2020年“安徽省示范高中皖北协作区”第22届高三联考文科数学(含答案)
2020届安徽省示范高中皖北协作区高三下学期第22届联考文科数学试题
2020届安徽省示范高中皖北协作区高三下学期第22届联考文科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知复数z 满足2iz i=+,则在复平面内z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合{}2430A x x x =-+<,11B x x ⎧⎫=<⎨⎬⎩⎭,则A B =( ) A .{}3x x < B .{}1x x > C .{}13x x <<D .{}13x x x <>或3.设函数1,0()2,0x x x f x x -+≤⎧=⎨>⎩,则((2))f f -=( )A .8-B .6-C .6D .84.函数1()cos 1x x e f x x e -=+在[],ππ-上的图象大致为( )A .B .C .D .5.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为60°,则C 的离心率为( )A .32B .2C D .6.巳知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点(3,4)P -,则tan 4πα⎛⎫+= ⎪⎝⎭( ) A .17-B .17C .7-D .77.如图是汉代数学家赵爽在注解《周髀算经》时绘制的“赵爽弦图”,该图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形,这是我国对勾股定理的最早证明.记直角三角形中较小的锐角为θ,且7cos 225θ=.若在大正方形内随机取一点,则此点取自小正方形的概率是( )A .15B .425C .125D .358.已知非零向量,a b →→满足a →=,且()(3)a b a b →→→→+⊥+,则a →与b →的夹角为( )A .56πB .23π C .3π D .6π 9.已知F 是抛物线2:4C y x =的焦点,A ,B 为抛物线C 上两点,且6AF BF +=.则线段AB 的中点到y 轴的距离为( ) A .3B .2C .52D .3210.已知1sin 2a =,ln 2b =,12c π=,则( ) A .a b c >>B .b c a >>C .c a b >>D .c b a >>11.已知某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .4B .83C .3D 12.关于曲线1122:1C x y +=,有下述四个结论: ①曲线C 是轴对称图形; ②曲线C 关于点11,44P ⎛⎫⎪⎝⎭中心对称;③曲线C 上的点到坐标原点的距离最小值是2; ④曲线C 与坐标轴围成的图形的面积不大于12, 其中所有正确结论的编号是( ) A .①③ B .①④C .①③④D .②③④二、填空题13.已知数据,2,4,5a 的平均数是3,则该组数据的方差为_________________. 14.ABC 的内角A ,B ,C 的对边分别a ,b ,c .已知2cos 2a B c b =-,则A =______________.15.已知正三棱柱111ABC A B C -的六个顶点都在球O 的球面上,2AB =,14AA =,则球O 的表面积为_________________ 16.函数()2sin 32sin cos 0,2f x x x x x π⎛⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值为________________.三、解答题17.记n S 为等差数列{}n a 的前n 项和.巳知312S =,535S =. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设2n an b =.求数列{}n b 的前n 项和n T .18.为了贯彻落实党中央对新冠肺炎疫情防控工作的部署和要求,坚决防范疫情向校园蔓延,切实保障广大师生身体健康和生命的安全,教育主管部门决定通过电视频道、网络平台等多种方式实施线上教育教学工作.某教育机构为了了解人们对其数学网课授课方式的满意度,从经济不发达的A 城市和经济发达的B 城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如下:若评分不低于80分,则认为该用户对此教育机构授课方式“认可”,否则认为该用户对此教育机构授课方式“不认可”.(Ⅰ)请根据此样本完成下列2×2列联表,并据此列联表分析,能否有95%的把握认为城市经济状况与该市的用户认可该教育机构授课方式有关?(Ⅱ)在样本A ,B 两个城市对此教育机构授课方式“认可”的用户中按分层抽样的方法抽取6人,若在此6人中任选2人参加数学竞赛,求A 城市中至少有1人参加的概率.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:19.图1是矩形ABCD ,2AB =,1BC =,M 为CD 的中点,将AMD 沿AM 翻折,得到四棱锥D ABCM -,如图2.(Ⅰ)若点N 为BD 的中点,求证://CN 平面DAM ; (Ⅱ)若AD BM ⊥.求点A 到平面BCD 的距离.20.已知椭圆2222:1(0,0)x y C a b a b+=>>经过点31,2A ⎛⎫ ⎪⎝⎭,且离心率为12,过其右焦点F 的直线l 交椭圆C 于M ,N 两点,交y 轴于E 点.若1EM MF λ=,2EN NF λ=. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)试判断12λλ+是否是定值.若是定值,求出该定值;若不是定值,请说明理由.21.已知函数2()ln ()f x x a x a R =-∈. (Ⅰ)讨论函数()f x 的单调性:(Ⅱ)若0a >,直线()y g x =为函数()f x 图象的一条切线,求证:()11g ≤.22.平面直角坐标系xOy 中,曲线1C 的参数方程为131121x y λλλλ-+⎧=⎪⎪+⎨-⎪=⎪+⎩(λ为参数,且1λ≠-).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为212cos 320ρρθ++=.(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)已知点P的极坐标为4π⎛⎫⎪⎝⎭,Q 为曲线2C 上的动点,求PQ 的中点M 到曲线1C 的距离的最大值.23.已知函数()5(0)f x x x m m =--+>的最大值为8.(1)求m 的值;(2)若实数a 满足(1)()0f a f a -+>,求a 的取值范围.参考答案1.A 【分析】 化简得到1255z i =+,得到答案. 【详解】(2)122(2)(2)55i i i z i i i i -===+++-,故复平面内z 对应的点位于第一象限. 故选:A. 【点睛】本题考查了复数对应象限,意在考查学生的计算能力. 2.C 【分析】计算{}13A x x =<<,{0B x =<或}1x >,再计算交集得到答案. 【详解】{}13A x x =<<,{0B x =<或}1x >,所以{}13A B x x ⋂=<<,故选:C. 【点睛】本题考查了交集的计算,意在考查学生的计算能力. 3.D 【分析】由内到外层层求函数值即可得到. 【详解】()23f -=,()()()238f f f -==,故选:D . 【点睛】本题考查了求分段函数的函数值,解题关键是内到外层层求函数值,属于基础题. 4.B 【分析】由奇函数的定义可得()y f x =为奇函数,排除C ,D ,由()0f π<,排除A ,从而可得答案. 【详解】()()11cos()cos 11xx x xe ef x x x f x e e -----=-==-++,所以()y f x =为奇函数,排除C ,D ,又()11cos 011e ef e e ππππππ--==-<++,排除A ,故选:B . 【点睛】本题考查了函数的奇偶性,利用函数的性质排除选项是解题关键,属于基础题. 5.B 【分析】根据渐近线的倾斜角为60°可得b a =2c c a ===可得结果. 【详解】由题意可知,tan 60b a =︒=2c c a ===, 故选:B . 【点睛】本题考查了求双曲线的离心率,考查了双曲线的渐近线的斜率,属于基础题. 6.A 【分析】根据三角函数的定义求得4tan 3α=-,再根据两角和的正切公式可得结果. 【详解】由三角函数定义可知,4tan 3α=-,所以1tan 1tan 41tan 7πααα+⎛⎫+==- ⎪-⎝⎭, 故选:A . 【点睛】本题考查了三角函数的定义,考查了两角和的正切公式,属于基础题.7.C 【分析】根据二倍角公式得到3sin 5θ=,再根据几何概型计算得到答案. 【详解】 由27cos 212sin 25θθ==-,0,2πθ⎛⎫∈ ⎪⎝⎭,得3sin 5θ=. 不妨令直角三角形的三边长为3,4,5,则小正方形的边长为1,故所求概率为1115525P ⨯==⨯,故选:C. 【点睛】本题考查了几何概型,意在考查学生的计算能力和应用能力. 8.A 【分析】由()(3)a b a b +⊥+,以及3a b =可得232a b b ⋅=-,再根据夹角公式可得cos 2θ=-,根据[0,]θπ∈可得56πθ=. 【详解】由()(3)a b a b +⊥+,得()(3)0a b a b +⋅+=, 化简得22430a a b b +⋅+=, 因为3a b =,所以232a b b ⋅=-. 设向量a 和b 的夹角为θ,则3cos 2a b a bθ⋅==-, 因为[0,]θπ∈,所以56πθ=, 故选:A . 【点睛】本题考查了向量垂直,考查了平面向量的夹角公式,属于基础题. 9.B 【分析】求出抛物线的准线为1x =-,设()11,A x y ,()22,B x y ,根据抛物线的定义可得124x x +=,进一步可得AB 的中点到y 轴的距离为2. 【详解】设()11,A x y ,()22,B x y ,抛物线2:4C y x =的准线为1x =-,由6AF BF +=,可得1226x x ++=,124x x +=, 所以AB 的中点到y 轴的距离为2, 故选:B . 【点睛】本题考查了抛物线的几何性质,考查了抛物线的定义,属于基础题. 10.D 【分析】 计算得到12a <,112b >>,1c >,得到答案.【详解】11sinsin 262a π=<=,1ln 22b =>=,且ln 2ln 1b e =<=,121c π=>, 所以c b a >>, 故选:D. 【点睛】本题考查了根据三角函数,指数函数,对数函数单调性比较数值大小,意在考查学生对于函数性质的综合应用. 11.B 【分析】如图,该三棱锥为棱长为2的正方体的面对角线构成的几何体,计算体积得到答案. 【详解】如图,该三棱锥为棱长为2的正方体的面对角线构成的几何体, 故其体积为1182224222323⨯⨯-⨯⨯⨯⨯⨯=, 故选:B.\【点睛】本题考查了根据三视图求体积,确定几何体的形状是解题的关键. 12.B 【分析】对于①,曲线C 关于y x =对称,故①正确;对于②,()1,0关于11,44P ⎛⎫ ⎪⎝⎭的对称点11,22⎛⎫- ⎪⎝⎭不在曲线C 上,故②错误;对于③,由11221x y +=可得12x y +≥,可得()24x y +≥,故③错误;对于④,可推得曲线C 在直线1y x =-的下方,因此所围图形的面积不大于12,故④正确. 【详解】对于①,因为曲线C 上任意一点()00,M x y 关于y x =的对称点()00,M y x '也在曲线C 上,所以曲线C 关于y x =对称,故①正确.对于②,显然点()1,0在曲线C 上,而()1,0关于11,44P ⎛⎫ ⎪⎝⎭的对称点为11,22⎛⎫- ⎪⎝⎭,不在曲线C 上,故②错误.对于③,由11221x y +=平方可得,1x y ++=.因为x y +≥所以12x y +≥)24x y ≥+≥,当且仅当14x y ==时等号成立,故③错误.对于④,由11221x y +=知,[],0,1x y ∈,11221y x =-,两边平方可得1y x =+-为x ≤11y x x =+-≤-,即曲线C 在直线1y x =-的下方,因此所围图形的面积不大于12,故④正确. 故选:B . 【点睛】本题考查了曲线的对称性,考查了利用方程研究函数的性质,属于基础题. 13.52【分析】根据平均数列方程可得1a =,根据方差公式计算可得252S =. 【详解】由,2,4,5a 的平均数是3,可得24534a +++=,解得1a =,所以方差2222215[(13)(23)(43)(53)]42S =-+-+-+-=.故答案为:52【点睛】本题考查了数据的平均数和方差公式,属于基础题. 14.3π 【分析】利用正弦定理边化角可得2sin cos 2sin sin 2sin()sin A B C B A B B =-=+-,利用两角和的正弦公式化简可得2cos sin sin A B B =,根据sin 0B >可得1cos 2A =,根据()0,A π∈可得3A π=.【详解】由2cos 2a B c b =-及正弦定理可得,2sin cos 2sin sin 2sin()sin A B C B A B B =-=+-,所以2sin cos 2sin cos 2cos sin sin A B A B A B B =+-,即2cos sin sin A B B =, 因为0B π<<,所以sin 0B >, 所以1cos 2A =,又()0,A π∈,所以3A π=. 故答案为:3π 【点睛】本题考查了正弦定理边化角,考查了三角形的内角和定理以及诱导公式,考查了两角和的正弦公式,属于基础题. 15.643π【分析】根据正三棱柱的对称性可知,上下底面中心连线的中点为球心,再根据正弦定理和勾股定理计算可得球的半径,然后利用球的表面积公式计算可得结果. 【详解】设111A B C △,ABC 的中心分别为1O ,2O ,连接12O O ,如图:则12O O 的中点O 为所求球的球心,且22O O =.由正弦定理可得22sin3AB AO π===.设球O 的半径为R ,在2AO O △中,由勾股定理可得222222163R O AO O O A ==+=, 所以球O 的表面积为24R π=643π. 故答案为:643π【点睛】本题考查了正三棱柱的对称性,考查了正弦定理、勾股定理、球的表面积公式,找到球心是解题关键,属于基础题.16.9【分析】利用二倍角的正弦公式以及两角和的正弦公式化简可得3()sin sin f x x x =-,再换元sin x t =可得32y t t =-,利用导数可求得结果.【详解】()sin(2)sin 2cos f x x x x x =+-sin 2cos cos2sin x x x x =+sin 2cos x x -()23cos 2sin 12sin sin sin 2sin x x x x x x ==-=-令sin x t =,由0,2x π⎡⎤∈⎢⎥⎣⎦知,[]0,1t ∈,则32y t t =-,216y t '=-.令0y '=,得t =当6t ⎡∈⎢⎣⎭,0y '>;当6t ⎛⎤∈ ⎥ ⎝⎦时,0y '<,所以当6t =时,y 取最大值为9【点睛】本题考查了二倍角的正弦公式,考查了两角和的正弦公式,考查了换元法,考查了利用导数求函数的最值,属于中档题.17.(Ⅰ)32n a n =-;(Ⅱ)31227n n T +-=.【分析】(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,根据等差数列的前n 项和公式列方程组可解得11a =,3d =,再根据等差数列的通项公式可得结果;(Ⅱ)求出322n n b -=后,根据定义可知数列{}n b 是以2为首项,8为公比的等比数列,直接由等比数列的前n 项和公式可求得. 【详解】(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d . 由312S =,535S =可得,13(31)3122a d -+=,15(51)5352a d -+=, 即14a d +=,127a d +=. 联立解得11a =,3d =, 所以32n a n =-.(Ⅱ)由(Ⅰ)知322n n b -=,因为18nn b b +=,所以数列{}n b 是以2为首项,8为公比的等比数列, 所以数列{}n b 的前n 项和()3121822187n n n T +--==-【点睛】本题考查了等差数列的前n 项和公式和通项公式,考查了等比数列的定义和前n 项和公式,属于基础题.18.(Ⅰ)列联表详见解析,没有95%的把握认为城市经济状况与该市的用户认可该教育机构授课方式有关;(Ⅱ)35. 【分析】(Ⅰ)根据题意得2×2列联表,根据公式计算可得283K =,结合临界值表分析可得结果; (Ⅱ)根据分层抽样可知A 市抽取2人,设为x ,y ,B 市抽取4人,设为a b c d ,,,.然后列举出所有基本事件和A 城市中至少有1人参加的事件,最后利用古典概型概率公式计算可的结果. 【详解】(Ⅰ)由题意可得列联表如下:2240(5101015)8 3.841202015253K ⨯⨯-⨯==<⨯⨯⨯,所以没有95%的把握认为城市经济状况与该市的用户认可该教育机构授课方式有关. (Ⅱ)A 市抽取562510⨯=+人,设为x ,y ,B 市抽取1064510⨯=+人,设为a b c d ,,,. 从以上6人中任选2人参加数学竞赛的所有可能情况有,,,,,,,,,,,,,,xy xa xb xc xd ya yb yc yd ab ac ad bc bd cd ,共15种设“A 城市至少有1人参加数学竞赛”为事件M ,则事件M 包含的基本事件有,,,,,,,,xy xa xb xc xd ya yb yc yd ,共9种.所以93()155P M ==. 【点睛】本题考查了茎叶图的识别,考查了独立性检验,考查了分层抽样,考查了古典概型的概率公式,属于基础题.19.(Ⅰ)详见解析;(Ⅱ)11. 【分析】(Ⅰ)取AD 中点P ,连接MP ,NP ,通过证明四边形MCNP 为平行四边形.可得//CN MP ,根据直线与平面平行的判定定理可证//CN 平面DAM ; (Ⅱ)根据A DBC D ABC V V --=,采用等体积法可求得结果. 【详解】(Ⅰ)如图1,取AD 中点P ,连接MP ,NP ,由N ,P 分别为BD ,AD 的中点,得//NP AB 且12NP AB =. 又//MC AB 且12MC AB =,所以//MC NP 且MC NP =,所以四边形MCNP 为平行四边形.所以//CN MP 且CN ⊄平面DAM ,MP ⊂平面DAM ,所以//CN 平面DAM .(Ⅱ)如图2,由AM =BM =2AB =,可得222AB AM BM =+,所以AM BM ⊥. 又BM AD ⊥,ADAM A =,所以BM ⊥平面ADM又BM ⊂平面ABCM , 所以平面ADM ⊥平面ABCM , 取AM 的中点为E ,连接DE .因为1AD DM ==,AD DM ⊥,可得2DE =,且DE ⊥平面ABCM .所以 136A DBC D ABC ABC V V S DE --==⨯=. 