(完整版)2016版《步步高》高考数学大二轮总复习

合集下载

2016版《步步高》高考数学大二轮总复习

2016版《步步高》高考数学大二轮总复习
显然当a>1或-1<a<0时,满足f(a)>f(-a). 故选C.
方法二 对a分类讨论:

a>0
时,∵log2a>log
1 2
a,∴a>1.

a<0
时,∵log
1 2
(-a)>log2(-a),∴0<-a<1,
∴-1<a<0,故选C.
答案 C
思维升华
(1)指数函数、对数函数、幂函数是高考的必考内容之 一,重点考查图象、性质及其应用,同时考查分类讨 论、等价转化等数学思想方法及其运算能力. (2)比较数式大小问题,往往利用函数图象或者函数的 单调性.
ax+b 跟踪演练 2 (1)(2015·安徽)函数 f(x)=x+c2的图象如图所
示,则下列结论成立的是( ) A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<0
解 析 函 数 定 义 域 为 {x|x≠ - c} , 结 合 图 象 知 - c>0 ,
a)≤2f(1),则a的取
值范围是________.
解析 由题意知 a>0,又 log 1 a=log2a-1=-log2a. 2
∵f(x)是R上的偶函数,
∴f(log2a)=f(-log2a)=f(log1 a). 2
∵f(log2a)+f(log 1 a)≤2f(1), 2
∴2f(log2a)≤2f(1),即f(log2a)≤f(1). 又∵f(x)在[0,+∞)上递增. ∴|log2a|≤1,-1≤log2a≤1, ∴a∈12,2. 答案 [12,2]

《新步步高》高考数学大二轮总复习与增分策略(全国通用,理科)第四篇三角函数、解三角形、平面向量高考

《新步步高》高考数学大二轮总复习与增分策略(全国通用,理科)第四篇三角函数、解三角形、平面向量高考

3.三角函数、解三角形、平面向量1.α终边与θ终边相同(α的终边在θ终边所在的射线上)⇔α=θ+2k π(k ∈Z ),注意:相等的角的终边一定相同,终边相同的角不一定相等.任意角的三角函数的定义:设α是任意一个角,P (x ,y )是α的终边上的任意一点(异于原点),它与原点的距离是r =x 2+y 2>0,那么sin α=y r ,cos α=x r ,tan α=yx (x ≠0),三角函数值只与角的大小有关,而与终边上点P 的位置无关.[问题1] 已知角α的终边经过点P (3,-4),则sin α+cos α的值为________. 2.同角三角函数的基本关系式及诱导公式 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:tan α=sin αcos α.(3)诱导公式记忆口诀:奇变偶不变、符号看象限角 -α π-α π+α 2π-α π2-α 正弦 -sin α sin α -sin α -sin α cos α 余弦cos α-cos α-cos αcos αsin α[问题2] cos 9π4+tan ⎝⎛⎭⎫-7π6+sin21π的值为_______________________________. 3.三角函数的图象与性质 (1)五点法作图;(2)对称轴:y =sin x ,x =k π+π2,k ∈Z ;y =cos x ,x =k π,k ∈Z ;对称中心:y =sin x ,(k π,0),k ∈Z ;y =cos x ,⎝⎛⎭⎫k π+π2,0,k ∈Z ;y =tan x ,⎝⎛⎭⎫k π2,0,k ∈Z . (3)单调区间:y =sin x 的增区间:⎣⎡⎦⎤-π2+2k π,π2+2k π (k ∈Z ), 减区间:⎣⎡⎦⎤π2+2k π,3π2+2k π (k ∈Z ); y =cos x 的增区间:[]-π+2k π,2k π (k ∈Z ),减区间:[2k π,π+2k π] (k ∈Z );y =tan x 的增区间:⎝⎛⎭⎫-π2+k π,π2+k π (k ∈Z ). (4)周期性与奇偶性:y =sin x 的最小正周期为2π,为奇函数;y =cos x 的最小正周期为2π,为偶函数;y =tan x 的最小正周期为π,为奇函数.易错警示:求y =A sin(ωx +φ)的单调区间时,容易出现以下错误: (1)不注意ω的符号,把单调性弄反,或把区间左右的值弄反; (2)忘掉写+2k π,或+k π等,忘掉写k ∈Z ;(3)书写单调区间时,错把弧度和角度混在一起.如[0,90°]应写为⎣⎡⎦⎤0,π2. [问题3] 函数y =sin ⎝⎛⎭⎫-2x +π3的递减区间是________________. 4.两角和与差的正弦、余弦、正切公式及倍角公式 sin(α±β)=sin αcos β±cos αsin β――→令α=βsin2α=2sin αcos α.cos(α±β)=cos αcos β∓sin αsin β――→令α=βcos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan(α±β)=tan α±tan β1∓tan αtan β.cos 2α=1+cos2α2,sin 2α=1-cos2α2,tan2α=2tan α1-tan 2α.在三角的恒等变形中,注意常见的拆角、拼角技巧,如: α=(α+β)-β,2α=(α+β)+(α-β), α=12[(α+β)+(α-β)].α+π4=(α+β)-⎝⎛⎭⎫β-π4,α=⎝⎛⎭⎫α+π4-π4. [问题4] 已知α,β∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=1213,则cos ⎝⎛⎭⎫α+π4=________. 5.解三角形 (1)正弦定理:a sin A =b sin B =csin C=2R (R 为三角形外接圆的半径).注意:①正弦定理的一些变式:(ⅰ)a ∶b ∶c =sin A ∶sin B ∶sin C ;(ⅱ)sin A =a 2R ,sin B =b 2R ,sin C =c2R;(ⅲ)a =2R sin A ,b =2R sin B ,c =2R sin C ;②已知三角形两边及一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解,要结合具体情况进行取舍.在△ABC 中A >B ⇔sin A >sin B .(2)余弦定理:a 2=b 2+c 2-2bc cos A ,cos A =b 2+c 2-a 22bc等,常选用余弦定理判定三角形的形状.[问题5] 在△ABC 中,a =3,b =2,A =60°,则B =________. 6.向量的平行与垂直设a =(x 1,y 1),b =(x 2,y 2),且b ≠0,则a ∥b ⇔b =λa ⇔x 1y 2-x 2y 1=0. a ⊥b (a ≠0)⇔a·b =0⇔x 1x 2+y 1y 2=0.0看成与任意向量平行,特别在书写时要注意,否则有质的不同.[问题6] 下列四个命题:①若|a |=0,则a =0;②若|a |=|b |,则a =b 或a =-b ;③若a ∥b ,则|a |=|b |;④若a =0,则-a =0.其中正确命题是________. 7.