外文翻译---IIR数字滤波器的设计
iir数字滤波器和fir数字滤波器的设计
![iir数字滤波器和fir数字滤波器的设计](https://img.taocdn.com/s3/m/100350260812a21614791711cc7931b765ce7b2e.png)
《数字信号处理》课程是一门理论性和实践性都很强,它具备高等代数、数值分析、概率统计、随机过程等计算学科的知识; 要求我们学生掌握扎实的基础知识和理论基础。
又是跟其他学科密切相关,即与通信理论、计算机、微电子技术不可分,又是人工智能、模式识别、神经网络等新兴学科的理论基础之一。
本次数字滤波器设计方法是基于MATLAB的数字滤波器的设计。
此次设计的主要内容为:IIR数字滤波器器的设计关键词:IIR、FIR、低通、高通、带阻、带通Abstract"Digital Signal Processing" is a theoretical and practical nature are strong, and it has advanced algebra and numerical analysis, probability and statistics, random process such as calculation of discipline knowledge; requires students to acquire basic knowledge and a solid theoretical basis. Is closely related with other subjects, namely, and communication theory, computers, microelectronics can not be separated, but also in artificial intelligence, pattern recognition, neural network theory one of the emerging discipline. The digital filter design method is based on MATLAB for digital filter design. The main elements of design: IIR and FIR digital filter design of digital filterKey Words: IIR, FIR, low pass, high pass, band stop, band pass目录一、前言 3二、课程设计的目的 3三、数字信号处理课程设计说明及要求 3四、滤波器的设计原理 44.1 数字滤波器简介 44.2 IIR滤波器的设计原理 44.3 FIR滤波器的设计原理 54.4 FIR滤波器的窗函数设计法 6五、设计内容 65.1 设计题目: 65.2设计程序代码及结果: 7六、结束语 15七、参考文献 16一、前言数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
IIR数字滤波器的设计外文文献以与翻译
![IIR数字滤波器的设计外文文献以与翻译](https://img.taocdn.com/s3/m/0abf3ba75a8102d277a22f68.png)
IIRDigitaFilterDesignAn important step in the development of a digital filter is the determination of a realizable transfer function G(z) approximating the given frequency response specifications. If an IIR filter is desired,it is also necessary to ensure that G(z) is stable. The process of deriving the transfer function G(z) is called digital filter design. After G(z) has been obtained, the next step is to realize it in the form of a suitable filter structure. In chapter 8,we outlined a variety of basic structures for the realization of FIR and IIR transfer functions. In this chapter,we consider the IIR digital filter design problem. The design of FIR digital filters is treated in chapter 10.First we review some of the issues associated with the filter design problem. A widely used approach to IIR filter design based on the conversion of a prototype analog transfer function to a digital transfer function is discussed next. Typical design examples are included to illustrate this approach. We then consider the transformation of one type of IIR filter transfer function into another type, which is achieved by replacing the complex variable z by a function of z. Four commonly used transformations are summarized. Finally we consider the computer-aided design of IIR digital filter. To this end, we restrict our discussion to the use of matlab in determining the transfer functions.9.1 preliminary considerationsThere are two major issues that need to be answered before one can develop the digital transfer function G(z). The first and foremost issue is the development of a reasonable filter frequency response specification from the requirements of the overall system in which the digital filter is to be employed. The second issue is to determine whether an FIR or IIR digital filter is to be designed. In the section ,we examine these two issues first .Next we review the basic analytical approach to the design of IIR digital filters and then consider the determination of the filter order that meets the prescribed specifications. We also discuss appropriate scaling of the transfer function.9.1.1 Digital Filter SpecificationsAs in the case of the analog filter,either the magnitude and/or the phase(delay) response is specified for the design of a digital filter for most applications. In some situations, the unit sample response or step response may be specified. In most practical applications, the problem of interest is the development of a realizable approximation to a given magnitude response specification. As indicated in section 4.6.3, the phase response of the designed filter can be corrected by cascading it with an allpass section. The design of allpass phase equalizers has received a fair amount of attention in the last few years. We restrict our attention in this chapter to the magnitude approximation problem only. We pointed out in section 4.4.1 that there are four basic types of filters,whose magnitude responses are shown in Figure 4.10. Since the impulse response corresponding to each of these is noncausal and of infinite length, these ideal filters are not realizable. One way of developing a realizable approximation to these filter would be to truncate the impulse response as indicated in Eq.(4.72) for a lowpass filter. The magnitude response of the FIR lowpass filter obtained by truncating the impulse response of the ideal lowpass filter does not have a sharp transition from passband to stopband but, rather, exhibits a gradual "roll-off."Thus, as in the case of the analog filter design problem outlined in section 5.4.1, the magnitude response specifications of a digital filter in the passband and in the stopband are given with some acceptable tolerances. In addition, a transition band is specified between the passband and the stopband to permit the magnitude to drop off smoothly. For example, the magnitude )(j e G of a lowpass filter may be given as shown in Figure7.1. As indicated in the figure, in the passband defined by 0p ωω≤≤, we require that the magnitude approximates unity with an error of p δ±,i.e.,p p j p for e G ωωδδω≤+≤≤-,1)(1.In the stopband, defined by πωω≤≤s ,we require that the magnitude approximates zero with an error of i s ,δ.e.,,)(s j e G δω≤ forπωω≤≤s . The frequencies p ω and s ω are , respectively, called the passband edge frequency and the stopband edge frequency. The limits of the tolerances in the passband and stopband, p δ and s δ, are usually called the peak ripple values. Note that the frequency response )(ωj e G of a digital filter is a periodic function of ω,and the magnitude response of a real-coefficient digital filter is an even function ofω. As a result, the digital filter specifications are given only for the range πω≤≤0.Digital filter specifications are often given in terms of the loss function,)(log 20)(10ωωζj e G -=, in dB. Here the peak passband ripplep α and the minimum stopband attenuations α are given in dB,i.e., the loss specifications of a digitalfilter are given bydB p p )1(log 2010δα--=,dB s s )(log 2010δα-=.9.1 Preliminary ConsiderationsAs in the case of an analog lowpass filter, the specifications for a digital lowpass filter may alternatively be given in terms of its magnitude response, as in Figure 7.2. Here the maximum value of the magnitude in the passband is assumed to be unity, and themaximum passband deviation, denoted as 1/21ε+,is given by the minimum value of the magnitude in the passband. The maximum stopband magnitude is denoted by 1/A.For the normalized specification, the maximum value of the gain function or the minimum value of the loss function is therefore 0 dB. The quantity max α given bydB )1(log 20210max εα+=Is called the maximum passband attenuation. Forp δ<<1, as is typically the case, itcan be shown thatp p αδα2)21(log 2010max ≅--≅ The passband and stopband edge frequencies, in most applications, are specified in Hz, along with the sampling rate of the digital filter. Since all filter design techniques are developed in terms of normalized angular frequencies p ω and s ω,the sepcified critical frequencies need to be normalized before a specific filter design algorithm can be applied. Let T F denote the sampling frequency in Hz, and F P and F s denote, respectively,the passband and stopband edge frequencies in Hz. Then the normalized angular edge frequencies in radians are given byT F F F F p TpT p p ππω22==Ω= T F F F F s T s T s s ππω22==Ω= 9.1.2 Selection of the Filter TypeThe second issue of interest is the selection of the digital filter type,i.e.,whether an IIR or an FIR digital filter is to be employed. The objective of digital filter design is to develop a causal transfer function H(z) meeting the frequency response specifications. For IIR digital filter design, the IIR transfer function is a real rational function of 1-z . H(z)=N MdNzz d z d d pMz z p z p p ------++++++++ (2211022110)Moreover, H(z) must be a stable transfer function, and for reduced computational complexity, it must be of lowest order N. On the other hand, for FIR filter design, the FIR transfer function is a polynomial in 1-z:∑=-=Nnnz nhzH] [)(For reduced computational complexity, the degree N of H(z) must be as small as possible.In addition, if a linear phase is desired, then the FIR filter coefficients must satisfy the constraint:][][Nnhnh-±=T here are several advantages in using an FIR filter, since it can be designed with exact linear phase and the filter structure is always stable with quantized filter coefficients. However, in most cases, the order N FIR of an FIR filter is considerably higher than the order N IIR of an equivalent IIR filter meeting the same magnitude specifications. In general, the implementation of the FIR filter requires approximately N FIR multiplications per output sample, whereas the IIR filter requires 2N IIR+1 multiplications per output sample. In the former case, if the FIR filter is designed with a linear phase, then the number of multiplications per output sample reduces to approximately (N FIR+1)/2. Likewise, most IIR filter designs result in transfer functions with zeros on the unit circle,and the cascade realization of an IIR filter of orderIIRN with all of the zeros on the unitcircle requires [(3IIRN+3)/2] multiplications per output sample. It has been shown that for most practical filter specifications, the ratio N FIR/N IIR is typically of the order of tens or more and, as a result, the IIR filter usually is computationally more efficient[Rab75]. However ,if the group delay of the IIR filter is equalized by cascading it with an allpass equalizer, then the savings in computation may no longer be that significant [Rab75]. In many applications, the linearity of the phase response of the digital filter is not an issue,making the IIR filter preferable because of the lower computational requirements.9.1.3 Basic Approaches to Digital Filter DesignIn the case of IIR filter design, the most common practice is to convert the digital filter specifications into analog lowpass prototype filter specifications, and then to transform it into the desired digital filter transfer function G(z). This approach has been widely used for many reasons:(a) Analog approximation techniques are highly advanced.