(2)探究证明:如图②,当点P在CB的延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由.10.已知△ABC和△ADE,∠BAC=∠DAE=90°,AB=AC,AD=AE,连接BD,CE.(1)如图1,当点E在AB边上时,试判断线段BD,CE之间的关系是.(2)将图1中的△ADE绕点A旋转至如图2所示位置时,探究线段BD,CE之间的关系,并说明理由;(3)将图1中的△ADE绕点A旋转至DE与直线AC垂直,直线BD交直线CE于点F,若AB=15,AD=5,请直接写出线段BF的长度.11.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图1,试猜想线段BD和CE的数量关系是;位置关系是.(2)将图1中的△ADE绕点A顺时针旋转α角,(0°<α<90°),如图2,(1)中的结论是否成立,若成立,请给出证明;若不成立说明理由.12.如图1,在△ABC中,已知∠ACB=90°,AC=BC,点D,E分别在边AC,BC上,且CD=CE,此时显然AD=BE,AD⊥BE成立.若保持△ABC不动,将△DCE绕点C 逆时针旋转,旋转角为α.(Ⅰ)如图2,当0°<α<90°时,问:AD=BE,AD⊥BE是否成立?若成立,请证明,若不成立,请说明理由;(Ⅱ)如图3,当α=45°时,延长BE交AD于点F,若CE=,BC=3,则线段EF =(直接写出结果即可).13.已知△ABC和△ADE都是等腰三角形,AB=AC,AD=AE.∠DAE=∠BAC.【初步感知】(1)特殊情形:如图①.若点D,E分别在边AB,AC上,则DB EC.(填“>”、“<”或“=”)(2)发现证明:如图②,将图①中的△ADE绕点A旋转,当点D在△ABC外部,点E 在△ABC内部时,求证:DB=EC.【深入探究】(1)如图③,△ABC和△ADE都是等边三角形,点C,E,D在同一条直线上,则∠CDB 的度数为线段CE,BD之间的数量关系为;(2)如图④,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E在同一直线上,AM为△ADE中DE边上的高.则∠CDB的度数为;线段AM.BD,CD之间的数量关系为;【拓展提升】如图⑤,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,将△ADE绕点A逆时针旋转,连接BE、CD.当AB=5.AD=2时,在旋转过程中,△ADE与△ADC的面积和的最大值为.14.已知△ABC中,∠BAC=90°,AB=AC,点D为直线BC上的一动点(点D不与点B、发现问题:如图1,当点D在边BC上时,(1)请写出BD和CE之间的位置关系为,并猜想BC和CE、CD之间的数量关系:.尝试探究:(2)如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BD和CE之间的位置关系,BC和CE、CD之间的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由;拓展延伸:(3)如图3,当点D在边CB的延长线上且其他条件不变时,若BC=7,CE=5,直接写出线段ED的长.15.已知△ABC中,∠BAC=90°,AB=AC,点D为直线BC上的一动点(点D不与点B、发现问题:如图1,当点D在边BC上时,(1)请写出BD和CE之间的位置关系为,并猜想BC和CE、CD之间的数量关系:.尝试探究:(2)如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BD和CE之间的位置关系、BC和CE、CD之间的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由;拓展延伸:(3)如图3,当点D在边CB的延长线上且其他条件不变时,若BC=6,CE=2,求线段ED的长.16.已知Rt△ABC中,AB=AC,∠BAC=90°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作Rt△ADE,AD=AE,连接CE.(1)发现问题:如图①,当点D在边BC上时,①请写出BD和CE之间的数量关系,位置关系;②线段CE、CD、BC之间的关系是;(2)尝试探究:如图②,当点D在边BC的延长线上且其他条件不变时,(1)中CE、CD、BC之间存在的数量关系是否成立?若成立,请证明;若不成立,请说明理由;(3)拓展延伸:如图③,当点D在边CB的延长线上且其他条件不变时,若BC=4,CE=2,求线段CD的长.17.在Rt△ABC中与Rt△DCE中,∠ACB=∠DCE=90°,∠BAC=∠DEC=30°,AC=DC=,将Rt△DCE绕点C顺时针旋转,连接BD,AE,点F,G分别是BD,AE的中点,连接CF,CG.(1)观察猜想如图1,当点D与点A重合时,CF与CG的数量关系是,位置关系是;(2)类比探究当点D与点A不重合时,(1)中的结论是否成立?如果成立,请仅就图2的情形给出证明;如果不成立,请说明理由.(3)问题解决在Rt△DCE旋转过程中,请直接写出△CFG的面积的最大值与最小值.18.综合与实践动手操作如图1,在Rt△ABC中,∠C=90°,将△ABC绕点A逆时针旋转90°得到△AED.延长ED分别交CB于点F,交AB于点G,连接AF.思考探究(1)∠CAF=°,∠EAG=°;(2)若BC=(+1)AC,则①∠DAG=°;②=,请证明你的结论;开放拓展(3)如图2,若改变旋转角,已知AC=3,BC=4,当∠EAF=90°时,△AFB的面积为.19.如图,已知在△ABC和△DCE中,∠ACB=∠DCE,且满足==k,将△DEC绕点C旋转.连接BD,F,G,H分别是AB,BD,DE的中点,连接FG,GH.(1)当k=1时,①如图(1),点D在AC边上时,判断FG,GH的数量关系是;②如图(2),点D不在AC边上时,①中的结论是否成立,并说明理由;(2)如图(3),当k=时,探索FG,GH的数量关系.直接写出探究结论,不需证明.20.如图1,已知△ABC和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点D在线段AC上,点F为AB的中点,点M为BE的中点,点N为AD的中点.(1)如图1,请直接写出∠FMN的大小以及FM和MN之间的数量关系.(2)如图2,将△DCE绕点C顺时针旋转,此时(1)中的结论是否成立?若成立,请证明,若不成立,请写出相应正确的结论.(3)如图3,若AB=4,CE=2,在将△DCE绕点C顺时针旋转360°过程中,直线BD,AE交于点G,△ABG的面积的最小值为.21.在△ABC和△DEC中,∠ACB=∠DCE=90°,△DEC绕点C逆时针旋转,连接BD,F,G,H分别是AB,BD,DE的中点,连接FG,FH,HG.(1)如图1,当∠A=∠EDC=45°,点D在AC边上时,直接猜想FG,HG的数量关系和位置关系是;(2)如图2,当∠A=∠EDC=45°,点D不在AC边上时,(1)猜想的结论是否成立?如果成立,请证明;如果不成立,请说明理由;(3)如图3,当∠A=∠EDC=30°时,猜想FG,HG的数量关系和位置关系,请直接写出猜想结论.。
中考数学类比探究型几何综合题专题训练(含答案与解析)
中考数学类比探究型几何综合题专题训练【类型1】通过位置变化(图形变换)进行类比探究〖例1〗已知:如图,等边△AOB的边长为4,点C为OA中点.(1)如图1,将OC绕点O顺时针旋转,使点C落到OB边的点D处,设旋转角为α(0°<α≤360°).则此时α=;此时△COD是三角形(填特殊三角形的名称).(2)如图2,固定等边△AOB不动,将(1)中得到的△OCD绕点O逆时针旋转,连接AC,BD,设旋转角为β(0°<β≤360°).①求证:AC=BD;②当旋转角β为何值时,OC∥AB,并说明理由;③当A、C、D三点共线时,直接写出线段BD的长.〖例2〗现有与菱形有关的三幅图,如图:(1)(感知)如图①,AC是菱形ABCD的对角线,∠B=60°,E、F分别是边BC、CD上的中点,连结AE、EF、AF.若AC=2,则CE+CF的长为.(2)(探究)如图②,在菱形ABCD中,∠B=60°.E是边BC上的点,连结AE,作∠EAF=60°,边AF交边CD于点F,连结EF.若BC=2,求CE+CF的长.(3)(应用)在菱形ABCD中,∠B=60°.E是边BC延长线上的点,连结AE,作∠EAF=60°,边AF交边CD延长线于点F,连结EF.若BC=2,EF⊥BC时,借助图③求△AEF的周长.〖尝试练习〗1.如图1,等边△ABC与等边△BDE的顶点B重合,D、E分别在AB、BC上,AB=2√2,BD=2.现将等边△BDE从图1位置开始绕点B顺时针旋转,如图2,直线AD、CE相交于点P.(1)在等边△BDE旋转的过程中,试判断线段AD与CE的数量关系,并说明理由;(2)在等边△BDE顺时针旋转180°的过程中,当点B到直线AD的距离最大时,求PC的长;(3)在等边△BDE旋转一周的过程中,当A、D、E三点共线时,求CE的长.2.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)探究猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:;②BC、CD、CF之间的数量关系为:;(2)深入思考如图2,当点D在线段CB的延长线上时,结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,正方形ADEF对角线交于点O.若已知AB=2√2,CD =14BC,请求出OC的长.3.如图1,正方形ABCD与正方形AEFG有公共的顶点A,且正方形AEFG的边AE,AG分别在正方形ABCD的边AB,AD上,显然BE=DG,BE⊥DG.(1)将图1的正方形AEFG绕点A转动一定的角度到图2的位置.求证:①BE=DG;②BE⊥DG;(2)如图3,若点D,G,E在同一条直线上,且正方形ABCD的边长是4√2,正方形AEFG的边长为3√2,求BE的长.【类型2】通过形状变化进行类比探究〖例3〗如图1,在△ABC中,AB=AC,∠BAC=α.D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转α,得到AE,连接DE,CE.(1)求证:CE=BD;(2)若α=60°,其他条件不变,如图2.请猜测线段AC,CD,CE之间的数量关系,并说明理由;(3)若α=90°,其他条件不变,如图3,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由.〖例4〗如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且PC =PE,PF交CD于点F.(1)求证:∠PCD=∠PED;(2)连接EC,求证:EC=√2AP;(3)如图2,把正方形ABCD改成菱形ABCD,其他条件不变,当∠DAB=60°时,请直接写出线段EC和AP的数量关系.〖尝试练习〗4.已知菱形ABCD和菱形DEFG有公共的顶点D,C点在DE上,且∠ADC=∠EDG,连接AE,CG,如图1.(1)试猜想AE与CG有怎样的数量关系(直接写出关系,不用证明);(2)将菱形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,请给出证明;若不成立,请说明理由;(3)在(2)的条件下,如果∠ADC=∠EDG=90°,如图3,你认为AE和CG是否垂直?若垂直,请给出证明;若不垂直,请说明理由.5.已知在平行四边形ABCD中,AB≠BC,将△ABC沿直线AC翻折,点B落在点E处,AD与CE相交于点O,联结DE.(1)如图1,求证:AC∥DE;(2)如图2,如果∠B=90°,AB=√3,BC=√6,求△OAC的面积;(3)如果∠B=30°,AB=2√3,当△AED是直角三角形时,求BC的长.6.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF 为邻边作平行四边形ECFG.(1)求证:四边形ECFG是菱形;(2)连结BD、CG,若∠ABC=120°,则△BDG是等边三角形吗?为什么?(3)若∠ABC=90°,AB=10,AD=24,M是EF的中点,求DM的长.【自主反馈】7.如图1,△ABC是等边三角形,点D,E分别是BC,AB上的点,且BD=AE,AD与CE交于点F.(1)求∠DFC的度数;(2)将CE绕着点C逆时针旋转120°,得到CP,连接AP,交BC于点Q.①补全图形(图2中完成);②用等式表示线段BE与CQ的数量关系,并证明.8.已知△ABC是等腰三角形.(1)如图1,若△ABC,△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,求证:△ABD ≌△ACE;(2)如图2,若△ABC为等边三角形,将线段AC绕点A逆时针旋转90°,得到AD,连接BD,∠BAC的平分线交BD于点E,连接CE.①求∠AED的度数;②试探究线段AE、CE、BD之间的数量关系,并证明.9.在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度α得到△AED,点B、C的对应点分别是E、D.(1)如图1,当点E恰好在AC上时,求∠CDE的度数;(2)如图2,若α=60°时,点F是边AC中点,求证:DF=BE;(3)如图3,点B、C的坐标分别是(0,0),(0,2),点Q是线段AC上的一个动点,点M 是线段AO上的一个动点,是否存在这样的点Q、M使得△CQM为等腰三角形且△AQM为直角三角形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.10.在等腰直角三角形纸片ABC中,点D是斜边AB的中点,AB=10,点E为BC上一点,将纸片沿DE折叠,点B的对应点为点B'.(1)如图①,连接CD,则CD的长为;(2)如图②,B'E与AC交于点F,DB'∥BC.①求证:四边形BDB'E为菱形;②连接B'C,则△B'FC的形状为;(3)如图③,则△CEF的周长为.11.已知正方形ABCD,以CE为边在正方形ABCD外部作正方形CEFG,连AF,H是AF的中点,连接BH,HE.(1)如图1所示,点E在边CB上时,则BH,HE的关系为;(2)如图2所示,点E在BC延长线上,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请给出新的结论并证明.(3)如图3,点B,E,F在一条直线上,若AB=13,CE=5,直接写出BH的长.12.(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)简单应用:在(1)中,如果AB=4,AD=6,求CG的长.(3)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.13.我们知道,平行四边形的对边平行且相等,利用这一性质,可以为证明线段之间的位置关系和数量关系提供帮助.重温定理,识别图形(1)如图①,我们在探究三角形中位线DE和第三边BC的关系时,所作的辅助线为“延长DE到点F,使EF=DE,连接CF”,此时DE与DF在同一直线上且DE=12DF,又可证图中的四边形为平行四边形,可得BC与DF的关系是,于是推导出了“DE∥BC,DE=12BC”.寻找图形,完成证明(2)如图②,四边形ABCD和四边形AEFG都是正方形,△BEH是等腰直角三角形,∠EBH=90°,连接CF、CH.求证CF=√2BE.构造图形,解决问题(3)如图③,四边形ABCD和四边形AEFG都是菱形,∠ABC=∠AEF=120°,连接BE、CF.直接写出CF与BE的数量关系.类比探究型几何综合题专题训练(不用相似)答案与解析〖例1〗解:(1)如图1,∵△AOB是等边三角形,∴AO=BO=AB,∠AOB=60°,∵将OC绕点O顺时针旋转,使点C落到OB边的点D处,∴OC=OD,∠COD=∠AOB=60°=α,∴△COD是等边三角形,答案为:60°,等边;(2)①∵△COD是等边三角形,∴OC=OD,∠COD=∠AOB=60°,∴∠AOC=∠BOD,又∵AO=BO,∴△AOC≌△BOD(SAS),∴AC=BD;②如图2,当点C在点O的上方时,若OC∥AB,∴∠AOC=∠OAB=60°=β,如图2﹣1,当点C在点O的下方时,若OC∥AB,∴∠ABO=∠BOC=60°,∴β=360°﹣60°﹣60=240°,综上所述:β=60°或240°;③如图3,当点D在线段AC上时,过点O作OE⊥AC于E,∵等边△AOB的边长为4,点C为OA 中点,∴AO=AB=OB=4,OC=OD=CD=2,∵∠AOB=∠COD=60°,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∵OE⊥CD,OC=OD,∴CE=DE=1,∴OE=√OC2−CE2=√3,∴AE=√OA2−OE2=√13,∴AC=AE+CE=1+√13=BD;如图4,当点C在线段AD上时,过点O作OF⊥AD于F,同理可求DF=CF=1,AF=√13,∴AC=BD=√13﹣1,综上所述:BD=√13+1或√13﹣1.〖例2〗解:(1)感知:∵四边形ABCD是菱形,∴BC=CD=AB=2,∵E,F分别是边BC,CD的中点,∴CE=12BC,CF=12CD=1,∴CE+CF=2.故答案为:2.(2)探究:如图,连结AC.∵四边形ABCD是菱形,∴AB=BC,AB∥CD.∴∠B+∠BCD=180°.∵∠B=60°,∴△ABC是等边三角形,∠BCD=120°.∴∠BAC=∠ACB=60°,AB=AC.∴∠ACF=∠B=60°.∵∠EAF=60°,∴∠BAC﹣∠CAE=∠EAF﹣∠CAE.∴∠BAE=∠CAF.∴△ABE≌△ACF(ASA).∴BE=CF.∴CE+CF=BC=2.(3)应用:如图所示:∵四边形ABCD是菱形,∴AB=BC,AB∥CD.∴∠B+∠BCD=180°.∵∠B=60°,∴△ABC是等边三角形,∠BCD=120°.∴∠BAC=∠ACB=60°,AB=AC.∴∠CAD=∠B=60°.∵∠EAF=60°,∴∠CAD﹣∠DAE=∠EAF ﹣∠DAE.∴∠CAE=∠DAF.∵∠ACE=∠ADF,AC=AD∴△ACE≌△ADF(ASA).∴CE=DF,AE=AF,∵∠EAF=60°,∴△AEF为等边三角形,∵EF⊥BC,∠ECF=60°,∴CF=2CE,∵CD=BC=2,∴CE=2,∴EF=√CF2−CE2=2√3,∴△AEF的周长为6√3.〖尝试练习〗1.解:(1)AD=CE,理由:∵△ABC与△BDE都是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE =60°,∴∠ABD =∠CBE , ∴△ABD ≌△CBE (SAS ),∴AD =CE ;(2)如图2,过点B 作BH ⊥AD 于H ,在Rt △BHD 中,BD >BH ,∴当点D ,H 重合时,BD =BH ,∴BH ≤BD ,∴当BD ⊥AD 时,点B 到直线AD 的距离最大,∴∠EDP =90°﹣∠BDE =30°,同(1)的方法得,△ABD ≌△CBE (SAS ),∴∠BEC =∠BDA =90°,EC =AD ,在Rt △ABD 中,BD =2,AB =2√2, 根据勾股定理得,AD =√AB 2−BD 2=2, ∴CE =2,∵∠BEC =90°,∠BED =60°, ∴∠DEP =90°﹣60°=30°=∠EDP , ∴DP =EP ,如图2﹣1,过点P 作PQ ⊥DE 于Q , ∴EQ =12DE =1,在Rt △EQP 中,∠PEQ =30°, ∴EP =EQ cos∠DEP =2√33,∴PC =2−2√33; (3)①当点D 在AE 上时,如图3,∴∠ADB =180°﹣∠BDE =120°,∴∠BDE =60°, 过点B 作BF ⊥AE 于F ,在Rt △BDF 中,∠DBF =30°,BD =2, ∴DF =1,BF =√3,在Rt △ABF 中,根据勾股定理得,AF =√AB 2−BF 2=√5,AD =AF ﹣DF =√5﹣1,∴CE =AD =√5﹣1; ②当点D 在AE 的延长线上时,如图4,同①的方法得,AF =√5,DF =1,∴AD =AF +DF =√5+1,∴CE =AD =√5+1, 即满足条件的CE 的长为√5+1和√5﹣1. 2.解:(1)①正方形ADEF 中,AD =AF , ∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF , 又∵AB=AC ,∴△DAB ≌△FAC (SAS ),∴∠ABC =∠ACF ,∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∴∠ACB +∠ACF ═45°+45°=90°, 即BC ⊥CF ;②△DAB ≌△FAC ,∴CF =BD ,∵BC =BD +CD , ∴BC =CF +CD ;故答案为:BC =CF +CD ;(2)CF ⊥BC 成立;BC =CD +CF 不成立,CD =CF +BC .