取BC 的中点为F ,连接EF ,则32EF =,EF BC ⊥. 因为DE ⊥平面ABCM ,可得DE EF ⊥,DE BC ⊥,所以2DF =,BC ⊥平面DEF ,可得BC DF ⊥,所以12BCD S BC DF =⨯⨯=△.设点A 到平面BCD 的距离为d ,则113346A DBC BCD V S d d -==⨯=⨯△.解得11d =【点睛】本题考查了直线与平面平行的判定定理,考查了直线与平面垂直的判定定理和性质定理,考查了三棱锥的体积公式,考查了等体积法求点面距,属于中档题.20.(Ⅰ)22143x y +=;(Ⅱ)12λλ+为定值,为83-. 【分析】(Ⅰ)根据题意列方程组22222121914c a a b b c a ⎧=⎪⎪⎪+=⎨⎪+=⎪⎪⎩,解得2a =,b =则可得到椭圆的标准方程;(Ⅱ)直线l 的方程为()1y k x =-,联立22(1)143y k x x y =-⎧⎪⎨+=⎪⎩消去y 可得()22223484120k xk x k +-+-=.设()11,M x y ,()22,N x y ,根据韦达定理和已知条件1EM MF λ=,2EN NF λ=可得1111x x λ=-,2221x x λ=-,再相加根据韦达定理,变形可得定值. 【详解】(1)设椭圆的半焦距为c ,由题意可得22222121914c a a b b c a ⎧=⎪⎪⎪+=⎨⎪+=⎪⎪⎩,解得2a =,b =1c =.所以椭圆的标准方程为22143x y +=.(Ⅱ)12λλ+为定值.由题意可知,直线l 的斜率存在,设直线l 的斜率为k ,因为直线l 过点()1,0F ,所以直线l 的方程为()1y k x =-. 令0x =,可得yk =-,即()0,E k -.联立22(1)143y k x x y =-⎧⎪⎨+=⎪⎩消去y 可得()22223484120k x k x k +-+-=.设()11,M x y ,()22,N x y ,易知11x ≠,21x ≠,则2122834k x x k+=+,212241234k x x k-=+.()11,EM x y k =+,()22,EN x y k =+,()111,MF x y =--,()221,NF x y =--.由1EM MF λ=,2EN NF λ=,可得1111x x λ=-,2221x x λ=-所以()()121212121212122112211111x x x x x x x x x x x x λλ-++=+=+-=------++. 将2122834k x x k +=+,212241234k x x k -=+代入上式,化简可得1283λλ+=- 【点睛】本题考查了由,,a b c 求椭圆的标准方程,考查了平面向量的坐标运算,考查了直线与椭圆的位置关系,考查了韦达定理,属于中档题. 21.(Ⅰ)分类讨论,详见解析;(Ⅱ)详见解析. 【分析】(Ⅰ)求导得()22x af x x-'=,对a 分类讨论,根据导数的符号可得函数的单调性;(Ⅱ)设直线()y g x =与函数()y f x =的图象相切于点()()00,P x f x ,根据导数的几何意义可求得()()2000002ln a g x x x x x a x x ⎛⎫=--+- ⎪⎝⎭,令()22ln a h x x x a x a x =-+--+,求导可得()()11h x h ≤=,即()11g ≤. 【详解】(Ⅰ)由题意知,函数()f x 的定义域为()0,∞+,()22x af x x-'=.当0a ≤时,()0f x '>,函数()f x 在()0,∞+上单调递增.当0a >时,令()0f x '=,解得x =x =(舍)当0,2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<;当,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0f x '>.所以当0a >时,函数()f x 在0,2⎛⎫⎪ ⎪⎝⎭上单调递减,在2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增. (Ⅱ)设直线()y g x =与函数()y f x =的图象相切于点()()00,P x f x ,则()y f x =在点P 处的切线方程为()()200000ln 2a y x a x x x x x ⎛⎫--=-- ⎪⎝⎭, 所以()()2000002ln a g x x x x x a x x ⎛⎫=--+- ⎪⎝⎭, ()()22000000000121ln 2ln a a g x x x a x x x a x a x x ⎛⎫=--+-=-+--+ ⎪⎝⎭.令()22ln ah x x x a x a x=-+--+. 则()()22222(1)2(1)(2)22x x a a a x x a h x x x x x x----+'=-++-==. 因为0a >,所以令()0h x '=,可得1x =.当()0,1x ∈时,()0h x '>,当()1,x ∈+∞时,()0h x '<. 所以()()11h x h ≤=,即()11g ≤. 【点睛】本题考查了分类讨论思想,考查了利用导数研究函数的单调性,考查了导数的几何意义,考查了利用导数证明不等式,属于中档题.22.(1)()34103x y x +-=≠,2212320x y x +++=.(2)85【分析】(1)化简得到341x y +=,再考虑4331x λ=-≠+,利用极坐标方程公式得到答案.(2)P 的直角坐标为()2,2,设点()00,M x y ,故()0022,22Q x y --,代入圆方程得到M 在圆心为()2,1-,半径为1的圆上,计算得到最大距离.【详解】(1)因为13,112,1x y λλλλ-+⎧=⎪⎪+⎨-⎪=⎪+⎩①②,所以3×①+4×②,得341x y +=. 又133(1)4433111x λλλλλ-++-===-≠+++, 所以1C 的普通方程为()34103x y x +-=≠,将cos x ρθ=,222x y ρ=+代入曲线2C 的极坐标方程,得曲线2C 的直角坐标方程为2212320x y x +++=.(2)由点P的极坐标4π⎛⎫ ⎪⎝⎭,可得点P 的直角坐标为()2,2. 设点()00,M x y ,因为M 为PQ 的中点,所以()0022,22Q x y --将Q 代入2C 的直角坐标方程得()()2200211x y ++-=,即M 在圆心为()2,1-,半径为1的圆上.所以点M 到曲线1C 距离的最大值为|23141|8155d -⨯+⨯-=+=, 由(1)知1C 不过点()3,2N -,且312391423420MN k +⎛⎫⎛⎫⋅-=⋅-=≠- ⎪ ⎪--⎝⎭⎝⎭, 即直线MN 与1C 不垂直.综上知,M 到曲线1C 的距离的最大值为85. 【点睛】 本题考查了参数方程,极坐标方程,距离的最值问题,意在考查学生的计算能力和转化能力. 23.(1)3m =(2)32a <【分析】(1)化简得到()5,25,55,5m x m f x x m m x m x +≤-⎧⎪=--+-<≤⎨⎪-->⎩,得到()max 5f x m =+,得到答案.(2)讨论3a ≤-,32a -<≤-,25a -<≤,56a <≤,6a >几种情况,分别计算得到答案.【详解】(1)因0m >,故()5,25,55,5m x m f x x m m x m x +≤-⎧⎪=--+-<≤⎨⎪-->⎩,易知()max 58f x m =+=,故3m =.(2)由(1)知()8,322,358,5x f x x x x ≤-⎧⎪=-+-<≤⎨⎪->⎩,当3a ≤-时,不等式可化为880+>,显然成立;当13a -≤-且35a -<≤,即32a -<≤-时,不等式可化为8220a -+>, 解得5a <,所以32a -<≤-;当315a a -<-<≤,即25a -<≤时,不等式可化为()212220a a --+-+>, 解得32a <,所以322a -<<; 当315a -<-≤且5a >,即56a <≤时,不等式可化为()21280a --+->, 解得2a <-,所以此时无解;当15a ->,即6a >时,不等式可化为880-->,无解. 综上所述,32a <. 【点睛】本题考查了绝对值函数的最值,解绝对值不等式,分类讨论是常用的数学方法,需要熟练掌握.。
2020届 安徽高三联考试题
2020年“安徽省示范高中皖北协作区”第22届高三联考英语第二部分阅读理解(共两节,满分40分) AStart a summer company : studentsHow it worksThrough a program called Summer Company, you can get:* start-up money to kick-off a new summer business* advice and guide from local business leaders to help get the business up and runningLearning how to run your own student business is one of the best summer jobs you can have. You get to be your own boss while learning what it takes to manage a business. Sales ,marketing, bookkeeping, customer r elationship management and networking are just a few of the highly useful sills you’' I1 develop.Who is eligible( 具备条件的)You could be eligible, if you :* go to high school, college or university* live in Ontario* are a Canadian citizen or permanent resident* are between 15-29 years old( if under 18: a parent or guardian must sign the agreement for the applicant) * are not already running a business* are not working at another job or going to school for more than 12 hours a week during the program* are returning to school after the program endsYou cannot apply again if you have received a Summer Company grant in the past.Award amountMaximum award: $3 ,000.Successful Summer Company applicants get: .* up to $1,500 to help with start-up costs* up to $1,500 when you successfully complete the program requirements and hoursHow to applyThe program for 2020 is open through May 19. Here are the steps to apply:* Check to see if you’re eligible for the program* Complete the online application inquiry* Select your local program provider* Assign yourself a password* Submit your application inquiry21. The following skills can be developed through the program except_____A. salesB. marketingC. relationshipD. networking22. If you want to start a summer company, which of the following conditions is not suitable?A. You are between 18-29 years old.B. You are not already running a business.C. You are a Canadian citizen or permanent resident.D. You will attend school for over 12 hours a week during the program.23. When can you apply for the program?A. May 18, 2020.B. May 20, 2020.C. June 18, 2020. .D. June 20, 2020.BKeeping your teenager out of the social media world is impossible. Whether we like it or not, our kids are growing up in a digital era- -and although that creates major opportunities, it also comes with some pretty big risks. We saw this firsthand when we asked a group of tweens and teens to give up their phones and social media for a week; it was as though we' d asked them to part with a limb.A recent study of more than 10 ,000 six- to twelve-grade girls carried out by a nonprofit organization Ruling Our Experiences found that high school girls spend an average of six hours a day on social media. And the effect of too much logged-on time is clear. The study found kids who spend eight hours or more on technology per day are five times more likely to be sad or depressed. Adding to the pressure is that2 out of 3 high school girls report being asked to send a revealing photo to another person, and most of them report that they do send sexual texts and photos to each other.Another study, carried out by Common Sense Media, found that girls use social media more than boys and are also more likely to experience negative consequences. Most of the girls investigated admitted that content posted online often makes them worry about their appearance or social status, while just a quarter of the boys said the same. An earlier study from the Pew Research Center’s Internet came to a similar conclusion: A third of 12- to 13-year-old girls who used social media believed their peers were mostly unkind to each other online , while only 9 percent of the boys agreed.Of course, these di fferences don' t mean we shouldn’t have conce rns about boys and the impact of digital overload or online bulling. In fact, other studies have shown that boys and girls can be equally damaged by social media. The most important thing is for tens to feel safe, online and in the real world alike.24. What is the second paragraph mainly about?A. The pressure of the high school girls logging-on.B. The influence of too much logged-on time on high school girls.C. Too much time spent on social media for high school girls.D. The increasing population of the high school girls logging-on.25. Which of the following can replace the underlined word “revealing” in paragraph 2?A. Exposed.B. Interesting.C. Funny.D. Romantic.26. Why are the girls more likely to experience negative effect online than boys?A. Because the girls' social status is low.B. Because the girls are mostly unkind to each other.C. Because the girls use social media more than boys.D. Because the girls pay more attention to their appearance.27. What can be inferred from the passage?A. Parents should keep teens out of the social media.B. Parents keep teens feel safe online and in the real life.C. It is time to worry about your teens and social media.D. Boys and girls can be equally damaged by social media.CIt often seems that some people possess superhuman eating powers , allowing them to eat an entire pizza while remaining slim. Others only eat a slice but gain five pounds. Now one doctor says there' s evidence that genetics could be behind some of these differences. Regardless of how much you eat, your weight may be out of control.Vann Bennett, a biochemist at Duke University and his team led a new study and discovered why this happens. They engineered mice to have several common modifications of the gene found in humans. Theyobserved that mice who had mutations of ankyrin-B(锚蛋白B的变异) took more glucose(葡萄糖) into their fat ell, which in turn made more fat. Typically, the cell membrane( 膜) acts as a barrier to prevent glucose from entering these cells ; the change k ept the gate open. The change may serve a useful purpose.