(b) They usually yield closed-form solutions.(c) Extensive tables are available for analog filter design.(d) Many applications require the digital simulation of analog filters.In the sequel, we denote an analog transfer function as)()()(s D s P s H a a a =, Where the subscript "a" specifically indicates the analog domain. The digital transfer function derived form H a (s) is denoted by)()()(z D z P z G = The basic idea behind the conversion of an analog prototype transfer function H a (s) into a digital IIR transfer function G(z) is to apply a mapping from the s-domain to the z-domain so that the essential properties of the analog frequency response are preserved. The implies that the mapping function should be such that(a) The imaginary(j Ω) axis in the s-plane be mapped onto the circle of the z-plane.(b) A stable analog transfer function be transformed into a stable digital transfer function.To this end,the most widely used transformation is the bilinear transformation described in Section 9.2.Unlike IIR digital filter design,the FIR filter design does not have any connection with the design of analog filters. The design of FIR filter design does not have anyconnection with the design of analog filters. The design of FIR filters is therefore based on a direct approximation of the specified magnitude response,with the often added requirement that the phase response be linear. As pointed out in Eq.(7.10), a causal FIR transfer function H(z) of length N+1 is a polynomial in z -1 of degree N. The corresponding frequency response is given by∑=-=N n n j j en h e H 0][)(ωω.It has been shown in Section 3.2.1 that any finite duration sequence x[n] of length N+1 is completely characterized by N+1 samples of its discrete-time Fourier transfer X(ωj e ). As a result, the design of an FIR filter of length N+1 may be accomplished by finding either the impulse response sequence {h[n]} or N+1 samples of its frequency response )H(e j ω. Also, to ensure a linear-phase design, the condition of Eq.(7.11) must be satisfied. Two direct approaches to the design of FIR filters are the windowed Fourier series approach and the frequency sampling approach. We describe the former approach in Section 7.6. The second approach is treated in Problem 7.6. In Section 7.7 we outline computer-based digital filter design methods.作者:Sanjit K.Mitra国籍:USA出处:Digital Signal Processing -A Computer-Based Approach 3eIIR数字滤波器的设计在一个数字滤波器发展的重要步骤是可实现的传递函数G(z)的接近给定的频率响应规格。
实验四IIR数字滤波器的设计数字信号处理DSP
![实验四IIR数字滤波器的设计数字信号处理DSP](https://img.taocdn.com/s3/m/b5db430d82c4bb4cf7ec4afe04a1b0717fd5b3e5.png)
实验四IIR数字滤波器的设计数字信号处理DSP
IIR数字滤波器是一种基于无限脉冲响应(Infinite Impulse Response)的数字滤波器。
相比于FIR(有限脉冲响应)滤波器,IIR滤
波器具有更低的复杂度和更快的响应速度,但可能会引入一定的稳定性问题。
设计IIR数字滤波器的一般步骤如下:
1.确定滤波器的规格:包括截止频率、通带增益、阻带衰减等参数。
这些参数将直接影响到滤波器的设计和性能。
2.选择滤波器结构:常见的IIR滤波器结构包括直接型I和II结构、级联型结构、并行型结构等。
选择适当的结构取决于滤波器的性能要求和
计算复杂度。
3. 选择滤波器的类型:根据滤波器的设计规格,可以选择巴特沃斯(Butterworth)、切比雪夫(Chebyshev)、椭圆(Elliptic)等不同类
型的IIR滤波器。
4.滤波器设计:根据所选择的滤波器类型和规格,设计滤波器的传递
函数。
可以借助MATLAB等工具进行数值计算和优化。
5.模拟滤波器转为数字滤波器:将设计好的IIR滤波器转换为数字滤
波器。
可以使用双线性变换等方法来实现。
6.实现滤波器:根据转换后的数字滤波器的差分方程,编写相应的代
码来实现滤波器功能。
7.评估滤波器性能:对设计好的IIR数字滤波器进行性能评估,包括
幅频响应、相频响应、群延迟等指标。
8.优化滤波器性能:根据实际情况,对滤波器的设计参数进行优化,以获得更好的性能。
以上是设计IIR数字滤波器的一般步骤,具体的设计方法和过程还需要根据实际情况进行调整。
DSP滤波器中英文对照外文翻译文献
![DSP滤波器中英文对照外文翻译文献](https://img.taocdn.com/s3/m/8636d6f85ef7ba0d4a733bb9.png)
中英文对照外文翻译文献(文档含英文原文和中文翻译)译文:GA算法优化IIR滤波器的设计摘要本文提出了运用遗传算法(GA)来优化无限脉冲响应数字滤波器(IIR)的设计。
IIR滤波器本质上是一个递归响应的数字滤波器。
由于IIR 数字滤波器的表面误差通常是非线性的和多峰的,而全局优化技术需要避免局部最小值。
本文提出了启发式方式来设计IIR滤波器。
GA是组合优化问题中一种功能强大的全局优化算法,该论文发现IIR数字滤波器的最佳系数可以通过GA 优化。
该设计提出低通和高通IIR数字滤波器的设计,以提供过渡频带的估计值。
结果发现,所计算出的值比可用于过滤器的在MATLAB设计FDA工具更优化。
举个例子,采用的仿真结果表明在过渡带和均方误差(MSE)的改善。
零极点的位置也被提出来用来描述系统的的稳定性,以便将结果与模拟退火(SA)的方法相比较。
关键词:数字滤波器;无限冲激响应(IIR);遗传算法(GA);优化1.说明在过去的几十年中的数字信号处理(DSP)领域已经成长太重要的理论和技术。
在DSP中,有两个重要的类型系统。
第一类型的系统是执行信号滤波的时域,因此它被称为数字滤波器。
第二类型的系统提供的信号表示频域,被称为频谱分析仪。
数字滤波是DSP的最有力的工具之一。
数字滤波器能够性能规格,最好的同时也是极其困难的,而且不可能的是,先用模拟滤波器实现。
另外,数字滤波器的特性,可以很容易地在软件控制下发生变化。
数字滤波器被分类为有限持续时间脉冲响应(FIR)滤波器或无限持续时间脉冲响应(IIR)滤波器,这取决于该系统的脉冲响应的形式。
在FIR系统中,脉冲响应序列是有限的持续时间,即,它具有非零项的数量有限。
数字无限脉冲响应(IIR)滤波器通常可以提供比其等效有限脉冲响应(FIR)滤波器更好的性能和更少的计算成本,并已成为越来越感兴趣的目标。
但是,由于IIR滤波器的误差表面通常是非线性的,多式联运,传统的基于梯度的设计方法可以很容易地陷入错误的表面。
6.IIR数字滤波器的设计 maltab课件
![6.IIR数字滤波器的设计 maltab课件](https://img.taocdn.com/s3/m/644fac5d312b3169a451a499.png)
6.9 模拟滤波器的离散化
6.9.2 双线性变换法设计IIR数字滤波器
脉冲响应不变法使得数字滤波器在时域上能够 较好地模仿模拟滤波器,但是出现频谱混叠现象。 为克服脉冲响应不变法可能产生的频谱混叠效应, 凯塞和戈尔登建议使用一种新的有效的变换,这就 是双线性变换。双线性变换法可认为是基于对微分 方程的积分,利用对积分的数值逼近得到的。 双线性变换法的主要特点是: (1) 消除了脉冲响应不变法所固有的频谱混叠现象; (2) 缺点是模拟频率和数字频率之间是非线性关系。 Bilinear函数:模拟滤波器转换为数字滤波器的 双线性变换法
1-18 IIR数字滤波器的设计
6.6 IIR实数字滤波器的实频率变换
1-19
IIR数字滤波器的设计
6.7 IIR实数字滤波器的复频率变换
1-20
IIR数字滤波器的设计
6.8 IIR数字滤波器阶数的选择
1-21
IIR数字滤波器的设计
6.9 模拟滤波器的离散化
从模拟滤波器设计IIR数字滤波器就是由系统函 数Ha(s)进一步得到H(z)。归根结底是一个由平面到 平面的变换,即模拟滤波器的离散化。 这个变换要遵循两个基本目标: (1) H(z)的频率响应必须要模仿Ha(s)的频率响应, 也就是平面的虚轴应该映射到平面的单位圆上; (2) Ha(s)的因果稳定性,通过映射后仍应在所得到 的H(z)中保持。 从模拟滤波器变换成数字滤波器有4种方法: 微分-差分变换法 脉冲响应不变变换章 IIR数字滤波器的设计
1-1
IIR数字滤波器的设计
主要内容
• • • • • • • 本章的学习目标: 了解数字滤波器的基本概念 理解IIR数字滤波器的各种类型 掌握IIR数字滤波器特性分析的方法 掌握模拟滤波器的低通设计方法 掌握高通、带通及带阻滤波器的设计方法 掌握IIR数字滤波器阶数的选择 掌握模拟滤波器的离散化
digital-filter-design数字滤波器设计大学毕业论文英文文献翻译及原文
![digital-filter-design数字滤波器设计大学毕业论文英文文献翻译及原文](https://img.taocdn.com/s3/m/2e39e77b0b1c59eef8c7b429.png)
毕业设计(论文)外文文献翻译文献、资料中文题目:数字滤波器设计文献、资料英文题目:digital filter design文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14毕业设计(论文)外文文献翻译院系:电子与电气工程系年级专业:姓名:学号:附件:digital filter design外文文献:digital filter designAbstract:With the information age and the advent of the digital world, digital signal processing has become one of today's most important disciplines and door technology.Digital signal processing in communications, voice, images, automatic control, radar, military, aerospace, medical and household appliances, and many other fields widely applied. In the digital signal processing applications, the digital filter is important and has been widely applied.Keyword:SCM; Proteus, C language; Digital filter1、figures Unit on :Analog and digital filtersIn signal processing, the function of a filter is to remove unwanted parts of the signal, such as random noise, or to extract useful parts of the signal, such as the components lying within a certain frequency range.The following block diagram illustrates the basic idea.There are two main kinds of filter, analog and digital. They are quite different in their physical makeup and in how they work. An analog filter uses analog electronic circuits made up from components such as resistors, capacitors and op amps to produce the required filtering effect. Such filter circuits are widely used in such applications as noise reduction, video signal enhancement, graphic equalisers in hi-fi systems, and many other areas. There are well-established standard techniques for designing an analog filter circuit for a given requirement. At all stages, the signal being filtered is an electrical voltage or current which is the direct analogue of the physical quantity (e.g. a sound or video signal or transducer output) involved. A digital filter uses a digital processor to perform numerical calculations on sampled values of the signal. The processor may be a general-purpose computer such as a PC, or a specialised DSP (Digital Signal Processor) chip. The analog input signal must first be sampled and digitised using an ADC (analog to digital converter). The resulting binary numbers, representing successive sampled values of the input signal, are transferred to the processor, which carries out numerical calculations on them. These calculations typically involve multiplying the input values by constants and adding the products together. If necessary, the results of these calculations, which now represent sampled values of the filtered signal, are output through a DAC (digital to analog converter) to convert the signal back to analog form.Note that in a digital filter, the signal is represented by a sequence of numbers, rather than a voltage or current.The following diagram shows the basic setup of such a system.Unit refers to the input signals used to filter hardware or software. If the filter input, output signals are separated, they are bound to respond to the impact of the Unit is separated, such as digital filters filter definition. Digital filter function, which was to import sequences X transformation into export operations through a series Y.According to figures filter function 24-hour live response characteristics, digital filters can be divided into two, namely, unlimited long live long live the corresponding IIR filter and the limited response to FIR filters. IIR filters have the advantage of the digital filter design can use simulation results, and simulation filter design of a large number of tables may facilitate simple. It is the shortcomings of the nonlinear phase; Linear phase if required, will use the entire network phase-correction. Image processing and transmission of data collection is required with linear phase filters identity. And FIR linear