天然气水合物形成条件和影响因素研究进展
天然气水合物研究历程及发展趋势新
天然气水合物研究历程及发展趋势摘要综合国内外关于天然气水合物的研究,概述其从发现、初步研究到深入研究的历程,总结了各阶段国内外天然气水合物研究的成果和进展。
从1810年发现天然气水合物以来,世界各地的科学家对气水化合物的类型和物化性质、自然赋存条件和成藏条件、资源评价、勘探开发手段等进行了广泛而卓有成效的研究。
总结世界各国天然气水合物的研究现状并指出了其发展趋势。
研究表明我国的许多海区具有天然气水合物形成的条件,希望2020年能够进行商业开采。
关键词:天然气水合物(gas hydrates)是一种由气体和水形成的冰状白色固态晶体,常在一种特定的高压低温条件下形成并稳定存在,广泛发育在浅海底层沉积物和深海大陆斜坡沉积地层以及极地地区的永久冻土层中。
目前各国科学家对全球天然气水合物的资源量较为一致的评价为2×1016m3,是剩余天然气储量的136倍(1·56×1 014 m3),如果将此储量折算为地球上的有机碳资源,它将占总资源的一半以上。
1国外天然气水合物的研究现状由于当前化石燃料(包括煤、石油与天然气),特别是其中的石油和天然气能源的短缺,使人们对天然气水合物这种高效潜在能源格外关注,自20世纪90年代以来,世界各国对潜力巨大的新型能源—天然气水合物的研究做了大量投入,已经取得了重大进展。
1995年,美国在海上钻井平台(简称ODP)第164航次中,率先在布莱克海脊布设了3口勘探井,首次有计划地取得了天然气水合物样品。
美国参议院委员会在1998年5月一致通过1418号议案—“天然气水合物研究与资源开发计划”。
把天然气水合物资源作为国家发展的战略能源列入长远计划,决定批准用于天然气水合物资源研究开发的每年投入为2 000万美元,计划到2015年实现商业性开采。
2002年4月,在圣彼德堡召开的国际海洋矿产会议上,美国地质调查局的W·J·Wintres展示的天然气水合物和沉积物检验实验室装置(简称GHASTLI)代表了当前天然气水合物模拟实验的最高水平,正在进行的是自然界和实验室形成的天然气水合物-沉积物的物理性质的研究。
天然气水合物形成条件
天然气水合物形成条件在天然气输送过程中,经常会出现水合物堵塞管道的情况,请大家讨论一下,天然气水合物形成的主要条件及如何预防水合物的形成。
1 天然气水合物的危害天然气水合物是石油、天然气开采、加工和运输过程中在一定温度和压力下天然气与液态水形成的冰雪状复合物。
严重时,这些水合物能堵塞井筒、管线、阀门和设备,从而影响天然气的开采、集输和加工的正常运转。
只要条件满足,天然气水合物可以在管道、井筒以及地层多孔介质孔隙中形成,这对油气生产及储运危害很大。
2 天然气水合物的性质和形成:2.1 水合物的性质及结构天然气水合物为白色结晶固体,是在一定温度、压力条件下,天然气中的烃分子与其中的游离水结合而形成的,其中水分子靠氢键形成一种带有大、小孔穴的结晶晶格体,这些孔穴被小的气体分子所充填。
形成水合物的首要条件是天然气中含水,且处于过饱和状态,甚至有液态游离水存在;其次是有一定条件的压力和低于水合物形成的温度。
在上述两种条件下的生产运行过程中,如遇压力波动、温度下降、节流或气流流向突变很快就可能形成水合物堵塞。
2.2 水合物的生成条件天然气水合物生成除了与天然气组分、组成和游离水含量有关外,还需要一定的压力和温度。
下式即为水合物自发生成的条件:M+nH2O(固、液)=[M·H2O](水合物)也就是说,只有当系统中气体压力大于它的水合物分解压力时,才有可能由被水蒸气饱和的气体M自发地生成水合物。
由热力学观点看,水合物的自发生成绝不是必须使气体M被水蒸气饱和,只要系统中水的蒸汽压大于水合物晶格表面水的蒸汽压就足够了。
此外,形成水合物的辅助条件是:气流的停滞区。
2.3 长庆气田天然气水合物形成的基本参数及防治工艺根据长庆气田天然气组分,采用节点分析软件分析,计算压力在6~20 MPa时其水合物形成温度为14.5~22.3℃。
一般开井初期井口压力在20MPa 以上,采气管线按25MPa压力设计。
根据下游用户交接点的压力情况,反算得出集气支、干线设计压力为6.4MPa。
天然气水合物形成原因及影响因素分析
天然气水合物形成原因及影响因素分析作者:张庆杰来源:《管理观察》2010年第17期摘要:分析了实际产生水合物的试气资料及其形成原因,阐述了DQ油田徐家围子气田水合物形成的影响因素。
天然气水合物是天然气在一定温度和压力下形成的一种冰状笼形化合物。
在气井生产过程中,一旦压力、温度条件满足,天然气混合物中的某些气体组分便形成水合物,堵塞油管或输气管线。
天然气水合物是天然气在高压、低温环境下形成的,形成温度高于冰点。
关键词:天然气水合物影响因素一、水合物形成的原因及其影响因素分析1.1形成原因常压下,水的冰点为0℃,但在高压下,水的冰点就会高于0℃。
天然气水合物是天然气在高压、低温(高于0℃)环境下形成的。
在气井生产过程中,天然气从井底流向井口,沿程压力和温度逐渐降低,当压力降到某一数值时,温度降到水合物生成温度时,就形成了水合物。
1.2影响因素分析天然气水合物是在一定压力、温度下形成的,但是天然气水化物形成的压力、温度具体的数值很难确定。
因为影响水合物形成的因素是受天然气的组分不同、所处环境的不同、试气方式的不同等影响。
统计了约30口多井的试气资料,约有三分之一的井出现了不同程度的冰堵现象。
(1)试气方式。
统计发生冰堵现象的井大多都是采用系统试气方法、修正等时试气方法或一点法试气方法进行试采的井,采用定压方法进行试采的井基本上没有发生冰堵现象。
这可能是由于定压试采一般定井口油压为8MPa或6.4MPa,这样低的压力下,形成水合物需要的温度也较低,而试采过程中,气体从井底流到井口的流温大于水合物形成的温度,因此,定压试采方法一般不会形成水合物。
例如,达深4井,该井开始定产2.0×104m3生产,生产了约5天,油压降到22.72MPa,井口平均温度为15.70℃,井筒内产生水合物,造成距井口约100m附近的油管发生冰堵。
关井处理后,采用定井口油压8MPa试采方式试采,产气量一直下降,最后降至2.4×104m3左右,但一直未发生冰堵现象,分析原因,定井口油压试采过程中,井口油压一直保持在8MPa,而8MPa下形成水合物的温度一定低于油压为22.72MPa下的温度。
天然气水合物成藏分析与研究
