广义异方差模型例题
异方差性习题及答案
异方差性一、单项选择1.Goldfeld-Quandt 方法用于检验( )A.异方差性B.自相关性C.随机解释变量D.多重共线性 2.在异方差性情况下,常用的估计方法是( )A.一阶差分法B.广义差分法C.工具变量法D.加权最小二乘法 3.White 检验方法主要用于检验( )A.异方差性B.自相关性C.随机解释变量D.多重共线性 4.Glejser 检验方法主要用于检验( )A.异方差性B.自相关性C.随机解释变量D.多重共线性 5.下列哪种方法不是检验异方差的方法 ( )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验 6.当存在异方差现象时,估计模型参数的适当方法是 ( ) A.加权最小二乘法 B.工具变量法C.广义差分法D.使用非样本先验信息7.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即 ( )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用8.如果戈里瑟检验表明,普通最小二乘估计结果的残差i e 与i x 有显著的形式ii i v x e +=28715.0的相关关系(i v满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为 ( )A. i xB. 21i x C. i x 1D. i x 19.如果戈德菲尔特——匡特检验显著,则认为什么问题是严重的 ( )A.异方差问题B.序列相关问题C.多重共线性问题D.设定误差问题10.设回归模型为i i i u bx y +=,其中i i x u Var 2)(σ=,则b 的最有效估计量为( )A.∑∑=2ˆx xy bB. 22)(ˆ∑∑∑∑∑--=x x n y x xy n bC.x y b=ˆ D. ∑=xy n b 1ˆ二、多项选择1.下列计量经济分析中那些很可能存在异方差问题( ) A.用横截面数据建立家庭消费支出对家庭收入水平的回归模型 B.用横截面数据建立产出对劳动和资本的回归模型C.以凯恩斯的有效需求理论为基础构造宏观计量经济模型D.以国民经济核算帐户为基础构造宏观计量经济模型E.以30年的时序数据建立某种商品的市场供需模型 2.在异方差条件下普通最小二乘法具有如下性质()A 、线性B 、无偏性C 、最小方差性D 、精确性E 、有效性 3.异方差性将导致A 、普通最小二乘法估计量有偏和非一致B 、普通最小二乘法估计量非有效C 、普通最小二乘法估计量的方差的估计量有偏D 、建立在普通最小二乘法估计基础上的假设检验失效E 、建立在普通最小二乘法估计基础上的预测区间变宽 4.下列哪些方法可用于异方差性的检验()A 、DW 检验B 、方差膨胀因子检验法C 、判定系数增量贡献法D 、样本分段比较法E 、残差回归检验法5.当模型存在异方差现象进,加权最小二乘估计量具备( )A 、线性B 、无偏性C 、有效性D 、一致性E 、精确性 6.下列说法正确的有()A 、当异方差出现时,最小二乘估计是有偏的和不具有最小方差特性B 、当异方差出现时,常用的t 和F 检验失效C 、异方差情况下,通常的OLS 估计一定高估了估计量的标准差D 、如果OLS 回归的残差表现出系统性,则说明数据中不存在异方差性E 、如果回归模型中遗漏一个重要变量,则OLS 残差必定表现出明显的趋势 三、名词解释1.异方差性2.格德菲尔特-匡特检验3.怀特检验4.戈里瑟检验和帕克检验 四、简答题1.什么是异方差性?试举例说明经济现象中的异方差性。
异方差性、自相关以及广义最小二乘(GLS)
(6)
其中C的各列是Ω的特征向量经过正交化而得到,即CC’=I,而且Ω的特征根被放在对角矩阵 中。令 是对角元素为 的对角矩阵,并令 ,于是 。另外,令 ,因此
用P’前乘(1)中的模型可得
或
(7)
的方差是
因此,这个变换后的模型就是一个我们熟悉的古典回归模型。由于Ω已知,所以,
三)可行的最小二乘估计(FGLS)
上一节的结果是基于Ω必须是已知的条件基础上的。如果Ω含有必须估计的未知参数,则GLS是不可行的。但在无约束的情况下, 中有n(n+1)/2个附加参数。这对于用n个观测值来估计这么多的参数是不现实的。只有当模型中需要估计的参数较少时,即模型中Ω某种结构要简化,才可以找到求解的方法。
异方差性、自相关以及广义最小二乘(GLS、FGLS)
蒋岳祥
(浙江大学经济学院)
一、古典模型中的b的非线性函数的分布及其检验
二、异方差性和自相关(非球形扰动)
1、问题的提出
2、广义最小二乘(GLS)
3、可行广义最小二乘(FGLS)
三、异方差不含自相关的检验(怀特检验)
一、古典模型中的b的非线性函数的分布及其检验
对于假设检验,我们可以把所有结果应用到变换后的模型(7)中。为了检验J个线性约束Rβ=q,相应的统计量是
,
其中残差向量是
而
有约束的GLS残差 ,基于
(11)
总之,对于古典模型的所有结果,包括通常的推断过程,都适用于(7)中的模型。
应该注意的是:在广义回归模型中没有R2的准确对等物。不同的统计量有不同的意义,但使用它们时一定要谨慎。
可行的最小二乘估计(FGLS)
具有代表性的问题涉及到一小组参数 ,满足 。例如, 只有一个未知数 ,其常见的表达形式是
异方差练习题参考解答
异方差练习题参考解答练习题1.设消费函数为i i i i u X X Y +++=33221βββ式中,i Y 为消费支出;i X 2为个人可支配收入;i X 3为个人的流动资产;i u 为随机误差项,并且222)(,0)(i i i X u Var u E σ==(其中2σ为常数)。
试回答以下问题:(1)选用适当的变换修正异方差,要求写出变换过程;(2)写出修正异方差后的参数估计量的表达式。
2.由表中给出消费Y 与收入X 的数据,试根据所给数据资料完成以下问题: (1)估计回归模型u X Y ++=21ββ中的未知参数1β和2β,并写出样本回归模型的书写格式;(2)试用Goldfeld-Quandt 法和White 法检验模型的异方差性; (3)选用合适的方法修正异方差。
