四年级奥数题定义新运算
小学四年级奥数定义新运算
小学四年级奥数定义新运算做题目是也要多多牢记自己哪里容易错做个错提集是很不错的选择.对于高难度题目的错,主要是平时多做自己不会的题目,力求弄懂,并多做.只要你做的比其他同学多的多,那么你成绩肯定不会差。
以下是无忧考网整理的相关资料,希望对您有所帮助。
【篇一】设a、b都表示数,规定a△b=3 a-2 b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b。
点击下一页查看答案分析:分析解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍。
解:①3△2=3 3-2 2=9-4=52△3=3 2-2 3=6-6=0。
②由①的例子可知“△”没有交换律。
③要计算(17△6)△2,先计算括号内的数,有:17△6=3 17-2 6=39;再计算第二步39△2=3 39-2 2=113,所以(17△6)△2=113。
对于17△(6△2),同样先计算括号内的数,6△2=3 6-2 2=14,其次17△14=3 17-2 14=23,所以17△(6△2)=23。
④由③的例子可知“△”也没有结合律.⑤因为4△b=3 4-2 b=12-2b,那么12-2b=2,解出b=5。
【篇二】例题1.规定:A○B表示A、B中较大的数,A△B表示A、B中较小的数.若(A○5+B△3)×(B○5+A△3)=96,且A、B均为大于0的自然数,A×B的所有取值有()个。
定义新运算解析:共5种,分类讨论,由于题目中所要求的定义新运算的符号是较大的数与较大的数,则对于A或者B有3类不同的范围,A小于3,A大于等于3,小于5,A大于等于5。
对于B 也有类似,两者合起来共有3×3=9种不同的组合,我们分别讨论。
1)当A【篇三】定义新运算1.规定:a※b=(b+a)×b,那么:(2※3)※5得多少?2.规定:a⊙b=a/b-b/a,则:2⊙(5⊙3)得多少?3.规定:a※b=(a+2b)/3,若6※x=22/3,则x是多少?4.如果a△b表示(a-2)×b,例如3△4=(3-2)×4=4,当a△5=30时,那么a是多少?5.已知a,b是任意有理数,我们规定:a⊙b=a+b-1,a⊙b=ab-2,那么4⊙【(6⊙8)(3⊙5)】是多少?6.如果a⊙b表示3a―2b,例如4⊙5=3×4―2×5=2,当x⊙5比5⊙x大5时,那么x是多少?7.A、b均为自然数,且a⊙b=a+2a+3a+……+ab,若x⊙10=110,那么x是多少?8.规定新运算※:a※b=3a-2b,若x※(4※1)=7,则x是多少?9.对余数a、b、c、d规定=2ab-c+d,如果7,那么x是多少?10.规定:6※2=6+66=72,2※3=2+22+222=246,1※4=1+11+111+1111=1234,那么:7※5是多少?。
(完整版)四年级奥数详解答案第7讲定义新运算
(完整版)四年级奥数详解答案第7讲定义新运算四年级奥数详解答案第7讲第七讲定义新运算一、知识概要1. 定义新运算定义新运算是指用某些特殊的符号(如△⊙※○—等)来表示一种特定的运算过程或运算顺序,从而解答某些特殊算式的一种运算。
因为它有别于我们日常学习的运算法则当然也有联系性,故称之为定义新运算。
2. 基本要求解答定义新运算问题,一定要严格按照新定义的运算法则进行计算,推理或证明,不得随便改变运算顺序。
二、典型题目精讲1. a、b是自然数,定义a?b = (a+b)÷2,(1)计算23?9 (2)计算17?(8?10)分析:本是所定义的a与b的运算规划是求a与b的和的一半。
在(1)题中,a是23,b 是9,把它们分别代入(a+b)÷2的式子中,就可求出27?9的值。
(2)题同这样的运算规划先求出8?10的值,然后用同样的运算规则再把17与算出来的值进行运算。
解:(1) 23?9= (23+9)÷2 =16(2) 17?(8?10) = 17?【(8+10)÷2】= 17?9= (17+9)÷2= 132. 定义运算?为:a?b = 5×a×b-(a+b), 求11?12.分析:定义新运算和我们日常的运算法制和顺序,即有区别又有联系。
比如说:先乘除后加、减;有括号的一定要先算括号中的运算等运算法制,在定义新运算中仍然适用。
按理说,这道题有四步计算过程:①(11+12)=23 ②5×11=55 ③55×12=660④660-23=637 这里②、③步是同时运算,所以②、③和①步可同时运算。
解:11?12 = 5×11×12-(11+12)= 660-23= 6373. 已知1○—3=1×2×3,6○—5=6×7×8×9×10,计算4○—5-5○—4。
【经典】小学四年级奥数__定义新运算图文百度文库
【经典】小学四年级奥数__定义新运算图文百度文库一、拓展提优试题1.(8分)传说,能在三叶草中找到四叶草的人,都是幸运之人.一天,佳佳在大森林中摘取三叶草,当她摘到第一颗四叶草时,发现摘到的草刚好共有100片叶子,那么,她已经有颗三叶草.2.三个连续自然数的乘积是120,它们的和是.3.如图,把一个边长是5cm的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向移动其中的4个长方形,则所得图形的周长是cm.4.有一个学生在做计算题时,最后一步应当除以20,但却错误地加上20,因而得到错误的结果是180.请问这道计算题的正确得数应是.5.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.6.