“ Pr obably this is not always a bad thing," Bennett told Newsweek. “It could help people survive hunger in the past. But today we have somuch food that it probably is a bad thing. ”Dieters have long been told to watch their calories and exercise more, but this new finding suggests that a common approach doesn't work for everyone. Our metabolism( 新陈代谢) naturally slows with age, making it harder to maintain the weight of our 30-year-old selves when we' re 50. Now add an uncontrollable ankyrin-B gene, and it may seem impossible to stay slim.The mice in the study gained more weight when on high-fat diets. Despite being studied in mice, the researchers believe further research on this gene could potentially create a field of customized diets and health plans based on genetics. Bennett imagines such assessments being performed at birth one day. For now, disappointed dieters can take comfort with one saying: It's not you, it's your genes.28. How did a mouse gain weight with mutations of ankyrin-B?A. The ankyrin-B could make the mouse eat more.B. The fat cells in the mouse would take more glucose to create more fat.C. The glucose could function as a barrier to prevent the fat from reducing.D. The cell membrane in the mouse could open the gate of fat into the mouse.29. What was the effect of the change in the past in paragraph 2?A. It could help people to avoid fat food.B. It could help people to absorb more nutrition.C. It could help people to get through the starvation.D. It could help people to enjoy more delicious snacks.30. Why is it more difficult to stay slim when we are older?A. Because we all lack exercise.B. Because we have ankyrin-B genes.C. Because we watch our calories less.D. Because our metabolism weakens.31. What can be expected from further research?A. It may help people to maintain the weight.B. It may provide more comfort for the depressed dieters.C. It may change many new-born babies’ gene arrangement.D. It may present human beings with a series of health plans.DBack in 1975,economists planned rising life expectancy( 预期寿命) against countries ’wealth,and concluded that wealth itself increases longevity. It seemed self- evident: everything people need to be healthy--from food to medical care- costs money.But it soon proved that the data didn't always fit that theory. Economic booms didn ' t always mean longer lives. In addition,for reasons that weren’t clear,a given gain in gross domestic product ( GDP ) caused increasingly higher gains in life expectancy over time, as though it was becoming cheaper to add years of life. Moreover, in the 1980s researchers found gains in learning were associated with greater increases in life expectancy than gains in wealth were. Finally, the more educated people in any country tend to live longer than their less educated fellow citizens. But such people also tend to be wealthier, so it has been difficult to make out which factor is increasing lifespan.Wolfgang Lutz and his colleagues have now done that by collecting average data on GDP per person,lifespan, and years of education from 174 countries,dating from 1970 to 2010. They found that, just as in 1975,wealth associated with longevity. But the association between longevity and years of schooling was closer, with a direct relationship that did not change over time, the way wealth does.Lutz argues that because schooling happens many years before a person has attained their life expectancy, this association reflects cause : better education drives longer life. It also leads to more wealth, which is why wealth and longevity are also associated. But what is important, says Lutz, is that wealth does not seem to be longevity, as experts thought- in fact, education is driving both of them.He thinks this is because education permanently improves a person’s cognitive abilities ,allowing better planning and self-control throughout the rest of their life. This idea is supported by the fact that people who are more intelligent appear to live longer.32. Which of the following best describes economists ’conclusion in 1975?A. Lifespan could be increased by wealth.B. Economic growth didn’t always mean longer life.C. Education influenced longevity more than wealth did.D. A given growth in GDP caused higher gains in longevity.33. What did Wolfgang Lutz and his colleagues find?A. Wealth and longevity did not have any association.B. Longevity and education were more closely associated.C. Differences in wealth predicted differences in longevity.D. Relationship between education and longevity changed over time.34. What part does education play permanently according to Lutz?A. It enables people to have better planning and self-control.B. It always leads to a longer but not necessarily richer life.C. It improves people’s imaginative and innovative abilities.D. It helps people acquire time-managing and learning habits.35. Which of the following is the best title for this passage?A. Wealth influences longevity.B. Education influences longevity.C. Wealth has nothing to do with longevity.D. The relationship between education and wealth.第二节(共5小题;每小题2分,满分10分)The first time I went to a playground in Berlin, I was surprised. All the German parents were huddled together, drinking coffee, not paying attention to their children who were hanging off a wooden dragon 20 feet above a sand pit. Contrary to stereotypes(模式化观念),most German parents I’ve met are the opposite of strict. 36 . Those parents at the park weren’t ignoring their children; t hey were trusting them. Here are a few surprising things Berlin ’s parents do:Don't push reading. Berlin ’s kindergartens don’t emphasize academics. In fact, teachers and other parents discouraged me from teaching my children to read._ 37 . But even in first grade, academics aren’t pushed very hard. Our grade school provides a half-day of instruction interrupted by two outdoor breaks.38 . A note came home from school along with my excited second grader. They were doing a project on fire. Would I let her light candles and perform experiments with. matches? Together we lit candles and burned things, safely. It was brilliant.Let children go almost everywhere alone. Most grade school kids walk without their parents to school and around their neighborhoods. Some even take the subway alone._ 39 of course, but they usually focuson traffic.,not abductions(绑架).Take the kids outside every day. According to a German saying, “There is no such thing as bad weather, only unsuitable clothing.”The value of outside time is promoted in the schools._ 40 No matter how cold and grey it gets, and in Berlin it gets pretty cold, parents still bundle their kids up and take them to the park, or send them out on their own.A. Encourage kids to play with fireB. Inspire children to go out for leisureC. German parents are concerned about safetyD. It's also obvious on Berlin ' s numerous playgroundsE. Kindergarten was a time for play and social learningF. They place a high value on independence and responsibilityG.I was told it was something special that the kids learn together when they start grade school第三部分语言知识运用(共两节,满分45分)第一节(共20小题;每小题1.5分,满分30分)阅读下面短文,从短文后各题所给的A、B、C和D四个选项中,选出可以填人空白处的最佳选项,并在答题卡.上将该项涂黑。
2020届安徽省示范高中皖北协作区高三下学期第22届联考数学(理)试题(解析版)
【点睛】
本题考查了抛物线的面积,斜率,定值问题,意在考查学生的计算能力和综合应用能力.