向量的数量积 |a |2=a 2=a·a ,a·b =|a||b |cos θ=x 1x 2+y 1y 2, cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22,a 在b 上的投影=|a |cos 〈a ,b 〉=a·b |b|=x 1x 2+y 1y 2x 22+y 22. 注意:〈a ,b 〉为锐角⇔a·b >0且a 、b 不同向; 〈a ,b 〉为直角⇔a·b =0且a 、b ≠0; 〈a ,b 〉为钝角⇔a·b <0且a 、b 不反向.易错警示:投影不是“影”,投影是一个实数,可以是正数、负数或零.[问题7] 已知|a |=3,|b |=5,且a ·b =12,则向量a 在向量b 上的投影为________. 8.当a ·b =0时,不一定得到a ⊥b ,当a ⊥b 时,a ·b =0;a ·b =c ·b ,不能得到a =c ,消去律不成立;(a ·b )c 与a (b ·c )不一定相等,(a ·b )c 与c 平行,而a (b ·c )与a 平行.[问题8] 下列各命题:①若a ·b =0,则a 、b 中至少有一个为0;②若a ≠0,a ·b =a ·c ,则b =c ;③对任意向量a 、b 、c ,有(a ·b )c ≠a (b ·c );④对任一向量a ,有a 2=|a |2.其中正确命题是________.9.几个向量常用结论(1)P A →+PB →+PC →=0⇔P 为△ABC 的重心; (2)P A →·PB →=PB →·PC →=PC →·P A →⇔P 为△ABC 的垂心; (3)向量λ(AB →|AB →|+AC→|AC →|) (λ≠0)所在直线过△ABC 的内心;(4)|P A →|=|PB →|=|PC →|⇔P 为△ABC 的外心.易错点1 忽视角的范围例1 已知sin α=55,sin β=1010,且α,β为锐角,则α+β=________. 错因分析 只考虑α,β为锐角. 没有注意到sin α=55,sin β=1010本身对角的范围的限制,造成错解. 解析 因为α,β为锐角,所以cos α=1-sin 2α=255,cos β=1-sin 2β=31010.所以cos(α+β)=cos αcos β-sin αsin β =255×31010-55×1010=22. 又因为0<α+β<π,所以α+β=π4.答案 π4易错点2 图象平移把握不准例2 已知函数f (x )=sin(2x +π4),为了得到函数g (x )=cos2x 的图象,只要将y =f (x )的图象( )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度错因分析 ①没有将f (x ),g (x )化为同名函数;②平移时看2x 变成了什么,而没有认识到平移过程只是对“x ”而言.解析 g (x )=sin(2x +π2)=sin[2(x +π8)+π4],∴y =f (x )的图象向左平移π8个单位长度即可得到y =g (x )的图象.答案 A易错点3 三角函数单调性判断错误例3 求函数y =12sin(π4-2x3)的单调区间.错因分析 由于受思维定势的影响,本题容易出现仍然按照函数y =A sin(ωx +φ)(ω>0)的单调区间的判断方法进行,如认为当x 满足2k π-π2≤π4-23x ≤2k π+π2(k ∈Z )时函数单调递增,就会求错函数的单调区间.解 原函数变形为y =-12sin(2x 3-π4),令u =2x 3-π4,则只需求y =sin u 的单调区间即可,所以y =sin u 在2k π-π2≤2x 3-π4≤2k π+π2(k ∈Z ),即3k π-3π8≤x ≤3k π+9π8(k ∈Z )上单调递增;y =sin u在2k π+π2≤u =2x 3-π4≤2k π+3π2(k ∈Z ),即3k π+9π8≤x ≤3k π+218π(k ∈Z )上单调递减.故y =12sin(π4-2x 3)=-sin u 的单调递减区间为[3k π-3π8,3k π+9π8](k ∈Z ),单调递增区间为[3k π+9π8,3k π+21π8](k ∈Z ). 易错点4 解三角形忽视检验例4 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =1,c = 3. (1)若角C =π3,则角A =________;(2)若角A =π6,则b =________.错因分析 在用正弦定理解三角形时,易出现漏解或多解的错误,如第(1)问中没有考虑c 边比a 边大,在求得sin A =a sin C c =12后,得出角A =π6或5π6;在第(2)问中没有考虑角C 有两解,由sin C =c sin A a =32,只得出角C =π3,所以角B =π2,解得b =2,这样就出现漏解的错误.解析 (1)由正弦定理a sin A =csin C ,得sin A =a sin C c =12,又a <c ,所以A <C .所以A =π6.(2)由a sin A =c sin C, 得sin C =c sin A a =32,得C =π3或2π3,当C =π3时,B =π2,可得b =2;当C =2π3时,B =π6,此时得b =1.答案 (1)π6(2)2或1易错点5 忽视向量共线致误例5 已知a =(2,1),b =(λ,1),λ∈R ,a 与b 的夹角为θ.若θ为锐角,则λ的取值范围是________________________________________________________________________. 错因分析 误认为θ为锐角⇔cos θ>0,没有排除θ=0即两向量同向的情况. 解析 由θ为锐角,有0<cos θ<1. 又∵cos θ=a·b|a|·|b |=2λ+15·λ2+1,∴0<2λ+15·λ2+1<1, ∴⎩⎨⎧2λ+1>0,2λ+1<5·λ2+1,解得⎩⎪⎨⎪⎧λ>-12,λ≠2.∴λ的取值范围是⎩⎨⎧⎭⎬⎫λ|λ>-12且λ≠2.答案 ⎩⎨⎧⎭⎬⎫λ|λ>-12且λ≠21.(2014·大纲全国)已知角α的终边经过点(-4,3),则cos α等于( ) A.45B.35C .-35D .-452.设a =sin33°,b =cos55°,c =tan35°,则( ) A .a >b >c B .b >c >a C .c >b >aD .c >a >b3.(2015·东北三校联考)已知sin αcos α=13,则cos 2(α+π4)的值为( )A.12B.13C.16D.234.函数y =2sin(π6-2x )(x ∈[-π,0])的单调递增区间是( )A .[-π,-5π6]B .[-π3,0]C .[-2π3,-π6]D .[-π3,-π6]5.函数f (x )=A sin(2x +φ)(A ,φ∈R )的部分图象如图所示,那么f (0)等于( ) A .-12B .-1C .-32D .- 36.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( ) A.32B.22C.12D .-127.(2015·陕西省五校第一次联考)如图,平行四边形ABCD 中,AB =2,AD =1,∠A =60°,点M 在AB 边上,且AM =13AB ,则DM →·DB →等于( )A .-32B.32C .-1D .18.