如图所示,5个相同的两位数相加得两位数,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则=.7.一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有种.8.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…9.一辆公共汽车有78个座位,空车出发,第一站上一位乘客,第二站上二位乘客,第三站上三位乘客,依次下去,多少站以后,车上坐满乘客?10.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米.11.甲、乙、丙三校合办画展,参展的画中,有41幅不是甲校的,有38幅不是乙校的,甲、乙两校参展的画共43幅,那么,丙校参展的画有幅.12.围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋子共14副,其中象棋有副.13.(8分)2015年1月1日是星期四,那么2015年6月1日是星期.14.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是.15.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有组.【参考答案】一、拓展提优试题1.解:(100﹣4)÷3=96÷3=32(棵)答:她已经有了32棵三叶草.故答案为:32.2.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.解:120=2×2×2×3×5=(2×2)×(2×3)×5,2×2=4,2×3=6,5,即,三个连续自然数的乘积是120,这三个数是4、5、6,所以,和是:4+5+6=15.故答案为:15.【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.3.【分析】本题考察图形边长的平移.解:画出移动后的图,所得图形的周长是5×2+(5+1×2+2×2+3×2+4×2+5)=10+30=40cm.【点评】本题主要抓住平移后的图形每条边边长为多少即可求解.4.解:设最后一步之前运算的结果是a,a+20=180,那么:a=180﹣20=160;正确的计算结果是:a÷20=160÷20=8;故答案为:8.5.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.6.【分析】根据整数加法竖式计算的方法进行推算即可.解:根据题意,由加法竖式可得:个位上,5×B的末尾还是B,由5×0=0,5×5=25可得:B=0或B=5;假设B=0,那么十位上,5×A=M,M要小于10,只有当A=1时,5×1=5,符合;所以,A=1,B=0;由以上推算可得:假设B=5时,5×5=25,向十位进2;十位上,5×A+2=M,M要小于10,只有当A=1时,5×1+2=7,符合;所以,A=1,B=5;由以上推算可得:因此两位数是:10或15.故答案为:10或15.【点评】推算过程中,本题的关键是末尾数字相同,然后再进一步解答即可.7.【分析】从5角的硬币进行分析讨论:首选从袋中摸出6枚全是5角的硬币;(2)从袋中摸出6枚中5枚面值5角的硬币和1枚面值1元的硬币;(3)从袋中摸出6枚中4枚面值5角的硬币和2枚面值1元的硬币;(4)从袋中摸出6枚中3枚面值5角的硬币和3枚面值1元的硬币;(5)从袋中摸出6枚中2枚面值5角的硬币和4枚面值1元的硬币;(6)从袋中摸出6枚中1枚面值5角的硬币和5枚面值1元的硬币.解:由以上分析,得出下列情况:这6枚硬币的面值的和有6种.故答案为:6.【点评】解答此题可从5角的硬币考虑,逐一分析探讨得出结论.8.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.9.解:设第n站以后车上坐满了乘客,可得:[1+1+(n﹣1)×1]×n÷2=78[2+n﹣1]×n÷2=78,[1+n]×n÷2=78,(1+n)×n=156,由于12×13=156,即n=12.答:12站以后,车上坐满乘客.10.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.解:(50+20)×2+(12+4)×2=70×2+16×2=140+32=172(厘米)答:剩余部分图形的周长是172厘米.故答案为:172.【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.11.【分析】41幅不是甲校的,就是乙校和丙校的,38幅不是乙校的,就是甲校和丙校,其中丙校的数量同时包含在41与38中,所以41+38=79(幅)是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,得出丙校的2倍,再除以2就是丙校参展的画的数量.解:(41+38﹣43)÷2=(79﹣43)÷2=36÷2=18(幅)答:丙校参展的画有 18幅.故答案为:18.【点评】解决本题的关键是明确其丙校的数量同时包含在41与38中,所以,41与38的和是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,再除以2就是丙校参展的画的数量.12.【分析】假设全是围棋,那么就有24×14=336元,这就比已知的300元多出了336﹣300=36元,因为一副围棋比一副象棋多24﹣18=6元,由此即可求得象棋的数量.解:假设全是围棋,则象棋就有:(24×14﹣300)÷(24﹣18)=36÷6=6(副);答:其中象棋有6副.