技术应用与研究2018·07114Chenmical Intermediate当代化工研究天然气水合物成藏分析与研究*郭雨嘉(长江大学地球科学学院 湖北 430100)摘要:目前,天然气水合物的勘探开发已经引起了世界各国的高度关注。
在高压、低温条件下,水和天然气混合形成一种外观像冰的固态物质,这种物质遇火可燃,称为天然气水合物,即“可燃冰”。
本文主要介绍了天然气水合物的形成过程,成藏条件和成藏模式,其中重点介绍天然气水合物的5种成藏条件:水合稳定条件、水源条件、气源条件、气体运移条件以及储集空间条件,以期对天然气水合物勘探开发的专业人员提供一定的参考和借鉴。
关键词:天然气水合物;水源;气源;运移;成藏模式中图分类号:T 文献标识码:AAnalysis and Research on Natural Gas Hydrate AccumulationGuo Yujia(Geoscience Institute, Yangtze University, Hubei, 430100 )Abstract :At present, the exploration and development of natural gas hydrate has attracted worldwide attention. Under the conditions of highpressure and low temperature, water and natural gas are mixed to form an ice - like solid substance, which is combustible in fire and is called natural gas hydrate, that is, "combustible ice". This paper mainly introduces the formation process of natural gas hydrate, the condition of reservoir formation and the model of reservoir formation. It focuses on the 5 conditions of natural gas reservoir formation: hydration stability conditions, water source conditions, gas source conditions, gas migration conditions and storage space conditions, in order to provide professional personnel for exploration and development of natural gas hydrate. A certain reference and reference.Key words :natural gas hydrate ;water source ;gas source ;migration ;accumulation model引言随着经济增长引致的能源消费的进一步加剧,世界现有常规能源储量正在日益枯竭,能源消费造成的环境压力进一步凸显,特别是油气短缺给经济的发展带来了更加严峻的挑战。
天然气水合物研究进展与开发技术概述
未来发展方向
未来发展方向
随着科技的不断进步,天然气水合物的研究和开发将迎来更多的发展机遇。 未来,天然气水合物的研究将更加深入,涉及的领域将更加广泛。在开发技术方 面,将会发展更加环保、高效、低成本的技术,如微生物法、化学试剂法和纳米 技术等。同时,加强天然气水合物全产业链的研发和优化,推动其在能源、化工、 制冷、航空航天等领域的应用。
研究进展
研究进展
天然气水合物是指在一定条件下,甲烷等气体分子与水分子形成的笼形化合 物。其形成和稳定主要受温度、压力、气体成分和盐度等多种因素影响。近年来, 随着地球科学、地质工程、能源工程等领域的发展,人们对天然气水合物的研究 逐步深入。
研究进展
目前,全球范围内天然气水合物的研究主要集中在以下几个方面:(1)形成 机理与分布规律;(2)物理性质与化学性质;(3)开采技术与经济性;(4) 环境影响与安全性。尽管取得了许多重要成果,但仍存在许多挑战,如天然气水 合物的稳定性和开采过程中的环境风险等。
天然气水合物储运技术的研究现状
2、高效开采技术研究:针对天然气水合物的开采,研究者们开发出了一系列 新型的高效开采技术,如水平井技术、多分支井技术等,大大提高了开采效率。
天然气水合物储运技术的研究现状
3、储运安全技术研究:针对天然气水合物储运过程中的安全问题,研究者们 通过模拟和分析不同情况下的风险因素,提出了一系列有效的安全防技术概述
天然气水合物储运技术概述
天然气水合物,又称可燃冰,是由天然气(主要是甲烷)与水在高压、低温 条件下形成的笼形结晶化合物。由于其储存量大、燃烧清洁、开采成本低等优势, 被视为一种具有巨大潜力的能源。然而,这种化合物的非稳定性以及难以运输的 问题,一直是阻碍其开发利用的主要难题。因此,天然气水合物的储运技术成为 近年来研究的热点和难点。
天然气水合物的研究与开发
天然气水合物的研究与开发天然气水合物(Natural Gas Hydrates,简称NGHs)是一种在特定条件下形成的固态结构,由天然气分子以水分子形成的晶体结构。
在自然界中,NGHs广泛分布于陆地和海洋之中,是一种重要的新能源资源。
本文将从NGHs的形成机制、地理分布、开发前景以及研究与开发进展等方面进行详细阐述,以加深对NGHs的认识。
首先,NGHs的形成机制是指在一定的温度和压力条件下,天然气分子与水分子形成稳定的晶体结构。
NGHs的形成需要特定的压力和温度条件,一般在深海及寒冷地区的沉积物中存在较为丰富。
在这些地区,水合物可通过天然气溶解在水中并与水形成晶体而形成。
NGHs的形成条件相对较为苛刻,通常要求温度低于0°C和压力高于零度压力。
NGHs的地理分布广泛,主要存在于深海和季节性寒冷地区的沉积物中。
据估计,全球水合物资源量巨大,达到约2.8×1017立方米的天然气,相当于传统石油和天然气资源储量的数倍。
深海中的NGHs资源最为丰富,其中包括大西洋、太平洋、印度洋和北冰洋等深海区域。