理由如下:∵正方形ADEF 中,AD =AF ,∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF ,又∵AB=AC , ∴△DAB ≌△FAC (SAS ),∴∠ABD =∠ACF , ∵∠BAC =90°,AB =AC , ∴∠ACB =∠ABC =45°.∴∠ABD =180°﹣45°=135°,∴∠BCF =∠ACF ﹣∠ACB =135°﹣45°=90°,∴CF ⊥BC . ∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .(3)过点A 作AH ⊥BC 于点H ,过点E 作EM ⊥BD 于点M ,EN ⊥CF 于点N , ∵∠BAC =90°,AB =AC =2√2, ∴BC =4,∴CD =14BC =1,∴BD =5, 由(2)同理可证得△DAB ≌△FAC ,∴BC ⊥CF ,CF =BD =5,∵四边形ADEF 是正方形,∴OD =OF ,∵∠DCF =90°, ∴DF =√CD 2+CF 2=√26,∴OC =√262.3.证明:(1)如图2,延长DG交BE于H,∵四边形ABCD,四边形AEFG是正方形,∴AB=AD,AG=AE,∠DAB=∠GAE=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE(SAS),∴BE=DG,∠ADG=∠ABE,∵∠C+∠CBA+∠ABE+∠BHD+∠CDH=360°,∴90°+90°+∠ADG+∠CDH+∠BHD=360°,∴∠BHD=90°,∴DG⊥BE;(2)如图3,连接BD,∵正方形ABCD的边长是4√2,正方形AEFG的边长为3√2,∴BD=√2AD=8,GE=√2AE=6,∵BD2=DE2+BE2,∴64=(6+BE)2+BE2,∴BE=√23﹣3.〖例3〗证明:(1)∵将线段AD绕点A逆时针旋转α,∴AD=AE,∠DAE=α,∴∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS)∴BD=CE;(2)AC=CD+CE,理由如下:∵AB=AC,∠BAC=60°∴△ABC是等边三角形,∴AC=BC,由(1)可知:BD=CE,∴BC=BD+CD=CE+CD,∴AC=CD+CE;(3)∠ACE=45°,BD2+CD2=2AD2,理由如下:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵△BAD≌△CAE∴∠ACE=∠ABC=45°,∴∠BCE=∠ACE+∠ACB=90°,∴CE2+CD2=DE2,∵AD=AE,∠DAE=90°,∴DE2=2AD2,∴CE2+CD2=2AD2,∴BD2+CD2=2AD2.〖例4〗(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADP=∠CDP=45°,又∵PD=PD,∴△ADP≌△CDP(SAS),∴∠PAD=∠PCD,AP=CP,∵PC=PE,∴AP=PE,∴∠PAD=∠PED,∴∠PCD=∠PED;(2)证明:∵四边形ABCD是正方形,∴∠ADC=∠EDF=90°,由(1)知,∠PCD=∠PED,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠CFP﹣∠PCD=180°﹣∠EFD﹣∠PED,即∠CPF=∠EDF=90°,∵PC=PE,∴△CPE是等腰直角三角形,∴EC=√2CP,由(1)知,AP=CP,∴EC=√2AP;(3)解:AP=CE;理由如下:∵四边形ABCD是菱形,∠DAB=60°,∴AB=BC,∠ABP=∠CBP =60°,∠BAD=∠BCD,∠EDC=∠DAB=60°,又∵PB=PB,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PC=PE,∴PA=PE,∴∠DAP=∠AEP,∴∠DCP=∠AEP,∵∠CFP=∠EFD,∴180°﹣∠CFP﹣∠PCF=180°﹣∠EFD﹣∠AEP,即∠CPF=∠EDF=60°,∴△EPC是等边三角形,∴PC=EC,∴EC=AP,〖尝试练习〗4.解:(1)AE=CG,理由如下:∵四边形ABCD和四边形DEFG都是菱形,∴DA=DC,DE=DG,又∵∠ADE=∠CDG,∴△DAE≌△DCG(SAS),∴AE=CG;(2)成立,理由如下:∵∠ADC=∠EDG,∴∠ADC﹣∠EDC=∠EDG﹣∠EDC,即∠ADE=∠CDG,又∵DA=DC,DE=DG,∴△DAE≌△DCG(SAS),∴AE=CG;(3)AE ⊥CG ,理由如下:延长线段AE 、GC 交于点H ,∵AD ∥BC ,∴∠CEH =∠DAE , 由(2)可知,△DAE ≌△DCG ,∴∠DAE =∠DCG ,∴∠CEH =∠DCG ,∵四边形ABCD 是菱形,∠ADC =90°, ∴四边形ABCD 是正方形,∴∠BCD =90°,∴∠ECH +∠DCG =90°,∴∠ECH +∠CEH =90°,∴∠CHE =90°,∴AE ⊥CG . 5.(1)证明:由折叠的性质得:△ABC ≌△△ AEC ,∴∠ACB =∠ACE ,BC =EC ,∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .∴EC =AD ,∠ACB =∠CAD ,∴∠ACE =∠CAD ,∴OA =OC ,∴OD =OE ,∴∠ODE =∠OED ,∵∠AOC =∠DOE ,∴∠CAD =∠ACE =∠OED =∠ODE ,∴AC ∥DE ;(2)解:∵平行四边形ABCD 中,∠B =90°,∴四边形ABCD 是矩形,∴∠CDO =90°,CD =AB =√3,AD =BC =√6,由(1)得:OA =OC ,设OA =OC =x ,则OD =√6﹣x ,在Rt △OCD 中,由勾股定理得:(√3)2+(√6﹣x )2=x 2,解得:x =3√64,∴OA =3√64,∴△OAC 的面积=12OA ×CD =12×3√64×√3=9√28;(3)解:分两种情况:①如图3,当∠EAD =90°时,延长EA 交BC 于G ,∵AD =BC ,BC =EC ,∴AD =EC , ∵AD ∥BC ,∠EAD =90°,∴∠EGC =90°, ∵∠B =30°,AB =2√3,∴∠AEC =30°, ∴GC =12EC =12BC ,∴G 是BC 的中点, 在Rt △ABG中,BG =√32AB =3,∴BC =2BG =6;②如图4,当∠AED =90°时∵AD =BC ,BC =EC ,∴AD =EC ,由折叠的性质得:AE =AB ,∴AE =CD ,又∵AC=AC ,∴△ACE ≌△CAD (SSS ), ∴∠ECA =∠DAC ,∴OA =OC ,∴OE =OD , ∴∠OED =∠ODE ,∴∠AED =∠CDE , ∵∠AED =90°,∴∠CDE =90°,∴AE ∥CD , 又∵AB ∥CD ,∴B ,A ,E 在同一直线上, ∴∠BAC =∠EAC =90°, ∵Rt △ABC 中,∠B =30°,AB =2√3, ∴AC =√33AB =2,BC =2AC =4;综上所述,当△AED 是直角三角形时,BC 的长为4或6.6.证明:(1)∵AF 平分∠BAD ,∴∠BAF =∠DAF ,∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAF =∠CEF ,∠BAF =∠CFE ,∴∠CEF =∠CFE ,∴CE =CF , 又∵四边形ECFG 是平行四边形, ∴四边形ECFG 为菱形;(2)△BDG 是等边三角形,理由如下:∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB =DC ,AD ∥BC ,∵∠ABC =120°,∴∠BCD =60°,∠BCF =120°,由(1)知,四边形CEGF 是菱形,∴CE =GE ,∠BCG =12∠BCF =60°, ∴CG =GE =CE ,∠DCG =120°,∵EG ∥DF , ∴∠BEG =120°=∠DCG ,∵AE 是∠BAD 的平分线,∴∠DAE =∠BAE ,∵AD ∥BC , ∴∠DAE =∠AEB ,∴∠BAE =∠AEB ,∴AB =BE ,∴BE =CD ,∴△BEG ≌△DCG (SAS ),∴BG =DG ,∠BGE =∠DGC ,∴∠BGD =∠CGE ,∵CG =GE =CE ,∴△CEG 是等边三角形, ∴∠CGE =60°,∴∠BGD =60°,∵BG =DG , ∴△BDG 是等边三角形;(3)如图2中,连接BM ,MC ,∵∠ABC =90°,四边形ABCD 是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=10,AD=24,∴BD=√AB2+AD2=26,∴DM=√22BD=13√2.【自主反馈】7.解:(1)∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠B=∠ACB=60°,又∵BD=AE,∴△ABD≌△CAE(SAS),∴∠BAD=∠ACE,∵∠BAD+∠DAC=60°,∴∠DFC=∠ACE+∠DAC=60°;(2)①根据题意补全图形如图2所示:②线段BE与CQ的数量关系为:CQ=12BE;理由如下:∵CE绕着点C逆时针旋转120°,得到CP,∴CE=CP,∠ECP=120°,∵∠DFC=60°,∴AD∥CP,∴∠ADC=∠DCP,∵△ABD≌△CAE,∴CE=AD,∴AD=CP,∴△ADQ≌△PCQ(AAS),∴CQ=DQ=12CD,∵AB=BC,BD=AE,∴BE=CD,∴CQ=12BE.8.解:(1)∵△ABC,△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS);(2)①∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,由旋转知,AC=AD,∠CAD=90°,∴AB=AD,∠BAD=∠BAC+∠CAD=150°,∴∠D=12(180°﹣∠BAD)=15°,∵AE是∠BAC的平分线,∴∠CAE=12∠BAC=30°,∴∠DAE=∠CAD+∠CAE=120°,∴∠AED=180°﹣∠D﹣∠DAE=45°;②BD=2CE+√2AE;证明:如图,∵△ABC是等边三角形,∴AB=AC,∵AE是∠BAC的角平分线,∴∠BAE=∠CAE,∵AE=AE,∴△BAE≌△CAE(SAS),∴BE=CE,过点A作AF⊥AE交DE于F,∴∠EAF=90°,由旋转知,∠CAD=90°,∴∠CAE=∠DAF,由①知,∠AED=45°,∴∠AFE=45°=∠AEF,∴AE=AF,∴EF=√2AE,∵AC=AD,∴△ACE≌△ADF(SAS),∴DF=CE,∴BD=BE+EF+DF=CE+√2AE+CE =2CE+√2AE.9.解:(1)∵∠ABC=90°,∠BAC=30°,∴∠ACB=60°,∵△ABC绕点A顺时针旋转α得到△AED,点E恰好在AC上,∴CA=AD,∠EAD=∠BAC=30°,∴∠ACD=∠ADC=12(180°﹣30°)=75°,∵∠EDA=∠ACB=60°,∴∠CDE=∠ADC﹣∠EDA=15°;(2)连接BF,∵点F是边AC中点,∴BF=AF=12AC,∵∠BAC=30°,∴BC=12AC,∴∠FBA=∠BAC=30°,∵△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=∠CAD=60°,CB =DE ,∠DEA =∠ABC =90°, ∴DE =BF ,延长BF 交AE 于点G ,则∠BGE =∠GBA +∠BAG =90°, ∴∠BGE =∠DEA ,∴BF ∥ED ,∴四边形BFDE 是平行四边形,∴DF =BE ; (3)∵点B 、C 的坐标分别是(0,0),(0,2), ∴BC =2,∵∠ABC =90°,∠BAC =30°, ∴AC =4,AB =2√3,若∠QMA =90°,CQ =MQ 时,如图3,设CQ =QM =x ,∠CAB =30°,∴AQ =2x ,AM =√3x , ∴AC =x +2x =3x =4,∴x =43,∴AM =43√3,∴BM =AB ﹣AM =2√3﹣4√33=2√33,∴点M (2√33,0);若∠AQM =90°,CQ =QM 时,如图4, 设CQ =QM =x ,∠CAB =30°, ∴AQ =√3x ,AM =2x , ∴AC =x +√3x =4,∴x =2√3﹣2,∴AM =4√3﹣4, ∴BM =2√3﹣(4√3﹣4)=4﹣2√3, ∴点M (4﹣2√3,0);综上所述:M (2√33,0)或(4﹣2√3,0).10.(1)解:∵△ABC 是等腰直角三角形,点D 是斜边AB 的中点,AB =10,∴CD =12AB =5(2)①证明:由折叠的性质得:B 'D =BD ,B 'E =BE ,∠B 'DE =∠BDE ,∵DB '∥BC ,∴∠B 'DE =∠BED ,∴∠BDE =∠BED ,∴BD =BE ,∴B 'D =BE ,∴四边形BDB 'E 是平行四边形,又∵B 'D =BD ,∴四边形BDB 'E 为菱形;②解:∵△ABC 是等腰直角三角形,点D 是斜边AB 的中点,∴CD =12AB =BD , 由折叠的性质得:B 'D =BD ,∴CD =B 'D ,∴∠DCB '=∠DB 'C ,∵∠ACB =90°,∴AC ⊥BC ,∵DB '∥BC ,∴DB '⊥AC ,∴∠ACB '=90°﹣∠DB 'C ,由①得:四边形BDB 'E 为菱形, ∴AB ∥B 'E ,∵CD ⊥AB ,∴CD ⊥B 'E , ∴∠EB 'C =90°﹣∠DCB ',∴∠ACB '=∠EB 'C , ∴FB '=FC ,即△B 'FC 为等腰三角形;(3)解:连接B 'C ,如图③所示:∵△ABC 是等腰直角三角形,点D 是斜边AB 的中点,AB =10,∴BC =√22AB =5√2,∠B =45°,CD =12AB =BD ,∠ACD =12∠ACB =45°,由折叠的性质得:B 'D =BD ,∠B '=∠B =45°, ∴CD =B 'D ,∴∠DCB '=∠DB 'C ,∴∠FCB '=∠FB 'C ,∴CF =B 'F ,∴△CEF 的周长=EF +CF +CE =EF +B 'F +CE =B 'E +CE =BE +CE =BC =5√2; 11.解:(1)BH ⊥HE ,BH =HE ;理由如下: 延长EH 交AB 于M ,如图1所示: ∵四边形ABCD 和四边形CEFG 是正方形,∴AB ∥CD ∥EF ,AB =BC ,CE =FE ,∠ABC =90°,∴∠AMH =∠FEH ,∵H 是AF 的中点,∴AH =FH ,∴△AMH ≌△FEH (AAS ), ∴AM =FE =CE ,MH =EH ,∴BM =BE ,∵∠ABC=90°,∴BH⊥HE,BH=12ME=HE;(2)结论仍然成立.BH⊥HE,BH=HE.理由如下:延长EH交BA的延长线于点M,如图2所示:∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ABE=∠BEF=90°,AB=BC,AB∥CD∥EF,CE=FE,∴∠HAM=∠HFE,∴△AHM≌△FHE(ASA),∴HM=HE,AM=EF=CE,∴BM=BE,∵∠ABE=90°,∴BH⊥EH,BH=12EM=EH;(3)延长EH到M,使得MH=EH,连接AH、BH,如图3所示:同(2)得:△AMH≌△FEH(SAS),∴AM=FE=CE,∠MAH=∠EFH,∴AM∥BF,∴∠BAM+∠ABE=180°,∴∠BAM+∠CBE=90°,∵∠BCE+∠CBE=90°∴∠BAM=∠BCE,∴△ABM≌△CBE(SAS),∴BM=BE,∠ABM=∠CBE,∴∠MBE=∠ABC=90°,∵MH=EH,∴BH⊥EH,BH=12EM=MH =EH,在Rt△CBE中,BE=√CB2−CE2=12,∵BH=EH,BH⊥EH,∴BH=√22BE=6√2.12.解:(1)GF=GC.理由如下:如图1,连接GE,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵四边形ABCD是矩形,∴∠C=∠B=90°,∴∠EFG=90°,∴Rt△GFE≌Rt△GCE(HL),∴GF=GC;(2)设GC=x,则AG=4+x,DG=4﹣x,在Rt△ADG中,62+(4﹣x)2=(4+x)2,解得x=94.∴GC=94;(3)(1)中的结论仍然成立.证明:如图2,连接FC,∵E是BC的中点,∴BE=CE,∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∠B=∠AFE,∴EF=EC,∴∠EFC=∠ECF,∵矩形ABCD为平行四边形,∴∠B=∠D,∵∠ECD=180°﹣∠D,∠EFG=180°﹣∠AFE=180°﹣∠B=180°﹣∠D,∴∠ECD=∠EFG,∴∠GFC=∠GFE﹣∠EFC=∠ECG﹣∠ECF=∠GCF,∴∠GFC=∠GCF,∴FG=CG;即(1)中的结论仍然成立.13.解:(1)∵AE=CE,DE=EF,∠AED=∠CEF,∴△AED≌△CEF(SAS),∴AD=CF,∠ADE=∠F,∴BD∥CF,∵AD=BD,∴BD=CF,∴四边形BCFD是平行四边形,∴DF=BC,DF∥BC,(2)证明:∵四边形ABCD是正方形∴AB=BC,∠ABC=90°,即∠ABE+∠CBE=90°∵△BEH是等腰直角三角形,∴EH=2BE=2BH,∠BEH=∠BHE=45°,∠EBH=90°,即∠CBH+∠CBE=90°∴∠ABE=∠CBH,∴△ABE≌△CBH(SAS),∴AE=CH,∠AEB=∠CHB,∴∠CHE=∠CHB﹣∠BHE=∠CHB﹣45°=∠AEB﹣45°,∵四边形AEFG是正方形,∴AE=EF,∠AEF=90°,∴EF=HC,∠FEH=360°﹣∠AEF﹣∠AEB﹣∠BEH=225°﹣∠AEB,∴∠CHE+∠FEH=∠AEB﹣45°+225°﹣∠AEB=180°,∴EF∥HC且EF=HC,∴四边形EFCH是平行四边形,∴CF=EH=√2BE;(3)CF=√3BE,如图,过点B作BH,使∠EBH=120°,且BH=BE,连接EH、CH,则∠BHE=∠BEH=30°,∵∠ABC=∠EBH=120°,∴∠ABE=∠CBH,∵AB=BC,BE=BH,∴△AEB≌△CHB(SAS),∴CH=AE=EF,∠CHB=∠AEB,∵∠CHE=∠CHB﹣∠BHE=∠AEB﹣30°,∠FEH=360°﹣∠AEF﹣∠AEB﹣∠BEH=210°﹣∠AEB,∴∠CHE+∠FEH=180°,∴CH∥EF且CH=EF,∴四边形EFCH是平行四边形,∴CF=EH,过B作BN⊥EH于N,在△EBH中,∠EBH=120°,BH=BE,∴∠BEN=30°,EH=2EN,BE,∴EN=√32∴EH=√3BE,∴CF=EH=√3BE.。
2019年中考数学专题复习类比探究(习题及答案)
1类比探究(习题)例题示范例 1:如图 1,在□ABCD 中,点 E 是 BC 边的中点,点 F 是线段 AE 上一点,BF 的延长线交射线 CD 于点 G .(1)尝试探究:如图 1,若 AF = 3 ,则 CD的值是 .EF CG解答过程.(3)拓展迁移:如图 3,在梯形 ABCD 中,DC ∥AB ,点 E是 BC 延长线上一点,AE 和 BD 相交于点 F .若 AB= a ,CDBC = b (a >0,b >0),则 AF的值是 (用含 a ,b 的代 BE EF 数式表示).2ADGF C AD GFC【思路分析】① 根据特征确定问题结构,设计方案解决第一问.问题背景是平行四边形,且已知线段比例关系,考虑通过相似传递比例关系,进而求 CD的值.CG构造相似利用作平行线的方法,即过中点 E 作 EH ∥AB 交 BG 于点 H ,可得“A ”字型相似△BEH ∽△BC G ,“X ”型相似△EFH ∽△AFB ,结合 AF= 3 ,可得 CG =2EH ,AB =3EH ,故BEF CD = 3. 图1CG 2② 类比第一问思路,解决第二问.分析不变特征,此时平行四边形、中点特征均不变,变化的是 AF ,EF 的比例,照搬第一问思路,过点 E 作 EH ∥AB 交BG 于点 H ,同样可得△BEH ∽△BCG ,△EFH ∽△AFB ,此时 CG =2EH ,AB =mEH ,故 CD = m . B ③ 照搬思路解决第三问.CG 2 图2虽然此问中图形、中点 E 、比例关系均发生变化,但 DC ∥AB 不变,依然可利用相似来整合条件,可照搬前面思路处理, 依然构造平行.过点 E 作 EH ∥AB 交 BD 的延长线于点 H ,3E PB Q 巩固练习1.如图 1,一副直角三角板满足 AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°.【操作】将三角板 DEF 的直角顶点 E 放置于三角板 ABC 的斜边 AC 上,再将三角板 DEF 绕点 E 旋转,并使边 DE 与边 AB 交于点 P ,边 EF 与边 BC 交于点 Q . 【探究】在旋转过程中(3)根据你对(1),(2)的探究结果,试写出当 CEm 时,EAEP 与 EQ 满足的数量关系式为 .A (D )FBC (E )图1 AEP BQC DF图2 ADF C图34DF(3)如图 3,在 Rt △ABC 中,∠ACB =90°,AC =8,AB = 40,3E 为 AB 上一点且 AE =5,CE 交其内角角平分线 AD 于F .试 求 DF 的值. FACE B图352.如图1,将两个完全相同的三角形纸片ABC 和D EC 重合放置,其中∠C =90°,∠B =∠E =30°. (1)操作发现如图 2,固定△ABC ,使△DEC 绕点 C 旋转,当点 D 恰好落在 AB 边上时,填空: ①线段 DE 与 AC 的位置关系是 ; ②设△BDC 的面积为 S 1,△AEC 的面积为 S 2,则 S 1 与 S 2 的数量关系是 .B (E )EA (D ) C图 1 图 2B(2)猜想论证当△DEC 绕点 C 旋转到图 3 所示的位置时,小明猜想(1) 中 S 1 与 S 2 的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中 BC ,CE 边上的高,请你证明小明的猜想.(3)拓展探究如图 4 ,已知∠ABC =60°,点 D 是其角平分线上一点,BD =CD =4,DE ∥AB 交 BC 于点 E .若在射线 BA 上存在点 F ,使 S △DCF =S △BDE ,请直.接.写.出.相应的 BF 的长. 图4A BME思考小结总结类比探究问题中的常见结构①旋转结构AD'D C始终含有等腰结构(正方形、等腰直角三角形等),并且经过旋转后,能将各条件重新组合应用.②中点结构AEB M CC D F平行夹中点(类)倍长中线中位线始终含有中点,常考虑利用中点结构补全图形,然后将所证目标放在一个较大的背景下(等腰三角形、直角三角形、等腰直角三角形等)研究.③直角结构A DFB始终含有直角,常构造直角与斜直角配合,得到同角的余角相等;再配合构造的其他直角证明相似,所求目标往往和比例关系相关.6④平行结构AFEB所求目标为线段间的比例关系,题目中没有相似三角形,往往考虑利用平行线构造相似求解.7【参考答案】巩固练习1.(1)EP=EQ,证明略;(2)EP =1EQ ,证明略;2(3)EP =1EQ .m2.(1)都成立,证明略;(2)一定成立,证明略;(3)DF=5.FA 83. (1)①DE∥AC;②S1=S2.(2)证明略;(3)BF 的长为433或833.8。