故答案为:6.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.13.解:因为2015÷4=503…3,所以2015年是平年,2月有28天,(31×3+30+28)÷7=151÷7=21(个)…4(天)因为2015年1月1日是星期四,4+4﹣7=1所以2015年6月1日是星期一.故答案为:一.14.【分析】6时53分﹣6时45分=8分钟,设从家到学校若每分钟走60米,x分钟到学校,则若每分钟走75米,x﹣8分钟到学校,因为从家到学校的距离一定,根据“速度×时间=路程”列方程解答即可.解:设从家到学校若每分钟走60米,x分钟到学校,6时53分﹣6时45分=8分钟60x=(x﹣8)×7560x=75x﹣60015x=600x=40;6时53分﹣40分=6时13分;答:洋洋从家里出发的时刻是6:13.故答案为:6:13.【点评】此题考查列方程解应用题,本题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.15.解:128÷2=64(组)100﹣64=36(组)36÷2=18(组)答:那么同组2只动物都是狐狸的共有18组.故答案为:18.。
四年级数学经典奥数题训练50(含答案)图文百度文库
四年级数学经典奥数题训练50(含答案)图文百度文库一、拓展提优试题1.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.2.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.3.一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有种.4.一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要小时.5.定义运算:A△B=2A+B,已知(3△2)△x=20,x=.6.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有辆.7.两数相除,商是12,余数是3,被除数最小是.8.六个人传球,每两人之间至多传一次,那么这六个人最多共进行15次传球.9.喜羊羊等一群小羊割了一堆青草准备过冬吃.他们算了一下,平均每只小羊割了45千克.如果除了他们自己外,再分给慢羊羊村长一份,那么每只小羊可分得36千克.回到村里,懒羊羊走来,也要分一份.这样一来,每只小羊就只能分得千克草了.10.甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍.那么,原来甲桶中油比乙桶中的油多千克.11.如图,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形ABCD的面积是.【分析】如图所示:添加辅助线,因为阴影小正方形的边长是2,最外边的大正方形的边长是6,则大正方形被分成了9个小正方形,其中大正方形每个角上的三角形的面积相当于边长是2的小正方形的面积,所以正方形ABCD的面积相当于5个阴影小正方形的面积,然后利用正方形的面积公式即可求解.12.一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是秒.【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此13.如图,一个大正方形被分成四个相同的小长方形和一个小正方形,若一个小长方形的周长是28,则大正方形的面积是.14.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有天..15.(8分)有10张卡片,上面分别写着1,2,3,…,9,10.那么至少取出6张卡片,才能保证取出的卡片中,有两张卡片上的数字之和为11.【参考答案】一、拓展提优试题1.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.2.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.3.【分析】从5角的硬币进行分析讨论:首选从袋中摸出6枚全是5角的硬币;(2)从袋中摸出6枚中5枚面值5角的硬币和1枚面值1元的硬币;(3)从袋中摸出6枚中4枚面值5角的硬币和2枚面值1元的硬币;(4)从袋中摸出6枚中3枚面值5角的硬币和3枚面值1元的硬币;(5)从袋中摸出6枚中2枚面值5角的硬币和4枚面值1元的硬币;(6)从袋中摸出6枚中1枚面值5角的硬币和5枚面值1元的硬币.解:由以上分析,得出下列情况:这6枚硬币的面值的和有6种.故答案为:6.【点评】解答此题可从5角的硬币考虑,逐一分析探讨得出结论.4.解:船的静水速度为:360÷10﹣10,=36﹣10,=26(千米/时);返回原地需要:360÷(26﹣8),=360÷18,=20(小时);答:这条船沿岸边返回原地需要20小时.故答案为:20.5.解:(3△2)△x=20,(2×3+2)△x=20,8△x=20,2×8+x=20,16+x=20,x=20﹣16,x=4;故答案为:4.6.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3),=10÷1,=10(辆),答:三轮车有10辆.故答案为:10.7.解:除数最小为:3+1=412×4+3=48+3=51故答案为:51.8.解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.故答案为:13.9.