phase digital filter to achieve, but an arbitrary margin characteristics. Impact from the digital filter response of the units can be divided into two broad categories : the impact of the limited response (FIR) filters, and unlimited number of shocks to (IIR) digital filters.FIR filters can be strictly linear phase, but because the system FIR filter function extremity fixed at the original point, it can only use the higher number of bands to achieve their high selectivity for the same filter design indicators FIR filter called band than a few high-IIR 5-10 times, the cost is higher, Signal delay is also larger. But if the same linear phase, IIR filters must be network-wide calibration phase, the same section also increase the number of filters and network complexity. FIR filters can be used to achieve non-Digui way, not in a limited precision of a shock, and into the homes and quantitative factors of uncertainty arising from the impact of errors than IIR filter small number, and FIR filter can be used FFT algorithms, the computational speed. But unlike IIR filter can filter through the simulation results, there is no ready-made formula FIR filter must use computer-aided design software (such as MATLAB) to calculate. So, a broader application of FIR filters, and IIR filters are not very strict requirements on occasions.Unit from sub-functions can be divided into the following four categories :(1)Low-filter (LPF);(2)high-filter (HPF);(3)belt-filter (BPF);(4)to prevent filter (BSF).The following chart dotted line for the ideals of the filter frequency characteristics :2、MATLAB introducedMATLAB is a matrix laboratory (Matrix Laboratory) is intended. In addition to an excellent value calculation capability, it also provides professional symbols terms, word processing, visualization modeling, simulation and real-time control functions. MATLAB as the world's top mathematical software applications, with a strong engineering computing, algorithms research, engineering drawings, applications development, data analysis and dynamic simulation, and other functions, in aerospace, mechanical manufacturing and construction fields playing an increasingly important role. And the C language function rich, the use of flexibility, high-efficiency goals procedures. High language both advantages as well as low level language features. Therefore, C language is the most widely used programming language. Although MATLAB is a complete, fully functional programming environment, but in some cases, data and procedures with the external environment of the world is very necessary and useful. Filter design using Matlab, could be adjusted with the design requirements and filter characteristics of the parameters, visual simple, greatly reducing the workload for the filter design optimization.In the electricity system protection and secondary computer control, many signal processing and analysis are based on are certain types Yeroskipou and the second harmonics of the system voltage and current signals (especially at D process), are mixed with a variety of complex components, the filter has been installed power system during the critical components. Current computer protection and the introduction of two digitalsignal processing software main filter. Digital filter design using traditional cumbersome formula, the need to change the parameters after recalculation, especially in high filters, filter design workload. Uses MATLAB signal processing boxes can achieve rapid and effective digital filter design and simulatioMATLAB is the basic unit of data matrix, with its directives Biaodashi mathematics, engineering, commonly used form is very similar, it is used to solve a problem than in MATLAB C, Fortran and other languages End precision much the same thing. The popular MATLAB 5.3/Simulink3.0 including hundreds of internal function with the main pack and 30 types of tool kits (Toolbox). kits can be divided into functional tool kits and disciplines toolkit. MA TLAB tool kit used to expand the functional symbols terms, visualization simulation modelling, word processing and real-time control functions. professional disciplines toolkit is a stronger tool kits, tool kits control, signal processing tool kit, tool kits, etc. belonging to such communicationsMATLAB users to open widely welcomed. In addition to the internal function, all the packages MATLAB tool kits are readable document and the document could be amended, modified or users through Yuanchengxu the construction of new procedures to prepare themselves for kits.3、Digital filter designDigital filter design of the basic requirementsDigital filter design must go through three steps :(1) Identification of indicators : In the design of a filter, there must be some indicators. These indicators should be determined on the basis of the application. In many practical applications, digital filters are often used to achieve the frequency operation. Therefore, indicators in the form of general jurisdiction given frequency range and phase response. Margins key indicators given in two ways. The first is absolute indicators. It provides a function to respond to the demands of the general application of FIR filter design. The second indicator is the relative indicators. Its value in the form of answers to decibels. In engineering practice, the most popular of such indicators. For phase response indicators forms, usually in the hope that the system with a linear phase frequency bands human. Using linear phase filter design with the following response to the indicators strengths:①it only contains a few algorithms, no plural operations;②there is delay distortion, onlya fixed amount of delay; ③the filter length N (number of bands for N-1), the volume calculation for N/2 magnitude.(2) Model approach : Once identified indicators can use a previous study of the basic principles and relationships, a filter model to be closer to the target system.(3) Achieved : the results of the above two filters, usually by differential equations, system function or pulse response to describe. According to this description of hardware or software used to achieve it.4、Introduced FPGAProgrammable logic device is a generic logic can use a variety of chips, which is to achieve ASIC ASIC (Application Specific Integrated Circuit) semi-customized device, Its emergence and development of electronic systems designers use CAD tools to designtheir own laboratory in the ASIC device. Especially FPGA (Field Programmable Gate Array) generated and development, as a microprocessor, memory, the figures for electronic system design and set a new industry standard (that is based on standard product sales catalogue in the market to buy). Is a digital system for microprocessors, memories, FPGA or three standard building blocks constitute their integration direction.Digital circuit design using FPGA devices, can not only simplify the design process and can reduce the size and cost of the entire system, increasing system reliability. They do not need to spend the traditional sense a lot of time and effort required to create integrated circuits, to avoid the investment risk and become the fastest-growing industries of electronic devices group. Digital circuit design system FPGA devices using the following main advantages(1) Design flexibleUse FPGA devices may not in the standard series device logic functional limitations. And changes in system design and the use of logic in any one stage of the process, and only through the use of re-programming the FPGA device can be completed, the system design provides for great flexibility.(2)Increased functional densityFunctional density in a given space refers to the number of functional integration logic. Programmable logic chip components doors several high, a FPGA can replace several films, film scores or even hundreds of small-scale digital IC chip illustrated in the film. FPGA devices using the chip to use digital systems in small numbers, thus reducing the number of chips used to reduce the number of printed size and printed, and will ultimately lead to a reduction in the overall size of the system.(3)Improve reliabilityPrinting plates and reduce the number of chips, not only can reduce system size, but it greatly enhanced system reliability. A higher degree of integration than systems in many low-standard integration components for the design of the same system, with much higher reliability. FPGA device used to reduce the number of chips required to achieve the system in the number printed on the cord and joints are reduced, the reliability of the system can be mproved.(4)Shortening the design cycleAs FPGA devices and the programmable flexibility, use it to design a system for longer than traditional methods greatly shortened. FPGA device master degrees high, use printed circuit layout wiring simple. At the same time, success in the prototype design, the development of advanced tools, a high degree of automation, their logic is very simple changes quickly. Therefore, the use of FPGA devices can significantly shorten the design cycle system, and speed up the pace of product into the market, improving product competitiveness.(5)Work fastFPGA/CPLD devices work fast, generally can reach several original Hertz, far larger than the DSP device. At the same time, the use of FPGA devices, the system needed to achieve circuit classes and small, and thus the pace of work of the entire system will be improved.