中考数学专题之类比探究实战演练(含答案)
三、解答题22. (10分)问题背景:如图1,在四边形ADBC 中,∠ACB =∠ADB =90°,AD =BD ,探究线段AC ,BC ,CD 之间的数量关系.小吴同学探究此问题的思路是:将△BCD 绕点D 逆时针旋转90°到△AED 处,点B ,C 分别落在点A ,E 处(如图2),易证点C ,A ,E 在同一条直线上,并且△CDE 是等腰直角三角形,所以CECD ,从而得出结论:AC +BCCD .图1图2 简单应用:(1)在图1中,若AC ,BC =CD =__________.(2)如图3,AB 是⊙O 的直径,点C ,D 在⊙O 上,AD ︵=BD ︵,若AB =13,BC =12,求CD 的长.拓展延伸:(3)如图4,∠ACB =∠ADB =90°,AD =BD ,若AC =m ,BC =n (m <n ),求CD 的长(用含m ,n 的代数式表示).图4图5(4)如图5,∠ACB =90°,AC =BC ,点P 为AB 的中点,若点E 满足AE = 13AC ,CE =CA ,点Q 为AE 的中点,则线段PQ 与AC 的数量关系是_____. DC BADCBBAE DCBA三、解答题22. (10分)如图1,在Rt △ABC 中,∠ACB =90°,AC =BC ,点D ,E 分别在AC ,BC 边上,DC =EC ,连接DE ,AE ,BD ,点M ,N ,P 分别是AE ,BD ,AB 的中点,连接PM ,PN ,MN . (1)BE 与MN 的数量关系是___________;(2)将△DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若CB =6,CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B ,E ,D 三点在一条直线上时,请直接写出MN 的长.中考数学类比探究实战演练(三)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)已知正方形ABCD 与正方形CEFG ,M 是AF 的中点,连接DM ,EM .(1)如图1,点E 在CD 上,点G 在BC 的延长线上,请判断DM ,EM 的数量关系与位置关系,并直接写出结论;(2)如图2,点E 在DC 的延长线上,点G 在BC 上,(1)中结论是否仍然成立?请证明你的结论;(3)将图1中的正方形CEFG 绕点C 旋转,使D ,E ,F 三点在一条直线上,若AB =13,CE =5,请画出图形,并直接写出MF 的长.图1PNM EDCBA图2PNME D CBA备用图E DCBA中考数学类比探究实战演练(四)做题时间:_______至_______ 自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)如图,在Rt△ABC中,∠ACB=90°,BC=nAC,CD⊥AB于D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F,连接EF.(1)探究发现:如图1,若n=1,点E在线段AC上,则tan∠EFD=____.(2)数学思考:①如图2,若点E在线段AC上,则tan∠EFD=_______(用含n的代数式表示).②当点E在直线AC上运动时,①中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.从“点E是线段AC延长线上的任意一点”或“点E是线段AC反向延长线上的任意一点”中,任选一种情况,在图3中画出图形,给予相应的证明或理由.(3)拓展应用:若ACBC=DF=CE的长.图1ABCDE FGM图2MGF EDCBA图1E DCBA图2E DA图3DCBAABCD备用图【参考答案】中考数学类比探究实战演练(一)22.(1)3;(2)CD的长为2;(3)CD的长为)2n m-;(4AC=AC=.中考数学类比探究实战演练(二)22.(1)BE MN;(2)成立,理由略;(3)MN11.中考数学类比探究实战演练(三)23.(1)DM=EM,DM⊥EM;(2)(1)中的结论仍成立,证明略;(3)MF,图形略.中考数学类比探究实战演练(四)22.(1)1;(2)①1n;②成立,证明略;(3)CE或中考数学类比探究实战演练(五)做题时间:_______至_______ 自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)在菱形ABCD中,∠BAD=120°,点O为射线CA上的动点,作射线OM与直线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与直线CD相交于点F.(1)如图1,点O与点A重合时,点E,F分别在线段BC,CD上,请直接写出CE,CF,CA 三条线段之间的数量关系;(2)如图2,点O在CA的延长线上,且OA=13AC,E,F分别在线段BC的延长线和线段CD的延长线上,请写出CE,CF,CA三条线段之间的数量关系,并说明理由;(3)点O在线段AC上,若AB=6,BO=CF=1时,请直接写出BE的长.图1F ENM (O )D C B A图2FENMO DC BA备用图DCBA【参考答案】22.(1)CA=CE+CF;(2)CF-CE=43AC,理由略;(3)BE的长为3,5或1.中考数学类比探究实战演练(六)做题时间:_______至_______ 自我评价:☆☆☆☆☆共__________分钟日期:_____月_____日三、解答题22.(10分)已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M,点N不与所在线段端点重合),BN=AM,连接AN,BM.射线AG∥BC,延长BM 交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时.①求证:△BCM≌△ACN;②求∠BDE的度数.(2)当∠ACB=α,其他条件不变时,∠BDE的度数是__________(用含α的代数式表示);(3)若△ABC是等边三角形,AB=N是BC边上的三等分点,直线ED与直线BC交于点F,请直接..写出线段CF的长.B C DAEM N GBA GC备用图1备用图2AB CG中考数学类比探究实战演练(七)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)已知在Rt △ABC 中,∠BAC =90°,CD 为∠ACB 的平分线,将∠ACB 沿CD 所在的直线对折,使点B 落在点B′处,连接AB′,BB′,延长CD 交BB′于点E ,设∠ABC =2α(0°<α<45°). (1)如图1,若AB =AC ,求证:CD =2BE ;(2)如图2,若AB ≠AC ,试求CD 与BE 的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC 绕点C 逆时针旋转角(α+45°),得到线段FC ,连接EF 交BC 于点O ,设△COE 的面积为S 1,△COF 的面积为S 2,求12SS (用含α的式子表示).中考数学类比探究实战演练(八)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题图1ABCDEB′图22αABCD E B′B′E D CB A2α图3OF22. (10分)在Rt △ABC 中,∠ACB =90°,AB,AC =2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A′B′C (点A ,B 的对应点分别为A′,B′),射线CA′,CB′分别交直线m 于点P ,Q .(1)如图1,当P 与A′重合时,求∠ACA′的度数.(2)如图2,设A′B′与BC 的交点为M ,当M 为A′B′的中点时,求线段PQ 的长.(3)在旋转过程中,当点P ,Q 分别在CA′,CB′的延长线上时,试探究四边形P A′B′Q 的面积是否存在最小值.若存在,求出四边形P A′B′Q 的最小面积;若不存在,请说明理由.图1QmB′A′ (P )BC AM图2A′AC B P B′mQ备用图AC Bm中考数学类比探究实战演练(九)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)问题背景:如图1,等腰△ABC 中,AB =AC ,∠BAC =120°,作AD ⊥BC 于点D ,则D为BC 的中点,∠BAD =21∠BAC =60°,于是2BC BDAB AB==迁移应用:如图2,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =120°,D ,E ,C 三点在同一条直线上,连接BD . ①求证:△ADB ≌△AEC ;②请直接写出线段AD ,BD ,CD 之间的等量关系式.拓展延伸:如图3,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF . ①求证:△CEF 是等边三角形; ②若AE =5,CE =2,求BF 的长.图1图2图3D B AEDBA FEMDCBA中考数学类比探究实战演练(十)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且∠EAF =∠CEF =45°.(1)将△ADF 绕着点A 顺时针旋转90°,得到△ABG (如图1). 求证:△AEG ≌△AEF .(2)若直线EF 与AB ,AD 的延长线分别交于点M ,N (如图2). 求证:EF 2=ME 2+NF 2.(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF ,BE ,DF 之间的数量关系.中考数学类比探究实战演练(十一)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日图1G FE D CB A N图2M FE D CB A 图3FED CBA三、解答题22. (10分)【操作发现】(1)如图1,△ABC 为等边三角形,先将三角板中的60°角与∠ACB 重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0°且小于30°).旋转后三角板的一直角边与AB 交于点D .在三角板斜边上取一点F ,使CF =CD ,线段AB 上取点E ,使∠DCE =30°,连接AF ,EF . ①求∠EAF 的度数;②DE 与EF 相等吗?请说明理由. 【类比探究】(2)如图2,△ABC 为等腰直角三角形,∠ACB =90°,先将三角板的90°角与∠ACB 重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0°且小于45°).旋转后三角板的一直角边与AB 交于点D .在三角板另一直角边上取一点F ,使CF =CD ,线段AB 上取点E ,使∠DCE =45°,连接AF ,EF .请直接写出探究结果:①∠EAF 的度数;②线段AE ,ED ,DB 之间的数量关系.图1图2中考数学类比探究实战演练(十二)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD (∠BAD =120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD 所在平面内旋转,且60°角的顶点始终与点C 重合,较短的直角边和斜边所在的两直线分别交线段AB ,AD 于点E ,F (不包FDE CBAABCEF D括线段的端点). (1)初步尝试如图1,若AD =AB ,求证:①△BCE ≌△ACF ;②AE +AF =AC . (2)类比发现如图2,若AD =2AB ,过点C 作CH ⊥AD 于点H ,求证:AE =2FH . (3)深入探究如图3,若AD =3AB ,探究得:3AE AFAC的值为常数t ,则t =_______.图1 图2 图3F EDC B A HF EDBAF EDCB A三、解答题22. (10分)小华遇到这样一个问题:在菱形ABCD 中,∠ABC =60°,边长为4,在菱形ABCD 内部有一点P ,连接PA ,PB ,PC ,求PA +PB +PC 的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是:如图1,将△APC 绕点C 顺时针旋转60°,恰好旋转至△DEC ,连接PE ,BD ,则BD 的长即为所求.(1)请你写出在图1中,PA +PB +PC 的最小值为________. (2)参考小华思考问题的方法,解决下列问题:①如图2,在△ABC 中,∠ACB =30°,BC =6,AC =5,在△ABC 内部有一点P ,连接PA ,PB ,PC ,求PA +PB +PC 的最小值.②如图3,在正方形ABCD 中,AB =5,P 为对角线BD 上任意一点,连接PA ,PC ,请直接写出PA +PB +PC 的最小值(保留作图痕迹).图1PADBECB CPA图2P图3DCBA三、解答题22.(10分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=12∠C,BE⊥DE,垂足为E,DE与AB相交于点F.(1)如图1,若点D与点C重合,AB=AC,探究线段BE与FD的数量关系.(2)如图2,若点D与点C不重合,AB=AC,探究线段BE与FD的数量关系,并加以证明.(3)如图3,若点D与点C不重合,AB=kAC,求BEFD的值(用含k的式子表示).图1图2图3CB(D)AFECB DAFECB DAFE三、解答题22. (10分)问题背景:已知∠EDF 的顶点D 在△ABC 的边AB 所在直线上(不与A ,B 重合),DE 交AC 所在直线于点M ,DF 交BC 所在直线于点N ,记△ADM 的面积为S 1,△BND 的面积为S 2.(1)初步尝试:如图1,当△ABC 是等边三角形,AB =6,∠EDF =∠A ,且DE ∥BC ,AD =2时,则S 1·S 2=_____________.(2)类比探究:在(1)的条件下,先将点D 沿AB 平移,使AD =4,再将∠EDF 绕点D 旋转至如图2所示位置,求S 1·S 2的值.(3)拓展延伸:当△ABC 是等腰三角形时,设∠B =∠A =∠EDF =α.①如图3,当点D 在线段AB 上运动时,设AD =a ,BD =b ,求S 1·S 2的表达式(结果用a ,b 和α的三角函数表示);②如图4,当点D 在BA 的延长线上运动时,设AD =a ,BD =b ,直接写出S 1·S 2的表达式,不必写出解答过程.图1 图2 图3图4中考数学类比探究实战演练(十六)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日F三、解答题22. (10分)点A ,B 分别是两条平行线m ,n 上任意一点,在直线n 上找一点C ,使BC =kAB ,连接AC ,在直线AC 上任取一点E ,作∠BEF =∠ABC ,EF 交直线m 于点F .(1)如图1,当∠ABC =90°,k =1时,判断线段EF 和EB 之间的数量关系,并证明.(2)如图2,当∠ABC =90°,k ≠1时,(1)中的结论还成立吗?若成立,请证明;若不成立,请重新判断线段EF 和EB 之间的数量关系.(3)如图3,当0°<∠ABC <90°,k =1时,探究EF 和EB 之间的数量关系,并证明.图1 图2 图3中考数学阅读理解问题实战演练(一)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题22. (10分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”. (1)概念理解:如图1,在△ABC 中,AC =6,BC =3,∠ACB =30°,试判断△ABC 是否是“等高底”三角形,请说明理由.mnAF CB EmnA F E CBB CEF A nm(2)问题探究:如图2,△ABC 是“等高底”三角形,BC 是“等底”,作△ABC 关于BC 所在直线的对称图形得到△A′BC ,连接AA′交直线BC 于点D .若点B 是 △AA′C 的重心,求BCAC的值. (3)应用拓展:如图3,已知l 1∥l 2,l 1与l 2之间的距离为2.“等高底”△ABC 的“等底”BC 在直线l 1上,点A 在直线l 2上,有一边的长是BC 的2倍.将△ABC 绕点C 按顺时针方向旋转45°得到△A′B′C ,A′C 所在直线交l 2于点D ,求CD 的值.中考数学阅读理解问题实战演练(二)做题时间:_______至_______ 自我评价:☆ ☆ ☆ ☆ ☆ 共__________分钟 日 期:_____月_____日 三、解答题 22. (10分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”. 理解:(1)如图1,已知Rt △ABC 在正方形网格中,请你只用无刻度的直尺在网格中找到一点D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD 中,∠ABC =80°,∠ADC =140°,对角线BD 平分∠ABC .求证:BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,∠EFH =∠HFG = 30°,连接EG ,若△EFG的面积为FH 的长.图1ABC图2DA′AB C图3l 2l 1A′D B′ABC【参考答案】中考数学类比探究实战演练(六)22.(1)①证明略;②∠BDE的度数为90°;(2)α或(180°-α);(3)CF中考数学类比探究实战演练(七)22.(1)证明略;(2)CD=2BE·tan2α;(3)12sin(45)S Sα=︒-.中考数学类比探究实战演练(八)22.(1)∠ACA′的度数为60°;(2)线段PQ的长为72;(3)四边形P A′B′Q的最小面积为3.中考数学类比探究实战演练(九)22.(1+BD=CD;(2)①证明略;②BF的长为图1ABC图2AB CD图3EF GH中考数学类比探究实战演练(十)22. (1)证明略;(2)证明略;(3)EF 2=2(BE 2+DF 2).中考数学类比探究实战演练(十一)22. (1)①∠EAF =120°;②DE 与EF 相等,理由略;(2)①∠EAF =90°;②DB 2+AE 2=ED 2.中考数学类比探究实战演练(十二)22. (1)证明略;(2)证明略;(3.中考数学类比探究实战演练(十三)22. (1)(2)①PA +PB +PC ;②PA +PB +PC (. 中考数学类比探究实战演练(十四)22. (1)12BE FD =; (2)12BE FD =,证明略;(3)2BE k FD =.中考数学类比探究实战演练(十五)22. (1)12;(2)S 1·S 2的值为12;(3)①22121()sin 4S S ab α⋅=;②22121()sin 4S S ab α⋅=.中考数学类比探究实战演练(十六)22. (1)EF =EB ,证明略; (2)不成立,1EF EB k=;(3)EF =EB ,证明略.中考数学阅读理解问题实战演练(一)22. (1)△ABC 是“等高底”三角形,理由略;(2)2AC BC =;(3)CD的值为3,2.中考数学阅读理解问题实战演练(二)22.(1)图略;(2)证明略;(3)FH的值为.21。