此外,季节性寒冷地区,如北极和西伯利亚,也是重要的NGHs资源区。
NGHs作为一种潜在的能源资源,具有巨大的开发前景。
首先,NGHs的资源量巨大,可为全球能源消耗提供巨大的补充;其次,NGHs的燃烧产物相对于传统燃煤和石油相对清洁,减少大气污染物净排放。
此外,NGHs的开采和利用对环境影响相对较低,对全球气候变化具有积极的影响。
因此,NGHs的开发是当前能源领域的研究热点之一。
目前,关于NGHs的研究与开发已经取得了一定的进展。
在研究方面,人们对NGHs的形成机制、分布规律及资源量进行了深入研究。
通过实验室模拟和航次观测等手段,开展了大量的水合物研究。
在开发方面,人们提出了多种开发利用技术,如钻井开采、热解开采和化学开采等。
此外,还积极推动国际合作,加强技术交流与合作,在NGHs的开发与利用方面取得了一定的进展。
天然气水合物的形成条件及成因分析
图1天然气水合物晶体结构模型Figure 1Crystal structure model of natural gas hydrate天然气水合物是以CH 4为主,含少量CO 2、H 2S 的气态烃类物质充填或被束缚在笼状水分子结构中形成的冰晶化合物。
在一个烃类气体分子的周围包围着多个水分子,水分子通过氢键紧密缔合成三维网状,将烃类气体分子纳入网状,体中形成水合甲烷,其晶体结构模型如图1。
这些水合甲烷象淡灰色的冰球,可以象酒精块或蜡烛一样燃烧,故称为“可燃冰”,其密度为0.905~0.91g/cm 3,化学式为CH 4·n H 2O ,只要把结构中的“水”去掉,就是一种理想的燃料。
从能源的角度看,天然气水合物可视为高度压缩的天然气。
理论上讲,1m 3的天然气水合物在标准大气压下(0.101MPa )可以释放出164m 3的天然气和0.8m 3的水,其能量密度是煤和黑色页岩的10倍左右,且燃烧几乎不产生有害污染物,是一种新型的清洁环保能源,是公认的地球上尚未开发的、巨大的能源宝库。
世界天然气水合物储量约为2×1016m 3,相当于地球上所有开采石油、天然气和煤的总量的2倍,约为剩余天然气储量(156×1012m 3)的128倍。
海底作者简介:蒋向明(1964—),男,教授级高级工程师,1986年毕业于湘潭矿业学院,中国矿业大学工程硕士。
责任编辑:樊小舟天然气水合物的形成条件及成因分析蒋向明(中国煤炭地质总局水文地质局,河北邯郸056004)摘要:从天然气水合物的晶体结构模型出发,说明了其组成成分及结构特征。
通过对温度—压力平衡条件的差异性分析,揭示了天然气水合物形成的基本条件,对其赋存类型及成因进行了分类,对我国及全球天然气水合物分布情况进行了说明,并以青海木里煤田为例,对天然气水合物的形成条件和成因进行了详细的论述,认为:变质作用及煤化作用使煤田内丰富的煤炭资源不断产生煤层气,当煤层气沿断层破碎带及裂隙运移至含水岩层或含水裂隙时,在温度和压力的作用下遇水形成天然气水合物。
天然气水合物的研究与开发
天然气水合物的研究与开发引言天然气水合物是一种具有广泛应用前景的天然能源资源。
它是在高压、低温条件下,天然气分子和水分子结合形成的晶体物质。
天然气水合物具有高能量含量、相对低的碳排放以及丰富的储量等优点,因此受到了研究和开发的广泛关注。
本文将介绍天然气水合物的研究与开发现状,并探讨其应用前景和挑战。
天然气水合物的形成与特性形成过程天然气水合物的形成需要天然气和水分子在适当的压力和温度条件下结合形成。
当水分子的结构具有空腔时,天然气分子可以进入这些空腔,形成天然气水合物。
一般情况下,天然气水合物的形成需要较低的温度和较高的压力,通常发生在海洋和陆地沉积物中。
特性天然气水合物具有以下特性:•高能量含量:因为天然气水合物中含有大量的天然气分子,所以其能量含量相对较高。
•低碳排放:与传统燃烧燃料相比,天然气水合物燃烧释放的二氧化碳较少,对环境的影响较小。
•储量丰富:据估计,全球天然气水合物储量约为20万亿立方米,远远超过常规天然气储量。
•相对稳定:天然气水合物在适当的压力和温度条件下相对稳定,有利于储存和运输。
天然气水合物的研究与开发现状研究状况天然气水合物的研究始于20世纪30年代,但直到最近几十年才受到广泛关注。
目前的研究主要集中在以下几个方面:1.形成机制:研究人员通过实验和模拟,深入研究天然气水合物的形成机制,以便更好地理解其在自然界中的分布规律。
2.存储与运输:天然气水合物的储存和运输是其应用的关键问题,目前的研究主要集中在提高储存和运输效率,以及探索新的存储和运输技术。
3.开发利用技术:天然气水合物的开发利用是一个复杂的过程,涉及到开采、提取和转化等方面的技术。
目前,研究人员致力于改进开发技术,以提高天然气水合物的利用效率。
开发现状天然气水合物的开发目前还处于初级阶段,但已经有一些开发项目取得了一定的进展。
例如,日本、韩国和加拿大等国家都在海洋天然气水合物的开发上进行了一系列试验和项目。
这些项目主要集中在水合物开采、提取和转化等方面,以解决天然气水合物的开发与利用问题。
天然气管道中水合物影响因素及防控研究
天然气管道中水合物影响因素及防控研究天然气一直是人类的重要能源之一,其在工业、民用、交通等方面都有广泛的应用。
而天然气的运输方式也有多种,其中管道运输成为最主要的一种方式。
然而,天然气管道中混入的水合物却给管道的安全运行带来了诸多挑战。
本文将就天然气管道中水合物的形成原因、影响因素以及目前的防控研究展开论述。
一、水合物的形成原因水合物是指天然气分子和水分子在一定条件下结合而成的晶体物质,形如冰块。
在天然气管道中,当管道内部压力下降或温度下降时,管道中的水气混合物就会产生水合物,水合物越积聚,压力就会逐渐增大,最终可能引发管道事故,给人们带来极大的安全隐患。
因此,了解水合物的形成原因就显得尤为重要。
水合物的形成原因主要有以下两个:1、压力下降在天然气管道中,若气体压力下降,水分子就会跟随着气体分子减少而产生凝聚,逐渐形成水合物。
例如在管道发生泄露时,管道内部气体压力会快速下降,导致水分子和天然气分子结合形成水合物。
2、温度下降在天然气管道中,若气体温度下降,管道内的水气混合物会逐渐形成水合物,尤其是在温度低于0℃时,水合物的生成速度更快。
因此,对天然气管道的温度控制尤为重要。
二、影响因素除了上述两个因素以外,还有其他因素也会影响水合物的形成。
下面将就一些重要的影响因素进行介绍。