解:设割草的小羊有x只,则它们一共割草45x千克,45x=36(x+1)45x=36x+369x=36x=445×4÷(4+1+1)=180÷6=30(千克)答:这样一来,每只小羊就只能分得30千克草了.故答案为:30.10.【分析】根据题意,把甲乙两个油桶的共存油看作5份,可以计算出每份是多少千克油,将乙桶中的15千克油注入甲桶后,甲桶占了其中的4份,乙桶占了其中的1份,1份即100÷5=20千克,可以计算出注入后各个油桶的千克,再用乙桶的油减去15千克,甲桶的油加上15千克,即是甲乙两桶原存油的数量,再用甲桶原存油的数量减去一桶原存油的数量,列式解答即可解:100÷(1+4)=20(千克)注入后的甲桶:4×20=80(千克)倒出后的乙桶:1×20=20(千克)原甲桶存油:80﹣15=65(千克)原乙桶存油:20+15=35(千克)甲桶中油比乙桶中的油多:65﹣35=30(千克)答:原来甲桶中油比乙桶中的油多30千克.故答案为:30.【点评】解答此题的关键是分清注入后甲乙两桶油的关系,即甲桶存油等于乙桶存油的4倍,然后可计算出注入后甲乙两桶油的存量,再计算出注入前两桶油的重量,二者相减即可.11.解:2×2×5=20答:正方形ABCD的面积是20.故答案为:20.【点评】解答此题的关键是:将原图形进行分割,然后利用正方形的面积公式求解.12.时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.解:根据题意可得:快车与慢车的速度和:315÷21=15(米/秒);坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);答:坐在快车上的人看见慢车驶过的时间是20秒.故答案为:20.【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.13.【分析】一个小长方形的周长是28,也就是小长方形的长和宽的和是28÷2=14,也就是大正方形的边长,然后根据正方形的面积公式,解决问题.解:28÷2=1414×14=196答:大正方形的面积是196.故答案为:196.【点评】根据长方形的长和宽与正方形边长之间的关系,先求出小长方形的长和宽的和,即求出了大正方形的边长.14.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期每一周期有一天重合,那么100周期共有100天重合.故答案为:100.【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.15.解:10÷2=5(个)5+1=6(个)故填6。
有关定义新运算的奥数题
有关定义新运算的奥数题
定义新运算的奥数题通常涉及数学中的某些基本概念,如数论、代数、几何等,并且通常需要使用一些特殊的工具或方法来解决。
以下是一些有关定义新运算的奥数题:
1. 定义新运算“+”,使得对于任意的整数 a、b 和 c,有
a+(b+c)=a+b+c。
请证明这个运算的封闭性、结合律和交换律。
2. 定义新运算“*”,使得对于任意的整数 a、b 和 c,有
a*b*c=a*b*(a*b+c)。
请证明这个运算的封闭性、结合律和交换律。
3. 定义新运算“/”,使得对于任意的整数 a、b 和 c,有
a/b/c=a/(b*c)。
请证明这个运算的封闭性、结合律和交换律。
4. 定义新运算“+”,使得对于任意的整数 a、b 和 c,有
a+(b-c)=a+b-c。
请证明这个运算的封闭性、结合律和交换律。
5. 定义新运算“*”,使得对于任意的整数 a、b 和 c,有
a*b*(a-b)=a*b-a*b*c。
请证明这个运算的封闭性、结合律和交换律。
解决这些问题需要深入的数学知识和技巧,例如代数、几何和概率等。
在解决这些问题时,通常需要使用一些特殊的方法和工具,例如归纳法、递推法、递归法等。
定义新运算的奥数题是数学中的一个重要分支,它们能够帮助学生发展他们的数学思维和解决问题的能力。
通过解决这些问题,学生可以更深入地了解数学中的各种概念和技巧,并且可以提高他们的数学素养。
四年级奥数上册培训精品课件——定义新运算通用版
练习二 1,对于两个数a与b,规定: a⊕b=a×b-(a+b)。计算 3⊕5。
2,对于两个数A与B,规定:
A☆B=A×B÷2。试算6☆4。
例3:如果2△3=2+3+4, 5△4=5+6+7+8,按此规 律计算3△5。
练习三
1、如果5▽2=5×6,2▽3=2×3×4, 计算:3▽4。
2、如果2▽4=24÷(2+4), 3▽6=36÷(3+6),计算8▽4。
2、对于两个数a、b,规定a▽b=b×x- a×2,并且已知82▽a□b=a+(a+1)+(a+2)+…+(a+b-1),已知 95□x=585,求x。
3,如果1!=1,2!=1×2=2,3! =1×2×3=6,按此规律计算5!。
例5: 2▽4=8,5▽3=13, 3▽5=11,9▽7=25。按此 规律计算:10▽12。
练习五
1、有一个数学运算符号“▽”,使下列 算式成立:6▽2=12,4▽3=13,3▽4=15, 5▽1=8。按此规律计算:8▽4。
•练 习 一
1、设a、b都表示数,规定: a○b=6×a-2×b。试计算3○4。
2、设a、b都表示数,规定:
a*b=3×a+2×b。试计算: (1)(5*6)*7;
(2)5*(6*7)
3、有两个整数是A、B,A▽B表示A 与B的平均数。已知A▽6=17,求A。
例2:对于两个数a与b,规 定a⊕b=a×b+a+b,试计 算6⊕2。
本节,我们将定义一些新的运算情势,它们与我 们常用的加、减、乘、除运算是不相同的.