河南省2019年中考数学专题复习专题七类比探究题训练201812281141
专题七 类比探究题类型一 线段数量关系问题(2018·河南)(1)问题发现如图①,在△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M.填空: ①ACBD的值为________; ②∠AMB 的度数为________; (2)类比探究如图②,在△OAB 和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M.请判断ACBD 的值及∠AMB 的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD =1,OB =7,请直接写出当点C 与点M 重合时AC 的长.【分析】 (1)①证明△COA≌△DOB(SAS),得AC =BD ,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理,得∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则AC BD =OCOD =3,由全等三角形的性质得∠AMB 的度数;(3)正确画出图形,当点C 与点M 重合时,有两种情况:如解图①和②,同理可得△AOC∽△BOD,则∠AMB =90°,ACBD =3,可得AC 的长.【自主解答】解:(1)问题发现①1【解法提示】∵∠AOB=∠COD=40°, ∴∠COA=∠DOB. ∵OC=OD ,OA =OB , ∴△COA≌△DOB(SAS), ∴AC=BD , ∴ACBD=1. ②40°【解法提示】∵△COA≌△DOB, ∴∠CAO=∠DBO. ∵∠AOB=40°, ∴∠OAB+∠ABO=140°,在△AMB 中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°. (2)类比探究ACBD=3,∠AMB=90°,理由如下: 在Rt△OCD 中,∠DCO=30°,∠DOC=90°, ∴OD OC =tan 30°=33, 同理,得OB OA =tan 30°=33,∵∠AOB=∠COD=90°, ∴∠AOC=BOD , ∴△AOC∽△BOD, ∴AC BD =OCOD=3,∠CAO=∠DBO. ∴∠AMB=180°-∠CAO-∠OAB-MBA =180°-(∠DAB+∠MBA+∠OBD)=180°-90°=90°. (3)拓展延伸①点C 与点M 重合时,如解图①, 同理得△AOC∽△BOD, ∴∠AMB=90°,ACBD =3,设BD =x ,则AC =3x , 在Rt△COD 中,∵∠OCD=30°,OD =1, ∴CD=2, ∴BC=x -2.在Rt△AOB 中,∠OAB=30°,OB =7. ∴AB=2OB =27,在Rt△AMB 中,由勾股定理,得AC 2+BC 2=AB 2, 即( 3 x)2+(x -2)2=(27)2, 解得x 1=3,x 2=-2(舍去), ∴AC=33;②点C 与点M 重合时,如解图②,同理得:∠AMB=90°,ACBD =3,设BD =x ,则AC =3x ,在Rt△AMB 中,由勾股定理,得AC 2+BC 2=AB 2, 即(3x)2+(x +2)2=(27)2解得x 1=-3,解得x 2=2(舍去). ∴AC=2 3.综上所述,AC 的长为33或2 3.图①图② 例1题解图1.(2016·河南) (1)发现如图①,点A 为线段BC 外一动点,且BC =a ,AB =b.填空:当点A 位于________________时,线段AC 的长取得最大值,且最大值为__________(用含a ,b 的式子表示). (2)应用点A 为线段BC 外一动点,且BC =3,AB =1,如图②所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE.①请找出图中与BE 相等的线段,并说明理由; ②直接写出线段BE 长的最大值. (3)拓展如图③,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且PA =2,PM =PB ,∠BPM=90°,请直接写出线段AM 长的最大值及此时点P 的坐标.2.(2015·河南)如图①,在Rt△ABC 中,∠B=90°,BC =2AB =8,点D ,E 分别是边BC ,AC 的中点,连接DE.将△EDC 绕点C 按顺时针方向旋转,记旋转角为α. (1)问题发现①当α=0°时,AE BD =2;②当α=180°时,AE BD =2;(2)拓展探究试判断:当0°≤α<360°时,AEBD 的大小有无变化?请仅就图②的情形给出证明.(3)解决问题当△EDC 旋转至A ,D ,E 三点共线时,直接写出线段BD 的长.3.(2014·河南) (1)问题发现如图①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE. 填空:①∠AEB 的度数为__________;②线段AD ,BE 之间的数量关系为______________. (2)拓展探究如图②,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,点A ,D ,E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由. (3)解决问题如图③,在正方形ABCD 中,CD =2,若点P 满足PD =1,且∠BPD=90°,请直接写出点A 到BP 的距离.4.(2018·南阳二模)在△ABC中,∠ACB是锐角,点D在射线BC上运动,连接AD,将线段AD绕点A逆时针旋转90°,得到AE,连接EC.(1)操作发现若AB=AC,∠BAC=90°,当D在线段BC上时(不与点B重合),如图①所示,请你直接写出线段CE和BD 的位置关系和数量关系是______________,______________;(2)猜想论证在(1)的条件下,当D在线段BC的延长线上时,如图②所示,请你判断(1)中结论是否成立,并证明你的判断.(3)拓展延伸如图③,若AB≠AC,∠BAC≠90°,点D在线段BC上运动,试探究:当锐角∠ACB等于________度时,线段CE和BD之间的位置关系仍成立(点C,E重合除外)?此时若作DF⊥AD交线段CE于点F,且当AC=32时,请直接写出线段CF的长的最大值是____.5.已知,如图①,△ABC,△AED是两个全等的等腰直角三角形(其顶点B,E重合),∠BAC=∠AED=90°,O为BC的中点,F为AD的中点,连接OF.(1)问题发现①如图①,OFEC=_______;②将△AED 绕点A 逆时针旋转45°,如图②,OFEC =_______;(2)类比延伸将图①中△AED 绕点A 逆时针旋转到如图③所示的位置,请计算出OFEC 的值,并说明理由.(3)拓展探究将图①中△AED 绕点A 逆时针旋转,旋转角为α,0°≤α≤90°,AD =2,△AED 在旋转过程中,存在△ACD 为直角三角形,请直接写出线段CD 的长.类型二 图形面积关系问题(2017·河南)如图①,在Rt△ABC 中,∠A=90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点. (1)观察猜想图①中,线段PM 与PN 的数量关系是________,位置关系是________; (2)探究证明把△AD E 绕点A 逆时针方向旋转到图②的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由; (3)拓展延伸把△ADE 绕A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.图①图② 例2题图【分析】 (1)利用三角形的中位线定理得出PM =12CE ,PN =12BD ,进而判断出BD =CE ,即可得出结论,再利用三角形的中位线定理得出PM∥CE,继而得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD =CE ,同(1)的方法得出PM =12BD ,PN =12BD ,即可得出PM =PN ,同(1)的方法即可得出结论;(3)先判断出MN 最大时,△PMN 的面积最大,进而求出AN ,AM ,即可得出MN 最大=AM +AN ,最后用面积公式即可得出结论. 【自主解答】解:(1)∵点P ,N 是BC ,CD 的中点, ∴PN∥BD,PN =12BD.∵点P ,M 是CD ,DE 的中点, ∴PM∥CE,PM =12CE.∵AB=AC ,AD =AE , ∴BD =CE , ∴PM=PN. ∵PN∥BD, ∴∠DPN=∠ADC, ∵PM∥CE, ∴∠DPM=∠DCA. ∵∠BAC=90°, ∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,(2)由旋转知,∠BAD=∠CAE, ∵AB=AC ,AD =AE , ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE,BD =CE.同(1)的方法,利用三角形的中位线定理,得PN =12BD ,PM =12CE ,∴PM=PN ,∴△PMN 是等腰三角形, 同(1)的方法得,PM∥CE, ∴∠DPM=∠DCE, 同(1)的方法得,PN∥BD, ∴∠PNC=∠DBC.∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD +∠DBC=∠ACB+∠ABC. ∵∠BAC=90°, ∴∠ACB+∠ABC=90°, ∴∠MPN=90°,∴△PMN 是等腰直角三角形,例2题解图(3)如解图,同(2)的方法得,△PMN 是等腰直角三角形, ∴当MN 最大时,△PMN 的面积最大, ∴DE∥BC 且DE 在顶点A 上面, ∴MN 最大=AM +AN , 连接AM ,AN ,在△ADE 中,AD =AE =4,∠DAE=90°,在Rt△ABC 中,AB =AC =10,AN =52, ∴MN 最大=22+52=72,∴S △PMN 最大=12PM 2=12×12MN 2=14×(72)2=492.1.(2013·河南)如图①,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E =30°. (1)操作发现如图②,固定△ABC,使△DEC 绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是______________;②设△BDC 的面积为S 1,△AEC 的面积为S 2,则S 1与S 2的数量关系是______________. (2)猜想论证当△DEC 绕点C 旋转到如图③所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC ,CE 边上的高,请你证明小明的猜想. (3)拓展探究已知∠ABC=60°,点D 是角平分线上一点,BD =CD =4,DE∥AB 交BC 于点E(如图④).若在射线BA 上存在点F ,使S △DCF =S △BDE ,请直接写出相应的BF 的长.2.已知Rt△ABC 中,BC =AC ,∠C=90°,D 为AB 边的中点,∠EDF=90°,将∠EDF 绕点D 旋转,它的两边分别交AC ,CB(或它们的延长线)于E ,F.当∠EDF 绕点D 旋转到DE⊥AC 于E 时,如图①所示,试证明S △DEF +S △CEF =12S △ABC .(1)当∠EDF 绕点D 旋转到DE 和AC 不垂直时,如图②所示,上述结论是否成立?若成立,请说明理由;若不成立,试说明理由.(2)直接写出图③中,S△DEF,S△CEF与S△ABC之间的数量关系.3.(2018·郑州模拟)如图①所示,将两个正方形ABCD和正方形CGFE如图所示放置,连接DE,BG. (1)图中∠DCE+∠BCG=__________°;设△DCE的面积为S1,△BCG的面积为S2,则S1与S2的数量关系为______________;猜想论证:(2)如图②所示,将矩形ABCD绕点C按顺时针方向旋转后得到矩形FECG,连接DE,BG,设△DCE的面积为S1,△BCG的面积为S2,猜想S1和S2的数量关系,并加以证明;(3)如图③所示,在△ABC中,AB=AC=10 cm,∠B=30°,把△ABC沿AC翻折得到△AEC,过点A作AD 平行CE交BC于点D,在线段CE上存在点P,使△ABP的面积等于△ACD的面积,请写出CP的长.4.(2018·驻马店一模)如图①,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M,N分别是斜边AB,DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想图①中,PM与PN的数量关系是______________,位置关系是______________;(2)探究证明将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP,BD分别交于点G,H,判断△PMN的形状,并说明理由;(3)拓展延伸把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.参考答案类型一 针对训练1.解:(1)∵点A 为线段BC 外一动点,且BC =a ,AB =b ,∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC +AB =a +b. (2)①CD=BE ,理由:∵△ABD 与△ACE 是等边三角形, ∴AD=AB ,AC =AE ,∠BAD=∠CAE=60°, ∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB. 在△CAD 和△EAB 中,⎩⎪⎨⎪⎧AD =AB ∠CAD=∠EAB AC =AE ,∴△CAD≌△EAB,∴CD=BE.②∵线段BE 长的最大值等于线段CD 的最大值,由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上, ∴线段BE 长的最大值为BD +BC =AB +BC =4;(3)∵将△APM 绕着点P 顺时针旋转90°得到△PBN,连接AN ,如解图①, 则△APN 是等腰直角三角形, ∴PN=PA =2,BN =AM.∵点A 的坐标为(2,0),点B 的坐标为(5,0), ∴OA=2,OB =5,∴AB=3,∴线段AM长的最大值等于线段BN长的最大值,∴当点N在线段BA的延长线时,线段BN取得最大值,最大值为AB+AN.∵AN=2AP=22,∴线段AM的长最大值为22+3.如解图②,过点P作PE⊥x轴于点E.∵△APN是等腰直角三角形,∴PE=AE=2,∴OE=BO-AB-AE=5-3-2=2-2,∴P(2-2,2).图①图②第1题解图2.解:(1)①当α=0°时,∵在Rt△ABC中,∠B=90°,∴AC=AB2+BC2=(8÷2)2+82=4 5.∵点D、E分别是边BC、AC的中点,∴AE=45÷2=25,BD=8÷2=4,∴AEBD=254=52.②如解图①,当α=180°时,得可得AB∥DE,∵ACAE=BCBD,∴AEBD=ACBC=458=52.(2)当0°≤α≤360°时,AEBD的大小没有变化.∵∠ECD=∠ACB, ∴∠ECA=∠DCB. 又∵EC DC =AC BC =52,∴△ECA∽△DCB, ∴AE BD =EC DC =52.图①图②图③ 第2题解图(3)①如解图②,∵AC=45,CD =4,CD⊥AD,∴AD=AC 2-CD 2=(45)2-42=80-16=8. ∵AD=BC ,AB =DC ,∠B=90°, ∴四边形ABCD 是矩形, ∴BD=AC =4 5.③如解图③,连接BD ,过点D 作AC 的垂线交AC 于点Q ,过点B 作AC 的垂线交AC 于点P , ∵AC=45,CD =4,CD⊥AD,∴A D =AC 2-CD 2=(45)2-42=80-16=8, ∵点D 、E 分别是边BC 、AC 的中点, ∴DE=12AB =12×(8÷2)=12×4=2,∴AE=AD -DE =8-2=6, 由(2),可得AE BD =52,∴BD=652=1255.综上所述,BD 的长为45或1255. 3.解:(1)∵△ACB 和△DCE 均为等边三角形, ∴CA=CB ,CD =CE ,∠ACB=∠DCE=60°, ∴∠ACD=∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧AC =BC ∠ACD=∠BCE CD =CE, ∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC. ∵△DCE 为等边三角形,∴∠CDE=∠CED=60°. ∵点A ,D ,E 在同一直线上,∴∠ADC=120°, ∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°. ②∵△ACD≌△BCE,∴AD=BE. (2)∠AEB=90°,AE =BE +2CM. 理由如下:∵△ACB 和△DCE 均为等腰直角三角形, ∴CA=CB ,CD =CE ,∠ACB=∠DCE=90°. ∴∠ACD=∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧CA =CB ∠ACD=∠BCE CD =CE, ∴△ACD≌△BCE(SAS), ∴AD=BE ,∠ADC=∠BEC.∵△DCE 为等腰直角三角形,∴∠CD E =∠CED=45°. ∵点A ,D ,E 在同一直线上, ∴∠ADC=135°,∴∠BEC=135°, ∴∠AEB=∠BEC-∠CED=90°. ∵CD=CE ,CM⊥DE,∴DM=ME. ∵∠DCE=90°,∴DM=ME =CM , ∴AE=AD +DE =BE +2CM.(3)∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上,∴点P是这两圆的交点.①当点P在如解图①所示位置时,连接PD,PB,PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E.∵四边形ABCD是正方形,∴∠ADB=45°,AB=AD=DC=BC=2,∠BAD=90°,∴BD=2.∵DP=1,∴BP= 3.∵∠BPD=∠BAD=90°,∴点A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B,E,P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD,∴3=2AH+1,∴AH=3-1 2;②当点P在如解图②所示位置时,连接PD、PB、PA、作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,同理可得:BP=2AH-PD,∴3=2AH-1,∴AH=3+1 2.综上所述,点A到BP的距离为3-12或3+12.图①图② 第3题解图4.解:(1)①∵AB=AC ,∠BAC=90°, 线段AD 绕点A 逆时针旋转90°得到AE , ∴AD=AE ,∠BAD=∠CAE, ∴△BAD≌△CAE, ∴CE=BD ,∠ACE =∠B, ∴∠BCE=∠BCA+∠ACE=90°,∴线段CE ,BD 之间的位置关系和数量关系为CE =BD ,CE⊥BD; (2)(1)中的结论仍然成立.证明如下: 如解图①,∵线段AD 绕点A 逆时针旋转90°得到AE , ∴AE=AD ,∠DAE=90°. ∵AB=AC ,∠BAC=90°, ∴∠CAE=∠BAD, ∴△ACE≌△ABD, ∴CE=BD ,∠ACE=∠B, ∴∠BCE=90°,∴线段CE ,BD 之间的位置关系和数量关系为CE =BD ,CE⊥BD; (3)45°;34.过A 作AM⊥BC 于M ,过点E 作EN⊥MA 交MA 的延长线于N ,如解图②. ∵线段AD 绕点A 逆时针旋转90°得到AE , ∴∠DAE=90°,AD =AE ,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA, ∴NE=AM.∵CE⊥BD,即CE⊥MC,∴∠MCE=90°, ∴四边形MCEN 为矩形, ∴NE=MC ,∴AM=MC , ∴∠ACB=45°. ∵四边形MCEN 为矩形,∴Rt△AMD∽Rt△DCF, ∴MD CF =AMDC,设DC =x , ∵在Rt△AMC 中,∠ACB=45°,AC =32, ∴AM=CM =3,MD =3-x ,∴3-x CF =3x ,∴CF=-13x 2+x =-13(x -32)2+34,∴当x =32时,CF 有最大值,最大值为34.