12.在三棱锥 中, , , ,且二面角 为120°,则三棱锥 外接球的表面积为()
A. B. C. D.
【答案】D
【解析】将三棱锥 置于一个直三棱柱 ,计算外接球的半径 ,得到答案.
【详解】
由题意可得 ,将三棱锥 置于一个直三棱柱 ,如图所示,由二面角 为120°可知 ,
(1)求线段 的长;
(2)求平面 与平面 所成锐二面角的余弦值.
【答案】(1)1(2)
【解析】(1)令平面 与 的交点为E,证明 平面 ,得到四边形 为平行四边形,得到长度.
(2)以M为坐标原点,建立如图所示的空间直角坐标系,平面 的法向量 , 为平面 的一个法向量,计算夹角得到答案.
【详解】
(1)令平面 与 的交点为E,因为 平面 ,
【详解】
当 的斜率为0时, ,所以①错误.
设 的中点为E,作 轴交x轴于点G,作 准线交准线于点D,交x轴于点C,则 ,又 ,
所以 ,所以②正确.
直线 的方程为 ,联立 ,得 .设 , ,则 , ,所以 ,所以③正确.
直线 ,所以 .同理可得 .所以以 为直径的圆的方程为 ,即 .
令 ,得 或3,所以④正确.
16.已知函数 若方程 有且只有五个根,分别为 , , , , (设 ),则下列命题正确的是_____________(填写所有正确命题的序号).
① ;②存在k使得 , , , , 成等差数列;
③当 时, ;④当 时, .
【答案】①④
【解析】设 ,函数为偶函数得到①正确,原题可化为 与 在 上有且只有两个公共点,根据图像判断②错误③错误,④正确,得到答案.
2024届安徽省示范高中皖北协作区高三下学期数学联考试题及答案
2024届安徽省示范高中皖北协作区高三下学期数学联考试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{|A x y ==,{|3B x x =<−或3}x >,则()A B =R ( )A .[]3,2−−B .()(),32,−∞−−+∞ C .[]2,3−D .()(),23,−∞−⋃+∞2.已知复数12z i =+,则13i4i 1z −+−在复平面内对应的点的坐标为( ) A .41,1717⎛⎫⎪⎝⎭B .41,1717⎛⎫− ⎪⎝⎭C .41,1717⎛⎫− ⎪⎝⎭D .41,1717⎛⎫−− ⎪⎝⎭3.若0a >,0b >,则2”是“1a b +≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知在单调递增的等差数列{}n a 中,3a 与7a 的等差中项为8,且2817a a ⋅=−,则{}n a 的公差d =( ) A .5B .4C .3D .25.科学家从由实际生活得出的大量统计数据中发现以1开头的数出现的频率较高,以1开头的数出现的频数约为总数的三成,并提出定律:在大量b 进制随机数据中,以n 开头的数出现的概率为()1log b bn P n n+=,如裴波那契数、阶乘数、素数等都比较符合该定律.后来常有数学爱好者用此定律来检验某些经济数据、选举数据等大数据的真实性.若()104ln 6ln 2ln 2ln 5kn P n =−=+∑(*N k ∈,4k >),则k 的值为( )A .11B .15C .19D .216.已知()3tan 4αβ−=,()()sin 3cos αβαβ−=+,则tan tan αβ−=( ) A .12B .35C .65D .537.设P ABCD −与Q ABCD −为两个正四棱锥,正方形ABCD90PCQ ∠=︒,点M 在线段AC 上,且3CM AM =,将异面直线PD ,QM 所成的角记为θ,则sin θ的最小值为( ) AB .23CD .138.已知点M 是直线1:20l ax y a +−=和2:20l x ay −+=(a ∈R )的交点,()1,0A −,(),0B m ,且点M 满足12MA MB =恒成立,若()2,2C ,则2MA MC +的最小值为( )A B .C D .二、多选题9.已知样本数据12345,,,,x x x x x (10x <,2345,,,0x x x x >)的方差为2s ,平均数0x >,则( )A .数据132x −,232x −,332x −,432x −,532x −的方差为29sB .数据132x −,232x −,332x −,432x −,532x −的平均数大于0C .数据2345,,,x x x x 的方差大于2sD .数据2345,,,x x x x 的平均数大于x10.如图,函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>≤ ⎪⎝⎭的图象与x 轴的其中两个交点为A ,B ,与y 轴交于点C ,D 为线段BC 的中点,OB =,2OA =,3AD =,则( )A .()f x 的最小正周期为12πB .()f x 的图象关于直线8x =对称C .()f x 在[]5,7单调递减D .()2f x −+为奇函数11.在棱长为1的正方体1111ABCD A B C D −中,以A ,1C 为焦点的椭圆,绕着轴1AC 旋转180°得到的旋转体称为椭球1AC ,椭圆的长轴就是椭球的长轴,若椭球1AC 的长轴长为2,则下列结论中正确的是( )A .椭球1AC 的表面与正方体1111ABCD ABCD −的六个面都有交线B .在正方体1111ABCD A BCD −的所有棱中,只有六条棱与椭球1AC 的表面相交 C .若椭球1AC 的表面与正方体1111ABCD A B C D −的某条棱相交,则交点必是该棱的一个三等分点D .椭球1AC 的表面与正方体1111ABCD A B C D −的一个面的交线是椭圆的一段三、填空题12.622x ⎫⎪⎭的展开式中7x −的系数是 .13.已知数列{}n a 满足()()()()1*211311n nnn n a a n ++−+−=−+∈N ,若121a a ==,则{}n a 的前20项和20S = .14.已知抛物线2:4C y x =的焦点为F ,过F 的直线l 与C 交于A ,B 两点.过A 作C 的切线m 及平行于x 轴的直线m ',过F 作平行于m 的直线交m '于M ,过B 作C 的切线n 及平行于x 轴的直线n ',过F 作平行于n 的直线交n '于N .若83AM BN −=,则点A的横坐标为 .四、解答题15.如图,在平面四边形ABCD 中,4AB AD ==,6BC =.(1)若2π3A =,π3C =,求sin BDC ∠的值; (2)若2CD =,cos 3cos A C =,求四边形ABCD 的面积.16.2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG CDEHF −是一个放置在地面上的蔬菜大棚钢架,四边形ABCD 是矩形,8AB =m ,4=AD m ,1ED CF ==m ,且ED ,CF 都垂直于平面ABCD ,5GA GB ==m ,HE HF =,平面ABG ⊥平面ABCD .(1)求点H 到平面ABCD 的距离;(2)求平面BFHG 与平面AGHE 所成锐二面角的余弦值.17.已知双曲线2222:1x y E a b −=(0a >,0b >)的左、右焦点分别为1F ,2F ,离心率为2,P 是E 的右支上一点,且12PF PF ⊥,12PF F △的面积为3. (1)求E 的方程;(2)若E 的左、右顶点分别为A ,B ,过点2F 的直线l 与E 的右支交于M ,N 两点,直线AM 和BN 的斜率分别即为AM k 和BN k ,求223AMBN k k +的最小值. 18.某校在90周年校庆到来之际,为了丰富教师的学习和生活,特举行了答题竞赛.在竞赛中,每位参赛教师答题若干次,每一次答题的赋分方法如下:第1次答题,答对得20分,答错得10分,从第2次答题开始,答对则获得上一次答题所得分数两倍的得分,答错得10分,教师甲参加答题竞赛,每次答对的概率均为12,每次答题是否答对互不影响.(1)求甲前3次答题的得分之和为70分的概率.(2)记甲第i 次答题所得分数()*i X i ∈N 的数学期望为()i E X .(ⅰ)求()1E X ,()2E X ,()3E X ,并猜想当2i ≥时,()i E X 与()1i E X −之间的关系式; (ⅱ)若()1320ni i E X =>∑,求n 的最小值.19.已知函数()()212e e 4x x f x x a b =−−的图象在点()()0,0f 处的切线方程为54y x =−−. (1)求()f x 的解析式;(2)证明:()0,x ∀∈+∞,()2ln 2f x x >−. 参考数据:45e 2.23≈.参考答案:1.D【分析】求出函数定义域化简集合A ,再利用补集、并集的定义求解即得.【详解】由y =,得2x ≥−,因此[2,)A =−+∞,R(,2)A =−∞−,而(,3)(3,)B =−∞−+∞,所以()(,2)(3,)A B ∞∞⋃=−−⋃+R . 故选:D 2.B【分析】用复数的运算法则化简即可求得.【详解】由复数12z i =+,则12i z =−,13i 12i 13i 4i4i 14i 117z −+−−+−==−−, 故复数13i4i 1z −+−在复平面内的点的坐标为41,1717⎛⎫− ⎪⎝⎭.故选:B 3.B【分析】借助充分条件与必要条件的定义,先借助特值排除充分性,再借助基本不等式验证必要性即可得.【详解】当1a b ==2≤成立,而1a b +≤不成立,故2≤”不是“1a b +≤”的充分条件;当1a b +≤时,有a b +≥a b =时等号成立,2==,故2≤”是“1a b +≤”的必要条件. 故选:B. 4.C【分析】根据题意,列出关于1,a d 方程组,求得d 的值,即可得到答案. 【详解】由等差数列{}n a 为单调递增数列,可得公差0d >,因为3a 与7a 的等差中项为8,可得375282a a a +==⨯,可得58a =,即148a d +=, 又因为2817a a ⋅=−,可得11()(7)17a d a d ++=−, 即264917d −=−,解得3d =或3d =−(舍去).故选:C. 5.A【分析】根据条件中的概率公式,结合求和公式,以及对数运算,即可求解.【详解】()1045671ln 6ln 2lg lg lg ...lg 456ln 2ln 5kn k P n k =+−=++++=+∑, 即1ln 3lglg34ln10k +==,则134k +=,得11k =. 故选:A 6.C【分析】由两角和与差的正弦,余弦,正切公式求解即可. 【详解】由于()()sin 3cos αβαβ−=+,所以()()sin 3cos αβαβ−=+,所以sin cos cos sin 3cos cos sin sin αβαβαβαβ−=−,所以tan tan 31tan tan αβαβ−=−,又()3tan 4αβ−=,所以tan tan 31tan tan 4αβαβ−=+, 所以()4tan tan tan tan 1tan tan 1tan tan αβαβαβαβ−−=+−,由题设显然tan tan αβ≠,所以()41tan tan 1tan tan αβαβ−=+, 所以3tan tan 5αβ=, 所以()36tan tan 31tan tan 3155αβαβ⎛⎫−=−=−= ⎪⎝⎭.故选:C. 7.A【分析】建立适当空间站直角坐标系后,借助空间向量表示出θ的余弦值,结合基本不等式计算即可得解.【详解】连接BD 交AC 于点O ,以O 为坐标原点,建立如图所示的空间直角坐标系, 因为正方形ABCD1OA OB OC OD ====, 因为3CM AM =,所以M 为OC 的中点,设OP h =,在直角PCQ △中,有21OP OQ OC ⋅==,故1OQ h=, 所以()()110,0,,1,0,0,0,0,,0,,02P h D Q M h ⎛⎫⎛⎫−− ⎪ ⎪⎝⎭⎝⎭,则()111,0,,0,,2PD h QM h ⎛⎫=−−= ⎪⎝⎭,所以cos PD QM PD QMh θ⋅===⋅ 因为()2222115159144444hh h h ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当2214h h=,即h =cos θ的最大值为23,因此sin θ故选:A. 8.D【分析】根据题意,得到点M 的轨迹方程为224(2)x y x +=≠,结合12MA MB =恒成立,求得点(4,0)B −,再由2MA MC MC MB ++=,且直线BC 的方程为340x y −+=,得到在直线BC 上存在两个点,P Q 满足,,B P C 或,,B Q C 三点共线,进而求得其最小值.【详解】由直线1:20l ax y a +−=,可得化为(2)0a x y −+=,可得直线1l 恒过定点(2,0), 同理可得直线2:20l x ay −+=恒过定点(2,0)−, 可得121,l l k a k a=−=,则121l l k k ⋅=−,所以12l l ⊥, 因为点M 是直线1l 和2l 的交点,所以点M 的轨迹方程为224(2)x y x +=≠, 又因为12MA MB =恒成立,可得22224(1)()x y x m y ++=−+恒成立, 即282024x mx m +=−++恒成立,所以4m =−,即(4,0)B −, 又由2MA MC MC MB ++=,且直线BC 的方程为340x y −+=,可得原点(0,0)O 到直线BC2=<, 所以在直线BC 上存在两个点,P Q 满足,,B P C 或,,B Q C 三点共线,如图所示,可得2MA MC MB MC BC +=+≥=所以2MA MC +的最小值为 故选:D.9.AD【分析】根据方差、平均数的定义和性质,结合题意,对每个选项进行逐一分析,即可判断和选择.【详解】对A :数据132x −,232x −,332x −,432x −,532x −的方差为29s ,A 正确; 对B :数据132x −,232x −,332x −,432x −,532x −的平均数为32x −, 当203x <≤时,320x −≤,故B 错误; 对C :去掉一个最小(特异值)的数据,剩下的数据的方差有可能更小,故C 错误; 对D :因为1234505x x x x x x ++++=>,数据2345,,,x x x x 的平均数234515444x x x x x x +++=−,因为10x <,故数据2345,,,x x x x 的平均数大于x ,故D 正确. 故选:AD. 10.CD【分析】结合题意计算可得()16ππsin 363f x x ⎛⎫=− ⎪⎝⎭,结合正弦型函数的性质逐项判断即可得. 【详解】由题可()2,0A ,π2,0B ω⎛⎫+ ⎪⎝⎭,()0,sin C A ϕ,则πsin 1,22A D ϕω⎛⎫+ ⎪⎝⎭,πsin2ϕω=+,()sin20ωϕ+=,23AD=,222πsin281243Aϕω⎛⎫∴−+=⎪⎝⎭,把πsin2Aϕω⎫=+⎪⎭代入上式,得2ππ2240ωω⎛⎫−⨯−=⎪⎝⎭,解得π6ω=(负值舍去),π6ω∴=,πsin03ϕ⎛⎫∴+=⎪⎝⎭,由π2ϕ≤,解得π3ϕ=−,πsin83⎛⎫−=⎪⎝⎭,解得163A=,()16ππsin363f x x⎛⎫∴=−⎪⎝⎭,对A,()f x的最小正周期为2π12π6=,故A错误;对B:()16ππ8sin80363f⎛⎫=⨯−=⎪⎝⎭,故B错误;对C:当57x≤≤时,πππ5π2636x≤−≤,()f x∴在[]5,7单调递减,故C正确;对D:()()16ππ16π2sin2sin36336f x x x⎡⎤⎛⎫−+=−+−=− ⎪⎢⎥⎣⎦⎝⎭,为奇函数,故D正确.故选:CD.11.ABD【分析】对A:根据题意画图即可判断;对BC:假设存在椭球与棱相交的点,根据椭圆的定义,列方程求解,即可判断;对D:以正方形ABCD的中心建立空间直角坐标系,设出交点坐标,根据其在椭圆上,求得其轨迹方程,即可判断.【详解】对A:根据题意,画图易知A正确;对B,C:假设P是椭球1AC的表面与棱AB的交点,设AP x=,则12PA PC x+==,解得12x=,故棱AB上有一点P(AB的中点)满足条件;同理在111111,,,,AD AA C B C D CC上各有一点满足条件;设Q是椭球1AC的表面和棱1BB的交点,则12QA QC+=>,故棱1BB上不存在满足条件的点Q;同理在棱11111,,,,BC A D CD A B DD上也不存在满足条件的点,故B正确,C错误;对D :连接,AC BD 交于点O ,连接1111,A C B D 交于点1O ,连接1OO ,以O 为坐标原点,建立如下所示空间直角坐标系:则1,A C ⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭, 在正方形ABCD 内(含边界),设(),,0M x y 是椭球1AC 的表面和正方体的表面的交点,则12MA MC +=2=,2=22411148x y ⎛− ⎝⎭+=, 显然点M 的轨迹为椭圆的一部分,故D 正确. 