• 例1:设a、b都表示数,规定:a△b表 示a的3倍减去b的2倍,即:a△b =
a×3-b×2。
试计算:(1)5△6;(2)6△5。
四年级奥数定义新运算
定义新运算例1:设a、b都表示数,规定:a△b表示a的3倍减去b的2倍,即:a△b = a×3-b×2。
试计算:(1)5△6;(2)6△5。
显然,本例定义的运算不满足交换律,计算中不能将△前后的数交换。
练习一1,设a、b都表示数,规定:a○b=6×a-2×b。
试计算3○4。
2,设a、b都表示数,规定:a*b=3×a+2×b。
试计算:(1)(5*6)*7 (2)5*(6*7)3,有两个整数是A、B,A▽B表示A与B的平均数。
已知A▽6=17,求A。
例2:对于两个数a与b,规定a⊕b=a×b+a+b,试计算6⊕2。
练习二1,对于两个数a与b,规定:a⊕b=a×b-(a+b)。
计算3⊕5。
2,对于两个数A与B,规定:A☆B=A×B÷2。
试算6☆4。
3,对于两个数a与b,规定:a⊕b= a×b+a+b。
如果5⊕x=29,求x。
例3:如果2△3=2+3+4,5△4=5+6+7+8,按此规律计算3△5。
练习三1,如果5▽2=2×6,2▽3=2×3×4,计算:3▽4。
2,如果2▽4=24÷(2+4),3▽6=36÷(3+6),计算8▽4。
3,如果2△3=2+3+4,5△4=5+6+7+8,且1△x=15,求x。
例4:对于两个数a与b,规定a□b=a+(a+1)+(a+2)+…(a+b-1)。
已知x□6=27,求x。
练习四1,如果2□3=2+3+4=9,6□5=6+7+8+9+10=40。
已知x□3=5973,求x。
2,对于两个数a与b,规定a□b=a+(a+1)+(a+2)+…+(a+b-1),已知95□x=585,求x。
3,如果1!=1,2!=1×2=2,3!=1×2×3=6,按此规律计算5!。
例5:2▽4=8,5▽3=13,3▽5=11,9▽7=25。
奥数-24定义新运算+答案
定义新运算定义新运算是指用一个符号和已知运算表达式表示一种新的运算。
这个新的运算符号包含有多种基本(混合)运算。
定义新运算是一种特别设计的计算形式,它使用一些特殊的运算符号,这是与四则运算中的加减乘除符号是不一样的。
定义新运算要注意以下四点:1、照猫画虎:严格按照新定义的运算规则,把已知的数代入新定义的式子进行运算。
2、括号优先:新定义的算式中有括号的,要先算括号里的。
但它在没有转化前,是不适合于各种运算的。
3、运算律不轻易使用:新的运算不一定符合运算规律,不一定符合交换律,结合律和分配律,4、意义不确定:每个新定义的运算符号只能在本题中使用,同一符号在不同的题目中意义不同。
【例 1】假设a★b=(a+b)÷b。
求:8★5的值。
解析:该题的新运算被定义为:a ★b等于两数之和除以后一个数的商。
严格按新定义的要求,将数值代入新定义的式子进行运算。
这里a是8,b是5。
8★5=(8+5)÷5=2.6【例 2】规定n※b=3×n-b÷2。
求:10※6的值。
解析:该题的新运算被定义为: n ※b等于第一个数的3倍减后一个数的一半。
这里要先算积和商,再算他们的差。
这里n代表数字10,b代表数字6。
10※6=3×10-6÷2=27练习一1.设a、b都表示数,规定:a○b=6×a-b。
试计算3○4。
2.“★”表示一种新运算,规定A★B=5A+7B,求4★5。
3.规定a#b=(3+b)×a÷2,其中a、b都是自然数。
求:6#8的值。
4.对于任意的两个数a和b,规定a⊙b=3×a-b÷3。
求8⊙9的值5.将新运算“&”定义为:a&b=(a+b)÷(a-b)。
求27&9。
6.规定a△b=(a+b)×(b-a),其中a、b都是自然数,b>a,求5△8的值。
7.规定:m※n=4×n-(m+n)÷2。
四年级奥数一定义新运算课件
四年级奥数一定义新运算
14. 有一个数学运算符号“⊗”,使下列算式成 立:4⊗8=16,10⊗6=26,6⊗10=22, 18⊗14=50.求7⊗3=?
四年级奥数一定义新运算
15. 对于数ba,规定运算“▽”为a▽b=(a+3)×(b-5).求 5▽(6▽7)的值.
四年级奥数一定义新运算
16. x、y,表示两个数,规定新运算“★”及“△” 如下:x★y=6x+5y,x△y=3xy.求(2★3)△4的 值..
四年级奥数一定义新运算
四年级奥数一定义新运算
四年级奥数一定义新运算
四年级奥数一定义新运算
4. 定义新的运算a⊖b=a×b+a+b.求 (1⊖2)⊖3.
四年级奥数一定义新运算
5. 有一个数学运算符号“⊗”,使下列算式成 立:2⊗4=10,5⊗3=18,3⊗5=14,9⊗7=34. 求:7⊗3=?