(6)Increased system performance confidentialityMany FPGA devices have encryption functions in the system widely used FPGA devices can effectively prevent illegal copying products were others(7)To reduce costsFPGA device used to achieve digital system design, if only device itself into the price, sometimes you would not know it advantages, but there are many factors affecting the cost of the system, taken together, the cost advantages of using FPGA is obvious. First, the use of FPGA devices designed to facilitate change, shorten design cycles, reduce development costs for system development; Secondly, the size and FPGA devices allow automation needs plug-ins, reducing the manufacturing system to lower costs; Again, the use of FPGA devices can enhance system reliability, reduced maintenance workload, thereby lowering the cost of maintenance services for the system. In short, the use of FPGA devices for system design to save costs.FPGA design principles :FPGA design an important guiding principles : the balance and size and speed of exchange, the principles behind the design of the filter expression of a large number of certification.Here, "area" means a design exertion FPGA/CPLD logic resources of the FPGA can be used to the typical consumption (FF) and the search table (IUT) to measure more general measure can be used to design logic equivalence occupied by the door is measured. "pace" means stability operations in the chip design can achieve the highest frequency, the frequency of the time series design situation, and design to meet the clock cycle -- PADto pad, Clock Setup Time, Clock Hold Beijing, Clock-to-Output Delay, and other characteristics of many time series closely related. Area (area) and speed (speed) runs through the two targets FPGA design always is the ultimate design quality evaluation criteria. On the size and speed of the two basic concepts : balance of size and speed and size and speed of swap.One pair of size and speed is the unity of opposites contradictions body. Requirements for the design of a design while the smallest, highest frequency of operation is unrealistic. More scientific goal should be to meet the design requirements of the design time series (includes requirements for the design frequency) premise, the smallest chip area occupied. Or in the specified area, the design time series cushion greater frequency run higher. This fully embodies the goals of both size and speed balanced thinking. On the size and speed requirements should not be simply interpreted as raising the level and design engineers perfect sexual pursuit, and should recognize that they are products and the quality and cost of direct relevance. If time series cushion larger design, running relatively high frequency, that the design Jianzhuangxing stronger, more quality assurance system as a whole; On the other hand, the smaller size of consumption design is meant to achieve in chip unit more functional modules, the chip needs fewer, the entire system has been significantly reduced cost. As a contradiction of the two components, the size and speed is not the same status. In contrast, meet the timetables and work is more important for some frequency when both conflicts, the use of priority guidelines.Area and the exchange rate is an important FPGA design ideas. Theoretically, if a design time series cushion larger, can run much higher than the frequency designrequirements, then we can through the use of functional modules to reduce the consumption of the entire chip design area, which is used for space savings advantages of speed; Conversely, if the design of a time series demanding, less than ordinary methods of design frequency then generally flow through the string and data conversion, parallel reproduction of operational module, designed to take on the whole "string and conversion" and operate in the export module to chip in the data "and string conversion" from the macro point of view the whole chip meets the requirements of processing speed, which is equivalent to the area of reproduction - rate increase.For example. Assuming that the digital signal processing system is 350Mb/s input data flow rate, and in FPGA design, data processing modules for maximum processing speed of150Mb/s, because the data throughput processing module failed to meet requirements, it is impossible to achieve directly in the FPGA. Such circumstances, they should use "area-velocity" thinking, at least three processing modules from the first data sets will be imported and converted, and then use these three modules parallel processing of data distribution, then the results "and string conversion," we have complete data rate requirements. We look at both ends of the processing modules, data rate is 350Mb/s, and in view of the internal FPGA, each sub-module handles the data rate is 150Mb/s, in fact, all the data throughput is dependent on three security modules parallel processing subsidiary completed, that is used by more chip area achieve high-speed processing through "the area of reproduction for processing speed enhancement" and achieved design.FPGA is the English abbreviation Field of Programmable Gate Array for the site programmable gate array, which is in Pal, Gal, Epld, programmable device basis to further develop the product. It is as ASIC (ASIC) in the field of a semi-customized circuit and the emergence of both a customized solution to the shortage circuit, but overcome the original programmable devices doors circuit few limited shortcomings.FPGA logic module array adopted home (Logic Cell Array), a new concept of internal logic modules may include CLB (Configurable Logic Block), export import module IOB (Input Output Block) and internal links (Interconnect) 3. FPGA basic features are :(1)Using FPGA ASIC design ASIC using FPGA circuits, the chip can be used,while users do not need to vote films production.(2)FPGA do other customized or semi-customized ASIC circuits throughout the Chinese specimen films.(3)FPGA internal capability and rich I/O Yinjue.(4)FPGA is the ASIC design cycle, the shortest circuit, the lowest development costs, risks among the smallest device(5)FPGA using high-speed Chmos crafts, low consumption, with CMOS, TTL low-power compatibleIt can be said that the FPGA chip is for small-scale systems to improve system integration, reliability one of the bestCurrently FPGA many varieties, the Revenue software series, TI companies TPC series, the fiex ALTERA company seriesFPGA is stored in films from the internal RAM procedures for the establishment ofthe state of its work, therefore, need to programmed the internal Ram. Depending on the different configuration, users can use a different programming methodsPlus electricity, FPGA, EPROM chips will be read into the film, programming RAM 中data, configuration is completed, FPGA into working order. Diaodian, FPGA resume into white films, the internal logic of relations disappear, FPGA to repeated use. FPGA's programming is dedicated FPGA programming tool, using generic EPROM, prom programming device can. When the need to modify functional FPGA, EPROM can only change is. Thus, with a FPGA, different programming data to produce different circuit functions. Therefore, the use of FPGA very flexible.There are a variety of FPGA model : the main model for a parallel FPGA plus a EPROM manner; From the model can support a number of films FPGA; serial prom programming model could be used serial prom FPGA programming FPGA; The external model can be engineered as microprocessors from its programming microprocessors.Verilog HDL is a hardware description language for the algorithm level, doors at the level of abstract level to switch-level digital system design modelling. Modelling of the target figure by the complexity of the system can be something simple doors and integrity of electronic digital systems. Digital system to the levels described, and in the same manner described in Hin-time series modelling.Verilog HDL language with the following description of capacity : design behaviour characteristics, design data flow characteristics, composition and structure designed to control and contain the transmission and waveform design a certification mechanism. All this with the use of a modelling language. In addition, Verilog HDL language programming language interface provided by the interface in simulation, design certification from the external design of the visit, including specific simulation control and operation.Verilog HDL language grammar is not only a definition, but the definition of each grammar structure are clear simulation, simulation exercises. Therefore, the use of such language to use Verilog simulation models prepared by a certification. From the C programming language, the language inherited multiple operating sites and structures. Verilog HDL provides modelling capacity expansion, many of the initial expansion would be difficult to understand. However, the core subsets of Verilog HDL language very easy to learn and use, which is sufficient for most modelling applications. Of course, the integrity of the hardware description language is the most complex chips from the integrity of the electronic systems described.HistoryVerilog HDL language initially in 1983 by Gateway Design Automation companies for product development simulator hardware modelling language. Then it is only a dedicated language. Since their simulation, simulation devices widely used products, Verilog HDL as a user-friendly and practical language for many designers gradually accepted. In an effort to increase the popularity of the language activities, Verilog HDL language in 1990 was a public area. Open Verilog International (OVI) is to promote the development of Verilog international organizations. 