1、水分子浓度在气体中水分子的浓度越高,则气体形成水合物的速度也越快。
2、压力当管道中气体压力越大,水和天然气分子的混合度也就越难以形成水合物,而压力降低则反之。
3、温度当管道温度越低,水合物的生成速度则越快。
因此,对天然气管道的温度进行严格控制,可以减缓水合物的生成速度。
4、天然气成分在不同类型的天然气中,其成分组成也不一致,这就会导致水合物的生成速度也可能会不同。
比如说,液态天然气中甲烷和乙烷等组成比例不同,则生成水合物的速度也会有所差异。
三、水合物的防控研究尽管天然气管道中的水合物形成具有一定的规律以及因素,但其形成规律是个极其复杂的过程,许多科学家正在进行水合物的防控研究。
天然气水合物开采中温度压力条件影响机制研究
天然气水合物开采中温度压力条件影响机制研究天然气水合物是一种在高压低温条件下形成的天然气固体化合物,由水分子和天然气分子构成。
它具有巨大的潜在能源储存量,因此引发了人们对其开采利用的兴趣。
然而,天然气水合物的开采过程受到温度和压力条件的影响,这两个因素的变化会对开采工艺与效率产生重要影响。
首先,温度是天然气水合物形成和稳定存在的关键因素之一。
在地下深海沉积环境中,温度通常较低,使得水合物的形成更加有利。
然而,在开采过程中,温度的变化会引起天然气水合物的解离,从而影响开采效果。
研究表明,在压力不变的情况下,随着温度的升高,天然气水合物的稳定性下降。
这是因为温度升高会使水合物晶格结构破坏,减弱水分子和天然气分子之间的相互作用力。
因此,在开采过程中,需要控制温度,以保持天然气水合物的稳定存在,并提高开采效率。
其次,压力是影响天然气水合物开采的另一个重要因素。
在地下深海沉积环境中,由于水深较大,压力较高,有利于水合物形成和稳定存在。
然而,加大的压力会增加天然气水合物的固结度和黏度,降低开采的可行性。
因此,在开采过程中需要采取相应的措施来降低压力,以使天然气水合物更易于释放。
在天然气水合物开采中,温度和压力之间存在着复杂的相互作用。
研究表明,当温度和压力发生变化时,天然气水合物的稳定性和可采性会发生相应的变化。
温度的升高会使水合物的解离压力降低,从而提高了开采效率。
相反,压力的升高会提高水合物的稳定性,增加了开采的难度。
因此,在实际开采中,需要根据具体情况综合考虑温度和压力的影响。
除了温度和压力,还有其他因素也会对天然气水合物开采产生影响。
例如,水合物的含量和分布、开采设备和工艺等。
因此,在研究天然气水合物开采的过程中,不仅要重点关注温度和压力对开采的影响,还需要综合考虑其他因素,以提高开采效果和效率。
综上所述,温度和压力是影响天然气水合物开采的重要因素。
温度的升高会使天然气水合物的稳定性降低,压力的升高会增加天然气水合物的稳定性。
天然气水合物的研究现状
天然气水合物的研究现状一、引言天然气水合物(气烟团结物)是一种在海洋和极地等寒冷条件下形成的天然气与水分子结合形成的固态物质,被誉为“能源界的黑马”。
天然气水合物有着巨大的储量和潜力,在能源领域具有广泛的应用前景。
二、天然气水合物的形成机理天然气水合物的形成主要是由于天然气在寒冷的海底和土壤中长期存在而形成。
气体分子在寒冷的环境中容易与水分子形成水合物,形成水合物后,则使水合物的晶体结构发生变化,形成具有网络结构的天然气水合物。
三、天然气水合物的储量与分布天然气水合物被认为是未来能源开发的重要方向之一,其储量巨大,被称为气体领域的“碳水化合物”。
据国际能源署评估,全球天然气水合物资源量可达455万亿立方米,相当于标准煤200年的储量。
目前,天然气水合物的主要分布地区在北极、南极、北太平洋和印度洋等区域。
四、天然气水合物的开采技术天然气水合物的开采技术目前还相对不成熟。
目前主要采取的方法是钻井开采,通过钻井、注水、注气等方法将天然气水合物从海底或土壤中开采出来。
五、天然气水合物的应用前景目前天然气水合物的应用前景十分广泛,包括替代煤、替代油、替代石油天然气、替代核能等方面。
此外,天然气水合物还可以用于制氢。
天然气水合物有着巨大的储量和潜力,在未来的能源市场上将具有重要的地位。
六、结语天然气水合物的研究和开发对于我国的能源安全和国民经济发展具有重要的战略意义。
为了推动天然气水合物的开发,中国政府正在积极制定相关政策,为天然气水合物的研究和开发提供支持和保障。
未来天然气水合物必将成为我国能源领域的重要战略资产。
甲烷水合物研究进展
甲烷水合物研究进展甲烷水合物是一种天然气水合物,其主要成分为甲烷和水。
其存储在富含有机碳和深海沉积物的海底,具有巨大的经济开发潜力。
然而,甲烷水合物的开发和利用仍然处于研究阶段,需要进行大量的实验研究和理论探索。
本文将介绍甲烷水合物的研究进展,包括其形成机理、开采和利用技术以及环境影响。
一、甲烷水合物的形成机理甲烷水合物是在高压和低温下形成的。
它的形成需要充足的有机碳来源,水和适宜的温度和压力条件。
在地球上,甲烷水合物主要存在于极地和深海环境中。
在深海中,富含沉积物的海底是甲烷水合物的重要存储地点。
由于过去几十年里水面下沉积物不断积累,导致了甲烷水合物的增长和积累。
此外,甲烷水合物形成也与生物过程有关。
微生物的代谢会产生大量的甲烷,这些甲烷在一定条件下可以与水结合形成甲烷水合物。
因此,研究甲烷水合物的形成过程对于了解深海生态系统和碳循环具有重要意义。
二、甲烷水合物的开采和利用技术甲烷水合物的开采和利用技术仍然处于研究阶段。
开采甲烷水合物的方法通常包括热解、减压和置换。
其中,热解是最常用的方法,它利用高温和高压条件把甲烷水合物转化为天然气从而释放甲烷。
减压方法是将甲烷水合物从高压环境中释放,利用减压将甲烷水合物转化为天然气。
置换方法则是将水替换成其他物质,如二氧化碳或氮气,从而使甲烷水合物的甲烷部分释放出来。
目前,甲烷水合物的开采还面临一些技术难题,如切割和采集甲烷水合物的设备设计、开采过程中甲烷泄漏和其它环境风险的预防等。
因此,加强开采和利用技术的研究和发展对于大规模、高效地分离和提取甲烷水合物具有重要意义。
三、甲烷水合物的环境影响甲烷是一种温室气体,其增加会导致大气温度升高,进而引发全球气候变化。
因此,甲烷水合物的开采和利用可能会对全球气候产生不利影响。
此外,在甲烷水合物开采和利用的过程中还会产生废水、渣土和废气等污染物,给环境带来压力和危害。
因此,在进行甲烷水合物研究和利用时需要按照环保法律和规范要求,采取措施保护是环境湿地、码头和港口。