故答案为45°,34;图①图② 第4题解图5.解:(1)①∵△A BC ,△AED 是两个全等的等腰直角三角形, ∴AD=BC.∵O 为BC 的中点,F 为AD 的中点, ∴AF=OC.∵∠BAC=∠AED=90°,AB =AC ,AE =DE , ∴∠DAE=∠CBA=45°, ∴AD∥BC,∴四边形AFOC 是平行四边形, ∴OF=AC =22EC ,∴OF EC =22; 故答案:22; ②∵AO=22AC ,∠BAO=∠CAO=45°,∠DAE=45°, ∴∠DAE=∠CAO.∵AE=AC , ∴AF=AO , ∴AF AE =AO AC, ∴△AFO∽△AEC, ∴OF EC =AO AC =22; 故答案:22. (2)OF =22EC. 理由:在等腰直角△ADE 中,F 为AD 的中点, ∴AF=12AD =22AE.在等腰直角△ABC 中,O 为BC 的中点, 如解图①,连接AO , ∴AO=22AC ,∠BAO=∠CAO=45°. ∴∠DAE=45°,∴∠DAE=∠CAO,即∠DAO=∠CAE. ∵AE=AC , ∴AF=AO , ∴AF AE =AO AC, ∴△AFO∽△AEC, ∴OF EC =AO AC =22; (3)∵△ABC 和△AED 是两个全等的等腰直角三角形, ∴AD=BC =2, ∴ED=AE =AB =AC =1,当△ACD 为直角三角形时,分两种情况:图①图②图③ 第5题解图①当AD 与AB 重合时,如解图②,连接CD. 当△ACD 为直角三角形时,AD⊥AC, 即将△ADE 绕点A 逆时针旋转45°. ∵AD=2,AC =1,∴由勾股定理可得CD =(2)2+12=3; ②当AE 与AC 重合时,如解图③, 当△ACD 为直角三角形时,AC⊥CD,即将△ADE 绕点A 逆时针旋转90°,此时CD =AC =1. 综上所述,CD 的长为3或1. 类型二 针对训练1.解:(1)①△DEC 绕点C 旋转到点D 恰好落在AB 边上, ∴AC=CD.∵∠BAC=90°-∠B=90°-30°=60°. ∴△ACD 是等边三角形, ∴∠ACD=60°,又∵∠CDE=∠BAC=60°, ∴∠ACD=∠CDE, ∴DE∥AC;②∵∠B=30°,∠C=90°, ∴CD=AC =12AB ,∴BD=AD =AC ,根据等边三角形的性质,△ACD 的边AC ,AD 上的高相等,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2; (2)∵△DEC 是由△ABC 绕点C 旋转得到,∴BC=CE ,AC =CD ,∠DCE=∠ACB=90°, ∵∠ACN+∠ACE=180°, ∴∠ACN=∠DCM.在△ACN 和△DCM 中,⎩⎪⎨⎪⎧∠ACN=∠DCM,∠N=∠CMD=90°,AC =CD∴△ACN≌△DCM(AAS), ∴AN=DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2;第1题解图(3)如解图,过点D 作DF 1∥BE 交BA 于点F 1,易求得四边形BEDF 1是菱形,∴BE=DF 1,且BE ,DF 1边上的高相等,此时S△DCF 1=S △BDE ; 过点D 作DF 2⊥BD.∵∠ABC=60°,F 1D∥BE 交BA 于点F 2, ∴∠F 2F 1D =∠ABC=60°.∵BF 1=DF 1,∠F 1BD =12∠ABC=30°,∠F 2DB =90°,∴∠F 1DF 2=∠ABC=60° ∴△DF 1F 2是等边三角形, ∴DF 1=DF 2.∵BD=CD ,∠ABC=60°,点D 是角平分线上一点, ∴DBC=∠DCB=12×60°=30°,∴∠CDF 1=180°-∠BCD=180°-30°=150°, ∠CDF 2=360°-150°-60°=150°, ∴∠CDF 1=∠CDF 2. 在△CDF 1和△CDF 2中, ⎩⎪⎨⎪⎧DF 1=DF 2∠CDF 1=∠CDF 2CD =CD, ∴△CDF 1≌△CDF 2(SAS),∴点F 2也是所求的点. ∵∠ABC=60°,点D 是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=12×60°=30°.又∵BD=4,∴BE=12×4÷cos 30°=2÷32=433,∴BF 1=433,BF 2=BF 1+F 1F 2=433+433=833.故BF 的长为433或833.2.解:当∠EDF 绕D 点旋转到DE⊥AC 时,四边形CEDF 是正方形;设△ABC 的边长AC =BC =a ,则正方形CEDF 的边长为12a ,∴S △ABC =12a 2,S 正方形CEDF =(12a)2=14a 2,即S △DEF +S △CEF =12S △ABC ;(1)上述结论成立;理由如下: 连接CD ,如解图①所示.∵AC=BC ,∠ACB=90°,D 为AB 中点,∴∠B=45°,∠DCE=12∠ACB=45°,CD⊥AB,CD =12AB =BD ,∴∠DCE=∠B,∠CDB=90° ∵∠EDF=90°, ∴∠1=∠2, 在△CDE 和△BDF 中, ⎩⎪⎨⎪⎧∠1=∠2CD =BD∠DCE=∠B, ∴△CDE≌△BDF(ASA),∴S △DEF +S △CEF =S △ADE +S △BDF =12S △ABC ;图①图② 第2题解图(2)S △DEF -S △CEF =12S △ABC ;理由如下:连接CD ,如解图②所示,同(1)得:△DEC≌△DFB,∠DCE=∠DBF =135°, ∴S △DEF =S 五边形DBFEC , S △CFE +S △DBC , =S △CFE +12S △ABC ,∴S △DEF -S △CFE =12S △ABC .∴S △DEF 、S △CEF 、S △ABC 的关系是S △DEF -S △CEF =12S △ABC .3.解:(1)如解图①中,∵四边形ABCD 、EFGC 都是正方形, ∴∠BCD=∠ECG=90°.∵∠BCG+∠BCD+∠DCE+∠ECG=360°, ∴∠BCG+∠ECD=180°.图①图②图③ 第3题解图如解图①,过点E 作EM⊥DC 于点M ,过点G 作GN⊥BN 交BN 的延长线于点N , ∴∠EMC=∠N=90°.∵四边形ABCD 和四边形ECGF 均为正方形, ∴∠BCD=∠DCN=∠ECG=90°,CB =CD ,CE =CG , ∴∠1=90°-∠2,∠3=90°-∠2, ∴∠1=∠3. 在△CME 和△CNG 中, ⎩⎪⎨⎪⎧∠EMC=∠GNC ∠1=∠3EC =CG, ∴△CME≌△CNG(ASA), ∴EM=GN.又∵S 1=12CD·EM,S 2=12CB·GN,∴S 1=S 2;故答案为180°,S 1=S 2; (2)猜想:S 1=S 2,证明:如解图②,过点E 作EM⊥DC 于点M ,过点B 作BN⊥GC 交GC 的延长线于点N , ∴∠EMC=∠N=90°.∵矩形CGFE 由矩形ABCD 旋转得到的, ∴CE=CB ,CG =CD ,∵∠ECG=∠ECN=∠BCD=90°,∴∠1=90°-∠2,∠3=90°-∠2,∴∠1=∠3. 在△CME 和△CNB 中, ⎩⎪⎨⎪⎧∠EMC=∠BNC ∠1=∠3EC =CB, ∴△CME≌△CNB(AAS). ∴EM=BN.又∵S 1=12CD·EM,S 2=12CG ·BN ,∴S 1=S 2;(3)如解图③,作DM⊥AC 于M ,延长BA ,交EC 于N , ∵AB=AC =10 cm ,∠B=30°, ∴∠ACB=∠ABC=30°, ∴∠BAC=120°,根据翻折的性质,得∠ACE=∠ACB=30°, ∵AD∥CE,∴∠DAC=∠ACE=30°, ∴∠BAD=90°,DM =12AD ,∴BN⊥EC.∵AD=tan∠ABD·AB,AB =10 cm , ∴AD=tan 30°×10=103 3 (cm),∴DM=12×1033=533(cm).∵S △ABP =12AB·PN,S △ADC =12AC·DM,S △ABP =S △ADC ,AB =AC ,∴PN=DM =533.在Rt△ANC 中,∠ACN=30°,AC =10 (cm), ∴NC=cos∠ACN·AC=cos 30°×10=53(cm). ∵在EC 上到N 的距离等于533的点有两个,∴P′C=103 3 cm ,P ″C =203 3 cm.∴CP 的长为103 3 cm 或203 3 cm.4.解:(1)PM =PN ,PM⊥PN,理由如下: 如解图①,延长AE 交BD 于O , ∵△ACB 和△ECD 是等腰直角三角形, ∴AC=BC ,EC =CD ,∠ACB=∠ECD=90°. 在△ACE 和△BCD 中, ⎩⎪⎨⎪⎧AC =BC ,∠ACE=∠BCD=90°,CE =CD ,∴△ACE≌△BCD(SAS), ∴AE=BD ,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO, ∴∠CBD+∠BEO=90°, ∴∠BOE =90°,即AE⊥BD,∵点M 、N 分别是斜边AB 、DE 的中点,点P 为AD 的中点, ∴PM=12BD ,PN =12AE ,∴PM=PN.∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°, ∴∠MPA+∠NPC=90°, ∴∠MPN=90°, 即PM⊥PN.图①图② 第4题解图(2)△PMN 为等腰直角三角形,理由如下: 如解图②,设AE 交BC 于点O. ∵△ACB 和△ECD 是等腰直角三角形, ∴AC=BC ,EC =CD ,∠AC B =∠ECD=90°, ∴∠ACB+∠BCE=∠ECD+∠BCE, ∴∠ACE=∠BCD, ∴△ACE≌△BCD, ∴AE=BD ,∠CAE =∠CBD. 又∵∠AOC=∠BOE,∠CAE=∠CBD, ∴∠BHO=∠ACO=90°.∵点P ,M ,N 分别为AD ,AB ,DE 的中点, ∴PM=12BD ,PM∥BD,PN =12AE ,PN∥AE,∴PM=PN ,∴∠MGE+∠BHA=180°, ∴∠MGE=90°, ∴∠MPN=90°,∴PM⊥PN,即△PMN 为等腰直角三角形.(3)由(2)可知△PMN 是等腰直角三角形,PM =12BD ,∴当BD 的值最大时,PM 的值最大,△PMN 的面积最大, ∴当B ,C ,D 共线时,BD 的最大值为BC +CD =6, ∴PM=PN =3,∴△PMN 面积的最大值为12×3×3=92.。
河南省2019年中考数学专题复习专题七类比探究题训练(含答案)
专题七类比探究题类型一线段数量关系问题(20 (2018河南)(1)问题发现如图①,在4 OAB 和^OCD 中,OA = OB, OC=OD, Z AOB = Z COD = 40°,连接AC, BD 交于点M.填空:①黑的值为_________ ;BD②/ AMB的度数为;(2)类比探究如图②,在^ OAB 和^OCD 中,Z AOB = Z COD =90°, / OAB = / OCD = 30°,连接AC 交BD 的延长线于点M.请判断需的值及/ AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将^ OCD绕点O在平面内旋转,AC, BD所在直线交于点M,若OD = 1 , OB=<7,请直接写出当点C与点M重合时AC的长.图①图②备用图例1题图【分析】(1)①证明△ COA^A DOB(SAS),得AC = BD,比值为1;②由△COA^^DOB,得/CAO = /DBO,根据三角形的内角和定理,得/ AMB = 180° — (/DBO + / OAB + Z ABD)=180° —140 =40°;.................................................. AC OC(2)根据两边的比相等且夹角相等可得△AOC S^BOD,则BD=OD=M3,由全等二角形的性质得/ AMB的度数;⑶正确画出图形,当点C与点M重合时,有两种情况:如解图①和②,同理可得^ AOCs^ BOD,则/ AMB = 90°, AC=43,可得AC 的长.BD【自主解答】 解:(1)问题发现①1【解法提示】AOB = Z COD =40°, ・ ./ COA=Z DOB. OC= OD, OA = OB,・ .△ COA^A DOB(SA§, AC= BD , . AC =1"BD -②40°【解法提示】△ COA^A DOB , ・ ./ CAO = Z DBO. ・ ••/ AOB = 40 , ・ ./ OAB + Z ABO = 140 ,在△ AMB 中,ZAMB=180 -(ZCAO+Z OAB + Z ABD) = 180 - ( Z DBO + Z OAB + Z ABD) = 180° - 140=40 . (2)类比探究^-= >/3, Z AMB= 90 ,理由如下:在 RtA OCD 中,Z DCO =30 , Z DOC = 90 ,OD—=tan 30 OC同理,得器=tan30 =*,AOB = Z COD = 90 ,A AOC^A BOD,••.Z AMB = 180 -Z CAO-Z OAB —MBA= 180,—(/DAB + / MBA+Z OBD)= 180 - 90 = 90°. (3)拓展延伸①点C 与点M 重合时,如解图①, 同理得△ AOC^A BOD,.-.Z AMB = 90 , —在 RtA COD 中,・ . / OCD= 30°, OD = 1 , CD= 2,. AC = QC = BD OD 7L CAO = Z DBO.BC=x—2.在Rt^AOB 中,/OAB=30°, OB = yj7.・. AB = 2OB= 2卡,在RtAAMB中,由勾股定理,得AC2+BC2=AB2,即(3 x)2+ (x- 2)2= (2 7)2,解得Xi=3, X2= —2(舍去),・•. AC=373;②点C与点M重合时,如解图②,同理得:/ AMB =90°, AC=W,设BD = x,则AC=43x,在RtAAMB中,由勾股定理,得AC2+BC2=AB2,即(淄x)2+(x+2)2= (277)2解得xi=- 3,解得x2=2(舍去).AC=2V3.综上所述,AC的长为3^3或273.1.(2016 河南)(1)发现如图①,点A为线段BC外一动点,且BC=a, AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a, b的式子表示).2 (2015河南)如图①,在RtAABC中,/ B=90°, BC=2AB=8,点D, E分别是边BC, AC的中点,连接口£.将4 EDC绕点C按顺时针方向旋转,记旋转角为 a (1)问题发现(2)应用点A 为线段BC 外一动点,且 等边三角形 ACE,连接CD, BE.①请找出图中与BE 相等的线段,并说明理由; ②直接写出线段 BE 长的最大值.(3)拓展如图③,在平面直角坐标系中,点 A 的坐标为(2,PA=2, PM = PB, / BPM =90°,请直接写出线段BC=3, AB=1,如图②所示,分别以 AB, AC 为边,作等边三角形 ABD 和0),点B 的坐标为(5, 0),点P 为线段AB 外一动点,且 AM 长的最大值及此时点 P 的坐标.(3)解决问题当4EDC旋转至A, D, E三点共线时,直接写出线段BD的长.图①3.(2014 河南)(1)问题发现如图①,△ ACB和4DCE均为等边三角形,点A, D, E在同一直线上,连接BE.填空:①/ AEB的度数为;②线段AD, BE之间的数量关系为 .(2)拓展探究如图②,△ ACB和4DCE均为等腰直角三角形,/ ACB = / DCE=90°,点A, D, E在同一直线上,CM 为4DCE中DE边上的高,连接BE,请判断/ AEB的度数及线段CM, AE, BE之间的数量关系,并说明理由.(3)解决问题如图③,在正方形ABCD中,CD = <2,若点P满足PD=1,且/ BPD=90°,请直接写出点A到BP的距4.(2018南阳二模)在△ ABC中,/ACB是锐角,点D在射线BC上运动,连接AD ,将线段AD绕点A逆时针旋转90°,得到AE,连接EC.(1)操作发现若AB = AC, /BAC = 90°,当D在线段BC上时(不与点B重合),如图①所示,请你直接写出线段CE和BD的位置关系和数量关系是 , ;(2)猜想论证在(1)的条件下,当D在线段BC的延长线上时,如图②所示,请你判断(1)中结论是否成立,并证明你的判断.(3)拓展延伸如图③,若AB+C, /BACW90;点D在线段BC上运动,试探究:当锐角/ ACB等于度时,线段CE和BD之间的位置关系仍成立(点C, E重合除外)?此时若作DFLAD交线段CE于点F,且当AC =3位时,请直接写出线段CF的长的最大值是.图①图②图③5.已知,如图①,△ ABC, AAED是两个全等的等腰直角三角形(其顶点B, E 重合),/BAC = /AED = 90°,。
中考数学专项训练:类比探究与拓展应用
专项训练1.小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在ABC △中,AB AC =,M 是平面内任意一点,将线段AM 绕点A 按顺时针方向旋转与BAC ∠相等的角度,得到线段AN ,连接NB .(1)如图1,若M 是线段BC 上的任意一点,请直接写出NAB ∠与MAC ∠的数量关系是 ,NB 与MC 的数量关系是 ;(2)如图2,点E 是AB 延长线上点,若M 是CBE ∠内部射线BD 上任意一点,连接MC ,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在△111A B C 中,118A B =,11160A B C ∠=︒,11175B AC ∠=︒,P 是11B C 上的任意点,连接1A P ,将1A P 绕点1A 按顺时针方向旋转75︒,得到线段1AQ ,连接1B Q .求线段1B Q 长度的最小值.2.在图1,2,3中,已知ABCD ,120ABC ∠=︒,点E 为线段BC 上的动点,连接AE ,以AE 为边向上作菱形AEFG ,且120EAG ∠=︒.(1)如图1,当点E 与点B 重合时,CEF ∠= ︒;(2)如图2,连接AF .①填空:FAD ∠ EAB ∠(填“>”,“ <”,“=” );②求证:点F 在ABC ∠的平分线上;(3)如图3,连接EG ,DG ,并延长DG 交BA 的延长线于点H ,当四边形AEGH 是平行四边形时,求BC AB的值.3.【问题探究】(1)如图1,ABC △和DEC △均为等腰直角三角形,90ACB DCE ∠=∠=︒,点B ,D ,E 在同一直线上,连接AD ,BD .①请探究AD 与BD 之间的位置关系: ;②若10AC BC ==,2DC CE ==,则线段AD 的长为 ;【拓展延伸】(2)如图2,ABC ∆和DEC ∆均为直角三角形,90ACB DCE ∠=∠=︒,21AC =,7BC =,3CD =,1CE =.将DCE △绕点C 在平面内顺时针旋转,设旋转角BCD ∠为(0360)αα︒<︒,作直线BD ,连接AD ,当点B ,D ,E 在同一直线上时,画出图形,并求线段AD 的长.4.如图1,正方形ABDE和BCFG的边AB,BC在同一条直线上,且2AB BC=,取EF的中点M,连接MD,MG,MB.(1)试证明DM MG⊥,并求MBMG的值.(2)如图2,将图1中的正方形变为菱形,设2(090)EABαα∠=<<︒,其它条件不变,问(1)中MBMG的值有变化吗?若有变化,求出该值(用含α的式子表示);若无变化,说明理由.5.如图1,菱形ABCD 的顶点A ,D 在直线上,60BAD ∠=︒,以点A 为旋转中心将菱形ABCD 顺时针旋转(030)αα︒<<︒,得到菱形AB C D ''',B C ''交对角线AC 于点M ,C D ''交直线l 于点N ,连接MN .(1)当//MN B D ''时,求α的大小.(2)如图2,对角线B D ''交AC 于点H ,交直线l 与点G ,延长C B ''交AB 于点E ,连接EH .当HEB '△的周长为2时,求菱形ABCD 的周长.6.思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作CD AB ∥交AP 的延长线于点D ,此时测得200CD =米,那么A ,B 间的距离是米.思维探索:(2)在ABC △和ADE △中,AC BC =,AE DE =,且AE AC <,90ACB AED ∠=∠=︒,将ADE △绕点A 顺时针方向旋转,把点E 在AC 边上时ADE △的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点P 是线段BD 的中点,连接PC ,PE .①如图2,当ADE △在起始位置时,猜想:PC 与PE 的数量关系和位置关系分别是 ;②如图3,当90α=︒时,点D 落在AB 边上,请判断PC 与PE 的数量关系和位置关系,并证明你的结论;③当150α=︒时,若3BC =,1DE =,请直接写出2PC 的值.7.综合与实践动手操作:第一步:如图1,正方形纸片ABCD 沿对角线AC 所在的直线折叠,展开铺平.在沿过点C 的直线折叠,使点B ,点D 都落在对角线AC 上.此时,点B 与点D 重合,记为点N ,且点E ,点N ,点F 三点在同一条直线上,折痕分别为CE ,CF .