1992, decided to promote OVI OVI standards as IEEE Verilog standards. The effort will ultimately succeed, a IEEE 1995 Verilog language standard, known as IEEE Std 1364-1995. Integrity standardsin Verilog hardware description language reference manual contains a detailed description.Main capacityListed below are the main Verilog hardware description language ability*Basic logic gate, and, for example, or have embedded in the language and nand* Users of the original definition of the term (UDP), the flexibility. Users can be defined in the original language combinations logic original language, the original language of logic could also be time series* Switches class infrastructure models, such as the nmos and pmos also be embedded in the language* Hin-language structure designated for the cost of printing the design and trails Shi Shi and design time series checks.* Available three different ways to design or mixed mode modelling. These methods include : acts described ways - use process of structural modelling; Data flow approach - use of a modelling approach Fuzhi expression; Structured way - using examples of words to describe modular doors and modelling.* Verilog HDL has two types of data : data types and sequence data line network types. Line network types that the physical links between components and sequence types that abstract data storage components.* To describe the level design, the structure can be used to describe any level module example* Design size can be arbitrary; Language is design size (size) impose any restrictions* And the machine can read Verilog language, it may as EDA tools and languages of the world between the designers* Verilog HDL language to describe capacity through the use of programming language interface (PLI) mechanism further expansion. PLI is to allow external functions of the visit Verilog module information, allowing designers and simulator world Licheng assembly* Design to be described at a number of levels, from the switch level, doors level, register transfer level (RTL) to the algorithm level, including the level of process and content* To use embedded switching level of the original language in class switch design integrity modelling * Same language can be used to generate simulated incentive and certification by the designated testing conditions, such as the value of imports of the designated*Verilog HDL simulation to monitor the implementation of certification, the certification process of implementing the simulation can be designed to monitor and demonstrate value. These values can be used to compare with the expectations that are not matched in the case of print news reports.* Acts described in the class, not only in the RTL level Verilog HDL design description, and to describe their level architecture design algorithm level behavioural description* Examples can use doors and modular structure of language in a class structure described* Verilog HDL mixed mode modelling capabilities in the design of a different design in each module can level modelling* Verilog HDL has built-in logic function, such as*Structure of high-level programming languages, such as conditions of expression, and the cycle of expression language, language can be used* To it and can display regular modelling * Provide a powerful document literacy* Language in the specific circumstances of non-certainty that in the simulator, different models can produce different results; For example, describing events in the standard sequence of events is not defined.5、In troduction of DSPToday, DSP is w idely used in the modern techno logy and it has been the key part of many p roducts and p layed more and mo re impo rtant ro le in our daily life.Recent ly, Northw estern Po lytechnica lUniversity Aviation Microelect ronic Center has comp leted the design of digital signal signal p rocesso r co re NDSP25, w h ich is aim ing at TM S320C25 digital signal p rocesso r of Texas Inst rument TM S320 series. By using top 2dow n design flow , NDSP25 is compat ible w ith inst ruct ion and interface t im ing of TM S320C25.Digital signal processors (DSP) is a fit for real-time digital signal processing for high-speed dedicated processors, the main variety used for real-time digital signal processing to achieve rapid algorithms. In today's digital age background, the DSP has become the communications, computer, and consumer electronics products, and other fields based device.Digital signal processors and digital signal processing is inseparably, we usually say "DSP" can also mean the digital signal processing (Digital Signal Processing), is that in this digital signal processors Lane. Digital signal processing is a cover many disciplines applied to many areas and disciplines, refers to the use of computers or specialized processing equipment, the signals in digital form for the collection, conversion, recovery, valuation, enhancement, compression, identification, processing, the signals are compliant form. Digital signal processors for digital signal processing devices, it is accompanied by a digital signal processing to produce. DSP development process is broadly divided into three phases : the 20th century to the 1970s theory that the 1980s and 1990s for the development of products. Before the emergence of the digital signal processing in the DSP can only rely on microprocessors (MPU) to complete. However, the advantage of lower high-speed real-time processing can not meet the requirements. Therefore, until the 1970s, a talent made based DSP theory and algorithms. With LSI technology development in 1982 was the first recipient of the world gave birth to the DSP chip. Years later, the second generation based on CMOS工艺DSP chips have emerged. The late 1980s, the advent of the third generation of DSP chips. DSP is the fastest-growing 1990s, there have been four successive five-generation and the generation DSP devices. After 20 years of development, the application of DSP products has been extended to people's learning, work and all aspects of life and gradually become electronics products determinants.REFERENCES1.Chan, D.S.K., Rabiner L.R.: Analysis of Quantization Errors in the Direct Form for Finite Impulse。
实验五IIR滤波器的设计与信号滤波
![实验五IIR滤波器的设计与信号滤波](https://img.taocdn.com/s3/m/5b54d51bcdbff121dd36a32d7375a417876fc160.png)
实验五IIR滤波器的设计与信号滤波IIR滤波器,即无限脉冲响应滤波器(Infinite Impulse Response Filter),是一类数字滤波器,其输出依赖于输入信号和先前的输出信号。
相比于有限脉冲响应滤波器(FIR Filter),IIR滤波器具有更少的延迟和更高的效率。
本实验将介绍IIR滤波器的设计原理以及在信号滤波中的应用。
IIR滤波器的设计是通过对传递函数进行分析和设计实现的。
传递函数H(z)可以通过差分方程来表示,其中z是时间变量的复数变换。
一般而言,IIR滤波器的传递函数分为分子多项式和分母多项式两部分,它们都是z的多项式。
例如,一个简单的一阶低通滤波器的传递函数可以表示为:H(z)=b0/(1-a1z^(-1))其中b0是分子多项式的系数,a1是分母多项式的系数,z^(-1)表示滤波器的延迟项。
IIR滤波器的设计方法有很多种,其中一种常用的方法是巴特沃斯滤波器设计。
巴特沃斯滤波器是一种最优陡峭通带和带外衰减的滤波器。
设计巴特沃斯滤波器的步骤如下:1.确定滤波器的阶数:阶数决定了滤波器的复杂度和频率特性。
一般而言,阶数越高,滤波器的效果越好,但计算和实现的复杂度也越高。
2.确定通带和带外的频率特性:根据应用需求,确定滤波器在通带和带外的频率响应。
通带的频率范围内,滤波器应该具有尽可能小的幅频特性,带外的频率范围内,滤波器应该具有尽可能高的衰减。
3.根据阶数和频率特性计算巴特沃斯滤波器的极点:巴特沃斯滤波器的极点是滤波器的传递函数的根。
根据阶数和频率特性,可以使用巴特沃斯极点表来获取滤波器的极点。
4.将极点转换为差分方程:利用极点可以构造差分方程,定义IIR滤波器的传递函数。
除了巴特沃斯滤波器设计方法,还有其他IIR滤波器设计方法,例如Chebyshev滤波器、椭圆滤波器等。
每种设计方法都有其独特的优点和适用范围,可以根据具体需求选择适合的设计方法。
在信号滤波中,IIR滤波器可以用于实现多种滤波效果,例如低通滤波、高通滤波、带通滤波和带阻滤波等。
iir数字滤波器的设计方法
![iir数字滤波器的设计方法](https://img.taocdn.com/s3/m/2d8bf2c0900ef12d2af90242a8956bec0975a519.png)
iir数字滤波器的设计方法IIR数字滤波器的设计方法IIR数字滤波器是一种常用的数字信号处理工具,用于对信号进行滤波和频率域处理。
其设计方法是基于传统的模拟滤波器设计技术,通过将连续时间滤波器转换为离散时间滤波器来实现。
本文将介绍IIR数字滤波器的设计方法和一些常见的实现技巧。
一、IIR数字滤波器的基本原理IIR数字滤波器是一种递归滤波器,其基本原理是将输入信号与滤波器的系数进行加权求和。
其输出信号不仅与当前输入值有关,还与之前的输入和输出值有关,通过不断迭代计算可以得到最终的输出结果。
二、IIR数字滤波器的设计步骤1. 确定滤波器的类型:低通滤波器、高通滤波器、带通滤波器或带阻滤波器。
2. 确定滤波器的阶数:阶数决定了滤波器的陡峭度和性能。
3. 选择滤波器的截止频率或通带范围。
4. 根据所选的滤波器类型和截止频率,设计滤波器的模拟原型。
5. 将模拟原型转换为数字滤波器。
三、IIR数字滤波器的设计方法1. 巴特沃斯滤波器设计方法:- 巴特沃斯滤波器是一种最常用的IIR数字滤波器,具有平坦的通带特性和陡峭的阻带特性。
- 设计方法为先将模拟滤波器转换为数字滤波器,然后通过对模拟滤波器进行归一化来确定截止频率。
2. 阻带衰减设计方法:- 阻带衰减设计方法是一种通过增加滤波器的阶数来提高滤波器阻带衰减特性的方法。
- 通过增加阶数,可以获得更陡峭的阻带特性,但同时也会增加计算复杂度和延迟。
3. 频率变换方法:- 频率变换方法是一种通过对滤波器的频率响应进行变换来设计滤波器的方法。
- 通过对模拟滤波器的频率响应进行变换,可以得到所需的数字滤波器。
四、IIR数字滤波器的实现技巧1. 级联结构:- 将多个一阶或二阶滤波器级联起来,可以得到更高阶的滤波器。
- 级联结构可以灵活地实现各种滤波器类型和阶数的设计。
2. 并联结构:- 将多个滤波器并联起来,可以实现更复杂的频率响应。
- 并联结构可以用于设计带通滤波器和带阻滤波器。
iir数字滤波器的设计matlab
![iir数字滤波器的设计matlab](https://img.taocdn.com/s3/m/2f09c7bdaff8941ea76e58fafab069dc50224702.png)
iir数字滤波器的设计matlabIIR数字滤波器的设计(Matlab)数字滤波器是一种用于信号处理的重要工具,可以对信号进行滤波、去噪和频率分析等操作。
其中,IIR(Infinite Impulse Response)数字滤波器是一种常见的数字滤波器,具有无限冲激响应的特点。
本文将介绍如何使用Matlab设计IIR数字滤波器。
首先,我们需要明确设计IIR数字滤波器的目标。
通常,设计IIR数字滤波器的目标是在满足一定的频率响应要求的前提下,使得滤波器的阶数尽可能低。
这样可以减少计算量和延迟,提高滤波器的实时性。
在Matlab中,可以使用`designfilt`函数来设计IIR数字滤波器。
该函数提供了多种设计方法和滤波器类型的选择。
常见的设计方法有巴特沃斯(Butterworth)、切比雪夫(Chebyshev)和椭圆(Elliptic)等。
这些方法在满足不同的频率响应要求和阶数限制方面有所不同。
以巴特沃斯滤波器为例,我们可以使用以下代码来设计一个低通滤波器:```matlabfs = 1000; % 采样频率fc = 100; % 截止频率order = 4; % 阶数[b, a] = butter(order, fc/(fs/2), 'low'); % 设计低通滤波器freqz(b, a); % 绘制滤波器的频率响应曲线```在上述代码中,`fs`表示采样频率,`fc`表示截止频率,`order`表示滤波器的阶数。
`b`和`a`分别是滤波器的分子和分母系数。
`butter`函数根据给定的阶数、截止频率和滤波器类型来设计滤波器。
设计完成后,我们可以使用`freqz`函数来绘制滤波器的频率响应曲线。
该函数可以显示滤波器的幅度响应和相位响应。
通过观察频率响应曲线,我们可以了解滤波器的频率特性,以及是否满足设计要求。
除了低通滤波器,我们还可以设计高通、带通和带阻滤波器。
例如,以下代码可以设计一个带通滤波器:```matlabfs = 1000; % 采样频率f1 = 100; % 通带下限频率f2 = 200; % 通带上限频率order = 4; % 阶数[b, a] = butter(order, [f1/(fs/2), f2/(fs/2)], 'bandpass'); % 设计带通滤波器freqz(b, a); % 绘制滤波器的频率响应曲线```在上述代码中,`f1`和`f2`分别表示带通滤波器的通带下限频率和通带上限频率。
IIR数字滤波器设计有英文摘要
![IIR数字滤波器设计有英文摘要](https://img.taocdn.com/s3/m/5b6de1cb8bd63186bcebbcb2.png)
IIR数字滤波器设计摘要数字滤波器是具有一定传输选择特性的数字信号处理装置,其输入、输出均为数字信号,实质上是一个由有限精度算法实现的线性时不变离散系统。
它的基本工作原理是利用离散系统特性对系统输入信号进行加工和变换,改变输入序列的频谱或信号波形,让有用频率的信号分量通过,抑制无用的信号分量输出。
数字滤波器和模拟滤波器有着相同的滤波概念,根据其频率响应特性可分为低通、高通、带通、带阻等类型,与模拟滤波器相比,数字滤波器除了具有数字信号处理的固有优点外,还有滤波精度高(与系统字长有关)、稳定性好(仅运行在0与l 两个电平状态)、灵活性强等优点。
数字滤波器按单位脉冲响应的性质可分为无限长单位脉冲响应滤波器IIR和有限长单位脉冲响应滤波器(FIR)两种。
本文介绍IIR数字滤波器的设计[4]。
关键词:IIR FIRAbstractDigital filter is a digital filter has the certain transmission choicecharacteristic isdigital signal processing device, signal processing device has the certain transmission choicecharacteristic,Is essentially a realization by the finite precision arithmetic and linear time invariant discrete systems。
Its basic principle is to use the characteristics of discrete system for processing and transformation of system input signal,To change the input sequence spectrum or signal waveform,Let the signal components useful frequency by suppression of signal components, the output of useless。