在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.9.如图是函数y =sin(ωx +φ)图象的一部分,A ,B 是图象上的一个最高点和一个最低点,O 为坐标原点,则OA →·OB →的值为________.10.(2014·天津)已知函数f (x )=cos x ·sin(x +π3)-3cos 2x +34,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在闭区间[-π4,π4]上的最大值和最小值.学生用书答案精析3.三角函数、解三角形、平面向量要点回扣 [问题1] -15[问题2]22-33[问题3] ⎣⎡⎦⎤k π-π12,k π+512π(k ∈Z ) [问题4] -5665[问题5] 45° [问题6] ④ [问题7]125[问题8] ④ 查缺补漏1.D [因为角α的终边经过点(-4,3),所以x =-4,y =3,r =5, 所以cos α=x r =-45.]2.C [∵a =sin33°,b =cos55°=sin35°, c =tan35°=sin35°cos35°,又0<cos35°<1, ∴c >b >a .]3.C [∵sin αcos α=13,∴sin2α=2sin αcos α=23,∴cos 2(α+π4)=1+cos (2α+π2)2=1-sin2α2=1-232=16.]4.C [因为y =2sin(π6-2x )=-2sin(2x -π6),所以函数y =2sin(π6-2x )的单调递增区间就是函数y =sin(2x -π6)的单调递减区间.由π2+2k π≤2x -π6≤3π2+2k π(k ∈Z ), 解得π3+k π≤x ≤5π6+k π(k ∈Z ),即函数y =2sin(π6-2x )的单调递增区间为[π3+k π,5π6+k π](k ∈Z ) 又x ∈[-π,0],所以k =-1,故函数y =2sin(π6-2x )(x ∈[-π,0])的单调递增区间为[-2π3,-π6].]5.B [由题图可知,函数的最大值为2,因此A =2. 又因为函数经过点⎝⎛⎭⎫π3,2, 则2sin ⎝⎛⎭⎫2×π3+φ=2, 即2×π3+φ=π2+2k π,k ∈Z ,得φ=-π6+2k π,k ∈Z .f (0)=2sin φ=2sin ⎝⎛⎭⎫-π6+2k π=-1.] 6.C [∵cos C =a 2+b 2-c 22ab =c 22ab ,又∵a 2+b 2≥2ab ,∴2ab ≤2c 2. ∴cos C ≥12.∴cos C 的最小值为12.]7.D [DM →=DA →+AM →=DA →+13AB →,又DB →=DA →+AB →,所以DM →·DB →=(DA →+13AB →)·(DA →+AB →)=DA →2+13AB →2+43DA →·AB →=1+43-43AD →·AB → =73-43|AD →|·|AB →|cos60°=73-43×1×2×12=1.] 8.27解析 由正弦定理知AB sin C =3sin60°=BC sin A ,∴AB =2sin C ,BC =2sin A . 又A +C =120°,∴AB +2BC=2sin C +4sin(120°-C )=2(sin C +2sin120°cos C -2cos120°sin C ) =2(sin C +3cos C +sin C )=2(2sin C +3cos C )=27sin(C +α), 其中tan α=32,α是第一象限角, 由于0°<C <120°, 且α是第一象限角, 因此AB +2BC 有最大值27. 9.19π2-1 解析 由题意可知A (π6,1),B (2π3,-1),OA →·OB →=π6×2π3+1×(-1)=19π2-1.10.解 (1)由已知,有f (x )=cos x ·(12sin x +32cos x )-3cos 2x +34=12sin x ·cos x -32cos 2x +34 =14sin2x -34(1+cos2x )+34 =14sin2x -34cos2x =12sin(2x -π3). 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间[-π4,-π12]上是减函数,在区间[-π12,π4]上是增函数,f (-π4)=-14,f (-π12)=-12,f (π4)=14, 所以,函数f (x )在闭区间[-π4,π4]上的最大值为14,最小值为-12.。

《新步步高》高考数学大二轮总复习与增分策略(全国通用,理科)第四篇第2讲函数与导数.doc

《新步步高》高考数学大二轮总复习与增分策略(全国通用,理科)第四篇第2讲函数与导数.doc

2.函数与导数要点1. 求函数的定义域,关键是依据含自变量X 的代数式有意义来列出相应的不等式(组)求解, 如开偶次方根、被开方数一定是非负数;对数式屮的真数是正数;列不等式时,应列出所有 的不等式,不应遗漏.对抽象函数,只要对应关系相同,括号里整体的取值范围就完全相同.[问题1]函数,/W=TZ7+lg(l +x)的定义域是 ______________________ •1 X2. 用换元法求解析式吋,要注意新元的取值范围,即函数的定义域问题.[问题 2]已知 /(cosx)=sin 2x,则/(x)=____________ .3. 分段函数是在其定义域的不同子集上,分别用不同的式子来表示对应关系的函数,它是 一个函数,而不是几个函数.3x, xWO,[问题3]己知函数•斫丄1),兀>0, 4. 判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但 必须注意使定义域不受影响.[问题4]用)=豊若是 ------------ 5. 求函数单调区间时,多个单调区间之间不能用符号“U”和“或”连接,可用“及”连接,或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.[问题5]函数./(x)=Z 的减区间为 __________________________________________6. 弄清函数奇偶性的性质(1) 奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对 称的区间上若有单调性,则其单调性恰恰相反.(2)若./(X)为偶函数,则 A -X )=A X )=/(M) •⑶若奇函数/(x)的定义域中含有0,则必有./(0) = 0.“/(0)=0”是“/⑴为奇函数”的既不充分也不必要条件.[问题6]设.心)=览6±+»是奇函数,且在x=0处有意义,则该函数为()那么人舟)的值为函数(填“奇” “偶”或“非奇非偶”).A.(—8, +8)上的减函数B.(—8, +8)上的增函数C.(一1,1)上的减函数D.(—1,1)上的增函数7•求函数最值(值域)常用的方法(1)单调性法:适合于已知或能判断单调性的函数.(2)图彖法:适合于己知或易作出图象的函数.(3)基本不等式法:特别适合于分式结构或两元的函数.(4)导数法:适合于可导函数.(5)换元法(特别注意新元的范围).(6)分离常数法:适合于一次分式.2X[问题7]函数y=#y(xMO)的值域为___________ ・8.函数图象的儿种常见变换(1)平移变换:左右平移——“左加右减”(注意是针对x而言);上下平移——“上加下减”.