如图2.第二步:再沿AC 所在的直线折叠,ACE △与ACF △重合,得到图3. 第三步:在图3的基础上继续折叠,使点C 与点F 重合,如图4,展开铺平,连接EF ,FG ,GM ,ME .如图5,图中的虚线为折痕.问题解决:(1)在图5中,BEC 的度数是,AE BE的值是 . (2)在图5中,请判断四边形EMGF 的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: .8.如图,在直角坐标系中,直线132y x=−+与x轴,y轴分别交于点B,点C,对称轴为1x=的抛物线过B,C两点,且交x轴于另一点A,连接AC.(1)直接写出点A,点B,点C的坐标和抛物线的解析式;(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与ABC△相似?若存在,求出点Q的坐标;若不存在,请说明理由.题9.已知抛物线2342y ax x =++的对称轴是直线3x =,与x 轴相交于A ,B 两点(点B 在点A 右侧),与y 轴交于点C .(1)求抛物线的解析式和A ,B 两点的坐标;(2)如图1,若点P 是抛物线上B 、C 两点之间的一个动点(不与B 、C 重合),是否存在点P ,使四边形PBOC 的面积最大?若存在,求点P 的坐标及四边形PBOC 面积的最大值;若不存在,请说明理由;(3)如图2,若点M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N ,当3MN =时,求点M 的坐标.10.如图,抛物线2542y mx mx =−−与x 轴交于1(A x ,0),2(B x ,0)两点,与y 轴交于点C ,且21112x x −=. (1)求抛物线的解析式;(2)若1(P x ,1)y ,2(Q x ,2)y 是抛物线上的两点,当12a x a +,292x 时,均有12y y ,求a 的取值范围;(3)抛物线上一点(1,5)D −,直线BD 与y 轴交于点E ,动点M 在线段BD 上,当BDC MCE ∠=∠时,求点M 的坐标.11.如图,抛物线2y ax bx c =++经过(3,0)A −,(1,0)B ,(0,3)C 三点.(1)求抛物线的函数表达式;(2)如图1,P 为抛物线上在第二象限内的一点,若PAC △面积为3,求点P 的坐标;(3)如图2,D 为抛物线的顶点,在线段AD 上是否存在点M ,使得以M ,A ,O 为顶点的三角形与ABC △相似?若存在,求点M 的坐标;若不存在,请说明理由.12.若二次函数2y ax bx c =++的图象与x 轴、y 轴分别交于点(3,0)A 、(0,2)B −,且过点(2,2)C −.(1)求二次函数表达式;(2)若点P 为抛物线上第一象限内的点,且4PBA S =△,求点P 的坐标;(3)在抛物线上(AB 下方)是否存在点M ,使ABO ABM ∠=∠?若存在,求出点M 到y 轴的距离;若不存在,请说明理由.13.综合与探究如图,抛物线26y ax bx =++经过点(2,0)A −,(4,0)B 两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式;(2)BCD △的面积等于AOC △的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,抛物线22(0)y ax bx a =++≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线经过点(2,3)D −−和点(3,2)E ,点P 是第一象限抛物线上的一个动点.(1)求直线DE 和抛物线的表达式;(2)在y 轴上取点(0,1)F ,连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且22MN =,动点Q 从点P 出发,沿P M N A →→→的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.15.如图1,在平面直角坐标系中,抛物线233373848y x x =+−与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,CAD ∆绕点C 顺时针旋转得到CFE ∆,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作1DD x ⊥轴于点1D ,点P 是抛物线上一动点,过点P 作PM x ⊥轴,点M 为垂足,使得PAM △与1DD A △相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答这样的点P 共有几个?。
2010-2019年河南中考数学(类比归纳题)汇总
2010年-2019年(10年)河南省中考数学(类比归纳)整理2019河南在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD ,BD,CP.(1)观察猜想如图1,当α=60°时,的值是,直线BD与直线CP相交所成的较小角的度数是.(2)类比探究如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D 在同一直线上时的值.2018河南(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.(2017•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM⊥PN;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.2016河南(1)问题如图1,点A为线段BC外一动点,且BC=a,AB=b。
中考数学----类比探究题练习(1)
中考数学---- 类比探究题练习( 1 )1.如图1,在四边形ABCD 中,AB=CD,E,F 分别是BC,AD 的中点,连接EF 并延长,与BA,CD 的延长线分别交于点M,N,则∠BME=∠CNE(简要证明).(1)如图2,在四边形ADBC 中,AB 与CD 相交于点O,AB=CD,E,F 分别是BC,AD 的中点,连接EF,分别交CD,AB 于点M,△N,判断OMN 的形状,并说明理由.(2)如图△3,在ABC 中,,点 D 在AC 边上,且AB=CD .E, F 分别是BC ,AD 的中点,连接EF 并延长,与BA 的延长线交于点G,连接DG,若∠EFC=60°,判断△AGD形状,并说明理由2、小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:( 1 )问题情境:如图1,四边形ABCD 中,AD∥BC,E 为CD 边的中点,连接AE 并延长,交BC 的延长线于点F,求证:(S 表示面积).(2)问题迁移:如图2,在已知锐角∠AOB 内有一个定点P,过点P 任意作一条直线,分别交射线OA,OB 于点M ,N.小明在直线MN 绕着点P 旋转的过程中发现,△MON 的面积存在最小值,请问当直线MN 在什么位置时,△MON的面积最小?并说明理由.(3)实际应用:如图3,若在道路OA,OB 之间有一村庄Q 发生疫情,防疫部门计划以公路OA,OB 和经过防疫站P 的一条直线MN 为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON 的面积.(参考数据:sin66°≈0.91,tan66°≈2.25,)3、问题发现:如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为;(2)拓展探究:在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)问题解决:当正方形CDEF旋转到B,E,F三点共线时,直接写出线段AF的长.4、(1)问题发现:如图△1,ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为;(2)拓展探究:如图△2,ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题:如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.5、我们定义:如图△1,在ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC 绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′△C′是ABC的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△A B′△C′是ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图△2,当ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为;猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明;拓展应用:(3)如图4,在四边形ABCD中,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点△P,使PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.图4中考数学---- 类比探究题练习( 1 )答案1、解题思路BC = 2∴∠ABC=∠ACB=45°,∴sin ∠ABC=AC CE = 2 2 ,∴CF CE =AC在Rt △CEF 中,sin ∠FEC= CFAF =BC∴BEAF = BC易证:△ACF∽△BCE.∴ BE2 、解题思路3、解:(1)BE = 2AF ;(2)无变化.理由如下:在 △R t ABC 中,AB =AC =2,1 2 . 在正方形 CDEF 中,∠FEC=2∠FED=45°,BC . ∵∠FCE=∠ACB=45°, ∴∠FCE-∠ACE=∠ACB-∠ACE. ∴∠FCA=∠ECB.∴△ACF∽△BCE.AC = 2.∴BE= 2AF. ∴线段 BE 与 AF 的数量关系无变化. (3) 3-1 或 3+1. 提示:分两种情况讨论:①当点 E 在线段 BF 上时,如图 2由(1)知,CF =EF =CD = 2.在 △R t BCF 中,CF = 2,BC =2 2,根据勾股定理得 BF = 6,∴BE=BF -EF = 6- 2.由(2)知,BE = 2AF ,∴AF= 3-1.②当点 E 在线段 BF 的延长线上时,如图 3,∵△ABC,△CFE 为等腰直角三角形.AC = 2.∴BE= 2AF.由(1)知,CF =EF =CD = 2.在 Rt △BCF 中,CF = 2,BC =2 2,根据勾股定理得,BF = 6,∴BE=BF +EF = 6+ 2.由(2)知,BE = 2AF ,∴AF= 3+1.即当正方形 CDEF 旋转到 B ,E ,F 三点共线时候,线段 AF 的长为 3-1 或 3+1.4、解:(1) 60°;AD =BE ; (2)∠AEB=90°,AE =2CM +BE.理由:2 2 ∴∠AC′E=∠BAC,EC′=BA.∴ △A C ′△E ≌ CAB(SAS ).∴AE=BC.∵AD= AE ,∴AD= BC.∴tan= =2 2∴AE=DE +AD =2CM +BE ; (3)3-12 或3+1∵CD= 2,∴BD=2,BP = 3,∴AM = PP ′= (PB -BP ′)= 3-1第二种情况,如图 5,可得 AM = PP ′= (PB +BP′)=3+16 =.∴∠DPC=30°,∠EPC=60°.∴BE=12-6=6=CE. ∵△ACB 和△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC ,CD =CE , ∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.∴△ACD≌△BCE(SAS ).∴AD=BE , ∠BEC=∠ADC=135°.∴∠AEB=∠BEC-∠CED=135°-45°=90°. 在等腰直角三形 DCE 中,CM 为斜边 DE 上的高,∴CM=DM =ME ,∴DE=2CM.2 .提示:∵PD =1,∠BPD=90°.∴BP 是以点 D 为圆心,以 1 为半径的⊙D 的切线,点 P 为切点. 第一种情况:如图 4,过点 A 作 AP 的垂线,交 BP 于点 △P ′,可证 APD≌△AP′B,PD =P′B=1. 1 1 2 22 .1 12 2 2 .1 15、解:(1) ;4; (2)①猜想:AD = BC.证明:如上图 3,延长 AD 至点 E ,使 DE =AD.∵AD 是△ABC 的“旋补中线”,∴B′D=C′D.∴四边形 AB′EC′是平行四边形. ∴EC′∥B′A,EC′=B′A.∴∠AC′E+∠B′AC′=180°. 由定义可知∠B′AC′+∠BAC=180°,B′A=BA ,AC =AC′,1 12 2(3)存在.以 AD 为边向四边形 ABCD 的内部作等边△PAD,连接 PB ,PC ,延长 BP 交 AD 于点 F , 则有∠ADP=∠APD=60°,PA =PD =AD =6.∵∠CDA=150°,∴∠CDP=90°. 过点 P 作 PE⊥BC 于点 E ,易知四边形 PDCE 为矩形.∴CE=PD =6.又 PE⊥BC,∴PC=PB ,∠BPE=∠CPE=60°.∴∠APD+∠BPC=60°+120°=180°. 又 PA =PD ,PB =△P C ,∴ PDC 是△PAB 的“旋补三角形”.∵∠BPE=60°,∠DPE=90°,1∴∠DPF=30°.∴BF⊥AD,AF = AD =3,PF =3 3.在 Rt △PBE 中,PB = PE 2+BE 2= CD 2+BE 2= (2 3)2+62=4 3,∴BF=PB +PF =7 3.在 △R t ABF 中,AB = (7 3)2+32=2 39.1∵△PDC 是△PAB 的“旋补三角形”,∴△PAB 的“旋补中线”长为 AB = 39.。
2019青海中考数学考前专题复习-类比、拓展探究题
类比、拓展综合训练1.如图①,在矩形ABCD中,AB=16,BC=8,在AD边上取一点E,使AE=3,点F是AB边上的一个动点,以EF为一边作菱形EFMN,使点N 落在CD上,点M落在矩形ABCD内或其边上,连接BM.(1)当四边形EFMN是正方形时,求AF的长;(2)设△BFM的面积为S,AF=x.①写出S与x之间的函数关系式;②在图②、图③中分别画出S取得最大值和最小值时相应的图形,当S由最大值变到最小值时,求点M运动的路线长.第1题图解:(1)在正方形EFMN中,∠FEN=90°,EF=EN;∴∠DEN+∠AEF=90°,在矩形ABCD中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∴∠DEN=∠AFE,在△DEN与△AFE中,∠D=∠A,∠DEN=∠AFE,EN=FE,∴△DEN≌△AFE(AAS).∴AF=DE=8-3=5,∴AF的长为5;(2)①如解图①,过点M 作MH ⊥AB 于点H ,连接NF .第1题解图①在矩形ABCD 中, ∵AB ∥CD , ∴∠DNF =∠NFB . ∵四边形EFMN 是菱形, ∴NE ∥MF ,NE =MF , ∴∠ENF =∠MFN ,∴∠DNF -∠ENF =∠NFB -∠MFN , 即∠DNE =∠MFB , 在△DEN 与△HMF 中,∠D =∠MHF =90°,∠DNE =∠MFB ,EN =MF , ∴△DEN ≌△HMF (AAS ), ∴MH =DE =5, 又∵BF =16-x ,∴S =12BF ·MH =12(16-x )×5=-52x +40;②当点D 与N 重合时,S 最大(如解图②),第1题解图②第1题解图③此时DE =EF =5,由勾股定理得AF =4, 当点M 落在BC 上时,S 最小(如解图③),由①得MB =DE =5,∵点M 到AB 的距离是定值5,∴点M 运动的路径是一条线段21M M (如解图④),第1题解图④∴21M M =B F 1=16-4=12. ∴点M 运动的路线长为12.2.在Rt △ACB 和Rt △AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE . 特殊发现:如图①,若点E ,F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:把图①中的△AEF 绕着点A 顺时针旋转.(1)如图②,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)记BCAC=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出k 的值,不必说明理由)第2题图解:(1)PC =PE 成立.证明:如解图①,过点P 作PM ⊥CE 于点M ,第2题解图①∵EF ⊥AE ,BC ⊥AC , ∴EF ∥MP ∥CB , ∴PB FP MC EM , ∵点P 是BF 的中点, ∴EM =MC , 又∵PM ⊥CE , ∴PC =PE ; (2)PC =PE 成立.证明:如解图②,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,由旋转性质可得∠DAF =∠EAF ,第2题解图②∵∠FDA =∠FEA =90°, 在△DAF 和△EAF 中,∠DAF =∠EAF ,∠FDA =∠FEA ,AF =AF , ∴△DAF ≌△EAF (AAS ), ∴AD =AE ,在△DAP 和△EAP 中,AD =AE ,∠DAP =∠EAP ,AP =AP , ∴△DAP ≌△EAP (SAS ), ∴PD =PE ,∵FD ⊥AC ,PM ⊥AC ,BC ⊥AC , ∴FD ∥PM ∥BC , ∴PB FP MC DM , ∵点P 是BF 的中点, ∴DM =MC , 又∵PM ⊥AC , ∴PC =PD , ∴PC =PE ; (3)33. 【解法提示】如解图③,第2题解图③∵△CPE 总是等边三角形,∴将△AEF 绕着点A 顺时针旋转180°,△CPE 仍是等边三角形,∵∠BCF =∠BEF =90°,点P 是BF 的中点,∴点C ,E 在以点P 为圆心,BF 为直径的圆上,∵△CPE 是等边三角形,∴∠CPE =60°,根据圆周角定理,可得∠CBE =12∠CPE =30°,即∠ABC =30°,在Rt △ABC 中,BCAC =k =tan 30°,∴k =33,即当k 为33时,△CPE 总是等边三角形.3.(1)阅读理解:如图①,在四边形ABCD 中,AB ∥DC ,E 是BC 的中点,若AE 是∠BAD 的平分线,试判断AB ,AD ,DC 之间的等量关系. 解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证△AEB ≌△FEC ,得到AB =FC ,从而把AB ,AD ,DC 转化在一个三角形中即可判断.AB ,AD ,DC 之间的等量关系为________;(2)问题探究:如图②,在四边形ABCD 中,AB ∥DC ,AF 与DC 的延长线交于点F ,E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论;(3)问题解决:如图③,AB ∥CF ,AE 与BC 交于点E ,BE ∶EC =2∶3,点D 在线段AE 上,且∠EDF =∠BAE ,试判断AB ,DF ,CF 之间的数量关系,并证明你的结论.第3题图解:(1)AB +CD =AD . 【解法提示】∵AB ∥CD , ∴∠BAE =∠CFE ,∵E 是CB 的中点,∴BE =CE ,∵∠AEB =∠FEC ,∴△ABE ≌△FCE (AAS ),∴CF =AB , ∵AE 平分∠BAD ,∴∠DAE =∠BAE , ∴∠DAE =∠DF A , ∴AD =DF ,∴AD =CD +CF ,即AD =AB +DC ; (2)AF =AB -CF .证明如下:如解图①,延长DF 交AE 延长线于点M ,第3题解图①∵AB ∥DC ,∴∠ABE =∠MCE ,∠BAE =∠CME , ∵E 是BC 的中点,∴BE =CE , ∴△ABE ≌△MCE (AAS ),∴CM =AB , ∴FM =CM -CF =AB -CF , ∵AE 平分∠BAF , ∴∠BAE =∠F AE ,∴∠F AE =∠M ,∴F A =FM , ∴AF =AB -CF ; (3)AB =23(CF +DF ).证明如下:如解图②,延长CF ,AE 相交于M ,第3题解图②∵AB ∥CF ,∴∠BAE =∠CME ,∠ABE =∠MCE , ∴△ABE ∽△MCE ,∴CE BE MC AB =23,∴CM =32AB ,∵∠EDF =∠BAE , ∴∠FDM =∠FMD ,∴FD =FM ,∴CF +DF =CM =32AB ,∴AB =23(CF +DF ).4.