简述天然气水合物的形成条件
简述天然气水合物的形成条件天然气水合物是一种在海洋和极地等低温高压环境中形成的天然气固体化合物,它是由天然气分子和水分子组成的晶体结构。
天然气水合物具有高储量、广分布、清洁环保等特点,被认为是未来能源发展的重要方向之一。
本文将从形成条件、地质环境、化学反应等方面对天然气水合物进行详细介绍。
一、形成条件1.低温高压条件天然气水合物的形成需要特殊的地质环境,其中最主要的就是低温高压条件。
在大多数情况下,天然气水合物的形成需要温度在0℃以下,压力在10MPa以上。
这样的低温高压条件通常只存在于深海和极地等特殊环境中。
2.适宜的沉积环境除了低温高压条件外,适宜的沉积环境也是天然气水合物形成的必要条件。
通常情况下,这种沉积环境需要满足以下几个方面:(1)富含有机质:富含有机质的海底沉积物可以提供充足的碳源,为天然气水合物的形成提供必要的条件。
(2)适宜的温度和压力:适宜的温度和压力可以促进天然气水合物晶体结构的形成,同时也有利于天然气分子与水分子之间的相互作用。
(3)适宜的盐度和pH值:适宜的盐度和pH值可以影响天然气水合物晶体结构的稳定性,从而对其形成产生影响。
二、地质环境1.深海环境深海环境是天然气水合物最主要的地质环境之一。
在深海中,温度低、压力高,同时还存在大量富含有机质的沉积物。
这些特殊环境为天然气水合物形成提供了必要条件。
此外,在深海中还存在许多地质构造,如冷泉、火山口等,这些构造也是天然气水合物形成和富集的重要场所。
2.极地环境极地环境也是天然气水合物形成和富集的重要场所之一。
在北极和南极等区域,温度极低,压力极高,同时还存在大量富含有机质的沉积物。
这些特殊环境为天然气水合物形成提供了必要条件。
三、化学反应1.天然气分子与水分子之间的相互作用天然气水合物的形成是由于天然气分子与水分子之间的相互作用。
在低温高压条件下,天然气分子会与水分子形成一种稳定的晶体结构,从而形成天然气水合物。
2.甲烷和其他气体之间的相互作用除了天然气分子和水分子之间的相互作用外,甲烷和其他气体之间的相互作用也是影响天然气水合物形成和稳定性的重要因素。
天然气水合物成因与存在环境的分析
天然气水合物成因与存在环境的分析天然气水合物是一种在寒冷高压环境中形成的天然气和水分子结合而成的结晶物质。
它具有巨大的潜力,可用作替代传统天然气和石油资源的能源,因此引起了广泛的关注。
本文将讨论天然气水合物的成因和存在环境。
首先,让我们来看看天然气水合物的成因。
天然气水合物主要由甲烷(CH4)和水分子组成,结构类似于冰晶,但其中间的结构空隙被甲烷分子占据。
水合物形成需要特定的环境条件,包括低温、高压和适当的甲烷和水分子浓度。
在这样的环境下,水分子会形成类似于冰晶的结构,并将甲烷分子捕获在其中。
天然气水合物的形成与寒冷高压环境密切相关。
在近海地区,冷水流经含有丰富有机物质的沉积物层。
有机物质通过生物降解产生甲烷气体,并随水流运送到较低的温度和较高的压力区域。
在这些条件下,甲烷和水分子结合形成水合物。
在陆地地区,天然气水合物的形成主要与寒冷地下水和含有有机物质的岩层密切相关。
岩层中的有机物质通过地下水的循环和扩散分解,产生甲烷气体,并与冷却的地下水中的水分子结合形成水合物。
天然气水合物存在的环境主要是深海和寒冷地下。
在深海环境中,大量的天然气水合物储存在海洋沉积物层中。
深海的高压和低温条件促进了水合物的形成。
然而,这些水合物的稳定性很大程度上取决于所处的水深。
水合物在较浅的水深中往往不稳定,容易分解。
而在陆地环境中,天然气水合物主要分布在季节性冻土层下和高寒地区的冰川和冻土层中。
寒冷地下的高压和低温条件提供了水合物形成所需的环境。
在这些地区,水合物往往与温度和湿度密切相关,因为温度和湿度的变化会影响水合物的稳定性。
天然气水合物的存在对能源开发具有重要意义。
然而,由于天然气水合物在低温高压条件下的稳定性,以及其在天然气开采和运输中的技术挑战,要将其作为可用的能源资源仍然面临一些困难。
因此,更多的研究仍然需要进行,以便更好地了解天然气水合物的性质和开发潜力。
总之,天然气水合物的形成与寒冷高压环境密切相关,它在深海和寒冷地下的存在环境中被广泛分布。
天然气水合物研究进展
天然气水合物研究进展提纲z天然气水合物基本特征z天然气水合物地质成储条件z天然气水合物勘探开发若干指标z天然气水合物应用展望1-1. 水合物成分与结构11水合物成分与结构天然气水合物,又称甲烷气体水合物g y)(Methane gas hydrate), 由天然气与水所组成,呈固体状态,其外貌极像冰,即,雪或固体酒精,点火即可燃烧,故也可称为“可燃冰”、“气冰”、“固体瓦斯”。
天然气水合物的结晶格斯架主要是由水分子所构成,在不同的高条件下,子形低温高压条件下,水分子结晶形成不同类型的多面体结构,形状像鸡笼,有笼形构称故有“笼形结构”之称11水合物成分与结构1-1. 水合物成分与结构已经发现的天然气水合物结构有三种,即结构I型、结构II 型和结构H型。
结构I 型气水合物为立方晶体结构,在自然界分布最为广泛,仅I 型能容纳甲烷(C1)、乙烷(C2)等小分子的烃以及N2、CO2、H2S等非烃分子,大约6个水分子“包嵌”1个气体分子;结构II 型气水合物为菱型晶体结构,水分子间的空穴可容纳丙烷II 型(C3)及异丁烷(i-C4)等烃类;结构H型气水合物为六方晶体结构,其大的“笼子”甚止可II 型以容纳直径超过异丁烷(i-C4)的分子,如i-C5和其他直径在7.5-8.6A之间的分子。
目前I 、II 、H型三种气水合物在自然界均有发现H 型1-1. 水合物成分与结构11水合物成分与结构水合物形成于低温高压地带,具有很大的能量密度及丰富的储量,清洁,高效,是潜在而亟待开发利用的新型能源11水合物成分与结构1-1. 水合物成分与结构海洋是碳的最大储库,碳的循环对烃类资源的形成和环境的变化发挥关键作用12水合物形成条件1-2. 水合物形成条件温压条件甲烷气体水合物的形成与稳定性严格受温度、压力、水、气组分相互关系的制约。
一般而言,水合物形成的最佳温度是O-10℃,压力则应大于100大气压(约10MPa)12水合物形成条件1-2. 水合物形成条件物源条件生物气通常来自气水合物层上下的有机质,通过甲烷菌自生自储的甲烷储集而成水合物层的下伏沉积物或沉积岩富含微生物和有机碳时可通储集而成。
天然气水合物研究进展