Y X Y X Y X 55 80 152 220 95 140 65 100 144 210 108 145 70 85 175 245 113 150 80 110 180 260 110 160 79 120 135 190 125 165 84 115 140 205 115 180 98 130 178 265 130 185 95 140 191 270 135 190 90 125 137 230 120 200 75 90 189 250 140 205 74 105 55 80 140 210 110 160 70 85 152 220 113 150 75 90 140 225 125 165 65 100 137 230 108 145 74 105 145 240 115 180 80 110 175 245 140 225 84 115 189 250 120 200 79 120 180 260 14524090125178265130185981301912703.表中的数据是美国1988研究与开发(R&D)支出费用(Y)与不同部门产品销售量(X)。
第三章 异方差与自相关广义线性模型
第三章 异方差与自相关广义线性模型本章继续讨论线性模型Y =X β+ε, E (ε)=0 ()所不同在于以前的关于误差方差的假定是Var(ε)=σ2I n ()这一章逐次推广讨论。
第一节讨论异方差的存在与检验,尤其是在经济模型资料中的存在与影响,第二节讨论的是n i diag Var i n ,,1,),,,()(2221 ==σσσε已知()2221222222212121,),,,,,,,,,()(σσσσσσσσε diag Var =未知 ())ex p(),,,()(2221ασσσεi i n Z diag Var '== ,α未知()这些都是误差方差为对角阵的模型。
第三节讨论自相关线性模型。
首先讨论的是残差一阶自回归线性模型,它的残差满足i i i υρεε+=-1() )(,0)(,)(,0)(22j i E E E j i i i ≠===υυσυυ()此时残差εi 的方差虽不为对角阵,但只含一个参数。
接着我们介绍自回归条件异方差(ARCH)模型,它的误差假设是i p i p i i υεαεααε++++=--221102() )(,0)(,)(,0)(22j i E E E j i i i ≠===υυσυυ()因为模型计算中用到了广义矩估计方法(GMM),我们在第四节又介绍了GMM 。
第五节讨论的是22,0)(σσε>=M Var 未知,M 已知()第六节讨论的是22,0)(σσε≥=M Var 未知,M 已知()所讨论的内容还是各种回归模型、算法及性质。
第一节 异方差的存在与检验一、异方差的存在与影响前面介绍的线性回归模型,都是假定随机误差项εi 独立同分布,有相同的方差 (Homoscedasticity)2)( ,0)(σεε==i i Var E()但是实际抽样很难保证这一点。
经济对象千差万别,可以按不同标准划分成不同的群体。
这些群体间的差别导致样本方差不一致,于是就有所谓异方差(Heteroscedasticity):2)( ,0)(i i i Var E σεε==()反映在散点图上,如下图可以明显看出样本方差与点 (X i , Y i )有关,随着样本数值增大而增大。
异方差性习题与答案
第五章 异方差性习题与答案1、产生异方差的后果是什么?2、下列哪种情况是异方差性造成的结果? (1)OLS 估计量是有偏的(2)通常的t 检验不再服从t 分布。
(3)OLS 估计量不再具有最佳线性无偏性。
3、已知模型:i i i i u X X Y +++=22110βββ式中,i Y 为某公司在第i 个地区的销售额;i X 1为该地区的总收入;i X 2为该公司在该地区投入的广告费用(i=0,1,2……,50)。
(1)由于不同地区人口规模i P 可能影响着该公司在该地区的销售,因此有理由怀疑随机误差项u i 是异方差的。
假设i σ依赖于总体i P 的容量,逐步描述你如何对此进行检验。
需说明:A 、零假设和备择假设;B 、要进行的回归;C 、要计算的检验统计值及它的分布(包括自由度);D 、接受或拒绝零假设的标准。
(2)假设i i P σσ=。
逐步描述如何求得BLUE 并给出理论依据。
4、下表数据给出按学位和年龄划分的经济学家的中位数工薪: 表1 经济学家的工资表年 龄 中位数工薪(以千美元计算) 硕士 博士 25-29 8.0 8.8 30-34 9.2 9.6 35-39 11.0 11.0 40-44 12.8 12.5 45-49 14.2 13.6 50-54 14.7 14.3 55-59 14.5 15.0 60-64 13.5 15.0 65-6912.015.0(1)有硕士学位和有博士学位经济学家的中位数工薪的方差相等么? (2)如果相等,你会怎样检验两组平均中位数工薪相等的假设?(3)在年龄35至5岁之间的经济学家,有硕士学位的比有博士学位的赚更多的钱,那么你会怎样解释这一发现?5、为了解美国工作妇女是否受到歧视,可以用美国统计局的“当前人口调查”中的截面数据,研究男女工资有没有差别。
这项多元回归分析研究所用到的变量有: W —雇员的工资率(美元/小时) 1表示雇员为女性, 0表示女性意外的雇员。
6 广义最小二乘法(GLS)与异方差
e =α0 +α1 f (X j ) +ε
c. 用WLS法消除。 法消除。 法消除
3、怀特(White)检验 、怀特( ) a. 建立模型 例如: 例如 2 b. 检验统计量 检验统计量:
2 e =α0 +α1X1 +α2 X2 +α3X12 +α4 X2 +α5 X1X2
m= nR
2
n为样本容量,R2为可决系数,m 即LM统计量 朗格 为样本容量, 为可决系数, 统计量(朗格 为样本容量 统计量 拉日乘子统计量),近似服从自由度为 k (解释变量 拉日乘子统计量),近似服从自由度为 解释变量 ), 2 的个数) 分布。 的个数 的 χ 分布 c. 判断 判断:在Eviews的模型估计结果输出窗口中, 选 View/ Residual Test/ White Heteroskedasticity
X2
2526.9 875.6 839.8 1088.0 1067.7 647.8 644.3 814.4 876.0 887.0 753.5 963.4 410.3 2526.9 875.6
4446.4 湖 2633.1 湖 1674.8 广 1346.2 广 480.5 海 1303.6 重 547.6 四 596.2 贵 5218.4 云 2607.2 西 3596.6 陕 1006.9 甘 2327.7 青 1203.8 宁 1511.6 新 1014.1
异方差检验