(2)翻折变换:/⑴一I/WI;.心)一/(闪)・(3)对称变换:①证明函数图象的对称性,即证图象上任意点关于对称小心(轴)的对称点仍在图象上;②函数y=f(x)与的图象关于原点成中心对称;③函数y=j{x)与尹=/(—x)的图象关于直线x=0 (y轴)对称;函数y=J{x)与函数y= —f{x)的图象关于直线y=O(x轴)对称.[问题8]2x+\函数/^)=仝匸的图象的对称中心是9.有关函数周期的几种情况必须熟记:(\)fix)=f(x+a)(a>O)f则.心)的周期T=a; (2)f(x+a)(/(x)HO)或^x+a)=-f{x),则./(x)的周期T=2a.[问题9]对于函数.心)定义域内任意的兀,都有./(x+2)=—计亍若当2W3时,/(x)=x,则7(2016.5)= __________10.二次函数问题(1)处理二次函数的问题勿忘数形结合.二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向,二看对称轴与所给区间的相对位置关系.__1_(2)若原题中没有指出是“二次”方程、函数或不等式,要考虑到二次项系数可能为零的情形.[问题10]若关于x的方程姒2—x+l= 0至少有一个正根,则a的取值范围为 ___________ •11.(1)对数运算性质已知Q0 且dHl, b>0 且bHl, M>0, N>0.则= \og a M+ log a N,Mlo 師=lo 助M— logaN,对数换底公式:呃N=器.推论:lo鬲N"=^lo创M吨0=盘.(2)指数函数与对数函数的图象与性质可从定义域、值域、单调性、函数值的变化情况考虑,特别注意底数的取值对有关性质的影响,另外,指数函数y=a的图象恒过定点(0,1),对数函数y=\og(l x的图象恒过定点(1,0). [问题11]函数j=|log2|x-l||的递增区间是 ________________________________ .12.幕函数y=x a(a^R)⑴①若a=l,贝l»=x,图象是直线.②当«=0时,p=x°=l(xH0)图象是除点(0,1)外的直线.③当05<1时,图象过(0,0)与(1,1)两点,在第一象限内是上凸的.④当a>l时,在第一象限内,图象是下凸的.(2)增减性:①当a>0时,在区间(0, +<-)上,函数尹=寸是增函数;②当°<0时,在区间(0,+ 8)上,函数y=X a是减函数.[问题12]函数^x)=x2一(*)'的零点个数为_________ ・13.函数与方程(1)对于函数y=f(x),使./(x) = 0的实数x叫做函数尹=心)的零点.事实上,函数丿=心)的零点就是方程./(x) = 0的实数根.(2)如果函数y=f(x)在区间[a, b]上的图象是一条连续曲线,且有/(a)/(b)<0,那么函数y=f(x)在区间[a,切内有零点,即存在cW(a, b),使得./(c) = 0,此时这个c就是方程./(x) = ()的根.反Z 不成立.[问题13]己知定义在R 上的函^.Ax)=(x 2-3x+2) g(x) + 3x-4,其中函数y=g(x)的图象是 一条连续曲线,则方程/(x)=0在下面哪个区间内必有实数根()A. (0,1)B. (1,2)C. (2,3)D. (3,4)14. 求导数的方法(1)基本导数公式:c =0 (c 为常数);(#")' =mx m ~x (加WQ); (sinx)' =cosx ; (cosx)1 =—(2) 导数的四则运算:(T =d ;(uv) =u v+uv ;剧= ------------ ^2 --- (eHO).(3) 复合函数的导数:球=y 「uj •如求J(ax+b)的导数,令u=ax+b,则(Adx+b)),=f (")4[问题 14] f(x)=e~1\ 则 f (x)= ________ .15. 利用导数判断函数的单调性:设函数y=f(x)在某个区间内可导,如果.广«>0,那么./W 在该区间内为增函数;如果/ (x)<0,那么./(x)在该区间内为减函数;如果在某个区间内恒有 f (x)=0,那么/(x)在该区间内为常函数.注意:如果己知./(X)为减幣数求字母取值范圉,那么不等式/ (x)W0恒成立,但耍验证f (x) 是否恒等于0.增函数亦如此.[问题15]函数Xx)=ax 3~2X 2+X —\在R 上是增函数,则a 的取值范围是 _____________ •16. 导数为零的点并不一定是极值点,例如:函数/(x)=x 3,有/ (0) = 0,但x=0不是极值 点. [问题16]函数/(x)=|x 4—pr 3的极值点是 __________ •17.定积分运用微积分基本定理求定积分咋(x)dx 值的关键是用求导公式逆向求出/(x)的原函数,应熟练 掌握以下几个公式:Jjsinxdv= —cosx|^J :cosxdx=sinx|7,sinx ; (c Y ) =c v ; (a)9 =a\x\a\ (lnx)z (10&刃=看»>0 且 aHl).f^dx= /2 + 1加dx=$[问题17]计算定积分J-i(x2 + siar)dr= _____________ .易错警示易错点1 忽视函数定义域例1函数y=log ] (X2-5X+6)的单调递增区间为__________________ .2错因分析忽视对函数定义域的要求,漏掉条件?-5x+6>0.解析由X2—5x+6>0 知{x|x>3 或x<2}・令w=x2—5x+6,则u=x2—5x+6在(一8, 2)上是减函数,.\>y=log1(X2—5x+6)的单调增区间为(一8, 2).2答案(一8, 2)易错点2 分段函数意义理解不准确[log2(l —x), xWO,例2定义在R上的函数心)满足心)=仁 -“ 补 c 则/(2016)的值为()l/(x—l)—/(x—2), x>0,A. -IB. OC. ID. 2错因分析不理解分段函数的意义,误认为应将x=2016,代入log2(l-x),或者认为得不到,/(2016)的值. 解析/(2016) =/(2015)-/(2014) =/(2014)-/(2013)-/(2014) = -/(2013)=/(2010)=/(0)=0.答案Bax2 +1, xMO,例3 函数fix) = ]/ 2,、祇A在(一 8 , + oo)上单调,贝lj a的取值范围是\Ci 1 )e , x>0错因分析只考虑分段函数各段上函数值变化情况,忽视对定义域的临界点处函数值的要求.Q VO,解析若函数在R上单调递减,则有1>0, 解之得泾一迄;若函数在R上单调、(/_i)e°21,a>O t递增,则有解得1<G W迈,、(/—i)c《l,故G的取值范围是(一8, —迈]U(l,血.答案(一8, 一迈]U(l, y[2]易错点3 函数零点求解讨论不全面例4函数./(x) = /n?-2x+1有且仅有一个正实数零点,则实数加的取值范围是()A. (—8, 1]B. (—8, O]U{1}C.(一出,0)U {1}D. (一8, 1)错因分析解本题易出现的緒误有分类讨论不全面、函数零点定理使用不当,如忽视对加=0 的讨论,就会错选C.解析当加=0时,兀=*为函数的零点;当〃7工0时,若J = 0,即加=1时,兀=1是函数唯一的零点,若/H0,显然x=0不是函数的零点,这样函数有且仅有一个正实数零点等价于方程/(X)=mx1 ~2x+\= 0有一个正根一个负根,即祕0)<0,即/7Z<0.