1,如果5▽2=2×6,2▽3=2×3×4, 计算:3▽4。
四年级奥数一定义新运算
2,如果2▽4=24÷(2+4), 3▽6=36÷(3+6),计算 8▽4。
四年级奥数一定义新运算
3、如果2△3=2+3+4,5△4=5+6+7+8,且1△x=15, 求x。
四年级奥数一定义新运算
例4:对于两个数a与b,规定 a□b=a+(a+1)+(a+2)+……+(a+b-1)。 已知x□6=27,求x。
四年级奥数一定义新运算
4、如果4※2=14,5※3=22,3※5=4, 7※18=31,求6※9的值。
四年级奥数一定义新运算
5、设a▽b=a×b+a-b,求:5▽8。
四年级奥数一定义新运算
四年级奥数--定义新运算共23页文档
例题1
A*B =A+B =3+4 =7
练习1
例题2
=X÷Y =18÷3 =6
练习2
=18÷3+18+3 =27
例题3
提示:有括号的先算括号内的
a*b=(b+a)xb 2*3=(3+2)x3 =15 15*5=(5+15)x5 =100 所以:(2*3)*5=100
练习3
例题4
123
1 2 34
16、云无心以出岫,鸟倦飞而知还。 17、童孺纵行歌,斑白欢游诣。 18、福不虚至,祸不易来。 19、久在樊笼里,复得返自然。 20、羁鸟恋旧林,池鱼思故渊。
四年级奥数--定义新运算
等于2
等于王
等于3
如上,同样的数字在不同情况 (不同法则)的运算下会生成不同的 结果。
形如左图的运 算称之为新运 算
学习目标
• (1)解决此类问题,关键是要正确理解新定义的算式含义,严 格按照新定义的计算顺序,将数值代入算式中,再把它转化为一 般的四则运算,然后进行计算。
• (2)我们还要知道,这是一种人为的运算形式。它是使用特殊 的运算符号,如:*、▲、★、◎、、Δ、▴、■等来表示的一种运 算。
• (3)新定义的算式中,有括号的,要先算括号里面的。
规律:
Байду номын сангаас
前面的数表示从几开始加 后面的数表示加数的个数
=7+8+9+10 =34
1 2 34
练习4
例题5
规律:
前面的数表示从几开始加
后面的数表示加数的个数
=a+(a+1)+(a+2)+…+(a+14)
四年级奥数(定义新运算)
奥数:定义新运算1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。
注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。
(2)我们还要知道,这是一种人为的运算形式。
它是使用特殊的运算符号,如:*、▲、★、◎、 、Δ、▴、■等来表示的一种运算。
(3)新定义的算式中,有括号的,要先算括号里面的。
2、一般的解题步骤是:一是认真审题,深刻理解新定义的内容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。
例题1、对于任意数a,b,定义运算“*”:a*b=a×b-a-b。
求12*4的值。
变式训练1.假设a ★ b = ( a + b )÷ b 。
求 8 ★ 4变式训练2.如果a◎b=a×b-(a+b)。
求6◎(9◎2)例题2、A,B表示两个数,定义A△B表示(A+B)÷2,求(1)(3△17) △28 (2)[(1△9) △11] △6。
变式训练1、设a▽b=a×b+a-2b,按此规定计算:(1)8▽5 (2)(4▽6) ▽7例题3、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。
求6Δ5。
变式训练1.规定3*5=3+4+5+6+7,5*4=5+6+7+8,…按此规定计算:11*5;200*3例题4、狼和羊在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号“△”表示:羊△羊=羊;羊△狼=狼;狼△狼=狼。
用符号“☆”表示:羊☆羊=羊,羊☆狼=羊,狼☆羊=羊,狼☆狼=狼。
对羊和狼,可以用上面规定的运算做混合运算,混合运算的法则是从左到右,先算括号内的,运算的结果或是羊,或是狼。
求下列结果1、羊△狼☆羊2、羊△(狼☆羊)☆羊△(狼△狼)课堂作业1、设a,b都表示自然数,规定a☆b=3a+b÷2,计算:(1)5 ☆6 (2)6☆8(3)2☆(3☆6)(4)(2☆8)☆102、设m,n都表示自然数,规定m#n=2m+3n,计算4#3,2#20.3、假设a ★ b = ( a + b )÷(a-b)。
四年级数学人教版秋季奥数:第一讲 定义新运算
第一讲定义新运算知识点讲解定义新运算指用一个符号和已知运算表达式表示一种新的运算。
例如a☆b=3a-3b,新运算使用的符号是☆,而等号右边表示新运算意义的则是四则运算符号。
5☆3=3X5 - 3X3解题技巧要确切理解新运算的意义,严格按照规定的法则进行运算。
注意事项定义新运算一般是不满足四则运算中的运算律和运算性质,所以不能盲目地运用定律和运算性质解题。
例题讲解例1:设a、b都表示数,规定a△b表示a的4倍减去b的3倍,即a△b=4×a-3×b,试计算5△6和6△5。
解析:5△6=5×4-6×3=20-18=26△5=6×4-5×3=24-15=9注意:例1定义的△没有交换律,计算中不得将△前后的数交换。
例2:对于两个数a、b,规定如果a▲b=a×b-(a+b),求6▲(9▲2)。
解析:括号里的部分已经构成了新运算,其运算结果又与括号外的部分构成新运算。
本题要运用新运算的关系,计算两次。
6▲(9▲2)= 6▲[ 9×2 - (9+2) ] = 6▲7 = 6×7-(6+7)= 42-13 = 29注意:有小括号,先算小括号里面的。
例3:已知a☆b=a+(a+1)+(a+2)+•••+(a+b-1),例如:4☆5=4+5+6+7+8,按此规定,2001☆5=?解析:通过观察可以发现,"☆"这个特殊的符号在这道题中所规定的定义是求几个连续的自然数的和。
2001☆5=2001+2002+2003+2004+2005=2003×5=10015注意:定义新运算有省略号的注意尾项。