(1)图示法 )
进一步的统计检验 (2)G-Q检验 检验 将原始数据按X 排成升序,去掉中间的7 将原始数据按 2排成升序,去掉中间的 个数据,得两个容量为12的子样本 的子样本。 个数据,得两个容量为 的子样本。 对两个子样本分别作OLS回归,求各自的 对两个子样本分别作 回归, 回归 2 2 e1 和 残差平方和 e2 :
异方差完整案例分析
10.5 一个更完整例子让我们来看一个更完整基于横殿面异方差例子。
20世纪70年代中期,美国能源部门试图基于各地过去汽油消耗量与人口变动情况以及其他一些因素给各地区、各州甚至各零售点直接分配汽油。
实现这种分配必须将大量因素作为各州〔各地区〕燃油消耗量(应变量)函数而建立模型。
而对于这样横截面模型,即使是估计模型,也很可能会具有异方差问题。
在模型中,应变量为各州燃油消耗量,可能解释变量包括:与各州规模大小相关变量〔例如公路里程数、注册机动车数量与人口〕,以及与各州规模大小无关变量〔例如燃油税率与最高限速〕。
因为在模型中反映各州规模大小变量不应多于一个〔如果包含过多变量容易导致多重共线性〕,因为有许多州最高限速一样〔但在时间序列模型中,它将是一个有用变量〕。
因此,一个合理模型为:012(,)i i i i iPCON f REG TAX REG TAX εβββε+-=+=+++〔10-20〕式中 i PCON ——第i 个州燃油消耗量〔百万BTU 〕, i REG ——第i 个州注册机动车数量〔千辆〕, i TAX ——第i 个州燃油税率〔美分/加仑〕, i ε——经典误差项。
我们可以认为一个州注册汽车数量越多,该州所消耗燃油也越多;而一个州燃油税率越高那么该州燃油消耗量越小1。
我们搜集那一时1在方程中我们也可用*TAX REG 或者*TAX POP 〔iPOP 代表第i 个州的人口〕期数据〔见表10-1〕用于估计方程〔10-20〕,得到: i i i TAX REG PCON 59.531861.07.551-+=∧〔10-21〕〔0.0117〕 〔16.86〕15.88t = 3.18-20.861R = 50N =表10-1 燃油消费例子中数据PCON UHM TAX REG POP e state 270 9 743 1136 Maine 122 14 774 948 New Hampshire 58 11351 520 Vermont 8213750 5750 Massachusetts98 13 586 953 Rhode lsland 450 11 2258 3126 Connecticut1819 8 8235 17567 New York 1229 8 4917 7427 New lersey 1200116725 11879Pennsylvania1205763610772Ohio取代TAX 作为方程的解释变量。
ccc-garch广义自回归条件异方差模型
ccc-garch广义自回归条件异方差模型GARCH(广义自回归条件异方差)模型是一种用于时间序列分析中处理异方差性的模型。
它是ARCH(自回归条件异方差)模型的扩展,通过引入额外的参数,能够更准确地捕捉时间序列数据中的波动性、异方差性和相关性的变化。
GARCH模型的基本形式可以表示为:\[\sigma_t^2 = \omega + \sum_{i=1}^{p}\alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^{q}\beta_j \sigma_{t-j}^2\]其中,\(\varepsilon_t\) 是时间序列数据在时间点 \(t\) 的残差,\(\sigma_t^2\) 是时间点 \(t\) 的方差,\(\omega\)、\(\alpha_i\) 和\(\beta_j\) 是模型的参数,\(p\) 和 \(q\) 分别代表了模型的自回归部分和移动平均部分的阶数。
GARCH模型的核心思想是使用历史残差的平方项作为预测当前期方差的主要指标,同时考虑了之前期方差的影响。
因此,GARCH模型能够根据历史数据的波动性和相关性,进行对未来方差的预测,从而实现风险管理和投资决策。
在应用GARCH模型时,一般需要经历以下步骤:1. 数据预处理:对原始数据进行平稳性检验,如ADF检验、单位根检验等。
如果数据不满足平稳性条件,需要进行差分处理,将其转化为平稳序列。
2. 模型拟合:选取适当的GARCH模型阶数 \(p\) 和 \(q\),通过拟合数据估计GARCH模型的参数。
可以使用最大似然估计法(Maximum Likelihood Estimation)或其他拟合方法。
3. 模型诊断:对拟合后的模型进行统计检验,检查模型残差的自相关性是否存在显著性、残差是否符合正态分布等。
可以应用Ljung-Box检验、正态性检验等。
4. 模型选择:根据诊断结果和实际应用需求,选择最优GARCH模型。
计量经济学第五章异方差性参考答案讲解
计量经济学第五章异⽅差性参考答案讲解第五章异⽅差性课后题参考答案 5.1(1)因为22()i i f X X =,所以取221iiW X =,⽤2i W 乘给定模型两端,得 312322221i i ii i i i Y X u X X X X βββ=+++ 上述模型的随机误差项的⽅差为⼀固定常数,即22221()()i i i iu Var Var u X X σ==(2)根据加权最⼩⼆乘法,可得修正异⽅差后的参数估计式为***12233Y X X βββ=-- ()()()()()()()***2****22232322322*2*2**2223223?i i i i i i i i i i i i i i i i i iW y x W x W y x W x x W x W x W x x β-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223?ii ii i i iii i i ii i i i i iW y x W x W y x W x x Wx W x W x x β-=-∑∑∑∑∑∑∑其中22232***23222,,iii i i i iiiW XW X W Y X X Y WWW ===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y=-=-=- 5.2 (1)2222211111 ln()ln()ln(1)1 u ln()1Y X Y X Yu u X X X u ββββββββββ--==+≈=-∴=+ [ln()]0 ()[ln()1][ln()]11E u E E u E u µ=∴=+=+=⼜(2)[ln()]ln ln 0 1 ()11i i iiP P i i i i P P i i E P E µµµµµµµ===?