故选B.答案B易错点4 混淆“过点”和“切点”例5求过曲线y=3x-»上的点(2, —2)的切线方程.错因分析混淆过一点的切线和在一点处切线,错误认为(2, —2)—定是切点.解设切点为P(x°,为),则点P处的切线方程是y _刃)=(3 — 3xo)(x—x0).•・•点力在切线上,— 2 —yo=(3—3xo)(2 —兀°).①又•・•点P在曲线C上,・・卩0=3兀0_£・②由①、②,解得x()=2或x()= — 1.当x°=2时,卩点的坐标为(2, -2),切线方程是9x~\~y— 16=0.当丸=一1时,P点的坐标为(一1, -2),切线方程是尹+2 = 0.综上,过点/的曲线C的切线方程是:9x+y~i6=0或尹+2 = 0.易错点5 极值点条件不清例6已知J(x)=x3+ax2+bx+a2在x=l处有极值为10,则a+h= ____________________ .错因分析把/ (x°)=0作为xo为极值点的充要条件,没有对a, b值进行验证,字致增解. 解析f (x)=3x2+2ax+b i由兀=1时,函数取得极值10,得f (l) = 3+2a+b=0, ①Xl)=l+a + b+/=io, @a=49(a=~39联立①②得| 或V“=一11, [b=3.当a=4, b= — \\时,f (x)=3, + 8x—ll=(3x+ll)(x—l)・在两侧的符号相反,符合题意.当a=—3, b = 3时,f (x)=3(x-l)2在x=l两侧的符号相同,所以a=—3, b = 3不符合题意,舍去.综上可知Q=4, b= —11, .\a+b=—7.答案一7易错点6 函数单调性与导数关系理解不准确例7函数f(x)=ax3—x2+x—5在R上是增函数,则a的取值范围是____________ .错因分析误认为/ (x)>0恒成立是./(X)在R上是增函数的必要条件,漏掉f (x) = 0的情况.解析f{x)=ax —x2+x— 5 的导数f (x)=3ax2~2x+ 1,a>0, 1由八円,得仁4_际°,解得怕答案送易错点7 计算定积分忽视细节例8 等于()A. -21n2B. 21n2C. -ln2D. In2错题分析本题易出现的问题主要有两个方面:一是混淆求原函数和求导数的运算,误认为原函数为y=(^Y而找不到答案;二是记错公式,把积分的上、下限颠倒导致计算失误,而错选C.解析因为(lnx),=扌,所以尹=+的_个原函数是y=\nx,故J2~d.r=lnx|2 = ln4-ln2 = ln2,故选 D.答案D查缺补漏1・(2014-北京)下列函数中,在区间(0, +8)上为增函数的是()A. y=y]x+[D.尹=logo.5(x+l)4-。

【步步高】高考数学(文,江苏专用)大二轮总复习练习:专题二第4讲导数的热点问题(含答案解析)

【步步高】高考数学(文,江苏专用)大二轮总复习练习:专题二第4讲导数的热点问题(含答案解析)

第 4 讲 导数的热门问题(2016 ·标全国乙课 )已知函数f(x)= (x - 2)e x + a(x -1) 2 有两个零点.(1) 求 a 的取值范围;(2) 设 x 1, x 2 是 f(x)的两个零点,证明: x 1+ x 2<2.(1) 解 f ′(x)= (x - 1)e x + 2a(x - 1)= (x -1)(e x + 2a).①设 a = 0,则 f(x)= (x - 2)e x , f(x)只有一个零点.②设 a>0,则当 x ∈(- ∞, 1) 时, f ′(x)<0 ;当 x ∈ (1,+ ∞)时, f ′(x)>0 ,所以 f( x)在 (-∞,1) 上单一递减,在 (1,+ ∞)上单一递加.又 f(1) =- e , f(2)= a ,取 b 知足 b<0 且 b<ln a,2a223则 f(b)>2(b - 2)+ a( b - 1) =a b - 2b >0, 故 f(x)存在两个零点. ③设 a<0,由 f ′(x)= 0 得 x =1 或 x = ln(- 2a).若 a ≥-e2,则 ln(- 2a) ≤1,故当 x ∈ (1,+ ∞)时, f ′(x)>0 ,所以 f(x)在 (1,+ ∞)上单一递加.又当 x ≤1时, f(x)<0 ,所以 f(x)不存在两个零点.若 a<- e2,则 ln( - 2a)>1,故当 x ∈ (1,ln(- 2a))时,f ′(x)<0 ;当 x ∈ (ln(- 2a),+ ∞)时,f ′(x)>0 ,所以 f( x)在 (1,ln( - 2a)) 上单一递减,在 (ln( - 2a),+ ∞)上单一递加.又当 x ≤1时, f(x)<0 ,所以 f(x)不存在两个零点.综上, a 的取值范围为 (0,+ ∞).(2) 证明 不如设 x 1<x 2,由 (1) 知, x 1∈ (- ∞, 1), x 2∈(1 ,+ ∞),2- x 2∈ (- ∞,1),f(x)在 (-∞, 1)上单一递减,所以 x 1+ x 2<2 等价于 f(x 1)>f(2- x 2),即 f(2 -x 2)<0.2x2因为 f(2- x 2) =x 2 e 2 + a(x 2- 1) ,而 f(x 2)= (x 2- 2) e x 2 + a(x 2- 1)2= 0, 所以 f(2- x 2) = x 2e 2 x 2( x 2 2)e x 2 .设 g(x) =- xe 2- x - (x - 2)e x ,则 g ′(x)= (x - 1)(e 2-x - e x ),所以当 x>1 时, g ′(x)<0 ,而 g(1)= 0,故当 x>1 时, g(x)<0,进而 g(x 2)= f(2- x 2)<0,故 x 1+ x 2<2.利用导数探究函数的极值、 最值是函数的基本问题, 高考取常与函数零点、 方程根及不等式相联合,难度较大.热门一利用导数证明不等式用导数证明不等式是导数的应用之一, 能够间接考察用导数判断函数的单一性或求函数的最值,以及结构函数解题的能力.例 1 已知函数 f(x)= e x - x 2+ a , x ∈R ,曲线 y = f(x) 的图象在点 (0,f(0)) 处的切线方程为 y= bx.(1) 求函数 y = f(x) 的分析式;(2) 2+ x ;当 x ∈R 时,求证: f(x) ≥- x(3) 若 f(x)>kx 对随意的 x ∈ (0,+ ∞)恒成立,务实数 k 的取值范围.(1) 解 依据题意,得 f ′(x)= e x -2x ,则 f ′(0)=1= b.由切线方程可得切点坐标为(0,0),将其代入 y = f(x),得 a =- 1,故 f(x)= e x - x 2- 1.(2) 证明 令 g(x)= f(x)+ x 2-x = e x - x - 1.由 g ′(x)= e x - 1= 0,得 x = 0,当 x ∈ (- ∞, 0)时, g ′(x)<0, g(x)单一递减;当 x ∈ (0,+ ∞)时, g ′(x)>0, g(x)单一递加. ∴ g(x)min = g(0) = 0,∴ f(x) ≥- x 2 +x.f(x)(3) 解f(x)>kx 对随意的 x ∈ (0,+ ∞)恒成立等价于 x >k 对随意的 x ∈ (0,+ ∞)恒成立.令 φ(x)= f(x), x>0,得 φ′(x)= xf ′(x)- f(x) x 2xx(e x - 2x) - (e x - x 2-1) (x - 1)(e x - x - 1) .