论文与案例交流1水合物晶体结构和性质传统化石能源(煤、石油和天然气)的大量消耗带动了工业和社会的进步,然而对能源的过度依赖也使得全球陷入能源危机之中并积极发展替代能源。
由于有技术及经济等众多壁垒的限制,使得清洁新能源大规模工业化利用尚需一定时日。
因此,天然气水合物的开发利用被很多国家提上日程,近年来获得了突飞猛进的发展。
有文章指出,天然气水合物的储量两倍于煤、石油和天然气总储量之和。
因其主要成分为甲烷等各类可燃气体,是上等的优质燃料,若能合理有效地利用这些能源,无疑将会极大地缓解整个世界能源体系的危机现状。
当前全球已经有79个国家发现了天然气水合物,而30多个国家相继开展了水合物的研究工作[1]。
2007年,中国在南海北部成功钻获天然气水合物实物样品,成为继美国、日本,印度之后世界上第四个通过国家级研发计划采到水合物实物样品的国家。
天然气水合物是由某些气体或它们的混合物与水在一定温度、压力条件下生成的一种半稳态的类似于致密冰雪的冰状笼型固体化合物,由水分子的几何晶格构成,晶格含有被轻烃或其他轻质气体(如氮气、二氧化碳)占据的空穴,一般在25℃以下有可能形成。
水分子称为主体分子,而轻烃或其它轻质气体通常称为客体分子。
由水分子通过氢键形成不同形式的刚性笼架晶格,每个笼架晶格中包含一个主要为甲烷的天然气分子,水分子与天然气分子之间通过范德华力相互吸引。
在自然界中,水合物大多存在于大陆永久冻土带和海底沉积层中,其组成以甲烷为主,与天然气相似,故常称作天然气水合物,其中甲烷含量高达99%的天然气水合物又称为甲烷水合物。
已经发现的水合物类型共有三种[1-6]:I 型、II 型和H 型。
其中结构Ⅰ型属于体心立方体结构,可由天然气小分子在深海形成,其笼架晶格以各自的笼架体心堆砌排列。
结构Ⅱ型属于金刚石立方结构,可由含分子大于乙烷小于戊烷的烃形成。
结构I 型和结构II 型主要有小腔和大腔两种结构。
结构H 型属于六面体结构,可由挥发油和汽油等大分子形成,结构H 型有小腔、中腔和大腔三种结构。
天然气水合物研究分析
2019年11月天然气水合物研究分析杨楠(辽河油田海南油气勘探分公司,辽宁盘锦124010)摘要:结合实际,对天然气水合物进行研究,首先阐述天然气水合物开发现状,其次在论述天然气水合物研究方向同时,对该技术在实践过程中的要点进行研究,希望阐述后,可以给相关领域的研究者提供帮助。
关键词:天然气;水合物;研究分析1天然气水合物开发研究进展从世界范围内来分析,主要是开展了8次天然气水合物的试采工作,特别是在2017年5月在我国南海神狐海域内试采达到30.9×104m3的累计产气量和60d的连续开采,创造世界纪录。
但是水合物在开采的过程,需要考虑到内部水合物相变的实际情况,然气水多相渗流会随着气水砂运移和外部环境传热条件没有充分的了解清楚,并且开采环节中由于砂质胶合物分解后会给沉积层力学性能造成较大的影响,而这些问题的存在使得整个开采过程无法达到安全性的要求。
因此,要想达到水合物的安全、高效、经济性的提升,还需要加强该技术的研发,实现技术性的突破。
天然气水合物的研发和应用,总结经过组成结构研发、热力学模型研究、动力学研究等3个环节。
1810年,氯气水合物已经开展了第1次实现人工合成,给水合物的利用开启了先河,进入到20世纪50年代,Stackelberg 和Claussen 首次确定了Ⅰ型和Ⅱ型水合物中的小分子气体与水分子在持续低温的条件之下会逐步的形成笼型的晶体结构,给水合物的开采带来了非常大的优势,从此进入快速研发阶段。
1958年,Waals 和Plat-teeuw 提出以统计热力学为基础所建立的热力学模型,加强了对于水合物方面的研发和利用,了解其具体的赋存条件等。
1965年,前苏联在进行麦索雅哈气田开发的过程中,也是首次在世界范围内公布了自然界中的天然气水合物的储量存在,受到世界工业领域的持续关注,并于1968年进行了首次水合物的试采,开创历史,但是从整体上来说,在试采中存在产量低、管道堵塞等问题,阻碍了水合物的持续开采,所以各个国家开始进行储层内相变规律的研发,也是科学家研究的重点。
天然气水合物的形成条件与分布规律
一、天然气水合物的形成条件天然气水合物是一种在极低温和高压下形成的天然气和水的复合物。
它主要形成于海底或极寒地区的冰层下方,具体的形成条件主要包括以下几个方面:1.温度条件:天然气水合物的形成需要极低的温度,在摄氏零下10度至零下20度左右的温度范围内,水分子能够与天然气分子形成结晶结构,形成水合物。
2.压力条件:高压也是天然气水合物形成的重要条件。
海底深层的巨大压力能够促进水合物的形成,使得天然气分子和水分子更容易结合。
3.适宜的气体组成:天然气水合物的形成需要适宜的气体成分,一般为甲烷等轻烃类气体。
不同的气体组成会影响水合物的形成过程和稳定性。
二、天然气水合物的分布规律天然气水合物主要分布在全球的冷海域和极寒地区,其分布规律主要受以下几个因素影响:1.海底地质构造:海底地质构造是影响天然气水合物分布的重要因素之一。
裂陷盆地、深海扇、海底隆起等不同地质构造对水合物的分布和储量都有一定影响。
2.沉积环境:海底沉积环境的不同也会对水合物的分布产生影响。
例如富营养的海域、富有机质的沉积环境更有利于水合物的形成。
3.气候环境:气候环境对水合物的分布同样有一定影响,寒冷气候和丰富降水的地区更容易形成水合物。
4.地球动力学作用:地球内部的构造和地质运动也会对水合物的形成和分布产生一定影响。
三、结语天然气水合物的形成条件和分布规律是一个复杂而又有待深入研究的课题。
随着人们对海底资源的深入挖掘,天然气水合物的开发利用将成为未来的重要方向。
对于天然气水合物的形成条件和分布规律的深入研究,不仅能够为天然气水合物资源的有效勘探和开发提供理论依据和技术支持,同时也对于保护海洋环境、促进海洋科学研究和应对气候变化等方面具有重要意义。
希望在未来能够有更多科研人员投入到天然气水合物的研究中,为人类社会的可持续发展做出更大的贡献。
四、天然气水合物的形成机制天然气水合物的形成机制涉及到天然气和水在特殊条件下的化学反应过程。
在海底或极寒地区的极低温和高压环境下,天然气分子和水分子发生相互作用,从而形成天然气水合物。
天然气水合物及其开发利用研究进展