自我挑战1、现定义一种新运算:★,对于任意整数a和b,规定有:a★b =a+b-1,则4★[(6★8)★(3★5)]的值为( )?2、如果规定:1※2=1+11,2※3=2+22+222,3※4=3+33+333+333+3333。
四年级奥数一定义新运算
4、如果(rúguǒ)4※2=14,5※3=22, 3※5=4,7※18=31,求6※9的值。
第二十四页,共56页。
5、设a▽b=a×b+a-b,求:5▽8。
第二十五页,共56页。
6、规定:a△b=a+(a+1)+(a+2)+……+(a+b-1), 其中(qízhōng)a,b表示自然数。 (1)求1△100的值;(2)已知x△10=75,求 x。
第十三页,共56页。
3、如果(rúguǒ)2△3=2+3+4,5△4=5+6+7 +8,且1△x=15,求x。
第十四页,共56页。
例4:对于(duìyú)两个数a与b,规定 a□b=a+(a+1)+(a+2)+……+(a+b-1)。 已知x□6=27,求x。
第十五页,共56页。
1,如果(rúguǒ)2□3=2+3+4=9,6□5=6+7+8+9 +10=40。已知x□3=5973,求x。
第三十二页,共56页。
第三十三页,共56页。
14. 有一个数学(shùxué)运算符号“⊗”,使下列 算式成立:4⊗8=16,10⊗6=26,6⊗10=22, 18⊗14=50.求7⊗3=?
第三十四页,共56页。
15. 对于数ba,规定(guīdìng)运算“▽”为a▽b=(a+3)×(b-5). 求5▽(6▽7)的值.
第七页,共56页。
1,对于两个数a与b,规定(guīdìng):a⊕b=a×b- (a+b)。计算3⊕5。
第八页,共56页。
2、对于两个(liǎnɡ ɡè)数A与B,规定: A☆B=A×B÷2。试算6☆4。
四年级奥数知识点:定义新运算
四年级奥数知识点:定义新运算我们学过的常用运算有:+、-、、等.如:2+3=523=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的+,-,,运算不相同.我们先通过具体的运算来了解和熟悉定义新运算.例1 设a、b都表示数,规定a△b=3a2b,①求3△2,2△3;②这个运算△有交换律吗?③求(17△6)△2,17△(6△2);④这个运算△有结合律吗?⑤如果已知4△b=2,求b.分析解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2= 33-22=9-4= 52△3=32-23=6-6=0.②由①的例子可知△没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=317-2再计算第二步39△2=3 39-22=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=36-22=14,其次17△14=317-214=23,所以17△(6△2)=23.④由③的例子可知△也没有结合律.⑤因为4△b=34-2b=12-2b,那么12-2b=2,解出b=5.例2 定义运算※为a※b=ab-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算※有交换律、结合律吗?④如果3※(5※x)=3,求x.解:① 5※7=57-(5+7)=35-12=23,7※ 5= 75-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=34-(3+4)=5,再计算第二步12※5=125-(12+5)=43,所以12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=123-(12+3)=21,其次21※4=214-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=ab-(a+b);b※a=ba-(b+a)=ab-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此※有交换律.由②的例子可知,运算※没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)= 8x- 13那么 8x-13=3解出x=2.③这个运算有交换律和结合律吗?副标题#e#的观察,找到规律:例5 x、y表示两个数,规定新运算*及△如下:x*y=mx+ny,x△y=kxy,其中 m、n、k均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据△的定义:1△2=k12=2k,由于k的值不知道,所以首先要计算出k的值.k值求出后,l△2的值也就计算出来了,我们设1△2=a.(1△2)*3=a*3,按*的定义: a*3=ma+3n,在只有求出m、n时,我们才能计算a*3的值.因此要计算(1△2)* 3的值,我们就要先求出 k、m、n的值.通过1*2 =5可以求出m、n的值,通过(2*3)△4=64求出 k的值.解:因为1*2=m1+n2=m+2n,所以有m+2n=5.又因为m、n均为自然数,所以解出:①当m=1,n=2时:(2*3)△4=(12+23)△4=8△4=k84=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(32+13)△4=9△4=k94=36k所以m=l,n=2,k=2.(1△2)*3=(212)*3=4*3=14+23=10.宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
【经典】小学四年级奥数题及答案(可直接打印) 一图文百度文库