====∑∏∏∑∏∏不能推导出所以E 1µ()=时,不⼀定有E 0µ(ln )= (3)对⽅程进⾏差分得:1)i i βµµ--i i-12i i-1lnY -lnY =(lnX -X )+(ln ln则有:1)]0i i µµ--=E[(ln ln5.3(1)该模型样本回归估计式的书写形式为:Y = 11.44213599 + 0.6267829962*X (3.629253) (0.019872)t= 3.152752 31.5409720.944911R =20.943961R = S.E.=9.158900 DW=1.597946 F=994.8326(2)⾸先,⽤Goldfeld-Quandt 法进⾏检验。
若干广义自回归条件异方差模型的统计推断
若干广义自回归条件异方差模型的统计推断汇报人:日期:•引言•广义自回归条件异方差模型理论基础•若干广义自回归条件异方差模型的构目录建•若干广义自回归条件异方差模型的统计推断方法•若干广义自回归条件异方差模型的实目录证分析•研究结论与展望引言01研究背景与意义广义自回归条件异方差模型(GARCH模型)是一种重要的时间序列模型,广泛应用于金融、经济等领域。
GARCH模型能够捕捉时间序列数据的波动性和相关性,对于金融市场的风险管理和预测具有重要意义。
在实际应用中,GARCH模型的表现和性质取决于一系列参数的设定和估计,因此,研究GARCH模型的统计推断具有重要意义。
研究现状与问题01目前,关于GARCH模型的研究主要集中在模型的估计、选优和扩展应用等方面。
02对于GARCH模型的统计推断,尤其是对于模型的诊断和检验,研究相对较少,且存在一些挑战。
03如何对GARCH模型进行有效的诊断和检验,以确保模型选择的正确性和适用性,是当前亟待解决的问题。
01首先,我们将介绍GARCH模型的基本原理和性质,包括模型的种类、特点和应用。
其次,我们将针对GARCH模型的诊断和检验进行深入研究,提出一系列有效的诊断方法和检验统计量。
最后,我们将应用这些方法和统计量对实际数据进行建模和分析,并对模型的适用性和有效性进行评估和比较。
本研究旨在探讨若干广义自回归条件异方差模型的统计推断方法,包括模型的诊断、检验和参数估计等。
020304研究内容与方法广义自回归条件异方差模型理论基础0201 02 03GARCH模型的定义GARCH(广义自回归条件异方差模型)模型是一种时间序列模型,旨在描述时间序列数据的波动性。
它基于自回归条件异方差模型(ARCH模型)发展而来,能够更好地捕捉时间序列数据的波动性聚集现象。
GARCH模型的原理GARCH模型通过引入滞后期的误差项和滞后期的条件方差作为解释变量,来建模时间序列数据的波动性。
它假设误差项服从正态分布,且扰动项的方差与滞后期的误差项相关。
Eviews数据统计与分析教程9章条件异方差模型ARCHGARCH
EViews统计分析基础教程
三、ARCH模型的其他扩展形式
2. TARCH模型
TARCH(Threshold ARCH)模型是门限自回归条件异 方差模型,可用来分析数据的剧烈波动性。 模型中条件方差的形式为
其中,dt-1是一个虚拟变量,满足的条件为 1 ,如果μt-1<0
dt-1= 0,如果μt-1>=0
EViews统计分析基础教程
一、自回归条件异方差模型(ARCH)
2.ARCH模型检验
(2)残差平方的相关图(Q)检验法
在EViews操作中,要实现残差平方的相关图(Q)检验,需 在 方 程 对 象 窗 口 中 选 择 “ View”|“Residual Tests”|“Correlogram – Q – statistics”选项。
GARCH(1,1)模型在金融领域应用广泛,可以对金融时 间序列的数据进行描述。
EViews统计分析基础教程
二、广义自回归条件异方差模型(GARCH)
2.GARCH模型的建立
当上述辅助回归方程进行ARCH效应检验时,如果ARCH的 滞后阶数q很大,检验结果依然显著,即残差序列依然存在 ARCH(q)效应。此时可采用GARCH(p,q)模型重新进 行估计。
在“Options”中输入ARCH和GARCH的阶数 。
在“Variance”的编辑栏中可列出方差方程中的外生变量。
EViews统计分析基础教程
一、自回归条件异方差模型(ARCH)
3.ARCH模型的建立
Options选项卡
如果选中“Backcasting”(回推) 中的复选框,MA初始扰动项 和GARCH项中的初始预测方 差将使用回推(“Backcasting”) 方法确定初始值。
第五讲 异方差和自相关.
2。利用广义最小二乘法(GLS)
广义最小二乘法是对原模型加权,使之变成一个新 的不存在异方差性的模型,然后采用普通最小二乘 法估计其参数。 其含义为 Var(b) =σ2 (X'X)-1(X'Σ X) (X'X)-1 通过加权使得Σ =I 因此,GLS和WLS要求Σ 已知。
加权最小二乘法(WLS):
4-DL
4
经验上DW值1.8---2.2之间接受原假设, 不存在一阶自相关。 DW值接近于0或者接近于4,拒绝原假 设,存在一阶自相关。
4。Q检验和Bartlett检验 reg D.rs LD.r20 predict e2,res wntestq e2 wntestq e2,lag(2) wntestb e2
r 20t 1 r 20t 1 r 20t 2
rst rst rst 1
回归方程为: use ukrates,clear tsset month reg D.rs LD.r20
自相关的检验
1。图形法:自相关系数和偏自相关系数 predict e1,res ac e1 pac e1 corrgram e1,lag(10)
3。DW检验:只能检验一阶自相关的序列相 关形式,并且要求解释变量严格外生。
根据样本个数和自由度查表得到DL和DU,并 且构造不同的区域。
reg D.rs LD.r20 dwstat
Reject H0
Uncertainty
Accept H0
Uncertainty
Reject H0
0
DL
DU
4-DU
0 . 0
2 1
0
2 2
. 0
0 0 ... . 2 ... n .. ...
