高中物理选修3-3知识点整理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修3—3期末复习知识点汇总 一、分子动理论
1、物质是由大量分子组成的
(1)单分子油膜法测量分子直径-V=Sd V 是滴入浅水盘中纯油酸的体积,等于油酸溶液的体积乘以浓度。S 是单分子油膜在水面上形成的面积。
(2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=⨯
(3)对微观量的估算
①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)
②利用阿伏伽德罗常数联系宏观量与微观量
a.分子质量:mol A
M m N = b.分子体积:mol A V v N =【固体和液体-分子体积,气体--分子平均占有空间体积】 c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ=
===【M-任意质量;v--任意体积】 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)
(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同
时还说明分子间有间隙,温度越高扩散越快
(2)布朗运动:它是悬浮在液体中的固体颗粒的无规则运动,不是分子热运动,但颗粒很小,是在显微镜下才能观察到的。
①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明
显;温度越高,布朗运动越明显。
②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向
撞击的不均匀性造成的。
③布朗运动间接地反映了液体分子的无规则运动,扩散现象的产生原因是物体分
子做无规则热运动。两者都有力地说明分子在永不停息地做无规则运动。
(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈。 布朗运动不是分子热运动,扩散现象是分子热运动。
3、分子间的相互作用力
分子之间的引力和斥力都随分子间距离增大而减小。但是分子间
斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。
分子间同时存在引力和斥力,两种力的合力又叫做分子力,随距
离的增加,分子力先减小,后增加,再减小。。在图1图象中实
线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当
两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平
衡,分子间作用力为零,0r 的数量级为1010-m ,相当于0r 位置叫
做平衡位置。当分子距离的数量级大于
m 时,分子间的作用力变得十分微弱,可以
忽略不计了
4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志,不同分子温度相同,平均速率不一定相同。热力学温度与摄氏温度的关系:
273.15T t K =+。热力学温度是国际单位制中的基本单位。
5、分子势能
分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小)固体分子和液体内部分子通常处于平衡位置,势能最小。分子势能随距离增加,先减小,再增加。
当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加
当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 二、气体
6、气体实验定律
①玻意耳定律:pV C =(C 为常量)→等温变化
微观解释:一定质量的理想气体,温度保持不变时,分子的
平均动能是一定的,在这种情况下,体积减少时,分子的密集程度增大,气体的压强就增大。
适用条件:压强不太大,温度不太低
图象表达:1p V -
P-V
②查理定律:p C T
=(C 为常量)→等容变化 微观解释:一定质量的气体,体积保持不变时,分子的密集程度保持不变,在这
种情况下,温度升高时,分子的平均动能增大,气体的压强就增大。 适用条件:温度不太低,压强不太大
图象表达:P-T
③盖吕萨克定律:V C T =(C 为常量)→等压变化 微观解释:一定质量的气体,温度升高时,分子的平均动能增大,只有气体的体
积同时增大,使分子的密集程度减少,才能保持压强不变
适用条件:压强不太大,温度不太低
图象表达:V T -
7、理想气体
宏观上:严格遵守三个实验定律的气体,在常温常压下实验
气体可以看成理想气体
微观上:分子间的作用力可以忽略不计,故一定质量的理想
气体的内能只与温度有关,与体积无关
理想气体的方程:pV
C T
8、气体压强的微观解释
【1】封闭容器内气体压强--是大量分子频繁的撞击器壁的结果;
【2】影响气体压强的因素:①气体的平均分子动能(温度)②分子的密集程度即单位体积内的分子数(体积);
【3】温度升高,分子撞击器壁的平均作用力增加
【4】器壁单位面积上单位时间内受到分子的碰撞数N与nv成正比.单位面积上受到的力与温度有关,温度越高,单位面积上受到的作用力越大。
9、晶体和非晶体
①判断物质是晶体还是非晶体的主要依据--是有无固定的熔点【理解熔化过程温度--时间图像】。
②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃)
10、单晶体多晶体
如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗),有天然的规则的几何外形,一些物理性质表现为各向异性。
如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体通常没有天然规则的几何外形,物理性质表现为各项同性。但同单晶体一样,仍有确定的熔点。
同一种物质微粒可以生成结构不同的晶体。例如金刚石、石墨都是碳原子组成的原子晶体,物理性质差别很大。
晶体的分子排列具有周期性或规律性.但是如果说晶体的微观结构具有周期性就是错误的.因为单
晶的微观结构可以说是分子按空间点阵周期性排列;可是多晶体的微观结构可能指的排列[无规律],也可以指多晶体的分子排列按空间点阵排列[周期性].
11、表面张力
当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力。如露珠、熔化的金属凝固时会变成近似球形、昆虫在水面上运动。
12、液晶-介于晶体和液体之间的流体。
分子排列有序,各向异性;位置无序,可自由移动,具有流动性
光学各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的。在温度、压力、电磁作用下,会改变液晶分子排列,从而影响液晶的性质。
13、浸润与不浸润毛细现象
【1】液体和固体接触时会出现浸润和不浸润现象。如果附着层中的液体分子比液体内部稀疏,跟固体接触的液体表面积有缩小的趋势,细管中液面是凸形,形成不浸润现象;如果附着层中的液体分子比液体内密集,跟固体接触的液体表面积有扩展的趋势,细管中液面是凹形弯月,形成浸润现象;浸润的应用:毛巾浸润水、洗涤剂浸润油污。不浸润的应用:雨伞布不浸润水【如果强调伞布缝隙不漏水用表面张力解释,如果强调伞布材料用不浸润解释。实际上雨伞不漏水与两者都有关系,做选择题时只要选择项中涉及其中一个原因就算正确】
【2】毛细现象:浸润液体在细管里上升和不浸润液体在细管里下降的现象。应用:纸张吸水、压紧土壤。防止:油毡布防潮。液体上升和下降的高度和表面张力、固体、液体种类、细管粗细等因素有关。
14、内能和改变内能的方式