=x 2 = x 2x由 (2) 可知,当 x ∈(0,+ ∞)时, e - x - 1>0 恒成立,∴ y = φ(x)的单一增区间为 (1,+ ∞),单一减区间为 (0,1),φ(x)min =φ(1) = e -2,∴ k<φ(x)min = e - 2,∴实数 k 的取值范围为 (- ∞, e - 2).思想升华 用导数证明不等式的方法(1) 利用单一性:若 f( x)在 [a ,b] 上是增函数,则① ? x ∈ [a , b] ,则 f(a) ≤f(x) ≤f(b),②对 ? x 1, x 2∈[ a ,b],且 x 1<x 2,则 f(x 1)< f(x 2) .对于减函数有近似结论.(2) 利用最值:若 f(x)在某个范围 D 内有最大值 M(或最小值 m),则对 ? x ∈ D ,则 f(x) ≤M(或f(x) ≥m) .(3) 证明 f(x)<g(x),可结构函数 F(x)= f(x)-g(x),证明 F(x)<0. 追踪操练 1 已知函数 f(x)= aln x +1(a>0) .(1) 当 x>0 时,求证: f( x)- 1≥a 1- 1;x (2) 在区间 (1, e)上 f(x)> x 恒成立,务实数 a 的取值范围.(1) 证明设 φ(x)= f(x)-1- a 1-1x1= aln x - a 1- x (x>0) ,a ax x 2.令 φ′(x)= 0,则 x = 1,当 0<x<1 时, φ′(x)<0 ,所以 φ(x)在 (0,1)上单一递减;当 x>1 时, φ′(x)>0,则φ′(x)=-所以 φ(x)在 (1,+ ∞)上单一递加, 故 φ(x)在 x = 1 处取到极小值也是最小值,故 φ(x) ≥φ(1)= 0,即 f(x)- 1≥a 1-1x .x - 1(2) 解 由 f(x)>x 得 aln x + 1>x ,即 a> ln x .x - 1 x - 1ln x - x 令 g(x) = ln x (1< x<e),则 g ′(x)= (ln x)2 .令 h(x) =ln x - x - 1 (1<x<e),则 h ′(x)= 1 - 1>0,x x 2x 故 h(x) 在区间 (1, e)上单一递加,所以 h(x)>h(1)= 0.因为 h(x)>0 ,所以 g ′(x)>0 ,即 g(x)在区间 (1, e)上单一递加,x -1则 g(x)<g(e)= e - 1,即 ln x <e - 1, 所以 a 的取值范围为 [e - 1,+ ∞).热门二利用导数议论方程根的个数方程的根、函数的零点、 函数图象与 x 轴的交点的横坐标是三个等价的观点,解决这种问题能够经过函数的单一性、极值与最值,画出函数图象的走势,经过数形联合思想直观求解.例 2 已知函数 f(x)= (ax 2+x - 1)e x ,此中 e 是自然对数的底数, a ∈R.(1) 若 a = 1,求曲线 y = f(x)在点 (1, f(1)) 处的切线方程;(2) 若 a=- 1,函数 y= f(x)的图象与函数g(x)=1x 3+1x2+ m 的图象有3 个不一样的交点,务实32数 m 的取值范围.解 (1)当 a= 1 时, f(x)= (x2+ x- 1)e x,所以 f′(x)= (x2+ x- 1)e x+ (2x+1)e x= (x2+ 3x)e x,所以曲线y= f( x)在点 (1,f(1)) 处的切线斜率为k= f′ (1)= 4e.又因为 f(1) = e,所以所求切线的方程为y- e=4e(x- 1),即 4ex- y-3e= 0.(2)当 a=- 1 时, f(x)= (- x2+ x- 1)e x,f ′(x)=( -x2- x)e x,所以 y= f(x)在 ( -∞,- 1)上单一递减,在 (-1,0)上单一递加,在 (0,+∞)上单一递减,故 f(x)在x=- 1 处获得极小值-3,在ex=0 处获得极大值- 1.而 g′(x)= x2+ x,所以 y=g(x)在 (-∞,- 1)上单一递加,在 (- 1,0)上单一递减,在 (0,+∞)上单一递加.故 g(x) 在 x=- 1 处获得极大值1+ m,在 x= 0 处获得极小值 m. 6因为函数y= f( x)与 y=g(x)的图象有 3 个不一样的交点,所以 f( -1)<g(- 1)且 f(0)> g(0) ,所以-3-1<m<- 1,即 m 的取值范围为 (-3-1,- 1).e 6e6思想升华(1) 函数 y= f(x)-k 的零点问题,可转变为函数y= f( x)和直线 y= k 的交点问题.(2) 研究函数y= f(x)的值域,不单要看最值,并且要察看随x 值的变化 y 值的变化趋向.追踪操练 2已知函数 f(x)= 2ln x-x2+ ax(a∈ R).(1)当 a= 2 时,求 f(x)的图象在 x= 1 处的切线方程;1, e上有两个零点,务实数m 的取值范围.(2) 若函数 g(x)= f(x)- ax+m 在e解 (1)当 a= 2 时, f(x)= 2ln x-x2+ 2x,2f ′(x)=x- 2x+ 2,切点坐标为 (1,1),切线的斜率k= f′(1)= 2,则切线方程为y- 1=2(x- 1),即 2x-y- 1= 0.(2) g(x)= 2ln x- x2+ m,2- 2(x+ 1)(x- 1)则 g′(x)=x-2x=x.1因为 x ∈, e ,所以当 g ′(x)= 0 时, x = 1.1当 e <x<1 时, g ′(x)>0;当 1<x<e 时, g ′(x)<0. 故 g(x) 在 x = 1 处获得极大值 g(1) = m - 1.又 g1e = m - 2-e12 ,g(e) =m +2- e2,g(e)- g1 21e = 4- e + 2<0,e则 g(e)<g 1e ,1所以 g(x)在 e ,e 上的最小值是g(e).1g(x)在 , e 上有两个零点的条件是g(1) = m -1>0 ,1= m - 2- 1g e e 2 ≤0,1解得 1<m ≤2+ e 2,1所以实数 m 的取值范围是1, 2+e 2 .热门三利用导数解决生活中的优化问题生活中的实质问题受某些主要变量的限制,解决生活中的优化问题就是把限制问题的主要变量找出来, 成立目标问题即对于这个变量的函数,而后经过研究这个函数的性质,进而找到变量在什么状况下能够达到目标最优.例 3某乡村拟修筑一个无盖的圆柱形蓄水池 (不计厚度 ).设该蓄水池的底面半径为 r 米,高为 h 米,体积为 V 立方米.假定建筑成本仅与表面积相关,侧面的建筑成本为100 元 / 平方米, 底面的建筑成本为 160 元 /平方米, 该蓄水池的总建筑成本为12 000 π元 ( π为圆周率 ).(1) 将 V 表示成 r 的函数 V(r ),并求该函数的定义域;(2) 议论函数 V( r)的单一性,并确立 r 和 h 为什么值时该蓄水池的体积最大.解 (1)因为蓄水池侧面的总成本为100·2πrh = 200πrh(元 ),底面的总成本为 160πr 2 元.所以蓄水池的总成本为(200 πrh + 160πr 2 )元.又依据题意得 200πrh + 160πr 2= 12 000 π,12所以 h = 5r (300- 4r ),π进而 V(r)= πr 2h =(300r - 4r 3).5因为 r>0 ,又由 h>0 可得 r<53,故函数 V(r )的定义域为 (0,5 3).