第五章 异方差
obs 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
X 2827.73 3084.17 3462.71 3932.52 5150.79 7153.35 9076.85 10448.21 11575.48 12500.84
Y 1598 2209 2878 3722 5350 8080 11758 15839 18196 20954
24
解析法4:ARCH检验(自回归)
基本思想: 在时间序列数据中认为 存在的异方差为 ARCH (自回归条件异方差 )过程:
t2 0 1 t21 2 t2 2 ... p t2 p vt
因为各个 t2未知,用对原模型 OLS估计的剩余项 ei2 去近似估计。 在此基础上进行假设检 验,判断上述回归是否 成立
40,000,000
30,000,000
E2
20,000,000 10,000,000
0 0 100,000 X 200,000 300,000
15
美国各个行业R&D费用Y与残差平方E2
50,000,000
40,000,000
30,000,000
E2
20,000,000 10,000,000
0 0 4,000 8,000 Y
20
例题4 北京市1978-1998年人均储蓄与人均收 入的数据如下表
obs 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 X 590.2 664.94 809.5 875.54 991.25 1109.95 1357.87 1682.8 1890.58 2098.25 2499.58 Y 107 123 159 189 233 312 401 522 664 871 1033
放宽基本假定的模型--异方差课本试验及练习讲解
一、异方差性1.中国农村居民人均消费支出主要由人均纯收入来决定。
农村人均纯收入除从事农业经营的收入外,还包括从事其他产业的经营性收入以及工资性收入、财产收入和转移支出收入等。
为了考察从事农业经营的收入和其他收入对中国农村居民消费支出增长的影响,可使用如下双对数模型:ln Y = p +0ln X + 0 ln X + u其中丫表示农村家庭人均消费支出,X 1表示从事农业经营的收入,X2表示其他收入。
表4.1.1列出了中国2001年各地区农村居民家庭人均纯收入及消费支出的相关数据。
表4.1.1中国2001年各地区农村居民家庭人均纯收入与消费支出从事农业从事农业地区人均消费经营的收其他收入地区支出丫入X1 X2人均消费经营的收其他收入支出丫入X1 X2北京3552.1 579.1 4446.4 湖北2703.36 1242.9 2526.9天津2050.9 1314.6 2633.1 湖南1550.62 1068.8 875.6 河北1429.8 928.8 1674.8 广东1357.43 1386.7 839.8山西1221.6 609.8 1346.2 广西1475.16 883.2 1088 内蒙古1554.6 1492.8 480.5 海南1497.52 919.3 1067.7辽宁1786.3 1254.3 1303.6 重庆1098.39 764 647.8 吉林1661.7 1634.6 547.6 四川1336.25 889.4 644.3 黑龙江1604.5 1684.1 596.2 贵州1123.71 589.6 814.4 上海4753.2 652.5 5218.4 云南1331.03 614.8 876 江苏2374.7 1177.6 2607.2 西藏1127.37 621.6 887 浙江3479.2 985.8 3596.6 陕西1330.45 803.8 753.5 安徽1412.4 1013.1 1006.9 甘肃1388.79 859.6 963.4 福建2503.1 1053 2327.7 青海1350.23 1300.1 410.3 江西1720 1027.8 1203.8 宁夏2703.36 1242.9 2526.9山东河南1905 1293 1511.6 新疆1375.6 1083.8 1014.11550.62 1068.8 875.6用OLS 法进行估计,结果如下:Dependent Variable: LOG(Y) Method: Least SquaresDate: 07/03/08 Time: 16:31 Sample: 1 31Included observations: 31VariableCoefficient Std. Error t-Statistic Prob. C 1.602528 0.860978 1.861288 0.0732 LOG(X1) 0.325416 0.103769 3.135955 0.0040 LOG(X2)0.5070780.04859910.43385□ ,□□00R-squared□796506 Mean dependent var 7.448704 Adjusted R-squared □781971 S.D. dependent var 0.364648 S.E. of regression 0.170267 Akaike info criterion -0.611128 Sum squared resid 0.811747 Schwarz criterion -0.472355Log likelihood12,47249 F-statistic54,79806 Durbin-Watson stat1.964720Prob(F-statistic)0.000000对应的表达式为:In Y = 1.603 + 0.325ln X 1 + 0.507ln X 2(1.86) (3.14) (10.43)R 2 = 0.7965, R = 0.78, RSS = 0.8117不同地区农村人均消费支出的差别主要来源于非农经营收入及其他收入的差 别,因此,如果存在异方差性,则可能是X 2引起的。
广义最小二乘法(GLS)与异方差
2 Xn
1
X2
1 Xn
P 左乘 Y b 0 b1 X u, 得
1
Y1 1 X1 x1 Y 1 2 X x2 2 1 Yn xn Xn
参数非线性
当模型为参数非线性形式ຫໍສະໝຸດ ,需要采用非线性估计 技术。 非线性模型的一般形式为:
——Yi = f(Xi, b) + ei
——式中f(.)为一个可微分的非线性函数,b为(K+1)×1 未知参数向量,X为 n ×(K+1) 解释变量矩阵,e为服从 某种形式统计分布的误差项(通常用正态分布)。
Y1 1 X 11 X 12 X 1k b 0 u1 Y2 1 X 21 X 22 X 2 k b1 u2 Ym 1 X m1 X m 2 X mk b k um
0
1
2
F
F F F F
2 e 1