故选:ABD.【点睛】关键点点睛:解决D 选项的关键是建立坐标系,根据交点M 满足的条件,求得M 的轨迹方程,进而进行判断. 12.240【分析】根据二项式展开式的通项公式,利用赋值法,即可求得对应的系数.【详解】622x ⎫⎪⎭的展开式的通项公式563216622C C 2,0,1,2,,6rrr rr r r T x r x −−+⎛⎫==⋅⋅= ⎪⎝⎭,令5372r −=−,解得4r =,又446C 2240⋅=,则该二项式展开式中7x −的系数是240.故答案为:240.13.250−【分析】根据给定条件,按奇偶讨论求出212,n n a a −,再分组求的即得. 【详解】数列{}n a 满足:12(1)(1)3(1)1n n n n n a a ++−+−=−+,当n 为正奇数时,22n n a a +−=−,即数列21{}n a −是以11a =为首项,2−为公差的等差数列, 于是211(1)(2)23n a n n −=+−⋅−=−+,当n 为正偶数时,24n n a a +−+=,即24n n a a +−=−,则数列2{}n a 是以21a =为首项,4−为公差的等差数列,于是21(1)(4)45n a n n =+−⋅−=−+, 所以{}n a 的前20项和201(17)1(35)101025022S +−+−=⨯+⨯=−. 故答案为:250− 14.3【分析】利用导数的几何意义,求切线,m n 的斜率,并利用直线的交点求点,M N 的坐标,再根据方程83AM BN −=,求点A 的坐标.【详解】设()11,A x y ,()22,B x y ,不妨设点A 在第一象限,点B 在第四象限,当y =y '=A所以过点()1,0F 且与直线m平行的直线为)1y x =−,当1y y =时,得1121x y x ==+,即()1121,M x y +当y =−时,y '=A所以过点()1,0F 且与直线n平行的直线为)1y x =−,当2y y =时,得2121x y x =−=+,即()2221,N x y +,所以111211AM x x x =+−=+,222211BN x x x =+−=+ 所以1283AM BN x x −=−=,(*)设直线():1AB y k x =−,联立24y x =,得()2222240k x k x k −++=,得121=x x ,211x x =,代入(*),得11183x x −=, 化简为2113830x x −−=,解得:13x =,或113x =−(舍)所以点A 的横坐标为3. 故答案为:3【点睛】关键点点睛:本题的关键是利用导数求切线的斜率,以及利用韦达定理得到121=x x . 15.(1)34【分析】(1)ABD △中求出BD ,在BCD △中,由正弦定理求出sin BDC ∠的值; (2)ABD △和BCD △中,由余弦定理求出cos A 和cos C ,得sin A 和sin C ,进而可求四边形ABCD 的面积.【详解】(1)在ABD △中,4AB AD ==,2π3A =,则π6ADB ∠=,π2cos 24cos 6BD AD ADB =∠=⨯⨯=在BCD △中,由正弦定理得sin sin BC BDBDC C=∠,π6sinsin 3sin 4BC C BDC BD ∠===. (2)在ABD △和BCD △中,由余弦定理得222222cos 44244cos 3232cos BD AB AD AB AD A A A =+−⋅=+−⨯⨯⨯=−, 222222cos 62262cos 4024cos BD CB CD CB CD C C C =+−⋅=+−⨯⨯⨯=−,得4cos 3cos 1A C −=−,又cos 3cos A C =,得11cos ,cos 39A C =−=−,则sin A =sin C 四边形ABCD 的面积11sin sin 22ABD BCDS S SAB AD A CB CD C =+=⋅⋅+⋅⋅11446222=⨯⨯⨯⨯=. 16.(1)4 (2)413【分析】(1)取,AB CD 的中点,M N ,证得平面//ADE 平面MNHG ,得到//AE GH ,再由平面//ABG 平面CDEHG ,证得//AG EH ,得到平行四边形AGHE ,得到GH AE =,求得4HN =,结合⊥HN 平面ABCD ,即可求解;(2)以点N 为原点,建立空间直角坐标系,分别求得平面BFHG 和平面AGHE 的法向量(1,3,4)n =和(1,3,4)m =−,结合向量的夹角公式,即可求解.【详解】(1)如图所示,取,AB CD 的中点,M N ,连接,,GM MN HN , 因为GA GB =,可得GM AB ⊥,又因为平面ABG ⊥平面ABCD ,且平面ABG ⋂平面ABCD AB =,GM ⊂平面ABG , 所以GM ⊥平面ABCD ,同理可得:⊥HN 平面ABCD , 因为ED ⊥平面ABCD ,所以//ED HN ,又因为ED ⊄平面MNHG ,HN ⊂平面MNHG ,所以//ED 平面MNHG ,因为//MN AD ,且AD ⊄平面MNHG ,MN ⊂平面MNHG ,所以//AD 平面MNHG , 又因为AD DE D ⋂=,且,AD DE ⊂平面ADE ,所以平面//ADE 平面MNHG , 因为平面AEHG 与平面ADE 和平面MNHG 于,AE GH ,可得//AE GH , 又由//GM HN ,//AB CD ,且AB GM M =和CD HN N =, 所以平面//ABG 平面CDEHG ,因为平面AEHG 与平面ABG 和平面CDEHF 于,AG EH ,所以//AG EH , 可得四边形AGHE 为平行四边形,所以GH AE =,因为AE ===GH =在直角AMG ,可得3GM ==,在直角梯形GMNH 中,可得34HN ==, 因为⊥HN 平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以,,NM NC NH 所在的直线分别为,,x y z 轴,建立空间直角坐标系, 如图所示,则(0,4,1),(0,4,1),(4,0,3),(0,0,4)E F G H −, 可得(0,4,3),(0,4,3),(4,0,1)HE HF HG =−−=−=−,设平面BFHG 的法向量为(,,)n x y z =,则40430n HG x z n HF y z ⎧⋅=−=⎪⎨⋅=−=⎪⎩,取4z =,可得1,3x y ==,所以(1,3,4)n =,设平面AGHE 的法向量为(,,)m a b c =,则40430m HG a c m HE b c ⎧⋅=−=⎪⎨⋅=−−=⎪⎩,取4c =,可得1,3a b ==−,所以(1,3,4)m =−, 则4cos ,131m n m n m n⋅===+,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.17.(1)2213y x −=(2)1−【分析】(1)由三角形面积及双曲线的定义,利用勾股定理求解即可;(2)设直线方程,联立双曲线方程,由根与系数的关系及斜率公式化简可得3BN AM k k =−,代入223AM BN k k +中化简即可得出最值.【详解】(1)设双曲线的半焦距为c (0c >),12121||||32PF F S PF PF ==△, 12|||| 6.PF PF ∴=由题可知2221212||||2,||||4PF PF a PF PF c −=+=,2221212||||2||||4PF PF PF PF a ∴+−=,即224124c a −=,2 3.b ∴= 又2ca=,2 1.a ∴= 故E 的方程为2213y x −=.(2)如图,由题可知()()()22,0,1,0,1,0F A B −,且直线MN 的斜率不为0, 设直线MN的方程为2x ty t ⎛=+<< ⎝⎭,()()1122,,,M x y N x y , 将方程2x ty =+和2213y x −=联立,得()22311290t y ty −++=,121222129.3,131t y y y y t t ∴+=−=−−12121,1N AM B y yk k x x ==+−,()()()()22121212121211222231113191333331AMBNty y x y ty k ty y y t t k y x y ty ty y y y t −−−++−∴=====−++++−,3BN AM k k ∴=−,()222113AM BN AM k k k ∴+=−−,直线AM 与E的右支有交点,AM k <<∴当1,3AM BN k k ==−时,223AM BN k k +取得最小值,且最小值为1−.18.(1)14(2)(ⅰ)()()15,2i i E X E X i −=+≥;(ⅱ)10【分析】(1)由题意,得到前3次的得分分别为20(对),40(对),10(错)或10(错),20(对),40(对),进而求得得分之和为70分的概率;(2)(ⅰ)根据题意,分别求得()115E X =,()220E X =,()325E X =,结合题意,得到()()15i i E X E X −=+,即可完成猜想;(ⅱ)由(i )得到{}()i E X 为等差数列,求得21525()2ni i n nE X =+=∑,结合91()315i i E X ==∑和101()375ii E X ==∑,即可求解.【详解】(1)解:由题意,前3次的得分分别为20(对),40(对),10(错)或10(错),20(对),40(对),所以甲前3次答题的得分之和为70分的概率为3112()24P =⨯=.(2)解:(ⅰ)甲第1次答题得分20分,10分的概率分别为12,则()11120101522E X =⨯+⨯=, 甲第2次答题得分40分,20分,10分的概率分别为111,,442,则()211140201020442E X =⨯+⨯+⨯=,甲第3次答题得分80分,40分,20,10嗯分的概率分别为1111,,,8842,则()3111180402010258842E X =⨯+⨯+⨯+⨯=,当2i ≥时,因为甲第1i −次答题所得分数1i X −的数学期望为()1i E X −,所以第i 次答对题所得分数为()12i E X −,答错题所的分数为10分,其概率为12, 所以()()()1111210522i i i E X E X E X −−=⨯+⨯=+,可猜想:()()15,2i i E X E X i −=+≥.(ⅱ)由(i )知数列{}()i E X 是以15为首项,5为公差的等差数列,根据等差数列的求和公式,可得21(1)525()15522ni i n n n nE X n =−+=+⨯=∑, 当9n =时,91()315320i i E X ==<∑,当10n =时,101()375320i i E X ==>∑,所以实数n 的最小值为10.【点睛】方法点睛:对于离散型随机变量的期望与方差的综合问题的求解策略: 1、理解随机变量X 的意义,写出X 可能取得得全部数值; 2、根据题意,求得随机变量X 的每一个值对应的概率;3、列出随机变量X 的分布列,利用期望和方差的公式求得数学期望和方差;4、注意期望与方差的性质()()()()2,E aX b aE X b D ax b a D X +=++=的应用;19.(1)()()2121e e 4x x f x x =−− (2)证明见解析【分析】(1)借助导数的几何意义计算即可得; (2)原问题可转化为证明()()210,,21e e 2ln 204x x x x x ∞∀∈+−−−+>,构造函数()()2121e e 2ln 24x x F x x x =−−−+,借助导函数及零点的存在性定理虚设零点再代入求解即可得证.【详解】(1)由题可知,切点为50,4⎛⎫− ⎪⎝⎭,切线的斜率为1−,()21e e 2x xa f x xb −⎛⎫=+− ⎪⎝⎭',所以544112a b ab ⎧−−=−⎪⎪⎨−⎪−=−⎪⎩,解得1,1a b ==, 所以()()2121e e 4x x f x x =−−; (2)要证明()()0,,2ln 2x f x x ∞∀∈+>−, 即证明()()210,,21e e 2ln 204x x x x x ∞∀∈+−−−+>, 令函数()()2121e e 2ln 24x x F x x x =−−−+, 则()()222e e e e 1,0x xx xF x x x x x x ⎛⎫=−−=−+> ⎪⎝⎭', 当0x >时,e 10x x +>,设函数()2e (0)xg x x x=−>,则()22e 0xg x x =+>',故()g x 在()0,∞+单调递增, 又4545e 052g ⎛⎫=−< ⎪⎝⎭,()1e 20g =−>,所以存在唯一的04,15x ⎛⎫∈ ⎪⎝⎭,使得()00g x =,即2e 0x x −=,所以0000ln2ln ,ln ln2x x x x =−=−, 当()00,x x ∈时,()()0,F x F x '<单调递减, 当()0,x x ∞∈+时,()()0,F x F x '>单调递增, 所以()()()002000121e e 2ln 24x x F x F x x x ≥=−−−+ ()()0002200000142212212ln222ln2224x x x x x x x x =−−−−+=−−−++ 020122ln22x x =−+−+, 设函数()2122ln22h t t t =−+−+, 则当415t <<时,()()3220,h t h t t =+>'在4,15⎛⎫⎪⎝⎭单调递增,所以()425832ln2222ln20516580h t h ⎛⎫>=−+−+=+−> ⎪⎝⎭,原不等式得证.【点睛】关键点点睛:本题关键点在于对函数()2e xg x x =−的零点不可求时,借助零点存在性定理,虚设零点,即令()00g x =,从而可得函数单调性并可代入后续计算中求解.。
2020届安徽高三联考试题
B. gradual . C. comfortable D. enjoyable
B. close C. far . D. remote
B. rocks C. branches D. sand
B. When C. Before D. Since
B. taken C. brought D. fetched
B. continue C. stop D. run
B. safety C. relays D. offers
B. snowy C. narrow D. dirty
also more likely to experience negative consequences. Most of the girls investigated adaid the same. An earlier study from the Pew Research Center’s Internet came to a similar
36 . Those parents at the park weren’t ignoring their children; they were trusting them. Here are
surprising things Berlin ’s parents do:
. But even in first grade, academics aren’t pushed
具备条件的)
B. marketing C. relationship D. networking
B. May 20, 2020. C. June 18, 2020. . D. June 20, 2020.
2020届安徽高三联考试题