π(2) 因为 V(r )= 5(300r - 4r 3),π 2),故 V ′(r)= (300- 12r 5令 V ′(r)= 0,解得 r 1= 5, r 2 =- 5( 因为 r 2=- 5 不在定义域内,舍去 ).当 r ∈ (0,5)时, V ′(r)>0,故 V( r)在 (0,5)上为增函数;当 r ∈ (5,5 3)时, V ′(r)<0 ,故 V(r )在 (5,5 3)上为减函数.由此可知, V(r )在 r = 5 处获得最大值,此时h = 8.即当 r = 5,h = 8 时,该蓄水池的体积最大.思想升华利用导数解决生活中的优化问题的一般步骤(1) 建模:剖析实质问题中各量之间的关系,列出实质问题的数学模型,写出实质问题中变量之间的函数关系式 y = f(x).(2) 求导:求函数的导数 f ′(x),解方程 f ′(x)= 0.(3) 求最值:比较函数在区间端点和使f ′(x)= 0 的点的函数值的大小,最大 (小 )者为最大 (小 )值.(4) 作答:回归实质问题作答.追踪操练3经市场检查,某商品每吨的价钱为x(1< x<14) 百元时,该商品的月供应量为y 1万吨,y 1= ax +7a 2- a(a>0) ;月需求量为2y 2万吨, y 2=-1 x 2-2241112x + 1.当该商品的需求量大于供应量时,销售量等于供应量; 当该商品的需求量不大于供应量时, 销售量等于需求量,该商品的月销售额等于月销售量与价钱的乘积.(1) 若 a =17,问商品的价钱为多少时,该商品的月销售额最大?(2) 记需求量与供应量相等时的价钱为平衡价钱,若该商品的平衡价钱不低于每吨 6 百元,务实数 a 的取值范围.1解(1) 若 a =7,由 y 2>y 1,得- 2241x 2- 1121x +1>17x + 72(17)2- 17.解得- 40<x<6.因为 1<x<14,所以 1<x<6.设该商品的月销售额为g(x),y 1·x , 1<x<6, 则 g(x) =y 2·x , 6≤x<14.1 133 当 1<x<6 时, g(x)=(x - )x<g(6)= . 727当 6≤x<14 时, g(x)= (- 1 x 2- 1 x +1)x ,224 112则 g ′(x)=- 1(3x 2+ 4x - 224)2241=- 224( x - 8)(3x +28),由 g ′(x)>0 ,得 x<8,所以 g(x)在 [6,8) 上是增函数,在 (8,14)上是减函数,当 x = 8 时, g(x)有最大值 g(8) =367.(2) 设 f(x)= y 1- y 2=1 217 2-1- a ,224x + (+ a)x + a1122因为 a>0,所以 f(x)在区间 (1,14) 上是增函数,若该商品的平衡价钱不低于 6 百元,即函数 f(x)在区间 [6,14) 上有零点,f(6) ≤0, 所以f(14)>0 ,7a 2+10a -11≤0,17解得即0<a ≤ .7a 2+13a>0,721 2已知函数 f(x)= 2x - (2a + 2)x + (2a +1)ln x.(1) 当 a = 0 时,求曲线 y =f(x)在 (1, f(1)) 处的切线方程;(2) 求 f(x)的单一区间;(3) 对随意的 a ∈ 3, 5,x 1, x 2∈[1,2] ,恒有 |f(x 1)- f(x 2)| ≤λ|1 - 1 |,求正实数 λ的取值范围.2 2x 1 x 2押题依照相关导数的综合应用试题多考察导数的几何意义、 导数与函数的单一性、 导数与不等式等基础知识和基本方法,考察分类整合思想、 转变与化归思想等数学思想方法.此题的命制正是依据这个要求进行的,全面考察了考生综合求解问题的能力.解 (1)当 a = 0 时, f(x)=12x 2- 2x + ln x ,f ′(x)=x - 2+ 1,且 f(1)=- 3, f ′(1)= 0,x 2故曲线 y = f(x)在 (1, f(1)) 处的切线方程为3y =- .2(2) f ′(x)= x - (2a +2)+ 2a + 1=[x -(2a +1)]( x -1),x>0.xx①当 2a +1≤0,即 a ≤-1时,函数 f(x)在 (0,1)上单一递减,在 (1,+ ∞)上单一递加;21f(x)在 (2a +1,1)上单一递减,在 (0,2a + 1), (1,+ ∞)②当 0<2a + 1<1,即- <a<0 时,函数2上单一递加;③当 2a +1= 1,即 a = 0 时,函数 f(x)在 (0,+ ∞) 上单一递加;④当 2a + 1>1,即 a>0 时,函数 f(x)在 (1,2a + 1)上单一递减,在 (0,1), (2a + 1,+ ∞)上单一递加.3, 5(3) 依据 (2) 知,当 a ∈ 2 2 时,函数 f( x)在 [1,2] 上单一递减.若 x 1= x 2,则不等式 |f(x 1 2)| ≤λ|1- 1)- f(x x 1 x 2|对随意正实数 λ恒成立,此时 λ∈ (0,+∞). 若 x 1≠x 2,不如设 1≤x 1<x 2≤2, 则 f(x 1)>f(x 2), 1> 1 ,x 1 x 2原不等式即 f(x 1)- f(x 2) ≤λ 1-1,x 1 x 2即 f(x λλ a ∈3 5, x , x ∈ [1,2] 恒成立,1)-对随意的 , 2xxλ3 5设 g(x) =f(x)- x ,则对随意的 a ∈ [ 2,2], x 1, x 2∈ [1,2] ,不等式 g(x 1) ≤g(x 2)恒成立, 即函数 g(x)在 [1,2] 上为增函数,故 g ′(x)≥0对随意的a ∈32,52 , x ∈ [1,2] 恒成立.2a + 1 λg ′(x)= x - (2a + 2)+ x +x 2≥0, 即 x 3- (2a + 2)x 2+ (2a + 1)x + λ≥0,即 (2x - 2x 2)a + x 3- 2x 2+ x + λ≥0对随意的 a ∈ 3, 5恒成立.2 2 因为 x ∈ [1,2] , 2x -2x 2≤0,253 - 2x 2故只需 (2x - 2x) ×+ x +x + λ≥0,2即 x 3- 7x 2+ 6x + λ≥0对随意的 x ∈ [1,2] 恒成立.令 h(x) =x 3- 7x 2+ 6x + λ,x ∈ [1,2] ,则 h ′(x)= 3x 2- 14x + 6<0 恒成立,故函数 h(x)在区间 [1,2] 上是减函数,所以 h(x)min= h(2)=λ- 8,只需λ- 8≥0即可,即λ≥8,故实数λ的取值范围是[8,+∞).A 组专题通关1.函数 f(x)的定义域为R,f(- 1)= 3,对随意 x∈R,f′(x)<3 ,则 f(x)>3x+ 6 的解集为 __________ .答案(-∞,- 1)分析设 g(x)= f(x)- (3x+ 6),则g′(x)= f′(x)- 3<0 ,所以g(x)为减函数,又g(- 1)= f(- 1)- 3= 0,所以依据单一性可知g(x)>0 的解集是{ x|x<- 1} .2.设 a>0,b>0 ,e 是自然对数的底数,若e a+2a=e b+3b,则a与b的大小关系为________.