2 H1 : 12 2
2 e 2
~
nc nc F( 2, 2) 2 2
拒绝H 0 ,有异方差; 接受H 0 ,无异方差。
五、模型估计—GLS
1、对分组资料情况, 已知
Yi b 0 b1 X i1 b 2 X i 2 ... b k X ik ui ( i 1, 2, ..., m )
12 1n 2 2 2n
2n
2 n
β的OLSE 特性:线性性、无偏性、方差最小不成立。
广义异方差模型例题
广义异方差模型例题:例:1969年1月至1994年9月澳大利亚储备银行2年期有价证券月度利率数据如表所示(行数据)4.99 55.03 5.03 5.25 5.26 5.3 5.45 5.49 5.52 5.75.68 5.65 5.86.5 6.45 6.48 6.45 6.35 6.4 6.43 6.436.44 6.45 6.48 6.4 6.35 6.4 6.3 6.32 6.35 6.13 5.75.58 5.18 5.18 5.17 5.15 5.21 5.23 5.05 4.65 4.65 4.64.67 4.69 4.68 4.62 4.63 4.95.44 5.566.04 6.06 6.068.07 8.07 8.1 8.05 8.06 8.07 8.06 8.11 8.6 10.8 1111 11 9.48 9.18 8.62 8.3 8.47 8.44 8.44 8.46 8.498.54 8.54 8.5 8.44 8.49 8.4 8.46 8.5 8.5 8.47 8.478.47 8.48 8.48 8.54 8.56 8.39 8.89 9.91 9.89 9.91 9.919.9 9.88 9.86 9.86 9.74 9.42 9.27 9.26 8.99 8.83 8.838.83 8.82 8.83 8.83 8.79 8.79 8.69 8.66 8.67 8.72 8.779 9.61 9.7 9.94 9.94 9.94 9.95 9.94 9.96 9.97 10.8310.75 11.2 11.4 11.54 11.5 11.34 11.5 11.5 11.58 12.42 12.8 513.1 13.12 13.1 13.15 13.1 13.2 14.2 14.75 14.6 14.6 14.4514.5 14.8 15.85 16.2 16.5 16.4 16.4 16.35 16.1 13.7 13.514 12.3 12 14.35 14.6 12.5 12.75 13.7 13.45 13.55 12.612 11 11.6 12.05 12.35 12.7 12.45 12.55 12.2 12.1 11.15 11.85 12.1 12.5 12.9 12.5 13.2 13.65 13.65 13.5 13.45 13.35 14.45 14.3 15.05 15.55 15.65 14.65 14.15 13.3 12.65 12.7 12 .814.5 15.1 15.15 14.3 14.25 14.05 14.7 15.05 14.05 13.8 13.2 513 12.85 12.6 11.8 13 12.35 11.45 11.35 11.55 10.85 10.9 12.3 11.7 12.05 12.3 12.9 13.05 13.3 13.85 14.65 15.05 15.1 514.85 15.7 15.4 15.1 14.8 15.8 15.8 15 14.4 13.8 14.314.15 14.45 14.1 14.05 13.75 13.3 13 12.55 12.25 11.85 11.5 11.1 11.15 10.7 10.25 10.55 10.25 10.3 9.6 8.4 8.2 7.258.35 8.25 8.3 7.4 7.15 6.35 5.65 7.4 7.2 7.05 7.16.85 6.5 6.25 5.95 5.65 5.85 5.45 5.3 5.2 5.55 5.155.4 5.35 5.1 5.86.35 6.5 6.95 8.057.85 7.758.6(1)考察该序列的方差齐性。
计量经济学:异方差,序列相关,多重共线,随机解释变量习题以及解析
第四章经典单方程计量经济学模型:放宽基本假定的模型一、内容提要本章主要介绍计量经济模型的二级检检验问题,即计量经济检验。
主要讨论对回归模型的若干基本经典假定是否成立进行检验、当检验发现不成立时继续采用OLS估计模型所带来的不良后果以及如何修正等问题。
具体包括异方差性问题、序列相关性问题、多重共线性问题以及随机解释变量这四大类问题。
异方差是模型随机扰动项的方差不同时产生的一类现象。
在异方差存在的情况下,OLS 估计尽管是无偏、一致的,但通常的假设检验却不再可靠,这时仍采用通常的t检验和F检验,则有可能导致出现错误的结论。
同样地,由于随机项异方差的存在而导致的参数估计值的标准差的偏误,也会使采用模型的预测变得无效。
对模型的异方差性有若干种检测方法,如图示法、Park与Gleiser检验法、Goldfeld-Quandt检验法以及White检验法等。
而当检测出模型确实存在异方差性时,通过采用加权最小二乘法进行修正的估计。
序列相关性也是模型随机扰动项出现序列相关时产生的一类现象。
与异方差的情形相类似,在序列相关存在的情况下,OLS估计量仍具无偏性与一致性,但通常的假设检验不再可靠,预测也变得无效。
序列相关性的检测方法也有若干种,如图示法、回归检验法、Durbin-Watson检验法以及Lagrange 乘子检验法等。
存在序列相关性时,修正的估计方法有广义最小二乘法(GLS)以及广义差分法。
多重共线性是多元回归模型可能存在的一类现象,分为完全共线与近似共线两类。
模型的多个解释变量间出现完全共线性时,模型的参数无法估计。
更多的情况则是近似共线性,这时,由于并不违背所有的基本假定,模型参数的估计仍是无偏、一致且有效的,但估计的参数的标准差往往较大,从而使得t-统计值减小,参数的显著性下降,导致某些本应存在于模型中的变量被排除,甚至出现参数正负号方面的一些混乱。
显然,近似多重共线性使得模型偏回归系数的特征不再明显,从而很难对单个系数的经济含义进行解释。
4.1 异方差问题
于是可以用OLS法估计模型:
Y* = X*B + u* 得
1 B ( X * X *) X * Y *
( X D-1 D-1 X )1 X D-1 D-1Y = ( X W -1 X )1 X W -1Y
这就是原模型的加权最小二乘估计量,它是 无偏的、有效的。这里的矩阵D-1,它来自于权矩 阵W。
1 X ki f ( X ji )
1 Yi 0 f ( X ji )
1 1 f ( X ji ) k
1 X 1i 2 f ( X ji ) 1 i f ( X ji )