【经典】小学四年级奥数题及答案(可直接打印) 一图文百度文库一、拓展提优试题1.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.2.是三位数,若a是奇数,且是3的倍数,则最小是.3.将一张长11厘米,宽7厘米的长方形纸沿直线剪开,每次必须剪出正方形,这样最多能剪出个正方形.4.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是分.5.如果今天是星期五,那么从今天算起,57天后的第一天是星期.6.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.7.在□中填上适当的数,使竖式成立.8.学校有足球和篮球共20个,恰好可供96名同学同时活动,足球每6人玩一个,篮球每3人玩一个,其中足球有个.9.小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样的速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.10.爸爸比儿子大24岁,今年爸爸的年龄是儿子的五倍,年后爸爸的年龄是儿子的三倍.11.两数相除,商是12,余数是3,被除数最小是.12.六个人传球,每两人之间至多传一次,那么这六个人最多共进行15次传球.13.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.14.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.15.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.【参考答案】一、拓展提优试题1.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.2.【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,又因为是3的倍数,所以可得:1+0+c的和是3的倍数,所以,c最小是2,则,最小是102.故答案为:102.【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.3.解:根据题干分析可得:答:一共可以剪出6个正方形.故答案为:6.4.【分析】要想四轮得分的平均分不低于96分,总分应该达到96×4=384分,用这一分数减去小光前三轮的得分即可解答.解:96×4﹣95﹣97﹣94,=384﹣95﹣97﹣94,=98(分);答:第四轮的得分至少是98分.【点评】本题主要考查简单规划问题,熟练掌握平均数的定义与求法是解答本题的关键.5.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.6.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.7.解:根据题干分析可得:8.解:假设全是足球,96÷6=16(个),4×6=24(人),篮球:24÷(6﹣3),=24÷3,=8(个);足球:20﹣8=12(个);答:其中足球有12个.故答案为:12.9.解:根据分析可得,660÷(40﹣10),=660÷30,=22(米);22×10=220(米);答:火车的车身长是 220米.故答案为:220.10.解:根据题意,由差倍公式可得:今年爸爸的年龄是儿子的五倍时,儿子的年龄是:24÷(5﹣1)=6(岁);爸爸的年龄是儿子的三倍时,儿子的年龄是:24÷(3﹣1)=12(岁);12﹣6=6(年).答:6年后爸爸的年龄是儿子的三倍.故答案为:6.11.解:除数最小为:3+1=412×4+3=48+3=51故答案为:51.12.解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.故答案为:13.13.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.14.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.15.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.。
四年级奥数第二课定义新运算
5定义新运算知识纵横我们已经学校过加法、减法、乘法、除法运算,这些运算,即四那么运算是数学中的根本运算,其意义、符合和运算定律已被大家熟悉。
很多时候,为了某种需要,常把许多含有加、减、乘、除的运算用一个符合表示。
这样的运算及符合在课本中没有统一的规定。
学习这些知识,对于同学开拓视野、拓展思维都会大有好处。
例题求解例1设a、b是两个自然数,规定a△b=〔a+b〕÷2求〔1〕6△8;〔2〕13△19思路点拨这种新运算实际上是求两个数的平均数。
例2定义运算□为A□B=A×B-〔A+B〕。
求:〔1〕7□11和12□5;〔2〕12□〔3□4〕思路点拨新运算符合前后两个数之积减去这两个数之和,注意有括号的先计算。
例3设a*b表示a的3倍减去b的2倍,即a*b=3a-2b。
例如,当a=6,b=5时,6*5=3×6=2×5=8.x*〔4*1〕=7,求x。
思路点拨严格按照定义的法那么代入数值进行计算、例4如果4※2=14,5※3=22,3※5=4,7※18=31.求6※9的值。
思路点拨先观察算式,从算式中找出新定义运算的规律:x※y=x2-y例5:一种运算是m▽n=m×n+m-n,另一种运算是:m△n=m×n-m+n。
请计算:7△8-8▽7。
思路点拨要把两种运算转化成统一的四那么运算,即可求得结果。
例6有一个数学计算符合使以下算式成立。
5#7=17,4#8=16,13#14=40,求8#9。
思路点拨通过对3个算式的分析发现新定义晕死的规律为:a#b=a×2+b。
例7有一台计算器,只有两个运算键,红键将给的数乘2,黄键将给的数的最后一个数字去掉。
比方,给出234,按红键得468,按黄键得23.如果开始给的数是8,为了得到17,那么按假设干次红键外,至少要按黄键几次?〔、思路点拨两个运算键的功能是:按红键将使给的数乘以2,按黄键将时给的数的末尾数字去掉。