天然气水合物及其开发利用研究进展班级:高分子13-3 姓名:*** 学号:*********** 摘要:天然气水合物是继煤、石油和天然气等能源之后的一种潜在新型能源,本文简要介绍了天然气水合物的由来、性质和特征,根据目前国内外研究现状,概述了天然气水合物勘探开发方面的国际研究新进展,以及我国在这方面取得的研究进展,归纳了目前的问题并展望了发展的方向和趋势。
1天然气水合物天然气水合物是近六十年来发现的一种新的矿产资源,它由天然气(主要为甲烷)和水在高压低温条件下形成的类冰状的非化学计量的、笼形结晶化合物。
因其外观像冰而且遇火即可燃烧,所以又被称作“可燃冰”或者“固体瓦斯”、“气冰”。
天然气水合物具有使用方便、燃烧高效清洁、埋藏浅等特点,被誉为21世纪最具有商业开发前景的战略资源,预测储量是煤炭、石油、天然气资源总和的2倍,截至2009年全球共发现116处天然气水合物产地。
目前已有40多个国家和地区正在进行天然气水合物的研究与勘探。
2国际研究新进展目前对于天然气水合物的研究主要包括:天然气水合物的成因分析及其物理化学特性;天然气水合物的勘探技术研究;天然气水合物的开发技术研究及其相关开采、储运、分离和应用等;天然气水合物的潜在环境影响评估及其与全球气候变化的关系(梅东海,1996;Makogon,1997;陈作义等,2002)。
下文对这几方面根据国内外几年研究进展简要介绍。
2.1 天然气水合物的成因分析及物理化学特性天然气水合物中甲烷的成因有3种,分别是热成因、微生物成因和二者混合成因。
在墨西哥和里海两处发现了主要由热成因甲烷形成的天然气水合物。
Kvenvolden(1993)通过对布莱克外海岭甲烷和cO,的同位素研究,证明该处甲烷主要为微生物成因。
Kvenvolden(1995)通过对于采自世界各地的水下天然气水合物样品中的烃类气体成分和甲烷碳同位素组成进行分析,认为形成的甲烷分子主要为微生物成因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天然气水合物形成条件及影响因素研究进展
陈德栋
(荆楚理工学院化工与药学院,湖北荆门 448000)
摘要:目前能源资源的开发和利用变得日益重要,世界各国加大力度对天然气水合物的研究和探索。
本文综述了温度、压强、气体成分和含量及其他因素对天然气水合物的形成和影响。
关键词:天然气水合物;能源开发;形成条件;影响因素;综述
The research progress of Natural gas hydrate formation
conditions and influencing factors
CHEN De-dong
(The college of chemical engineering and pharmacy Jingchu university of technology ,Hubei
province Jingmen city 448000,China )
Abstract: At present, it have become extraordinary significant to exploit and utilize of the new energy resource. All the countries in the world spare no effort to explore as well research about natural gas hydrate. The article summarize the factors, including temperature、pressure、the contend and constituent of the gas and other factors, which are connected to the influence and formation of natural gas hydrate.
Keyword:Natural gas hydrate,energy resource exploitation,formation Conditions,influence factor,summarization
天然气水合物 ,也称为气体笼形化合物 ,是天然产出的包裹天然气分子的刚性固体物质 ,笼形结构由氢键连接的水分子组成[1]。
石油资源是不可再生资源,世界上的煤炭存储量也有限,燃烧石油和天然气会造成环境的污染,而地球上的天然气水合物的含量巨大。
据估计 ,目前世界海域内有 60 余处直接或间接发现了天然气水合物,在单个海域天然气水合物的资源量就可达数万至几百万亿立方米。
为了经济的可持续发展和环境的保护,所以对天
然气水合物的研究具有非常重要的意义。
1天然气水合物的形成条件
天然气水合物的形成 , 主要受3个因素的控制 ,即温度、压力、气体成分与含量。
天然气水合物一般需要在低温高压的条件下形成,而且在低温或高压的条件下会比较稳定。
在大陆极地冻土带条件下 , 地面温度低于 0 ℃, 甲烷水合物稳定区的地层深度必须 > 150 m。
而在大洋沉积物中 ,底层海水温度为 0 ℃时 ,甲烷水合物的稳定区必须在> 300 m 的水深处[2]。
在相同温度条件下,沉积物中天然气水合物的平衡压力要高于纯水中的情况,而相同压力条件下温度要低于纯水情况。
冰点以上,随着温度的升高,不同空隙分布的沉积物介质中甲烷水合物相界之间的差距逐渐增大,它所代表的是平衡压力的变化幅度在在增大.随着温度降低,至冰点以下,甲烷水合物的相界将趋于统一[3]。
天然气水合物的成因类型取决于构成天然气水合物的天然气的成因类[4]。
而天然气水合物的烃类气体主要有两种成因: 微生物成因和热成因, 少数地区天然气水合物包含了两种成因的烃类气体[5]。
天然气水合物的成藏需具备 4 个基本条件[6,7]: 1.充足的天然气和水, 天然气的来源包括无机成因和有机成因的气体如甲烷、乙烷、丙烷、CO2、H2S 等; 2.足够低的温度, 一般温度低于10 ℃ ; 3.较高的压力, 一般压力要求大10 mPa; 4.有利的储集空间, 包括孔、洞、缝。
但是在自然界中, 水合物常常作为其下游离气体的盖层, 例如俄罗斯的麦索亚哈水合物气田, 水合物层和游离气层共同成藏。
另外,也可以采用 Chen-Guo模型计算天然气水合物生成条件 ,该模型是一个完全不同于传统的 van der Waals-Platteeuw模型的水合物理论模型 , 是基于一种新的水合物生成机理建立起来的水合物相平衡条件预测模型[8].