1 X 2i f ( X ji ) (i 1, , n)
1 X ki f ( X ji )
2 i i i i
0
ˆ X ˆ X )] 1 1 k k
2
2 •加权思路:对较小的 i 赋予较大的权重;对较 2 大的 i 赋予较小的权重,对原模型进行加权,使 其成为一个不存在异方差性的新模型,然后采用 普通最小二乘法进行估计。
2. 一个例子
• 例如,如果在检验过程中已经知道:
i
种组合有显著的相关性,这时往往显示出有较 高的可决系数以及某一参数的t检验值较大。
• 在多元回归中,由于辅助回归方程中可能有太 多解释变量,从而使自由度减少,有时可去掉 交叉项。
课堂练习
1、解释异方差性的含义。 2、简述异方差对下列各项有何影响? (1)OLS估计量及其方差; (2)置信区间; (3)显著性t检验和F检验。
Var( i ) E( i ) f ( X ji )
2 2 i
2
• 即随机误差项的方差与解释变量Xj之间存在相关性, f (X j) 那么可以用 去除原模型,使之变成如下形式 的新模型:
异方差习题及自相关1
1下列关于扰动项协方差矩阵的假设,不存在异方 差的是( )
1, 2,3 4,5, 6 A VAR(i ) 7,8,9
1, 0,1 1, 0, 0 C VAR(i ) 0,1, 0 B VAR(i ) 0,5, 0 0, 0,1 0, 0,9
3.5
4
-.5
0
0
.5
1
5
10 15 recent unemp duration
20
25
6000
4000
Residuals
2000
-2000
C
D
2000 4000 6000 8000 Fitted values 10000 12000
Residuals
0
2000 -4000 -2000 0
10
-4000
准差分法(quasi differences):原模型为 滞后一期后方程两边同时乘以ρ得到 两式相减
新扰动项服从球型扰动假设
实际软件运行中通过迭代得到最终结果,即不断重 复估计ρ与β直到,这最近一次两者的估计值和上一 次的估计值差距足够小。 应用FGLS的前提:应用FGLS解决自相问题比解决 异方差问题更不稳健,除了要求准确估计协方差矩 阵外,还必须要满足严格外生性假设,仅仅满足前 定解释变量会导致FGLS不一致。
何为自相关:违反球型扰动假设的另一情形是自相 关。如果i≠j, ,即扰动项的协方差矩阵非 主对角线元素不全为0,则称存在“自相关” (autocorrelation)或“序列相关”(serial correlation) 自相关的后果:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广义异方差模型例题:例:1969年1月至1994年9月澳大利亚储备银行2年期有价证券月度利率数据如表所示(行数据)4.99 55.03 5.03 5.25 5.26 5.3 5.45 5.49 5.52 5.75.68 5.65 5.86.5 6.45 6.48 6.45 6.35 6.4 6.43 6.436.44 6.45 6.48 6.4 6.35 6.4 6.3 6.32 6.35 6.13 5.75.58 5.18 5.18 5.17 5.15 5.21 5.23 5.05 4.65 4.65 4.64.67 4.69 4.68 4.62 4.63 4.95.44 5.566.04 6.06 6.068.07 8.07 8.1 8.05 8.06 8.07 8.06 8.11 8.6 10.8 1111 11 9.48 9.18 8.62 8.3 8.47 8.44 8.44 8.46 8.498.54 8.54 8.5 8.44 8.49 8.4 8.46 8.5 8.5 8.47 8.478.47 8.48 8.48 8.54 8.56 8.39 8.89 9.91 9.89 9.91 9.919.9 9.88 9.86 9.86 9.74 9.42 9.27 9.26 8.99 8.83 8.838.83 8.82 8.83 8.83 8.79 8.79 8.69 8.66 8.67 8.72 8.779 9.61 9.7 9.94 9.94 9.94 9.95 9.94 9.96 9.97 10.8310.75 11.2 11.4 11.54 11.5 11.34 11.5 11.5 11.58 12.42 12.8 513.1 13.12 13.1 13.15 13.1 13.2 14.2 14.75 14.6 14.6 14.4514.5 14.8 15.85 16.2 16.5 16.4 16.4 16.35 16.1 13.7 13.514 12.3 12 14.35 14.6 12.5 12.75 13.7 13.45 13.55 12.612 11 11.6 12.05 12.35 12.7 12.45 12.55 12.2 12.1 11.15 11.85 12.1 12.5 12.9 12.5 13.2 13.65 13.65 13.5 13.45 13.35 14.45 14.3 15.05 15.55 15.65 14.65 14.15 13.3 12.65 12.7 12 .814.5 15.1 15.15 14.3 14.25 14.05 14.7 15.05 14.05 13.8 13.2 513 12.85 12.6 11.8 13 12.35 11.45 11.35 11.55 10.85 10.9 12.3 11.7 12.05 12.3 12.9 13.05 13.3 13.85 14.65 15.05 15.1 514.85 15.7 15.4 15.1 14.8 15.8 15.8 15 14.4 13.8 14.314.15 14.45 14.1 14.05 13.75 13.3 13 12.55 12.25 11.85 11.5 11.1 11.15 10.7 10.25 10.55 10.25 10.3 9.6 8.4 8.2 7.258.35 8.25 8.3 7.4 7.15 6.35 5.65 7.4 7.2 7.05 7.16.85 6.5 6.25 5.95 5.65 5.85 5.45 5.3 5.2 5.55 5.155.4 5.35 5.1 5.86.35 6.5 6.95 8.057.85 7.758.6(1)考察该序列的方差齐性。
(2)选择适当的模型拟合该序列的发展解答:(1)1、时序图:时序图显示序列存在曲线趋势,我们对原序列进行差分得到残差序列的图。
差分后的残差图整均值平稳,但伴随大小不等的随机波动。
我们对残差序列进行自回归,再考察自回归残差序列的方差齐性。
2、用AUTOREG过程建立序列{Xt}关于一阶滞后项lagx的回归模型,并检验残差序列的自相关性和异方差性。