iir数字滤波器的设计
![iir数字滤波器的设计](https://img.taocdn.com/s3/m/4b1291e9b8f3f90f76c66137ee06eff9aef8491f.png)
iir数字滤波器的设计什么是iir数字滤波器?iir(infinite impulse response)数字滤波器是一种数字滤波器,与fir(finite impulse response)数字滤波器不同。
与fir数字滤波器只要考虑最近的输入和输出有关,因此具有有限的冲击响应,iir数字滤波器具有无限的冲击响应,因为它们可以让输出与过去的输入有关。
在iir数字滤波器中,有反馈路径,这是与fir数字滤波器不同的。
这意味着,iir滤波器依赖于以前的输出和输入来计算当前的输出。
iir数字滤波器的应用iir数字滤波器在数码信号处理中得到了广泛应用,可以用于各种应用,包括:•音频处理:包括音频滤波器,均衡器和调音台等•通信:数字化通信和语音处理•生产控制:包括传感器计算和控制器如何设计iir数字滤波器?要设计iir数字滤波器,我们需要考虑几个步骤。
1. 确定数字滤波器的类型在设计iir数字滤波器之前,我们需要先确定所需的数字滤波器类型。
通常,数字滤波器可以分为以下两类:•低通滤波器(LPF)•高通滤波器(HPF)根据所需的应用程序和系统需求,您可以确定所需的滤波器类型。
2. 确定滤波器规格在设计iir数字滤波器之前,我们需要确定所需的滤波器规格。
这包括通带和阻带频率,通带和阻带增益等。
3. 选择设计工具在选择设计工具时,可以使用以下工具:•Matlab•Python4. 根据设计规格进行设计使用所选的设计工具,我们可以根据滤波器规格进行设计。
例如,我们可以使用Matlab中的dsp工具箱设计数字滤波器。
Fs = 1000; % 采样频率Fpass = 200; % 通带频率Fstop = 300; % 阻带频率Apass = 1; % 通带最大衰减Astop = 80; % 阻带最小衰减% 将数字滤波器设计为低通滤波器,并使用butterworth滤波器设计方法d = fdesign.lowpass('Fp,Fst,Ap,Ast',Fpass,Fstop,Apass,Astop,Fs);Hd = design(d,'butter');% 将数字滤波器设计为高通滤波器,并使用chebyshev滤波器设计方法d = fdesign.highpass('Fst,Fp,Ast,Ap',Fpass,Fstop,Astop,Apass,Fs);Hd = design(d,'cheby1');以上示例演示了如何使用Matlab中的dsp工具箱设计数字低通滤波器和数字高通滤波器。
实验八 IIR数字滤波器的设计 (2)
![实验八 IIR数字滤波器的设计 (2)](https://img.taocdn.com/s3/m/f07c195fa66e58fafab069dc5022aaea998f4194.png)
实验八 IIR数字滤波器的设计概述数字滤波器是一个重要的信号处理工具,它可以对数字信号进行滤波操作,降低或剔除不需要的频率成分。
IIR (Infinite Impulse Response)数字滤波器是一种常见的数字滤波器,采用递归结构,具有较低的计算复杂度和较小的存储要求。
本实验将介绍IIR数字滤波器的设计原理和实现方法。
IIR数字滤波器的结构IIR数字滤波器由一个或多个递归(Recursive)和非递归(Non-recursive)部分组成。
递归部分使用输出信号的延迟版本和输入信号的加权和生成输出信号,非递归部分仅使用输入信号的加权和。
IIR数字滤波器的传输函数可以表示为以下形式:H(z) = (b0 + b1 * z^-1 + b2 * z^-2 + ... + bm * z^-m) / (a0 + a1 * z^-1 + a2 * z^-2 + ... + an * z^-n)其中,b0, b1, …, bm为非递归系数,a0, a1, …, an为递归系数。
通过调整这些系数,可以控制滤波器的频率响应。
IIR数字滤波器的设计步骤1. 确定滤波器的规格首先,确定所需滤波器的规格,包括带宽、截止频率、通带衰减和阻带衰减等参数。
这些参数将决定滤波器的设计方法和系数。
2. 选择滤波器类型根据滤波器的规格,选择适当的滤波器类型。
常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
3. 设计滤波器的模拟原型根据所选滤波器类型,设计滤波器的模拟原型。
可以使用模拟滤波器设计方法,如巴特沃斯滤波器、切比雪夫滤波器或椭圆滤波器等。
4. 将模拟滤波器转换为数字滤波器使用数字滤波器设计方法,将模拟滤波器转换为数字滤波器。
常用的转换方法包括脉冲响应不变法和双线性变换法。
5. 优化滤波器的系数通过对滤波器的系数进行优化,可以改善滤波器的性能。
可以使用最小二乘法等优化方法来调整滤波器的系数。
6. 实现数字滤波器根据设计好的数字滤波器的系数,可以使用编程语言或专用的滤波器设计工具来实现数字滤波器。
IIR数字滤波器英文文献以及翻译
![IIR数字滤波器英文文献以及翻译](https://img.taocdn.com/s3/m/cd300810b7360b4c2e3f64d0.png)
2013 届毕业设计(论文)英文文献及其翻译资料院、部:电气与信息工程学院学生姓名:指导教师:职称专业:电子信息工程班级:完成时间:2013年6月7日Signal processingSignal processing is an area of electrical engineering and applied mathematics that deals with operations on or analysis of signals, in either discrete or continuous time, to perform useful operations on those signals. Signals of interest can include sound, images, time-varying measurement values and sensor data, for example biological data such as electrocardiograms, control system signals, telecommunication transmission signals such as radio signals, and many others. Signals are analog or digital electrical representations of time-varying or spatial-varying physical quantities. In the context of signal processing, arbitrary binary data streams and on-off signalling are not considered as signals, but only analog and digital signals that are representations of analog physical quantities.HistoryAccording to Alan V. Oppenheim and Ronald W. Schafer, the principles of signal processing can be found in the classical numerical analysis techniques of the 17th century. They further state that the "digitalization" or digital refinement of these techniques can be found in the digital control systems of the 1940s and 1950s.Categories of signal processingAnalog signal processingAnalog signal processing is for signals that have not been digitized, as in classical radio, telephone, radar, and television systems. This involves linear electronic circuits such as passive filters, active filters, additive mixers, integrators and delay lines. It also involves non-linear circuits such as compandors, multiplicators (frequency mixers and voltage-controlled amplifiers), voltage-controlled filters, voltage-controlled oscillators and phase-locked loops.Discrete time signal processingDiscrete time signal processing is for sampled signals that are considered as defined only at discrete points in time, and as such are quantized in time, but not in magnitude.Analog discrete-time signal processing is a technology based on electronic devices such as sample and hold circuits, analog time-division multiplexers, analog delay lines and analog feedback shift registers. This technology was a predecessor of digital signal processing (see below), and is still used in advanced processing of gigahertz signals.The concept of discrete-time signal processing also refers to a theoretical discipline that establishes a mathematical basis for digital signal processing, without taking quantization error into consideration.Digital signal processingDigital signal processing is for signals that have been digitized. Processing is done by general-purpose computers or by digital circuits such as ASICs, field-programmable gate arrays or specialized digital signal processors (DSP chips). Typical arithmetical operations include fixed-point and floating-point, real-valued and complex-valued, multiplication and addition. Other typical operations supported by the hardware are circular buffers and look-up tables. Examples of algorithms are the Fast Fourier transform (FFT), finite impulse response (FIR) filter, Infinite impulse response (IIR) filter, and adaptive filters such as the Wiener and Kalman filters1.Digital signal processingDigital signal processing (DSP) is concerned with the representation of signals by a sequence of numbers or symbols and the processing of these signals. Digital signal processing and analog signal processing are subfields of signal processing. DSP includes subfields like: audio and speech signal processing, sonar and radar signal processing, sensor array processing, spectral estimation, statistical signal processing, digital image processing, signal processing for communications, control of systems, biomedical signal processing, seismic data processing, etc.The goal of DSP is usually to measure, filter and/or compress continuous real-world analog signals. The first step is usually to convert the signal from an analog to a digital form, by sampling it using an analog-to-digital converter (ADC), which turns the analog signal into a stream of numbers. However, often, the required output signal is another analog output signal, which requires a digital-to-analogconverter (DAC). Even if this process is more complex than analog processing and has a discrete value range, the application of computational power to digital signal processing allows for many advantages over analog processing in many applications, such as error detection and correction in transmission as well as data compression.[1]DSP algorithms have long been run on standard computers, on specialized processors called digital signal processors (DSPs), or on purpose-built hardware such as application-specific integrated circuit (ASICs). Today there are additional technologies used for digital signal processing including more powerful general purpose microprocessors, field-programmable gate arrays (FPGAs), digital signal controllers (mostly for industrial apps such as motor control), and stream processors, among others.[2]2. DSP domainsIn DSP, engineers usually study digital signals in one of the following domains: time domain (one-dimensional signals), spatial domain (multidimensional signals), frequency domain, autocorrelation domain, and wavelet domains. They choose the domain in which to process a signal by making an informed guess (or by trying different possibilities) as to which domain best represents the essential characteristics of the signal. A sequence of samples from a measuring device produces a time or spatial domain representation, whereas a discrete Fourier transform produces the frequency domain information, that is the frequency spectrum. Autocorrelation is defined as the cross-correlation of the signal with itself over varying intervals of time or space.3. Signal samplingMain article: Sampling (signal processing)With the increasing use of computers the usage of and need for digital signal processing has increased. In order to use an analog signal on a computer it must be digitized with an analog-to-digital converter. Sampling is usually carried out in two stages, discretization and quantization. In the discretization stage, the space of signals is partitioned into equivalence classes and quantization is carried out by replacing the signal with representative signal of the corresponding equivalence class. In thequantization stage the representative signal values are approximated by values from a finite set.The Nyquist–Shannon sampling theorem states that a signal can be exactly reconstructed from its samples if the sampling frequency is greater than twice the highest frequency of the signal; but requires an infinite number of samples . In practice, the sampling frequency is often significantly more than twice that required by the signal's limited bandwidth.A digital-to-analog converter is used to convert the digital signal back to analog. The use of a digital computer is a key ingredient in digital control systems.4. Time and space domainsMain article: Time domainThe most common processing approach in the time or space domain is enhancement of the input signal through a method called filtering. Digital filtering generally consists of some linear transformation of a number of surrounding samples around the current sample of the input or output signal. There are various ways to characterize filters; for example:∙ A "linear" filter is a linear transformation of input samples; other filters are "non-linear". Linear filters satisfy the superposition condition, i.e. if an input is a weighted linear combination of different signals, the output is an equally weighted linear combination of the corresponding output signals.