在四边形ABCD 中,∠B +∠D =180°,对角线AC 平分∠BAD . (1)如图①,若∠BAD =120°,且∠B =90°,试探究边AD 、AB 与对角线AC 的数量关系并说明理由;(2)如图②,若将(1)中的条件“∠B =90°”去掉,(1)中的结论是否成立?请说明理由;(3)如图③,若∠BAD =90°,探究边AD 、AB 与对角线AC 的数量关系并说明理由.第4题图解:(1)AC =AD +AB .理由如下: 由题意知∠B =90°, ∴∠D =90°,∵∠DAB =120°,AC 平分∠DAB , ∴∠DAC =∠BAC =60°, ∴∠ACB =∠ACD =30°, ∴AB =12AC ,AD =12AC ,∴AC =AD +AB ;(2)(1)中的结论成立,理由如下:如解图①,以C 为顶点,AC 为一边作∠ACE =60°,∠ACE 的另一边交AB 的延长线于点E ,第4题解图①∵∠BAC =12∠BAD =12×120°=60°,∴△AEC 为等边三角形, ∴AC =AE =CE ,∵∠D +∠ABC =180°,∠DAB =120°, ∴∠DCB =60°, ∴∠DCA +∠ACB =60°, 又∵∠BCE +∠ACB =60°,∴∠DCA=∠BCE,∴△DAC≌△BEC(ASA),∴AD=BE,∴AE=AB+BE=AB+AD,∴AC=AD+AB;(3)AD+AB=2AC.理由如下:如解图②,过点C作CE⊥AC交AB的延长线于点E,第4题解图②∵∠D+∠ABC=180°,∠DAB=90°,∴∠BCD=90°,∵∠ACE=90°,∴∠DCA=∠BCE.又∵AC平分∠DAB,∴∠CAB=45°,∠E=45°,∴AC=CE.又∵∠D+∠ABC=180°, ∠D=∠CBE,∴△CDA≌△CBE(AAS).∴AD=BE,∴AE=AB+BE=AB+AD.在Rt△ACE中,∠CAB=45°,∴AE=2AC,∴AD+AB=2AC.5.我们定义:如图①,在△ABC中,把AB绕点A顺时针旋转α(<︒0α︒<180)得到'AB,把AC绕点A逆时针旋转β得到'AC,连接''CB.当α+β=180°时,我们称''CAB△是△ABC的“旋补三角形”.''CAB△边''CB上的中线AD 叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知(1)在图②、图③中,''CAB△是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图②,当△ABC为等边三角形时,AD与BC的数量关系为AD=____BC;②如图③,当∠BAC=90°,BC=8时,则AD长为________;猜想论证(2)在图①中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.第5题图解:(1)①12;② 4;【解法提示】①由旋转可得到AB=AB′=AC=AC′=BC,∵∠BAC=60°,∠B′AB+∠C′AC=︒180,∴∠B′AC′=120°,即∠AB′C′=30°,又∵AD 为B ′C ′上的中线,∴AD =12AB ′=12AB =12BC ; ②由“旋补三角形”定义可得:∠''AC B =90°,又由旋转得AB =AB ′,AC =AC ′,∴△''C AB ≌△ABC ,∴''C B =BC ,∴AD =12BC =4.第5题解图(2)猜想:AD =12BC . 证明:如解图①,延长AD 至E ,使DE =AD ,连接B ′E ,EC ′.∵AD 是△ABC 的“旋补中线”,∴D B '=D C ',∴四边形AB ′EC ′是平行四边形,∴'EC ∥A B ',EC ′=A B ',∴∠E AC '+∠''AC B =180°.由定义可知∠''AC B +∠BAC =180°,A B '=BA ,AC =AC ′,∴∠E AC '=∠BAC ,'EC =BA ,∴△E AC '≌△CAB ,∴AE =BC ,∵AD =12AE ,∴AD =12BC ; 6.问题背景如图①,在正方形ABCD 的内部,作∠DAE =∠ABF =∠BCG =∠CDH ,根据三角形全等的条件,易得△DAE ≌△ABF ≌△BCG ≌△CDH ,从而得到四边形EFGH 是正方形.类比探究如图②,在正△ABC 的内部,作∠BAD =∠CBE =∠ACF ,AD ,BE ,CF 两两相交于D ,E ,F 三点(D ,E ,F 三点不重合).(1)△ABD ,△BCE ,△CAF 是否全等?如果是,请选择其中一对进行证明;(2)△DEF 是否为正三角形?请说明理由;(3)进一步探究发现,△ABD 的三边存在一定的等量关系,设BD =a ,AD =b ,AB =c ,请探索a ,b ,c 满足的等量关系.第6题图解:(1)△ABD ≌△BCE ≌△CAF .证明:∵△ABC 是正三角形,∴∠CAB =∠ABC =∠BCA =60°,AB =BC ,∵∠ABD =∠ABC -∠2,∠BCE =∠ACB -∠3,又∵∠2=∠3,∴∠ABD =∠BCE ,∵∠1=∠2,∴△ABD ≌△BCE (ASA );(2)△DEF 是正三角形.理由:∵△ABD ≌△BCE ≌△CAF ,∴∠ADB =∠BEC =∠CF A ,∴∠FDE =∠DEF =∠EFD ,∴△DEF 是正三角形;(3)如解图,作AG ⊥BD 交BD 延长线于点G ,第6题解图由△DEF 是正三角形得到∠ADG =60°,∴在Rt △ADG 中,DG =12b ,AG =32b , ∵在Rt △ABG 中,AB 2=BG 2+AG 2,且BG =BD +DG ,即c 2=(a +12b )2+(32b )2, ∴c 2=a 2+ab +b 2. 7.有公共顶点B 的正方形ABCD 与等腰直角三角形BEF 叠放在一起,∠EBF =90°,AB >BE ,探究线段AE 与CF 之间的数量关系及位置关系. 独立思考 (1)请解答老师提出的问题.如图①,当等腰直角三角形的边BE ,BF 分别在正方形ABCD 的边BA ,BC 上时,你发现线段AE 与CF 之间的数量关系是,位置关系是 .拓展探究(2)将图①中的△BEF绕点B顺时针旋转一个锐角得到图②,则(1)中的两个结论是否仍然成立?作出判断并说明理由.拓展延伸(3)在图①中,连接DF,分别取DF,EF的中点M,N,连接MN,MC,得到图③,则线段MC与MN有何数量关系及位置关系?并说明理由.问题提出(4)“创新”小组在“拓展探究”的启发下,提出了如下问题:将图③中的△BEF绕点B顺时针旋转一个锐角得到图④,这时“拓展延伸”中的两个结论是否仍然成立?作出判断并说明理由.第7题图解:(1)AE=CF,AE⊥CF;(2)(1)中的两个结论仍然成立,理由:如解图①,延长AE,交CF于点G,交BC于点H,在正方形ABCD中,AB=BC,∠ABC=90°,在等腰直角三角形BEF中,BE=BF,∠EBF=90°,∴∠ABC =∠EBF ,∴∠ABC −∠EBC =∠EBF −∠EBC ,即∠ABE =∠CBF ,∴△ABE ≌△CBF ,∴AE =CF ,∠BAE =∠BCF ,∵∠BAE +∠AHB =90°,∠AHB =∠CHG ,∴∠BCF +∠CHG =90°,∴AE ⊥CF ;(3)MC =MN ,MC ⊥MN .理由:如解图②,连接DE ,在正方形ABCD 中,∠A =∠ADC =∠BCD =90°,AB =BC =AD =DC , 在等腰直角三角形BEF 中,BE =BF ,∴AB −BE =BC −BF ,即AE =CF ,∴△ADE ≌△CDF ,∴DE =DF ,∠CDF =∠ADE ,∵点M ,N 分别是DF ,EF 的中点,∴MN =21DE ,MN ∥DE , ∴∠NMF =∠EDF ,在Rt △DCF 中,点M 是DF 的中点,∴CM =21DF =DM , ∴MC =MN ,∠MDC =∠MCD ,∵∠CMF 是△DMC 的一个外角,∴∠CMF =∠MDC +∠MCD =2∠MDC =2∠CDF =∠CDF +∠ADE ,∴∠CMN =∠NMF +∠CMF =∠EDF +∠CDF +∠ADE =∠ADC =90°,∴MC ⊥MN ;第7题解图①第7题解图②(4)“拓展延伸”中的两个结论仍然成立.理由:如解图③,连接AE ,DE ,连接FC 并延长到点G ,使CG =FC ,连接DG ,在正方形ABCD 中,∠BAD =∠ADC =∠BCD =∠ABC =90°,AB =BC =AD =DC ,在等腰直角三角形BEF 中,BE =BF ,∠EBF =90°,∴∠ABC −∠EBC =∠EBF −∠EBC ,即∠ABE =∠CBF ,∴△ABE ≌△CBF ,∴AE =CF ,∠BAE =∠BCF ,∵CG =FC ,∴AE =CG ,∵∠DAE =90°−∠BAE , 且∠DCG =180°−∠BCD −∠BCF =90°−∠BCF ,∴∠DAE =∠DCG ,∴△DAE ≌△DCG ,∴DE =DG ,∠ADE =∠CDG ,∴∠EDG =∠CDG +∠EDC =∠ADE +∠EDC =90°,∴DE ⊥DG ,在△FED 中,点M ,N 分别是DF ,EF 的中点,∴MN =21DE ,MN ∥DE ,同理,MC =21DG ,MC ∥DG ,∴MC =MN ,MC ⊥MN .8.提出问题如图①,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AC =BC ,点E 、F 分别在AC 、BC 上,∠EDF =90°,则DE 与DF 的数量关系为;第7题解图③解决问题(2)如图②,AC =BC ,延长BC 到点F ,沿CA 方向平移线段CF 到EG ,且点G 在边BA 的延长线上,求证:DE =DF ,DE ⊥DF ;延伸问题(3)如图③,∠B =30°,延长BC 到点F ,沿CA 方向平移线段CF 到EG ,且点G 在边BA 的延长线上,直接写出线段DE 与DF 的位置关系和数量关系.第8题图(1)解:DE =DF ;【解法提示】∵∠EDC +∠CDF =∠EDF =90°,∠CDF +∠FDB =90°,∠EDC =∠FDB ,∵AC =BC ,CD ⊥AB ,∠ACB =90°,∴∠ECD =∠B =45°,CD =BD .在△EDC 和△FDB 中,,⎪⎩⎪⎨⎧∠=∠=∠=∠FDB EDC BD CD B ECD ∴△EDC ≌△FDB ,∴DE =DF . (2)证明:∵∠ACB =90°,AC =BC ,CD ⊥AB .∴DA =DB =DC ,∠ABC =∠BAC =∠ACD =∠BCD =45°,∴∠DAE =∠DCF =135°,由平移可知CF =EG ,EG ∥CF ,∵EG ∥CF ,∠ACB =90°,∴∠GEC =∠BCE =90°,且∠GAE =∠CAD =45°,∴EG =AE =CF ,在△DAE 和△DCF 中,AE CF DAE DCFDA DC =⎧⎪∠=∠⎨⎪=⎩∴△DAE ≌△DCF ,∴DE =DF ,∠ADE =∠CDF ,∴∠ADE +∠ADF =∠CDF +∠ADF =90°.∴∠FDE =∠CDA =90°.∴DE ⊥DF ;(3)解:DE ⊥DF ,DF =DE 3.【解法提示】由CD ⊥AB ,∠ACB =90°,∠B =30°,可得∠ACD =30°,则有ADCD =3,由平移可知∠FGE =90°,FC =GE .CE ∥GF ,则有∠CAB =∠GAE =60°,∠AGE =90°−60°=30°,AE CF AE GE ==3.∴ADCD AE CF ==3,又∵∠FCD = ∠EAD =120°,∴△CFD ∽△AED ,∴EDFD =3,即DF =3DE ,∠ADE =∠CDF ,∴∠EDF =90°,∴DE ⊥DF .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题七 类比探究题类型一 线段数量关系问题(2018·河南)(1)问题发现如图①,在△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M.填空: ①ACBD的值为________; ②∠AMB 的度数为________; (2)类比探究如图②,在△OAB 和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M.请判断ACBD 的值及∠AMB 的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD =1,OB =7,请直接写出当点C 与点M 重合时AC 的长.【分析】 (1)①证明△COA≌△DOB(SAS),得AC =BD ,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理,得∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则AC BD =OCOD=3,由全等三角形的性质得∠AMB 的度数;(3)正确画出图形,当点C 与点M 重合时,有两种情况:如解图①和②,同理可得△AOC∽△BOD,则∠AMB=90°,ACBD =3,可得AC 的长.【自主解答】解:(1)问题发现①1【解法提示】∵∠AOB=∠COD=40°, ∴∠COA=∠DOB. ∵OC=OD ,OA =OB , ∴△COA≌△DOB(SAS), ∴AC=BD , ∴ACBD=1. ②40°【解法提示】∵△COA≌△DOB, ∴∠CAO=∠DBO. ∵∠AOB=40°, ∴∠OAB+∠ABO=140°,在△AMB 中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°. (2)类比探究ACBD=3,∠AMB=90°,理由如下: 在Rt△OCD 中,∠DCO=30°,∠DOC=90°, ∴OD OC =tan 30°=33, 同理,得OB OA =tan 30°=33,∵∠AOB=∠COD=90°, ∴∠AOC=BOD , ∴△AOC∽△BOD, ∴AC BD =OCOD=3,∠CAO=∠DBO. ∴∠AMB=180°-∠CAO-∠OAB-MBA =180°-(∠DAB+∠MBA+∠OBD)=180°-90°=90°. (3)拓展延伸①点C 与点M 重合时,如解图①, 同理得△AOC∽△BOD, ∴∠AMB=90°,ACBD =3,设BD =x ,则AC =3x , 在Rt△COD 中,∵∠OCD=30°,OD =1, ∴CD=2, ∴BC=x -2.在Rt△AOB 中,∠OAB=30°,OB =7. ∴AB=2OB =27,在Rt△AMB 中,由勾股定理,得AC 2+BC 2=AB 2, 即( 3 x)2+(x -2)2=(27)2, 解得x 1=3,x 2=-2(舍去), ∴AC=33;②点C 与点M 重合时,如解图②,同理得:∠AMB=90°,ACBD =3,设BD =x ,则AC =3x ,在Rt△AMB 中,由勾股定理,得AC 2+BC 2=AB 2, 即(3x)2+(x +2)2=(27)2解得x 1=-3,解得x 2=2(舍去). ∴AC=2 3.综上所述,AC 的长为33或2 3.图①图② 例1题解图1.(2016·河南) (1)发现如图①,点A 为线段BC 外一动点,且BC =a ,AB =b.填空:当点A 位于________________时,线段AC 的长取得最大值,且最大值为__________(用含a ,b 的式子表示). (2)应用点A 为线段BC 外一动点,且BC =3,AB =1,如图②所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE.①请找出图中与BE 相等的线段,并说明理由; ②直接写出线段BE 长的最大值. (3)拓展如图③,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且PA =2,PM =PB ,∠BPM=90°,请直接写出线段AM 长的最大值及此时点P 的坐标.2.(2015·河南)如图①,在Rt△ABC 中,∠B=90°,BC =2AB =8,点D ,E 分别是边BC ,AC 的中点,连接DE.将△EDC 绕点C 按顺时针方向旋转,记旋转角为α. (1)问题发现①当α=0°时,AE BD =2;②当α=180°时,AE BD =2;(2)拓展探究试判断:当0°≤α<360°时,AEBD的大小有无变化?请仅就图②的情形给出证明.(3)解决问题当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.3.(2014·河南)(1)问题发现如图①,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为__________;②线段AD,BE之间的数量关系为______________.(2)拓展探究如图②,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE 中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图③,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.4.(2018·南阳二模)在△ABC 中,∠ACB 是锐角,点D 在射线BC 上运动,连接AD ,将线段AD 绕点A 逆时针旋转90°,得到AE ,连接EC. (1)操作发现若AB =AC ,∠BAC=90°,当D 在线段BC 上时(不与点B 重合),如图①所示,请你直接写出线段CE 和BD 的位置关系和数量关系是______________,______________; (2)猜想论证在(1)的条件下,当D 在线段BC 的延长线上时,如图②所示,请你判断(1)中结论是否成立,并证明你的判断. (3)拓展延伸如图③,若AB≠AC,∠BAC≠90°,点D 在线段BC 上运动,试探究:当锐角∠ACB 等于________度时,线段CE 和BD 之间的位置关系仍成立(点C ,E 重合除外)?此时若作DF⊥AD 交线段CE 于点F ,且当AC =32时,请直接写出线段CF 的长的最大值是____.5.已知,如图①,△ABC,△AED 是两个全等的等腰直角三角形(其顶点B ,E 重合),∠BAC=∠AED=90°,O 为BC 的中点,F 为AD 的中点,连接OF. (1)问题发现①如图①,OFEC=_______;②将△AED 绕点A 逆时针旋转45°,如图②,OFEC=_______;(2)类比延伸将图①中△AED 绕点A 逆时针旋转到如图③所示的位置,请计算出OFEC 的值,并说明理由.(3)拓展探究将图①中△AED 绕点A 逆时针旋转,旋转角为α,0°≤α≤90°,AD =2,△AED 在旋转过程中,存在△ACD 为直角三角形,请直接写出线段CD 的长.类型二 图形面积关系问题(2017·河南)如图①,在Rt△ABC 中,∠A=90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点. (1)观察猜想图①中,线段PM 与PN 的数量关系是________,位置关系是________; (2)探究证明把△ADE 绕点A 逆时针方向旋转到图②的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由; (3)拓展延伸把△ADE 绕A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.图①图② 例2题图【分析】 (1)利用三角形的中位线定理得出PM =12CE ,PN =12BD ,进而判断出BD =CE ,即可得出结论,再利用三角形的中位线定理得出PM∥CE,继而得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD =CE ,同(1)的方法得出PM =12BD ,PN =12BD ,即可得出PM =PN ,同(1)的方法即可得出结论;(3)先判断出MN 最大时,△PMN 的面积最大,进而求出AN ,AM ,即可得出MN 最大=AM +AN ,最后用面积公式即可得出结论. 【自主解答】解:(1)∵点P ,N 是BC ,CD 的中点, ∴PN∥BD,PN =12BD.∵点P ,M 是CD ,DE 的中点, ∴PM∥CE,PM =12CE.∵AB=AC ,AD =AE , ∴BD =CE , ∴PM=PN. ∵PN∥BD, ∴∠DPN=∠ADC, ∵PM∥CE, ∴∠DPM=∠D CA. ∵∠BAC=90°, ∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°, ∴PM⊥PN,(2)由旋转知,∠BAD=∠CAE, ∵AB=AC ,AD =AE , ∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD =CE.同(1)的方法,利用三角形的中位线定理,得PN =12BD ,PM =12CE ,∴PM=PN ,∴△PMN 是等腰三角形, 同(1)的方法得,PM∥CE, ∴∠DPM=∠DCE, 同(1)的方法得,P N∥BD, ∴∠PNC=∠DBC.∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC. ∵∠BAC=90°, ∴∠ACB+∠ABC=90°, ∴∠MPN=90°,∴△PMN 是等腰直角三角形,例2题解图(3)如解图,同(2)的方法得,△PMN 是等腰直角三角形, ∴当MN 最大时,△PMN 的面积最大, ∴DE∥BC 且DE 在顶点A 上面, ∴M N 最大=AM +AN , 连接AM ,AN ,在△ADE 中,AD =AE =4,∠DAE=90°, ∴AM=22,在Rt△ABC 中,AB =AC =10,AN =52, ∴MN 最大=22+52=72,∴S △PMN 最大=12PM 2=12×12MN 2=14×(72)2=492.1.(2013·河南)如图①,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图②,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是______________;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是______________.(2)猜想论证当△DEC绕点C旋转到如图③所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图④).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.2.已知Rt△ABC 中,BC =AC ,∠C=90°,D 为AB 边的中点,∠EDF=90°,将∠EDF 绕点D 旋转,它的两边分别交AC ,CB(或它们的延长线)于E ,F.当∠EDF 绕点D 旋转到DE⊥AC 于E 时,如图①所示,试证明S △DEF +S △CEF =12S △ABC .(1)当∠EDF 绕点D 旋转到DE 和AC 不垂直时,如图②所示,上述结论是否成立?若成立,请说明理由;若不成立,试说明理由.(2)直接写出图③中,S △DEF ,S △CEF 与S △ABC 之间的数量关系.3.(2018·郑州模拟)如图①所示,将两个正方形ABCD和正方形CGFE如图所示放置,连接DE,BG.(1)图中∠DCE+∠BCG=__________°;设△DCE的面积为S1,△BCG的面积为S2,则S1与S2的数量关系为______________;猜想论证:(2)如图②所示,将矩形ABCD绕点C按顺时针方向旋转后得到矩形FECG,连接DE,BG,设△DCE的面积为S1,△BCG的面积为S2,猜想S1和S2的数量关系,并加以证明;(3)如图③所示,在△ABC中,AB=AC=10 cm,∠B=30°,把△ABC沿AC翻折得到△AEC,过点A作AD平行CE交BC于点D,在线段CE上存在点P,使△ABP的面积等于△ACD的面积,请写出CP的长.4.(2018·驻马店一模)如图①,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M,N分别是斜边AB,DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想图①中,PM与PN的数量关系是______________,位置关系是______________;(2)探究证明将图①中的△CDE 绕着点C 顺时针旋转α(0°<α<90°),得到图②,AE 与MP ,BD 分别交于点G ,H ,判断△PMN 的形状,并说明理由; (3)拓展延伸把△CDE 绕点C 任意旋转,若AC =4,CD =2,请直接写出△PMN 面积的最大值.参考答案类型一 针对训练1.解:(1)∵点A 为线段BC 外一动点,且BC =a ,AB =b ,∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC +AB =a +b. (2)①CD=BE ,理由:∵△ABD 与△ACE 是等边三角形, ∴AD=AB ,AC =AE ,∠BAD=∠CAE=60°, ∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB. 在△CAD 和△EAB 中,⎩⎪⎨⎪⎧AD =AB ∠CAD=∠EAB AC =AE ,∴△CAD≌△EAB,∴CD=BE.②∵线段BE 长的最大值等于线段CD 的最大值,由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上, ∴线段BE 长的最大值为BD +BC =AB +BC =4;(3)∵将△APM 绕着点P 顺时针旋转90°得到△PBN,连接AN ,如解图①, 则△APN 是等腰直角三角形,∴PN=PA=2,BN=AM.∵点A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值等于线段BN长的最大值,∴当点N在线段BA的延长线时,线段BN取得最大值,最大值为AB+AN.∵AN=2AP=22,∴线段AM的长最大值为22+3.如解图②,过点P作PE⊥x轴于点E.∵△APN是等腰直角三角形,∴PE=AE=2,∴OE=BO-AB-AE=5-3-2=2-2,∴P(2-2,2).图①图②第1题解图2.解:(1)①当α=0°时,∵在Rt△ABC中,∠B=90°,∴AC=AB2+BC2=(8÷2)2+82=4 5.∵点D、E分别是边BC、AC的中点,∴AE=45÷2=25,BD=8÷2=4,∴AEBD=254=52.②如解图①,当α=180°时,得可得AB∥DE,∵ACAE=BCBD,∴AE BD =AC BC =458=52. (2)当0°≤α≤360°时,AEBD 的大小没有变化.∵∠ECD=∠ACB, ∴∠ECA=∠DCB. 又∵EC DC =AC BC =52,∴△ECA∽△DCB, ∴AE BD =EC DC =52.图①图②图③ 第2题解图(3)①如解图②,∵AC=45,CD =4,CD⊥AD,∴AD=AC 2-CD 2=(45)2-42=80-16=8. ∵AD=BC ,AB =DC ,∠B=90°, ∴四边形ABCD 是矩形, ∴BD=AC =4 5.③如解图③,连接BD ,过点D 作AC 的垂线交AC 于点Q ,过点B 作AC 的垂线交AC 于点P , ∵AC=45,CD =4,CD⊥AD,∴AD=AC 2-CD 2=(45)2-42=80-16=8, ∵点D 、E 分别是边BC 、AC 的中点, ∴DE=12AB =12×(8÷2)=12×4=2,∴AE=AD -DE =8-2=6, 由(2),可得AE BD =52,∴BD=652=1255.综上所述,BD 的长为45或1255. 3.解:(1)∵△ACB 和△DCE 均为等边三角形, ∴CA=CB ,CD =CE ,∠ACB=∠DCE=60°, ∴∠ACD=∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧AC =BC ∠ACD=∠BCE CD =CE, ∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC. ∵△DCE 为等边三角形,∴∠CDE=∠CED=60°. ∵点A ,D ,E 在同一直线上,∴∠ADC=120°, ∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°. ②∵△ACD≌△BCE,∴AD=BE. (2)∠AEB=90°,AE =BE +2CM. 理由如下:∵△ACB 和△DCE 均为等腰直角三角形, ∴CA=CB ,CD =CE ,∠ACB=∠DCE=90°. ∴∠ACD=∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧CA =CB ∠ACD=∠BCE CD =CE, ∴△ACD≌△BCE(SAS), ∴AD=BE ,∠ADC=∠BEC.∵△DCE 为等腰直角三角形,∴∠CDE=∠CED=45°. ∵点A ,D ,E 在同一直线上, ∴∠ADC=135°,∴∠BEC=135°, ∴∠AEB=∠BEC-∠CED=90°. ∵CD=CE ,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM,∴A E=AD+DE=BE+2CM.(3)∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上,∴点P是这两圆的交点.①当点P在如解图①所示位置时,连接PD,PB,PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E.∵四边形ABCD是正方形,∴∠ADB=45°,AB=AD=DC=BC=2,∠BAD=90°,∴BD=2.∵DP=1,∴BP= 3.∵∠BPD=∠BAD=90°,∴点A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B,E,P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD,∴3=2AH+1,∴AH=3-1 2;②当点P在如解图②所示位置时,连接PD、PB、PA、作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,同理可得:BP=2AH-PD,∴3=2AH-1,∴AH=3+1 2.综上所述,点A到BP的距离为3-12或3+12.图①图② 第3题解图4.解:(1)①∵AB=AC ,∠BAC=90°, 线段AD 绕点A 逆时针旋转90°得到AE , ∴AD=AE ,∠BAD=∠CAE, ∴△BAD≌△CAE, ∴CE=BD ,∠ACE =∠B, ∴∠BCE=∠BCA+∠ACE=90°,∴线段CE ,BD 之间的位置关系和数量关系为CE =BD ,CE⊥BD; (2)(1)中的结论仍然成立.证明如下: 如解图①,∵线段AD 绕点A 逆时针旋转90°得到AE , ∴AE=AD ,∠DAE=90°. ∵AB=AC ,∠BAC=90°, ∴∠CAE=∠BAD, ∴△ACE≌△ABD, ∴CE=BD ,∠ACE=∠B, ∴∠BCE=90°,∴线段CE ,BD 之间的位置关系和数量关系为CE =BD ,CE⊥BD; (3)45°;34.过A 作AM⊥BC 于M ,过点E 作EN⊥MA 交MA 的延长线于N ,如解图②. ∵线段AD 绕点A 逆时针旋转90°得到AE , ∴∠DAE=90°,AD =AE ,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA, ∴NE=AM.∵CE⊥BD,即CE⊥MC,∴∠MCE=90°, ∴四边形MCEN 为矩形, ∴NE=MC ,∴AM=MC , ∴∠ACB=45°. ∵四边形MCEN 为矩形, ∴Rt△AMD∽Rt△DCF,∴MD CF =AMDC,设DC =x , ∵在Rt△AMC 中,∠ACB=45°,AC =32, ∴AM=CM =3,MD =3-x ,∴3-x CF =3x, ∴CF=-13x 2+x =-13(x -32)2+34,∴当x =32时,CF 有最大值,最大值为34.故答案为45°,34;图①图② 第4题解图5.解:(1)①∵△ABC,△AED 是两个全等的等腰直角三角形, ∴AD=BC.∵O 为BC 的中点,F 为AD 的中点, ∴AF=OC.∵∠BAC=∠AED=90°,AB =AC ,AE =DE , ∴∠DAE=∠CBA=45°, ∴AD∥BC,∴四边形AFOC 是平行四边形, ∴OF=AC =22EC ,∴OF EC =22; 故答案:22; ②∵AO=22AC ,∠BAO=∠CAO=45°,∠DAE=45°, ∴∠DAE=∠CAO. ∵AE=AC , ∴AF=AO ,∴AF AE =AO AC, ∴△AFO∽△AEC, ∴OF EC =AO AC =22; 故答案:22. (2)OF =22EC. 理由:在等腰直角△ADE 中,F 为AD 的中点, ∴AF=12AD =22AE.在等腰直角△ABC 中,O 为BC 的中点, 如解图①,连接AO , ∴AO=22AC ,∠BAO=∠CAO=45°. ∴∠DAE=45°,∴∠DAE=∠CAO,即∠DAO=∠CAE. ∵AE=AC , ∴AF=AO , ∴AF AE =AO AC, ∴△AFO∽△AEC, ∴OF EC =AO AC =22; (3)∵△ABC 和△AED 是两个全等的等腰直角三角形, ∴AD=BC =2, ∴ED=AE =AB =AC =1,当△ACD 为直角三角形时,分两种情况:图①图②图③ 第5题解图①当AD 与AB 重合时,如解图②,连接CD. 当△ACD 为直角三角形时,AD⊥AC, 即将△ADE 绕点A 逆时针旋转45°. ∵AD=2,AC =1,∴由勾股定理可得CD =(2)2+12=3; ②当AE 与AC 重合时,如解图③, 当△ACD 为直角三角形时,AC⊥CD,即将△ADE 绕点A 逆时针旋转90°,此时CD =AC =1. 综上所述,CD 的长为3或1. 类型二 针对训练1.解:(1)①△DEC 绕点C 旋转到点D 恰好落在AB 边上, ∴AC=CD.∵∠BAC=90°-∠B=90°-30°=60°. ∴△ACD 是等边三角形, ∴∠ACD=60°,又∵∠CDE=∠BAC=60°, ∴∠ACD=∠CDE, ∴DE∥AC;②∵∠B=30°,∠C=90°, ∴CD=AC =12AB ,∴BD=AD =AC ,根据等边三角形的性质,△ACD 的边AC ,AD 上的高相等,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2; (2)∵△DEC 是由△ABC 绕点C 旋转得到, ∴BC=CE ,AC =CD ,∠DCE=∠ACB=90°, ∵∠ACN+∠ACE=180°, ∴∠ACN=∠DCM.在△ACN 和△DCM 中,⎩⎪⎨⎪⎧∠ACN=∠DCM,∠N=∠CMD=90°,AC =CD∴△ACN≌△DCM(AAS), ∴AN=DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2;第1题解图(3)如解图,过点D 作DF 1∥BE 交BA 于点F 1,易求得四边形BEDF 1是菱形,∴BE=DF 1,且BE ,DF 1边上的高相等,此时S△DCF 1=S △BDE ; 过点D 作DF 2⊥BD.∵∠ABC=60°,F 1D∥BE 交BA 于点F 2, ∴∠F 2F 1D =∠ABC=60°.∵BF 1=DF 1,∠F 1BD =12∠ABC=30°,∠F 2DB =90°,∴∠F 1DF 2=∠ABC=60° ∴△DF 1F 2是等边三角形, ∴DF 1=DF 2.∵BD=CD ,∠ABC=60°,点D 是角平分线上一点, ∴DBC=∠DCB=12×60°=30°,∴∠CDF 1=180°-∠BCD=180°-30°=150°, ∠CDF 2=360°-150°-60°=150°, ∴∠CDF 1=∠CDF 2. 在△CDF 1和△CDF 2中, ⎩⎪⎨⎪⎧DF 1=DF 2∠CDF 1=∠CDF 2CD =CD, ∴△C DF 1≌△CDF 2(SAS),∴点F 2也是所求的点. ∵∠ABC=60°,点D 是角平分线上一点,DE∥AB, ∴∠DBC=∠BDE=∠ABD=12×60°=30°.又∵BD=4,∴BE=12×4÷cos 30°=2÷32=433,∴BF 1=433,BF 2=BF 1+F 1F 2=433+433=833.故BF 的长为433或833.2.解:当∠EDF 绕D 点旋转到DE⊥AC 时,四边形CEDF 是正方形;设△ABC 的边长AC =BC =a ,则正方形CEDF 的边长为12a ,∴S △ABC =12a 2,S 正方形CEDF =(12a)2=14a 2,即S △DEF +S △CEF =12S △ABC ;(1)上述结论成立;理由如下: 连接CD ,如解图①所示.∵AC=BC ,∠ACB=90°,D 为AB 中点,∴∠B=45°,∠DCE=12∠ACB=45°,CD⊥AB,CD =12AB =BD ,∴∠DCE=∠B,∠CDB=90° ∵∠EDF=90°, ∴∠1=∠2, 在△CDE 和△BDF 中, ⎩⎪⎨⎪⎧∠1=∠2CD =BD∠DCE=∠B, ∴△CDE≌△BDF(ASA),∴S △DEF +S △CEF =S △ADE +S △BDF =12S △ABC ;图①图② 第2题解图(2)S △DEF -S △CEF =12S △ABC ;理由如下:连接CD ,如解图②所示,同(1)得:△DEC≌△DFB,∠DCE=∠DBF=135°, ∴S △DEF =S 五边形DBFEC , S △CFE +S △DBC , =S △CFE +12S △ABC ,∴S △DEF -S △CFE =12S △ABC .∴S △DEF 、S △CEF 、S △ABC 的关系是S △DEF -S △CEF =12S △ABC .3.解:(1)如解图①中,∵四边形ABCD 、EFGC 都是正方形, ∴∠BCD=∠ECG=90°.∵∠BCG+∠BCD+∠DCE+∠ECG=360°, ∴∠BCG+∠ECD=180°.图①图②图③ 第3题解图如解图①,过点E 作EM⊥DC 于点M ,过点G 作GN⊥BN 交BN 的延长线于点N , ∴∠EMC=∠N=90°.∵四边形ABCD 和四边形ECGF 均为正方形, ∴∠BCD=∠DCN=∠ECG=90°,CB =CD ,CE =CG , ∴∠1=90°-∠2,∠3=90°-∠2, ∴∠1=∠3. 在△CME 和△CNG 中,⎩⎪⎨⎪⎧∠EMC=∠GNC ∠1=∠3EC =CG, ∴△CME≌△CNG(ASA), ∴EM=GN.又∵S 1=12CD·EM,S 2=12CB·GN,∴S 1=S 2;故答案为180°,S 1=S 2; (2)猜想:S 1=S 2,证明:如解图②,过点E 作EM⊥DC 于点M ,过点B 作BN⊥GC 交GC 的延长线于点N , ∴∠EMC=∠N=90°.∵矩形CGFE 由矩形ABCD 旋转得到的, ∴CE=CB ,CG =CD ,∵∠ECG=∠ECN=∠BCD=90°,∴∠1=90°-∠2,∠3=90°-∠2,∴∠1=∠3. 在△CME 和△CNB 中, ⎩⎪⎨⎪⎧∠EMC=∠BNC ∠1=∠3EC =CB, ∴△CME≌△CNB(AAS). ∴EM=BN.又∵S 1=12CD·EM,S 2=12CG ·BN ,∴S 1=S 2;(3)如解图③,作DM⊥AC 于M ,延长BA ,交EC 于N , ∵AB=AC =10 cm ,∠B=30°, ∴∠ACB=∠ABC=30°, ∴∠BAC=120°,根据翻折的性质,得∠ACE=∠ACB=30°, ∵AD∥CE,∴∠DAC=∠ACE=30°, ∴∠BAD=90°,DM =12AD ,∴BN⊥EC.∵AD=tan∠ABD·AB,AB =10 cm , ∴AD=tan 30°×10=1033 (cm),∴DM=12×1033=533(cm).∵S △ABP =12AB·PN,S △ADC =12AC·DM ,S △ABP =S △ADC ,AB =AC ,∴PN=DM =533.在Rt△ANC 中,∠ACN=30°,AC =10 (cm), ∴NC=cos∠ACN·AC=cos 30°×10=53(cm). ∵在EC 上到N 的距离等于533的点有两个,∴P′C=103 3 cm ,P ″C =203 3 cm.∴CP 的长为103 3 cm 或203 3 cm.4.解:(1)PM =PN ,PM⊥PN,理由如下: 如解图①,延长AE 交BD 于O , ∵△ACB 和△ECD 是等腰直角三角形, ∴AC=BC ,EC =CD ,∠ACB=∠ECD=90°. 在△ACE 和△BCD 中, ⎩⎪⎨⎪⎧AC =BC ,∠ACE=∠BCD=90°,CE =CD ,∴△ACE≌△BCD(SAS), ∴AE=BD ,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO, ∴∠CBD+∠BEO=90°, ∴∠BOE =90°,即AE⊥BD,∵点M 、N 分别是斜边AB 、DE 的中点,点P 为AD 的中点, ∴PM=12BD ,PN =12AE ,∴PM=PN.∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°, ∴∠MPA+∠NPC=90°, ∴∠MPN=90°, 即PM⊥PN.图①图② 第4题解图(2)△PMN 为等腰直角三角形,理由如下: 如解图②,设AE 交BC 于点O. ∵△ACB 和△ECD 是等腰直角三角形, ∴AC=BC ,EC =CD ,∠ACB=∠ECD=90°, ∴∠ACB+∠BCE=∠ECD+∠BCE, ∴∠ACE=∠BCD, ∴△ACE≌△BCD, ∴AE=BD ,∠CAE =∠CBD. 又∵∠AOC=∠BOE,∠CAE=∠CBD, ∴∠BHO=∠ACO=90°.∵点P ,M ,N 分别为AD ,AB ,DE 的中点, ∴PM=12BD ,PM∥BD,PN =12AE ,PN∥AE,∴PM=PN ,∴∠MGE+∠BHA=180°, ∴∠MGE=90°, ∴∠MPN=90°,∴PM⊥PN,即△PMN 为等腰直角三角形.(3)由(2)可知△PMN 是等腰直角三角形,PM =12BD ,∴当BD 的值最大时,PM 的值最大,△PMN 的面积最大, ∴当B ,C ,D 共线时,BD 的最大值为BC +CD =6, ∴PM=PN =3,∴△PMN 面积的最大值为12×3×3=92.。