检验显示Dh统计量为1.8550,Dh统计量的P值为0.0318小于0.05,结果显示残差序列具有显著的自相关性。
显示回归模型常数截距项不显著(0.0736>0.05)。
显示残差序列具有显著的异方差性。
3、arch的定阶proc autoreg data=hh;model x=lagx /lagdep=lagx archtest;model x=lagx/nlag=4backstep garch=(p=1,q=1);output out=res cev=v;run;参数检验显示除AR5参数不显著外,其它参数显著。
综合考虑残差序列自相关性和异方差性检验结果,尝试拟合无回归常数项的广义异方差模型,nlag=4,garch=(p=1,q=1)。
4、异方差模型:拟合效果很理想。
⎪⎪⎩⎪⎪⎨⎧-+==+=+=---15123173.62700.01272.09997.0t t t t t t t t t t t h E h e h u u x x εεε(其中e^t~n(0,0.26999))附程序:data hh;input x@@; difx=dif(x); lagx=lag(x);year=intnx("month","01jan1969"d ,_n_-1);format year monyy7.;cards ; 4.99 5 5.03 5.03 5.25 5.26 5.3 5.45 5.49 5.52 5.7 5.68 5.65 5.8 6.5 6.45 6.48 6.45 6.35 6.4 6.43 6.43 6.44 6.45 6.48 6.4 6.35 6.4 6.3 6.32 6.35 6.13 5.7 5.58 5.18 5.18 5.17 5.15 5.21 5.23 5.05 4.65 4.65 4.6 4.67 4.69 4.68 4.62 4.63 4.9 5.44 5.56 6.04 6.06 6.06 8.07 8.07 8.1 8.05 8.06 8.07 8.06 8.11 8.6 10.8 11 11 11 9.48 9.18 8.62 8.3 8.47 8.44 8.44 8.46 8.49 8.54 8.54 8.5 8.44 8.49 8.4 8.46 8.5 8.5 8.47 8.47 8.47 8.48 8.48 8.54 8.56 8.39 8.89 9.91 9.89 9.91 9.91 9.9 9.88 9.86 9.86 9.74 9.42 9.27 9.26 8.99 8.83 8.838.83 8.82 8.83 8.83 8.79 8.79 8.69 8.66 8.67 8.72 8.779 9.61 9.7 9.94 9.94 9.94 9.95 9.94 9.96 9.97 10.8310.75 11.2 11.4 11.54 11.5 11.34 11.5 11.5 11.58 12.42 12.8513.1 13.12 13.1 13.15 13.1 13.2 14.2 14.75 14.6 14.6 14.4514.5 14.8 15.85 16.2 16.5 16.4 16.4 16.35 16.1 13.7 13.514 12.3 12 14.35 14.6 12.5 12.75 13.7 13.45 13.55 12.612 11 11.6 12.05 12.35 12.7 12.45 12.55 12.2 12.1 11.1511.85 12.1 12.5 12.9 12.5 13.2 13.65 13.65 13.5 13.45 13.35 14.45 14.3 15.05 15.55 15.65 14.65 14.15 13.3 12.65 12.7 12.8 14.5 15.1 15.15 14.3 14.25 14.05 14.7 15.05 14.05 13.8 13.25 13 12.85 12.6 11.8 13 12.35 11.45 11.35 11.55 10.85 10.912.3 11.7 12.05 12.3 12.9 13.05 13.3 13.85 14.65 15.05 15.15 14.85 15.7 15.4 15.1 14.8 15.8 15.8 15 14.4 13.8 14.314.15 14.45 14.1 14.05 13.75 13.3 13 12.55 12.25 11.85 11.5 11.1 11.15 10.7 10.25 10.55 10.25 10.3 9.6 8.4 8.2 7.258.35 8.25 8.3 7.4 7.15 6.35 5.65 7.4 7.2 7.05 7.16.85 6.5 6.25 5.95 5.65 5.85 5.45 5.3 5.2 5.55 5.155.4 5.35 5.1 5.86.35 6.5 6.95 8.057.85 7.758.6;run;proc gplot data=hh;plot (x difx)*year;symbol i=line;run;proc autoreg data=hh;model x=lagx /lagdep=lagx archtest;model x=lagx /nlag=4backstep garch=(p=1,q=1) noint;output out=out p=p pm=pm r=r rm=rm ucl=ucl lcl=lcl cev=cev; run;data out;set out;uclr=1.96*sqrt(0.26747);lclr=-1.96*sqrt(0.26747);cuclr=1.96*sqrt(cev);clclr=-1.96*sqrt(cev);cuclp=p+1.96*sqrt(cev);clclp=p-1.96*sqrt(cev);run;proc gplot data=out;plot x*year=1 p*year=2 cuclp*year=3 clclp*year=3 lcl*year=4 ucl*year=4/overlay;symbol1c=black i=none v=star;symbol2c=red i=line v=none;symbol3c=blue i=lnie;symbol4c=green i=join v=star;run;proc gplot data=out;plot r*year=1 uclr*year=2 lclr*year=2 clclr*year=3 cuclr*year=3 /overlay; symbol1c=black i=none v=star;symbol2c=red i=line v=none;symbol3c=blue i=lnie;run;proc arima data=out;identify var=r nlag=24;run;。