∙ A "causal" filter uses only previous samples of the input or output signals; while a "non-causal" filter uses future input samples. A non-causal filter can usually be changed into a causal filter by adding a delay to it.∙ A "time-invariant" filter has constant properties over time; other filters such as adaptive filters change in time.∙Some filters are "stable", others are "unstable". A stable filter produces an output that converges to a constant value with time, or remains bounded within a finite interval. An unstable filter can produce an output that grows without bounds, with bounded or even zero input.A "finite impulse response" (FIR) filter uses only the input signals, while an "infinite impulse response" filter (IIR) uses both the input signal and previous samples of the output signal. FIR filters are always stable, while IIR filters may be unstable.Filters can be represented by block diagrams which can then be used to derive a sample processing algorithm to implement the filter using hardware instructions. A filter may also be described as a difference equation, a collection of zeroes and poles or, if it is an FIR filter, an impulse response or step response.The output of a digital filter to any given input may be calculated by convolving the input signal with the impulse response.5. Frequency domainMain article: Frequency domainSignals are converted from time or space domain to the frequency domain usually through the Fourier transform. The Fourier transform converts the signal information to a magnitude and phase component of each frequency. Often the Fourier transform is converted to the power spectrum, which is the magnitude of each frequency component squared.The most common purpose for analysis of signals in the frequency domain is analysis of signal properties. The engineer can study the spectrum to determine which frequencies are present in the input signal and which are missing.In addition to frequency information, phase information is often needed. This can be obtained from the Fourier transform. With some applications, how the phase varies with frequency can be a significant consideration.Filtering, particularly in non-realtime work can also be achieved by converting to the frequency domain, applying the filter and then converting back to the time domain. This is a fast, O(n log n) operation, and can give essentially any filter shape including excellent approximations to brickwall filters.There are some commonly used frequency domain transformations. For example, the cepstrum converts a signal to the frequency domain through Fourier transform, takes the logarithm, then applies another Fourier transform. This emphasizes thefrequency components with smaller magnitude while retaining the order of magnitudes of frequency components.6. Z-domain analysisWhereas analog filters are usually analysed on the s-plane; digital filters are analysed on the z-plane or z-domain in terms of z-transforms.Most filters can be described in Z-domain (a complex number superset of the frequency domain) by their transfer functions. A filter may be analysed in the z-domain by its characteristic collection of zeroes and poles.7. ApplicationsThe main applications of DSP are audio signal processing, audio compression, digital image processing, video compression, speech processing, speech recognition, digital communications, RADAR, SONAR, seismology, and biomedicine. Specific examples are speech compression and transmission in digital mobile phones, room matching equalization of sound in Hifi and sound reinforcement applications, weather forecasting, economic forecasting, seismic data processing, analysis and control of industrial processes, computer-generated animations in movies, medical imaging such as CAT scans and MRI, MP3 compression, image manipulation, high fidelity loudspeaker crossovers and equalization, and audio effects for use with electric guitar amplifiers8. ImplementationDigital signal processing is often implemented using specialised microprocessors such as the DSP56000, the TMS320, or the SHARC. These often process data using fixed-point arithmetic, although some versions are available which use floating point arithmetic and are more powerful. For faster applications FPGAs[3]might be used. Beginning in 2007, multicore implementations of DSPs have started to emerge from companies including Freescale and Stream Processors, Inc. For faster applications with vast usage, ASICs might be designed specifically. For slow applications, a traditional slower processor such as a microcontroller may be adequate. Also a growing number of DSP applications are now being implemented on Embedded Systems using powerful PCs with a Multi-core processor.信号处理信号处理是电气工程和应用数学领域,在离散的或连续的时间域处理和分析信号,以对这些信号进行所需的有用的操作。
IIR滤波器的原理与设计方法
![IIR滤波器的原理与设计方法](https://img.taocdn.com/s3/m/8bbcd43d26284b73f242336c1eb91a37f1113287.png)
IIR滤波器的原理与设计方法IIR(Infinite Impulse Response)滤波器是一种数字滤波器,其具有无限冲激响应的特点。
与FIR(Finite Impulse Response)滤波器相比,IIR滤波器具有更高的效率和更窄的频带特性。
本文将介绍IIR滤波器的原理和设计方法。
一、IIR滤波器的原理IIR滤波器是通过对输入信号和输出信号之间的差异进行递归运算而实现滤波的。
其核心原理是利用差分方程来描述滤波器的行为。
IIR滤波器可以被表达为如下形式:y[n] = b₀x[n] + b₁x[n-1] + ... + bₘx[n-ₘ] - a₁y[n-1] - ... - aₘy[n-ₘ]其中,x[n]表示输入信号的当前采样值,y[n]表示输出信号的当前采样值,a₁,...,aₘ和b₀,...,bₘ是滤波器的系数。
二、IIR滤波器的设计方法设计IIR滤波器需要确定滤波器的阶数、截止频率和系数等参数,以下介绍一种常用的设计方法:巴特沃斯滤波器设计方法。
1. 确定滤波器阶数滤波器的阶数决定了滤波器的复杂度和频率响应的形状。
阶数越高,频率响应越陡峭。
根据需要的滤波效果和计算复杂度,选择适当的滤波器阶数。
2. 确定截止频率截止频率是滤波器在频域上的边界,用于确定滤波器的通带和阻带。
根据信号的频谱分析以及滤波器的应用要求,确定合适的截止频率。
3. 求解滤波器系数根据巴特沃斯滤波器的设计方法,可以采用双线性变换、频率抽样和极点放置等技术求解滤波器的系数。
具体方法比较复杂,需要使用专业的滤波器设计软件或者数字信号处理工具包进行计算。
4. 评估设计结果设计完成后,需要评估滤波器的性能指标,如频率响应、相位响应、群延迟等。
可以通过频域分析和时域仿真等方法来评估滤波器的设计效果。
三、结论IIR滤波器是一种常用的数字滤波器,其具有无限冲激响应的特点。
通过对输入信号和输出信号进行递归运算,可以实现滤波效果。
设计IIR滤波器需要确定滤波器的阶数、截止频率和系数等参数,并通过专业的设计方法进行求解。
基于matlab的iir数字滤波器的设计
![基于matlab的iir数字滤波器的设计](https://img.taocdn.com/s3/m/b3562b216fdb6f1aff00bed5b9f3f90f76c64dc6.png)
基于matlab的iir数字滤波器的设计
数字滤波器是数字信号处理中的重要组成部分,可以用来去除数字信号中的噪声和干扰。
其中,IIR(Infinite Impulse Response)数字滤波器是一种常用的数字滤波器,具有较高的性能和稳定性。
基于MATLAB软件,可以方便地进行IIR数字滤波器的设计和实现。
具体步骤如下:
1. 确定滤波器的性质:包括滤波器的类型(低通、高通、带通、带阻),通带和阻带的频率范围,通带和阻带的最大衰减量等。
2. 根据所确定的性质,选择相应的设计方法。
常用的设计方法有Butterworth、Chebyshev、Elliptic等。
3. 在MATLAB中打开“Filter Design and Analysis”工具箱,选择相应的IIR数字滤波器设计函数。
例如,使用butter函数进行Butterworth滤波器的设计。
4. 输入所需的参数,包括滤波器的阶数、通带频率、阻带频率、最大衰减量等。
MATLAB会自动计算出滤波器的系数和极点。
5. 使用filter函数进行数字滤波器的实现。
将原始数字信号和滤波器系数作为输入,得到滤波后的数字信号。
通过以上步骤,可以在MATLAB中快速、方便地进行IIR数字滤波器的设计和实现。
此外,MATLAB还提供了丰富的工具和函数,用于数字信号处理和滤波器的性能分析和优化。
- 1 -。
IIR数字滤波器设计及软件实现-实验报告
![IIR数字滤波器设计及软件实现-实验报告](https://img.taocdn.com/s3/m/1eb108461611cc7931b765ce05087632311274b7.png)
IIR数字滤波器设计及软件实现-实验报告实验目的:1.掌握数字滤波器设计的基本原理和方法;2.学习数字滤波器的软件实现;3.熟悉数字滤波器的特性和性能评价指标。
实验设备:1.计算机;2.MATLAB软件。
实验步骤:1. 设计无限冲激响应(Infinite Impulse Response,IIR)数字滤波器的传递函数。
2.使用MATLAB软件将传递函数转换为差分方程。
3.编写MATLAB代码实现差分方程的数字滤波器。
4.给定待滤波的数字信号,将信号传入数字滤波器进行滤波处理。
5.分析滤波后的信号的频率响应和时域响应,并进行性能评价。
实验结果:在MATLAB中,设计了一个二阶Butterworth低通滤波器的传递函数:H(z)=(0.2929/(z^2-0.5858z+0.2929))将传递函数转换为差分方程:y(n)=0.2929*x(n)+0.5858*x(n-1)+0.2929*x(n-2)-0.5858*y(n-1)-0.2929*y(n-2)使用MATLAB代码实现了差分方程的数字滤波器:```MATLABfunction y = IIR_filter(x)persistent x1 x2 y1 y2;if isempty(x1)x1=0;x2=0;y1=0;y2=0;endy=0.2929*x+0.5858*x1+0.2929*x2-0.5858*y1-0.2929*y2;x2=x1;x1=x;y2=y1;y1=y;end```将待滤波的数字信号传入该数字滤波器进行处理:```MATLAB% Generate test signalfs = 1000; % Sampling ratet = 0:1/fs:1; % Time vectorx = sin(2*pi*50*t) + sin(2*pi*120*t) + sin(2*pi*200*t); % Apply IIR filtery = IIR_filter(x);% Plot resultsfigure;subplot(2,1,1);plot(t, x);title('Original Signal');xlabel('Time');ylabel('Amplitude');subplot(2,1,2);plot(t, y);title('Filtered Signal');xlabel('Time');ylabel('Amplitude');```分析滤波后的信号的频率响应和时域响应,并进行性能评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IIR Digital Filter DesignAn important step in the development of a digital filter is the determination of a realizable transfer function G(z) approximating the given frequency response specifications. If an IIR filter is desired,it is also necessary to ensure that G(z) is stable. The process of deriving the transfer function G(z) is called digital filter design. After G(z) has been obtained, the next step is to realize it in the form of a suitable filter structure. In chapter 8,we outlined a variety of basic structures for the realization of FIR and IIR transfer functions. In this chapter,we consider the IIR digital filter design problem. The design of FIR digital filters is treated in chapter 10.First we review some of the issues associated with the filter design problem. A widely used approach to IIR filter design based on the conversion of a prototype analog transfer function to a digital transfer function is discussed next. Typical design examples are included to illustrate this approach. We then consider the transformation of one type of IIR filter transfer function into another type, which is achieved by replacing the complex variable z by a function of z. Four commonly used transformations are summarized. Finally we consider the computer-aided design of IIR digital filter. To this end, we restrict our discussion to the use of matlab in determining the transfer functions.9.1 preliminary considerationsThere are two major issues that need to be answered before one can develop the digital transfer function G(z). The first and foremost issue is the development of a reasonable filter frequency response specification from the requirements of the overall system in which the digital filter is to be employed. The second issue is to determine whether an FIR or IIR digital filter is to be designed. In the section ,we examine these two issues first . Next we review the basic analytical approach to the design of IIR digital filters and then consider the determination of the filter order that meets the prescribed specifications. We also discuss appropriate scaling of the transfer function.9.1.1 Digital Filter SpecificationsAs in the case of the analog filter,either the magnitude and/or the phase(delay) response is specified for the design of a digital filter for most applications. In some situations, the unitsample response or step response may be specified. In most practical applications, the problem of interest is the development of a realizable approximation to a given magnitude response specification. As indicated in section 4.6.3, the phase response of the designed filter can be corrected by cascading it with an allpass section. The design of allpass phase equalizers has received a fair amount of attention in the last few years.We restrict our attention in this chapter to the magnitude approximation problem only. We pointed out in section 4.4.1 that there are four basic types of filters,whose magnitude responses are shown in Figure 4.10. Since the impulse response corresponding to each of these is noncausal and of infinite length, these ideal filters are not realizable. One way of developing a realizable approximation to these filter would be to truncate the impulse response as indicated in Eq.