2020年“安徽省示范高中皖北协作区”第22届高三联考英语第二部分阅读理解(共两节,满分40分) AStart a summer company : studentsHow it worksThrough a program called Summer Company, you can get:* start-up money to kick-off a new summer business* advice and guide from local business leaders to help get the business up and runningLearning how to run your own student business is one of the best summer jobs you can have. You get to beyour own boss while learning what it takes to manage a business. Sales ,marketing, bookkeeping, customer relationship management and networking are just a few of the highly useful sills you’' Who is eligible( 具备条件的)You could be eligible, if you :* go to high school, college or university* live in Ontario* are a Canadian citizen or permanent resident* are between 15-29 years old( if under 18: a parent or guardian must sign the agreement for the applicant)* are not already running a business* are not working at another job or going to school for more than 12 hours a week during the program* are returning to school after the program endsYou cannot apply again if you have received a Summer Company grant in the past.Award amountMaximum award: $3 ,000.Successful Summer Company applicants get: .* up to $1,500 to help with start-up costs* up to $1,500 when you successfully complete the program requirements and hoursHow to applyThe program for 2020 is open through May 19. Here are the steps to apply:* Check to see if you’re eligible for the program* Complete the online application inquiry* Select your local program provider* Assign yourself a password* Submit your application inquiry21. The following skills can be developed through the program except_____A. salesB. marketingC. relationshipD. networking22. If you want to start a summer company, which of the following conditions is not suitable?A. You are between 18-29 years old.B. You are not already running a business.C. You are a Canadian citizen or permanent resident.D. You will attend school for over 12 hours a week during the program.23. When can you apply for the program?A. May 18, 2020.B. May 20, 2020.C. June 18, 2020. .D. June 20, 2020.BKeeping your teenager out of the social media world is impossible. Whether we like it or not, our kidsare growing up in a digital era- -and although that creates major opportunities, it also comes with some pretty big risks. We saw this firsthand when we asked a group of tweens and teens to give up their phonesand social media for a week; it was as though we' d asked them to part with a limb.A recent study of more than 10 ,000 six- to twelve-grade girls carried out by a nonprofit organizationRuling Our Experiences found that high school girls spend an average of six hours a day on social media.And the effect of too much logged-on time is clear. The study found kids who spend eight hours or more on technology per day are five times more likely to be sad or depressed. Adding to the pressure is that2 out of 3 high school girls report being asked to send a revealing photo to another person, and most of them report that they do send sexual texts and photos to each other.Another study, carried out by Common Sense Media, found that girls use social media more than boys and are also more likely to experience negative consequences. Most of the girls investigated admitted that content posted online often makes them worry about their appearance or social status, while just a quarter ofInternet came to a similar the boys said the same. An earlier study from the Pew Research Center’sconclusion: A third of 12- to 13-year-old girls who used social media believed their peers were mostly unkind to each other online , while only 9 percent of the boys agreed.rns about boys and the impact of digital Of course, these di fferences don' t mean we shouldn’t have conceoverload or online bulling. In fact, other studies have shown that boys and girls can be equally damaged by social media. The most important thing is for tens to feel safe, online and in the real world alike.24. What is the second paragraph mainly about?A. The pressure of the high school girls logging-on.B. The influence of too much logged-on time on high school girls.C. Too much time spent on social media for high school girls.D. The increasing population of the high school girls logging-on.in paragraph 2?25. Which of the following can replace the underlined word “revealing”A. Exposed.B. Interesting.C. Funny.D. Romantic.26. Why are the girls more likely to experience negative effect online than boys?A. Because the girls' social status is low.B. Because the girls are mostly unkind to each other.C. Because the girls use social media more than boys.D. Because the girls pay more attention to their appearance.27. What can be inferred from the passage?A. Parents should keep teens out of the social media.B. Parents keep teens feel safe online and in the real life.C. It is time to worry about your teens and social media.D. Boys and girls can be equally damaged by social media.CIt often seems that some people possess superhuman eating powers , allowing them to eat an entire pizza while remaining slim. Others only eat a slice but gain five pounds. Now one doctor says there' s evidencethat genetics could be behind some of these differences. Regardless of how much you eat, your weight maybe out of control.Vann Bennett, a biochemist at Duke University and his team led a new study and discovered why this happens. They engineered mice to have several common modifications of the gene found in humans. Theyobserved that mice who had mutations of ankyrin-B(锚蛋白B的变异) took more glucose(葡萄糖) into their fat ell, which in turn made more fat. Typically, the cell membrane( 膜) acts as a barrier to prevent glucose from entering these cells ; the change k ept the gate open. The change may serve a useful purpose.obably this is not always a bad thing," Bennett told Newsweek. “It could help people survive hunger in the past. But today we have somuch food that it probably is a bad thing. ”Dieters have long been told to watch their calories and exercise more, but this new finding suggests thata common approach doesn't work for everyone. Our metabolism( 新陈代谢) naturally slows with age, making it harder to maintain the weight of our 30-year-old selves when we' re 50. Now add an uncontrollable ankyrin-B gene, and it may seem impossible to stay slim.The mice in the study gained more weight when on high-fat diets. Despite being studied in mice, the researchers believe further research on this gene could potentially create a field of customized diets and health plans based on genetics. Bennett imagines such assessments being performed at birth one day. For now, disappointed dieters can take comfort with one saying: It's not you, it's your genes.28. How did a mouse gain weight with mutations of ankyrin-B?A. The ankyrin-B could make the mouse eat more.B. The fat cells in the mouse would take more glucose to create more fat.C. The glucose could function as a barrier to prevent the fat from reducing.D. The cell membrane in the mouse could open the gate of fat into the mouse.29. What was the effect of the change in the past in paragraph 2?A. It could help people to avoid fat food.B. It could help people to absorb more nutrition.C. It could help people to get through the starvation.D. It could help people to enjoy more delicious snacks.30. Why is it more