2 天然气水合物影响因素
天然气水合物总是包含在多孔沉积物中,天然气水合物的形成条件受到多因素的制约,如沉积物的粒径与孔径、多孔介质中孔隙水量、孔隙水中离子成分和含量等[9]。
小孔径的多孔介质对天然气水合物的形成具有抑制作用大,孔径中天然气水合物的形成压力与纯水中水合物的形成压力差别不大。
孔隙水及其特性是影响水合物形成的一个重要因素。
天然气水合物的形成压力随着水的活度的降低而升高。
3天然气水合物的开发技术
目前在天然气水合物的开发技术方面仍处于探索研发阶段,一般来说,人为地打破天然气水合物稳定存在的温度压力条件,使其分解,是目前开发天然气水合物中甲烷资源的主要方法[10]。
3.1降压法
降压法是通过降低压力打破天然气水合物稳定存在的条件,促使其分解。
一般是通过降低天然气水合物层之下的游离气聚集层压力,从而使与游离气接触的天然气水合物变得不稳定而分解形成天然气和水。
3.2热激发法
热激发法是采用钻探技术在天然气水合物稳定层中安装管道,对含天然气水合物的地层进行加热,提高局部储层温度,破坏天然气水合物中的氢键,从而使其分解,再用管道收集析出的天然气。
3.3抑制剂法
通过注入抑制剂,使得部分天然气水合物分解,改变天然气水合物稳定层的温压条件,使该层位的天然气水合物不再稳定。
该方法简单且操作方便,但不足之处在于费用高,作用缓慢,不利于海洋天然气水合物的开采
4 结束语及展望
人类对能源资源的探索和研究没有停止过,当然也加大了力度研究天然气水合物。
天然气水合物蕴藏量丰富分布广泛,且充分燃烧后基本只产生二氧化碳和水,对大气几乎没有污染,利于环境的保护。
天然气不仅能燃烧提供热量,还能通过化学反应生成其他化工产品,具有巨大的潜在的经济效益。
能将海底蕴藏的天然气水合物充分的利用,利于环境的保护和经济的可持续发展。
目前世界上开采天然气水合物的能力和科技水平还不足。
我认为开采天然气水合物还需要综合考虑众多的因素。
比如,天然气从海洋或者冻土层下挖掘出来,温度压力的改变均会使它变得不稳定,容易发生泄漏,一旦发生泄漏就可能造成海洋环境的不稳定,从而引发海底地质灾害 ,如海底滑坡和泥石流等,而且会造成海洋生态系统破坏,甚至引发海底地震,带来海啸;如果天然气大量散发到空气中,会造成温室效应。
对于中国在研究天然气水合物而言,无论是在理论方面上,还是技术装备方面上,都取得了显著进展, 初步形成了适合中国海域特点的天然气水合物探测技术系列[11]。
在开采技术方面 ,传统的热激发开采法与减压开采法得到了不断完善 ,一些新的开采思路如CO2置换
法与固体开采法正处于积极研究之中;在开采研究实践方面 ,已开展了冻土区天然气水合物试采研究 ,积累了一些经验性的认识[12]。
展望未来,经过科研人员的不懈努力和刻苦攻关,随着科技水平的提高以及开采技术的成熟,人类一定能够充分利用天然气水合物,在很大程度上缓解能源资源短缺的问题,创造更高的经济效益,让生活更加美好!
参考文献:
[1]狄永军,郭正府,李凯明等. 天然气水合物成因探讨[J],地球科学进展,2003,18(1):138-143
[2]杨竞红,蒋少涌,凌洪飞.天然气水合物的成因及其碳同位素判别标志[J] ,海洋地质动态,2001,17(8):1-4
[3]吴宝祥,雷怀彦,段毅等. 沉积物体系中甲烷水合物平衡温度、压力条件实验模拟[J],石油勘探与开发,2004,8:22-28
[4] 龚建明, 戴春山, 蔡峰等. 天然气水合物的成因类型初探[J],海洋地质动态,2001,17(11):1-5
[5] 赵祖斌,杨木壮,沙志彬. 天然气水合物气体成因及其来源[J],海洋地质动态,2001,17(7):38-41
[6] 于兴河,张志杰,苏新等. 中国南海天然气水合物沉积成藏条件初探及其分布[J],地学前缘,2004,11(1):311-315
[7]樊栓狮,刘锋,陈多福. 海洋天然气水合物的形成机理探讨[J],天然气地科学,2004,15(5):524-530
[8] 王秀林,黄强 , 陈立涛等. 天然气水合物生成条件的测定和计算[J],化工学报,2006,57(10):2416-2419
[9] 孙志高. 海底天然气水合物成因影响因素探讨[J],可再生能源,2007,25(1):56-58
[10] 张金华,魏伟,王红岩. 天然气水合物研究进展与开发技术概述[J],天然气技术,2009,3(2):67-80
[11] 张洪涛,张海启,祝有海. 中国天然气水合物调查研究现状及其进展[J],2007,34(6)
[12] 吴传芝,赵克斌,孙长青等.天然气水合物开采研究现状[J],地质科技情报,2008,27(1):47-52。