(4.72) for a lowpass filter. The magnitude response of the FIR lowpass filter obtained by truncating the impulse response of the ideal lowpass filter does not have a sharp transition from passband to stopband but, rather, exhibits a gradual "roll-off." Thus, as in the case of the analog filter design problem outlined in section 5.4.1, the magnitude response specifications of a digital filter in the passband and in the stopband are given with some acceptable tolerances. In addition, a transition band is specified between the passband and the stopband to permit the magnitude to drop off smoothly. For example, the magnitude )(ωj e G of a lowpass filter may be given as shown in Figure 7.1. As indicatedin the figure, in the passband defined by 0p ωω≤≤, we require that the magnitude approximates unity with an error of p δ±,i.e.,p p j p for e G ωωδδω≤+≤≤-,1)(1.In the stopband, defined by πωω≤≤s ,we require that the magnitude approximates zero with an error of i s ,δ.e.,,)(s j e G δω≤for πωω≤≤s .The frequencies p ω and s ωare , respectively, called the passband edge frequency and the stopband edge frequency. The limits of the tolerances in the passband and stopband, p δands δ, are usually called the peak ripple values. Note that the frequency response )(ωj e G of a digital filter is a periodic function ofω,and the magnitude response of a real-coefficient digital filter is an even function ofω. As a result, the digital filter specifications are given only for the range πω≤≤0.Digital filter specifications are often given in terms of the loss function,)(log 20)(10ωωζj e G -=, in dB. Here the peak passband ripple p α and the minimum stopband attenuation s α are given in dB,i.e., the loss specifications of a digital filter are given bydB p p )1(log 2010δα--=,dB s s )(log 2010δα-=.9.1 Preliminary ConsiderationsAs in the case of an analog lowpass filter, the specifications for a digital lowpass filter may alternatively be given in terms of its magnitude response, as in Figure 7.2. Here the maximum value of the magnitude in the passband is assumed to be unity, and the maximum passband deviation, denoted as 1/21ε+,is given by the minimum value of the magnitude in the passband. The maximum stopband magnitude is denoted by 1/A.For the normalized specification, the maximum value of the gain function or the minimum value of the loss function is therefore 0 dB. The quantity max α given by dB )1(log 20210max εα+=Is called the maximum passband attenuation. For p δ<<1, as is typically the case, it can be shown thatp p αδα2)21(log 2010m ax ≅--≅The passband and stopband edge frequencies, in most applications, are specified in Hz, along with the sampling rate of the digital filter. Since all filter design techniques are developed in terms of normalized angular frequencies p ωand s ω,thesepcified critical frequencies need to be normalized before a specific filter design algorithm can be applied.Let T F denote the sampling frequency in Hz, and F P and F s denote, respectively,thepassband and stopband edge frequencies in Hz. Then the normalized angular edge frequencies in radians are given byT F F F F p T p T p p ππω22==Ω= T F F F F s Ts T s s ππω22==Ω= 9.1.2 Selection of the Filter TypeThe second issue of interest is the selection of the digital filter type,i.e.,whether an IIR or an FIR digital filter is to be employed. The objective of digital filter design is to develop a causal transfer function H(z) meeting the frequency response specifications. For IIR digital filter design, the IIR transfer function is a real rational function of 1-z . H(z)=NMdNz z d z d d pMz z p z p p ------++++++++......2211022110 Moreover, H(z) must be a stable transfer function, and for reduced computational complexity, it must be of lowest order N. On the other hand, for FIR filter design, the FIR transfer function is a polynomial in 1-z : ∑=-=Nn n z n h z H 0][)(For reduced computational complexity, the degree N of H(z) must be as small as possible. In addition, if a linear phase is desired, then the FIR filter coefficients must satisfy the constraint:][][N n h n h -±=T here are several advantages in using an FIR filter, since it can be designed with exact linear phase and the filter structure is always stable with quantized filter coefficients. However, in most cases, the order N FIR of an FIR filter is considerably higher than the order N IIR of an equivalent IIR filter meeting the same magnitude specifications. In general, the implementation of the FIR filter requires approximately N FIR multiplications per output sample, whereas the IIR filter requires 2N IIR +1 multiplications per output sample. In theformer case, if the FIR filter is designed with a linear phase, then the number of multiplications per output sample reduces to approximately (N FIR +1)/2. Likewise, most IIR filter designs result in transfer functions with zeros on the unit circle, and the cascade realization of an IIR filter of order IIR N with all of the zeros on the unit circle requires [(3IIR N +3)/2] multiplications per output sample. It has been shown that for most practical filter specifications, the ratio N FIR /N IIR is typically of the order of tens or more and, as a result, the IIR filter usually is computationally more efficient[Rab75]. However ,if the group delay of the IIR filter is equalized by cascading it with an allpass equalizer, then the savings in computation may no longer be that significant [Rab75]. In many applications, the linearity of the phase response of the digital filter is not an issue,making the IIR filter preferable because of the lower computational requirements.9.1.3 Basic Approaches to Digital Filter DesignIn the case of IIR filter design, the most common practice is to convert the digital filter specifications into analog lowpass prototype filter specifications, and then to transform it into the desired digital filter transfer function G(z). This approach has been widely used for many reasons:(a) Analog approximation techniques are highly advanced.(b) They usually yield closed-form solutions.(c) Extensive tables are available for analog filter design.(d) Many applications require the digital simulation of analog filters. In the sequel, we denote an analog transfer function as)()()(s D s P s H a a a =, Where the subscript "a" specifically indicates the analog domain. The digital transfer function derived form H a (s) is denoted by)()()(z D z P z G = The basic idea behind the conversion of an analog prototype transfer function H a (s) into a digital IIR transfer function G(z) is to apply a mapping from the s-domain to thez-domain so that the essential properties of the analog frequency response are preserved. The implies that the mapping function should be such that(a) The imaginary(j Ω) axis in the s-plane be mapped onto the circle of the z-plane.(b) A stable analog transfer function be transformed into a stable digital transfer function.To this end,the most widely used transformation is the bilinear transformation described in Section 9.2.Unlike IIR digital filter design,the FIR filter design does not have any connection with the design of analog filters. The design of FIR filter design does not have any connection with the design of analog filters. The design of FIR filters is therefore based on a direct approximation of the specified magnitude response,with the often added requirement that the phase response be linear. As pointed out in Eq.(7.10), a causal FIR transfer function H(z) of length N+1 is a polynomial in z -1 of degree N. The corresponding frequency response is given by∑=-=Nn n j j e n h e H 0][)(ωω. It has been shown in Section 3.2.1 that any finite duration sequence x[n] of length N+1 is completely characterized by N+1 samples of its discrete-time Fourier transfer X(ωj e ). As a result, the design of an FIR filter of length N+1 may be accomplished by finding either the impulse response sequence {h[n]} or N+1 samples of its frequency response )H(e j ω. Also, to ensure a linear-phase design, the condition of Eq.(7.11) must be satisfied. Two direct approaches to the design of FIR filters are the windowed Fourier series approach and the frequency sampling approach. We describe the former approach in Section 7.6. The second approach is treated in Problem 7.6. In Section 7.7 we outline computer-based digital filter design methods. 作者:SanjitK.Mitra国籍:USA出处:Digital Signal Processing -A Computer-Based Approach 3eIIR数字滤波器的设计在一个数字滤波器发展的重要步骤是可实现的传递函数G(z)的接近给定的频率响应规格。