difficult to stay slim when we are older?A. Because we all lack exercise.B. Because we have ankyrin-B genes.C. Because we watch our calories less.D. Because our metabolism weakens.31. What can be expected from further research?A. It may help people to maintain the weight.B. It may provide more comfort for the depressed dieters.gene arrangement.C. It may change many new-born babies’D. It may present human beings with a series of health plans.DBack in 1975,economists planned rising life expectancy( 预期寿命) against countries ’wealth,and concluded that wealth itself increases longevity. It seemed self- evident: everything people need to be healthy--from food to medical care- costs money.But it soon proved that the data didn't always fit that theory. Economic booms didn ' t always mean longer lives. In addition,for reasons that weren’t clear, a given gain in gross domestic product ( GDP ) caused increasingly higher gains in life expectancy over time, as though it was becoming cheaper to add years oflife. Moreover, in the 1980s researchers found gains in learning were associated with greater increases in life expectancy than gains in wealth were. Finally, the more educated people in any country tend to live longerthan their less educated fellow citizens. But such people also tend to be wealthier, so it has been difficult to make out which factor is increasing lifespan.Wolfgang Lutz and his colleagues have now done that by collecting average data on GDP per person,lifespan, and years of education from 174 countries,dating from 1970 to 2010. They found that, just as in1975,wealth associated with longevity. But the association between longevity and years of schooling was closer, with a direct relationship that did not change over time, the way wealth does.Lutz argues that because schooling happens many years before a person has attained their life expectancy,this association reflects cause : better education drives longer life. It also leads to more wealth, which is whywealth and longevity are also associated. But what is important, says Lutz, is that wealth does not seem to be longevity, as experts thought- in fact, education is driving both of them.He thinks this is because education permanently improves a person’s cognitive abilities ,allowing better planning and self-control throughout the rest of their life. This idea is supported by the fact that people whoare more intelligent appear to live longer.32. Which of the following best describes economists ’conclusion in 1975?A. Lifespan could be increased by wealth.B. Economic growth didn’t always mean longer life.C. Education influenced longevity more than wealth did.D. A given growth in GDP caused higher gains in longevity.33. What did Wolfgang Lutz and his colleagues find?A. Wealth and longevity did not have any association.B. Longevity and education were more closely associated.C. Differences in wealth predicted differences in longevity.D. Relationship between education and longevity changed over time.34. What part does education play permanently according to Lutz?A. It enables people to have better planning and self-control.B. It always leads to a longer but not necessarily richer life.C. It improves people’s imaginative and innovative abilities.D. It helps people acquire time-managing and learning habits.35. Which of the following is the best title for this passage?A. Wealth influences longevity.B. Education influences longevity.C. Wealth has nothing to do with longevity.D. The relationship between education and wealth.第二节(共5小题;每小题2分,满分10分)The first time I went to a playground in Berlin, I was surprised. All the German parents were huddledtogether, drinking coffee, not paying attention to their children who were hanging off a wooden dragon 20feet above a sand pit. Contrary to stereotypes(模式化观念),most German parents I’ve met are the oppositehey were trusting them. Here areof strict. 36 . Those parents at the park weren’t ignoring their children; ta few surprising things Berlin ’s parents do:Don't push reading. Berlin ’s kindergartens don’t emphasize academics. In fact, teachers and o discouraged me from teaching my children to read._ 37 . But even in first grade, academics aren’t pushedvery hard. Our grade school provides a half-day of instruction interrupted by two outdoor breaks.38 . A note came home from school along with my excited second grader. They were doing a projecton fire. Would I let her light candles and perform experiments with. matches? Together we lit candles andburned things, safely. It was brilliant.Let children go almost everywhere alone. Most grade school kids walk without their parents to schooland around their neighborhoods. Some even take the subway alone._ 39 of course, but they usually focuson traffic.,not abductions(绑架).Take the kids outside every day. According to a German saying, “There is no such thing as bad weather,time is promoted in the schools._ 40 No matter how coldonly unsuitable clothing.”The value of outsideand grey it gets, and in Berlin it gets pretty cold, parents still bundle their kids up and take them to the park,or send them out on their own.A. Encourage kids to play with fireB. Inspire children to go out for leisureC. German parents are concerned about safetyD. It's also obvious on Berlin ' s numerous playgroundsE. Kindergarten was a time for play and social learningF. They place a high value on independence and responsibilityG.I was told it was something special that the kids learn together when they start grade school第三部分语言知识运用(共两节,满分45分)第一节(共20小题;每小题 1.5分,满分30分)阅读下面短文,从短文后各题所给的A、B、C和D四个选项中,选出可以填人空白处的最佳选项,并在答题卡.上将该项涂黑。
安徽省示范高中皖北协作区第22届高三联考
安徽省示范高中皖北协作区第22届高三联考语文考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1 ~3题。
截至目前,我国共公布了五批传统村落6819个。
中国传统村落已成为世界上规模最大、仍然鲜活的文化遗产。
在我国,传统村落分布相对集中,形成了“一心、三片、多组团、多特色”分布特点。
这些种类繁多、生动多彩的传统村落,形成了人类文化多样性的重要支撑,它们既是世界农耕文明的源头和我国农耕文明最集中的反映,也是中华民族复兴的源泉所在。
在城乡关系重构的今天,传统村落已成为传统文化传承与重塑的重要载体和诗意栖居的家园。
当前,传统村落面临的紧迫任务依然是严格保护。
经过很长一段时期的努力,我们遏制了传统村落的自然消亡,但是空心化、建设性破坏、资金不足等依然是传统村落保护面临的主要挑战。
对传统村落进行严格保护,一方面需要开展传统村落谱系研究,充分利用现代信息技术实施精细化记录和管理,把传统村落中有价值的内容进行进一步明确。
另一方面则要健全传统村落保护体系,分级分类,精准保护利用。
对于有一定价值的传统村落,要保护好传统风貌,充分挖掘特色,适度恢复和还原,促进传统建筑的改善利用。
让传统村落走向现代,离不开完善基础设施,提升人居环境。
当前历史村镇最突出的矛盾之一就是居住者对现代生活的要求与历史文化的冲突。
对此,我们要重点研究和突破,进一步改善传统村落的基础设施和人居环境,包括加强公共服务,完善公共服务设施、配设小型综合体等。
通过优化调整适宜的产业,促进传统村落实现农业与二、三产业融合发展,进一步发展生态农业、特色农业。
2020届安徽省示范高中皖北协作区高三联考数学(文)试题
绝密★启用前2020年“安徽省示范高中皖北协作区”第22届高三联考数学(文科)考生注意:1.答题前,考生务必将自已的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1,已知复数z 满足i i z +=2,则在复平面内z 对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知集合{}⎭⎬⎫⎩⎨⎧<=<+-=110342x x B x x x A ,,则A ∩B=( ) A. {}3<x x B.{}1>x x C.{}31<<x x D.{}31><x x x 或 3.设函数⎩⎨⎧>≤+-=,0,2,0,1)(x x x x f x 则))2((-f f =( ), A .8- B .6- C .6 D .84.函数x e e x f x x cos 11)(+-=在[ -π,π]上的图像大致为( )5.双曲线C :)0,0(12222>>=-b a b y a x 的一条渐近线的倾斜角为60°,则C 的离心率为( ) A .23 B .2 C .3 D .32 6巳知角a 的顶点与原点O 重合,始边与x 物的非负半轴重合,它的终边过点)4,3(-P ,则)4tan(απ+=( ) A .71- B .71 C .7- D .7 7.如图是汉代数学家赵爽在注解《周髀算经》时绘制的“赵爽弦图”,该图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形,这是我国对勾股定理的最早证明.记直角三角形中较小的锐角为θ,且2572cos =θ.若在大正方形内随机取一点,则此点取自小正方形的概率是( )A.251B.254C.51D.53 8.已知非零向量b a ,满足b a 3=,且)3()(b a b a +⊥+,则a 与b 的夹角为( )A.65πB.32π c.3π D.6π 9.已知F 是抛物线C :x y 42=的焦点,A ,B 为抛物线C 上两点,且6=+BF AF .则线段AB 的中点到y 轴的距离为( )A .3B .2C .25 D .23 10.已知212ln 21sin π===c b a ,,,则( ) A .a>b>c B .b>c>a C .c>a>b D .c>b>a11.已知某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.322B.938 C.38 D.412.关于曲线12121=+y x C :,有下述四个结论:①曲线C 是轴对称图形;成曲线C 关于点)41,41(P 中心对称: ③曲线C 上的点到坐标原点的距离最小值是22: ④曲线C 与坐标轴围成的图形的面积不大于21, 其中所有正确结论的编号是 A .①③ B .①④ C .①③④ D .②③④二、填空题:本题共4小題,每小题5分,共20分13.已知数据5,4,2,a 的平均数是3,则该组数据的方差为 .14.△ABC 的内角A ,B ,C 的对边分别a ,b ,c .已知b c B a -=2cos 2,则A= .15.已知正三棱柱111C B A ABC -的六个顶点都在球O 的球面上,4,21==AA AB ,则求O 的表面积为 .16.函数])2,0[(cos sin 23sin )(2π∈-=x x x x x f 的最大值为 .三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22,23题为选考题,考生根据要求作答.(一)必考题:共60分17.(12分)记n S 为等差数列{}n a 的前n 项和.巳知351253==S S ,.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设n an b 2=.求数列{}n b 的前n 项和n T .18.(12分)为了贯彻落实党中央对新冠肺炎疫情防控工作的部署和要求,坚决防范疫情向校园蔓延,切实保障广大师生身体健康和生命的安全,教育主管部门决定通过电视频道、网络平台等多种方式实施线上教育教学工作.某教育机构为了了解人们对其数学网课授课方式的满意度,从经济不发达的A 城市和经济发达的B 城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如下:若评分不低于80分,则认为该用户对此教育机构授课方式“认可”,否则认为该用户对此教育机构授课方式“不认可”.(Ⅰ)请根据此样本完成下列2x2列联表,并据此列联表分析,能否有95%的把握认为城市经济状况与该市的用户认可该教育机构授课方式有关?(Ⅱ)在样本A ,B 两个城市对此教育机构授课方式“认可”的用户中按分层抽样的方法抽取6人,若在此6人中任选2人参加数学竞赛,求A 城市中至少有1人参加的概率. 参考公式:))()()(()(22d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=. 参考数据:I9.(12分)图1是矩形ABCD ,AB =2, BC =1,M 为CD 的中点,将△AMD 沿AM 翻折,得到四梭锥D 一ABCM ,如图2.(Ⅰ)若点N 为BD 的中点,求证:CN//平面DAM ;(Ⅱ)若AD ⊥BM .求点A 到平面BCD 的距离.图1 图220.(12分) 已知椭圆)0,0(12222>>=+b a b y a x C :经过点)23,1(A ,且离心率为21,过其右焦点F 的直线l 交椭圆C 于M .N 两点,交y 轴于E 点.若1EM MF λ=u u u u r u u u r 2,EN NF λ=u u u r u u u r(Ⅰ)求椭圆C 的标准方程;(Ⅱ)试判断21λλ+是否是定值.若是定值,求出该定值;若不是定值,请说明理由.21.(12分)已知函数)(ln )(2R a x a x x f ∈-=.(Ⅰ)讨论函数f (x )的单调性:(Ⅱ)若a>0,直线y=g (x )为函数f (x )图像的一条切线,求证:g (1)≤1.(二)选考题:共10分请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分,22.[选修4-4;坐标系与参数方程](10分)平面直角坐标系xOy 中,曲线1C 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=++-=λλλλ121131y x (λ为参数,且1-≠λ).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为032cos 122=++θρρ.(Ⅰ)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(Ⅱ)已知点P 的极坐标为)4,22(π,Q 为曲线2C 上的动点,求PQ 的中点M 到曲线1C 的距离的最大值.23.[选修4-5:不等式选讲](10分)) 已知函数)0(5)(>+--=m m x x x f 的最大值为8.(Ⅰ)求m 的值;(Ⅱ)若实数a 满足0)()1(>+-a f a f ,求a 的取值范围.。
皖北六所省示范高中2020年高三数学联考试卷 新课标 人教版
皖北六所省示范高中2020年高三数学联考试卷一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集{|8,}U x x x N =<∈且,集合{2,3,4,5},{4,5,6,7}P Q ==,则=⋂P Q C U )(A .{2,3,6,7}B .{4,5}C .{0,1}D .{2,3} 2.以线段AB :20x y +-=(0≤x ≤2)为直径的圆的方程为A .22(1)(1)2x y +++=B .22(1)(1)2x y -+-=C .22(1)(1)8x y +++=D .22(1)(1)8x y -+-=3.已知点(3,1)和原点(0,0)在直线310x ay -+=的同一侧,则实数a 的取值范围是A .a <10B .a >10C .a <9D .a >9 4.设等差数列{}n a 的前n 项和为n S ,12342,10a a a a +=+=,则2limnn S n →∞=A .4B .2C .1D .125.已知双曲线224x y -=的右焦点为F ,右准线与一条渐近线交于点A ,则|AF|的值为A .1B .2CD .6.已知i 是虚数单位,函数2(1),0()2cos ,0i i x f x x a x ⎧+≥=⎨-<⎩,在R 上连续,则实数a =A .–2B .0C .2D .47.有一种波,其波形为函数sin()2y x π=-的图象,若其在区间[0,t ]上至少有2个波峰(图象的最高点),则正整数t 的最小值是A .5B .6C .7D .88.已知()f x 是定义在R 上的函数,(1)1f =,且对任意x R ∈都有(1)f x +≤()1f x +,(5)f x +≥()5f x +,则(6)f 的值是A .6B .5C .7D .不能确定9.设O 是△ABC 内部一点,且2OA OC OB +=-u u u r u u u r u u u r,则△AOB 与△AOC 的面积之比为 A .2 B .12C .1D .2510.已知直线l ,平面α、β,满足βα⊄⊄l l ,.在βααβ⊥⊥,,//l l 这三个关系中,以其中两个作为条件,余下一个作为结论所构造的命题中,真命题的个数是A .0B .1C .2D .3二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中的横线上 11.已知6260126(1)x a a x a x a x -=++++L 则1256a a a a ++++=L12.已知非零向量a ρ、b ρ满足b a b a ρρρρ⋅=⋅2,则a ρ与b ρ夹角的大小为 .13.某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本,若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为__________________.14.已知椭圆的方程为x y m m y x 22),0(116222=>=+直线与该椭圆的一个交点M 在x 轴上的射影恰好是椭圆的右焦点F ,则m 的值为 .三、解答题:本大题共6小题,每小题14分,共84分,解答应写出文字说明、证明过程或演算步骤)15. 已知02cos 22sin =-xx , (Ⅰ)求x tan 的值;(Ⅱ)求xx xsin )4cos(22cos ⋅+π的值.16、已知函数}{n a 的首项11=a ,其前n 项和为S n ,且对任意正整数n ,有n ,a n 、s n 成等差数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
到 y 轴的距离为( )
A.3
B.2
C. 5 2
10.已知
a
sin
1
,b
ln
2,c
1 2
,则(
)
2
A.a>b>c
B.b>c>a
C.c>a>b
11.已知某三棱锥的三视图如图所示,则该三棱锥的体积为( )
D. 3 2
D.c>b>a
22
A.
3 8
C.
3
83
B.
9
D.4
1
1
12.关于曲线 C:x 2 y 2 1,有下述四个结论:
2020 年“安徽省示范高中皖北协作区”第 22 届高三联考
数学(文科)
考生注意:
1.答题前,考生务必将自已的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上
的指定位置.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦
干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.
A. 1 7
B. 1 7
C. 7
D.7
7.如图是汉代数学家赵爽在注解《周髀算经》时绘制的“赵爽弦图”,该图是由四个全等的直角三角形和
中间的一个小正方形拼成的一个大正方形,这是我国对勾股定理的最早证明.记直角三角形中较小的锐角为
,且 cos 2 7 .若在大正方形内随机取一点,则此点取自小正方形的概率是( ) 25
21.(12 分)
已知函数 f (x) x2 a ln x(a R) .
(Ⅰ)讨论函数 f(x)的单调性: (Ⅱ)若 a>0,直线 y=g(x)为函数 f(x)图像的一条切线,求证:g(1)≤1.
(二)选考题:共 10 分请考生在第 22,23 题中任选一题作答,如果多做,则按所做的第一题计分, 22.[选修 4-4;坐标系与参数方程](10 分)
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分在每小题给出的四个选项中,只有一项是符合题目要
求的.
1,已知复数 z 满足 z i ,则在复平面内 z 对应的点位于( 2i
A.第一象限
B.第二象限
C.第三象限
) D.第四象限
2.已知集合 A
x
在[
-π,π]上的图像大致为(
)
D.8
5.双曲线 C:
x2 a2
y2 b2
1(a
0,b 0) 的一条渐近线的倾斜角为 60°,则
C 的离心率为(
)
A. 3 2
B.2
C. 3
D. 2 3
6 巳知角 a 的顶点与原点 O 重合,始边与 x 物的非负半轴重合,它的终边过点 P(3,4) ,则na(t ) =( ) 4
2,
4
)
,Q
为曲线
C2
上的动点,求
PQ
的中点
M
到曲线
C1
的距离的最大值.
23.[选修 4-5:不等式选讲](10 分))
已知函数 f (x) 5 x x m (m 0) 的最大值为 8.
(Ⅰ)求 m 的值;
(Ⅱ)若实数 a 满足 f (a 1) f (a) 0 ,求 a 的取值范围.
若评分不低于 80 分,则认为该用户对此教育机构授课方式“认可”,否则认为该用户对此教育机构授 课方式“不认可”. (Ⅰ)请根据此样本完成下列 2x2 列联表,并据此列联表分析,能否有 95%的把握认为城市经济状况与该 市的用户认可该教育机构授课方式有关?
(Ⅱ)在样本 A,B 两个城市对此教育机构授课方式“认可”的用户中按分层抽样的方法抽取 6 人,若在此 6 人中任选 2 人参加数学竞赛,求 A 城市中至少有 1 人参加的概率.
A. 1
B. 4
C. 1
D. 3
25
25
5
5
8.已知非零向量 a, b 满足 a 3 b ,且 (a b) (a 3b) ,则 a 与 b 的夹角为( )
A. 5
B. 2
c.
D.
6
3
3
6
9.已知 F 是抛物线 C: y2 4x 的焦点,A,B 为抛物线 C 上两点,且 AF BF 6 .则线段 AB 的中点
D.②③④ .
14.△ABC 的内角 A,B,C 的对边分别 a,b,c.已知 2a cos B 2c b ,则 A=
.
15.已知正三棱柱 ABC A1B1C1的六个顶点都在球 O 的球面上,AB 2, AA1 4 ,则求 O 的表面积为 .
16.函数 f (x) sin 3x 2sin x cos2 x(x [0, ]) 的最大值为
参考公式: K 2
n(ad bc)2
,其中 n a b c d .
(a b)(c d)(a c)(b d)
参考数据:
I9.(12 分) 图 1 是矩形 ABCD,AB =2,BC =1.M 为 CD 的中点,将△AMD 沿 AM 翻折,得到四梭锥 D 一 ABCM,
如图 2. (Ⅰ)若点 N 为 BD 的中点,求证:CN//平面 DAM; (Ⅱ)若 AD⊥BM.求点 A 到平面 BCD 的距离.
(Ⅱ)设 bn 2an .求数列 bn 的前 n 项和Tn .
18.(12 分) 为了贯彻落实党中央对新冠肺炎疫情防控工作的部署和要求,坚决防范疫情向校园蔓延,切实保障广
大师生身体健康和生命的安全,教育主管部门决定通过电视频道、网络平台等多种方式实施线上教育教学 工作.某教育机构为了了解人们对其数学网课授课方式的满意度,从经济不发达的 A 城市和经济发达的 B 城市分别随机调查了 20 个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如下:
.
2
三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤.第 17~21 题为必考题,每个试题考生都
必须作答,第 22,23 题为选考题,考生根据要求作答.
(一)必考题:共 60 分 17.(12 分)
记 Sn 为等差数列an的前 n 项和.巳知 S3 12,S5 35 .
(Ⅰ)求 an 的通项公式;
图1
图2
20.(12 分)
已知椭圆
C:x a
2 2
y2 b2
1( a
0, b
0)
经过点
A(1,
3) ,且离心率为 2
1 2
,过其右焦点
F
的直线 l
交椭圆
C
于 M.N 两点,交 y 轴于 E 点.若 EM 1MF, EN 2 NF .
(Ⅰ)求椭圆 C 的标准方程;
(Ⅱ)试判断 1 2 是否是定值.若是定值,求出该定值;若不是定值,请说明理由.
①曲线 C 是轴对称图形;
成曲线 C 关于点 P(1 , 1 ) 中心对称: 44
③曲线 C 上的点到坐标原点的距离最小值是 2 : 2
④曲线 C 与坐标轴围成的图形的面积不大于 1 , 2
其中所有正确结论的编号是
A.①③
B.①④
二、填空题:本题共 4 小題,每小题 5 分,共 20 分
C.①③④
13.巳知数据 a,2,4,5 的平均数是 3,则该组数据的方差为
x
x2
4x
3
0
,B
x
1 x
1
,则
A∩B=(
)
A. x x 3
B.x x 1
C.x1 x 3
D.x x 1或x 3
x 1, x 0, 3.设函数 f (x) 2x , x 0, 则 f ( f (2)) =(
A. 8
B. 6
), C.6
4.函数
f
(x)
ex ex
1 cos 1
平面直角坐标系
xOy
中,曲线
C1
的参数方程为
ቤተ መጻሕፍቲ ባይዱ
x
y
1 3 1 1 2 1
(
为参数,且
1 ).以坐标原点
O
为
极点,x 轴的正半轴为极轴建立极坐标系,曲线 C2 的极坐标方程为 2 12 cos 32 0 .
(Ⅰ)求曲线 C1 的普通方程和曲线 C2 的直角坐标方程;
(Ⅱ)已知点 P 的极坐标为 (2