答案a>b分析由 e a+2a= e b+ 3b,有 e a+ 3a>e b+ 3b,令函数 f(x)= e x+ 3x,则 f(x)在 (0,+∞)上单一递加,因为 f( a)> f(b),所以 a>b.3.若不等式 2xln x≥- x2+ax- 3 恒成立,则实数 a 的取值范围为 __________.答案 (-∞, 4]分析条件可转变为 a≤2lnx+ x+3(x>0)恒成立.x设 f(x)= 2ln x+ x+3 x,则 f′(x)=(x+ 3)(x- 1)(x>0).x2当 x∈ (0,1) 时, f′(x)<0 ,函数 f(x)单一递减;当 x∈ (1,+∞)时, f′(x)>0 ,函数 f(x) 单一递加,所以 f( x)min= f(1)= 4.所以 a≤4.4.假如函数f(x)= ax2+ bx+ cln x(a,b,c 为常数, a>0)在区间 (0,1) 和 (2,+∞)上均单一递加,在 (1,2) 上单一递减,则函数 f(x)的零点个数为 ________.答案 1分析由题意可得 f′(x)=2ax+ b+c ,xf′(1)= 2a+ b+ c= 0,b=- 6a,所以 f(x)= a(x2- 6x+ 4ln x),则极大值 f(1)=-则c= 0,解得c=4a,f′(2)= 4a+ b+25a<0 ,极小值 f(2) =a(4ln2- 8)<0 ,又 f(10)= a(40+4ln 10)>0 ,联合函数图象 (图略 )可得该函数只有一个零点.5.做一个无盖的圆柱形水桶,若要使其体积是27π dm3,且用料最省,则圆柱的底面半径为 ________ dm.答案3227分析设圆柱的底面半径为 R dm,母线长为l dm,则 V=πR l =27π,所以 l =R2,要使用料最省,只需使圆柱形水桶的表面积最小.S表2227表54π表表=πR+ 2πRl=πR + 2π·,所以S′= 2πR-2 .令 S′= 0,得 R= 3,则当 R= 3 时, SR R最小.6.对于 x 的方程 x 3- 3x2- a=0 有三个不一样的实数解,则实数 a 的取值范围是 __________ .答案(- 4,0)分析由题意知使函数f( x)= x3- 3x2- a 的极大值大于0 且极小值小于 0 即可,又 f′(x)= 3x2-6x= 3x(x- 2),令 f ′(x)= 0,得 x1= 0,x2=2,当 x<0 时, f′(x)>0;当 0<x<2 时, f′(x)<0 ;当x>2 时, f′(x)>0 ,所以当x= 0 时, f(x)获得极大值,即f(x)极大值= f(0) =-a;当 x= 2 时, f(x)获得极小值,即f(x)极小值= f(2) =- 4- a,-a>0,所以解得- 4<a<0.-4- a<0,7.假如对定义在 R 上的函数 f(x),对随意两个不相等的实数x1,x2,都有 x1f(x1)+x2f(x2)> x1f(x2)+ x2f(x1),则称函数 f(x)为“H 函数”.给出以下函数:① y=- x3+ x+1;② y= 3x- 2(sin x- cos x) ;③ y= e x+1;④ f( x)=ln|x|, x≠0,以上函数是0, x= 0.“H 函数”的全部序号为 ________.答案②③分析因为 x1f(x1)+ x2f(x2)> x1f(x2)+ x2f(x1),即 (x1-x2)[f(x1)- f(x2)]>0 恒成立,所以函数 f(x)在 R 上是增函数.由 y′=- 3x2+ 1>0 得-33,即函数在区间-3, 33 <x< 333π上是增函数,故①不是“H 函数”;由 y′= 3-2(cos x+ sin x)=3- 2 2sin x+4≥3-22>0 恒x“H 函数”;因为④为偶函数,所以成立,所以②为“H 函数”;由 y′= e >0 恒成立,所以③为不行能在 R 上是增函数,所以不是“H 函数”.综上可知,是“H 函数”的有②③ .1324,直线 l: 9x+ 2y+ c=0,若当 x∈ [ - 2,2] 时,函数 y=f(x) 8.已知函数 f(x)= x - x - 3x+33的图象恒在直线l 下方,则 c 的取值范围是 ________.答案(-∞,- 6)分析依据题意知13249c在 x∈ [- 2,2]上恒成立,则-3x-x-3x+<- x-3221323423,设 g(x) = x - x +x+,则 g′(x)= x - 2x+3232则 g′(x)>0 恒成立,所以 g(x)在 [ - 2,2] 上单一递加,所以 g(x)max= g(2)= 3,则 c<- 6.9.如图,OA 是南北方向的一条公路,OB 是北偏东45°方向的一条公路,某景色区的一段界限为曲线C,为方便旅客参观,制定在曲线C 上某点P 处罚别修筑与公路 OA,OB 垂直的两条道路 PM , PN,且 PM, PN 的造价分别为 5 万元 /百米, 40 万元 /百米,成立以下图的平面直c 1 32342>3x - x +2x+3,42角坐标系xOy,则曲线 C 切合函数y= x+x2 (1 ≤x≤ 9)模型,设 PM =x,修筑两条道路PM ,PN 的总造价为f(x)万元,题中所波及长度单位均为百米.(1)求 f(x)的分析式;(2)当 x 为多少时,总造价 f(x)最低?并求出最低造价.解 (1)在以下图的平面直角坐标系中,因为曲线 C 的方程为y= x+422(1 ≤x≤ 9),PM= x,x所以点 P 的坐标为(x, x+422),直线 OB 的方程为 x-y= 0. x则点 P 到直线 x-y= 0 的距离为x- (x+4242x 2 )24=x=22x2.又 PM 的造价为 5 万元 /百米, PN 的造价为 40万元 /百米,则两条道路总造价为f(x)= 5x+432≤x≤ 9).40·= 5(x+2)(12x x(2) 因为 f(x)= 5(x+32 2 ),x645(x3- 64)所以 f′(x)= 5(1-x3 )=x3.令 f′(x)= 0,得 x= 4,列表以下:x(1,4)4(4,9)f′(x)-0+f(x)↘极小值↗所以当 x=4 时,函数 f(x)有最小值,最小值为32f(4) =5×(4+2 )= 30.4B 组 能力提升10.定义在0, π上的函数 f(x) ,f ′(x)是它的导函数,且恒有f(x)<f ′(x)tan x 成立,给出以下2四个关系式,此中正确的选项是________.πππ① 3f 4>2f 3 ; ② f(1)<2f 6 sin 1;π ππ π ③ 2f 6 >f 4 ; ④ 3f 6 <f 3 .答案 ④分析∵ f(x)<f ′(x)tan x ,即 f ′(x)sin x -f(x)cos x>0,∴f(x)′=f ′(x)sin x - f(x)cos xsin x 2>0,sin xf(x) π∴函数 sin x 在 0,2 上单一递加,π πf 6 f 3 π<fπ .进而 < ,即 3f 6 3π πsin6 sin 311.设函数 f(x)在 R 上存在导函数 f ′(x),对随意 x ∈ R ,都有 f(x)+ f(- x)=x 2,且 x ∈(0 ,+∞)时, f ′(x)>x ,若 f(2- a)- f(a) ≥2- 2a ,则实数 a 的取值范围是 ________.答案 (- ∞, 1]分析1 21 22令 g(x)= f(x)- x ,则 g(- x)= f(- x)-2x ,则 g(x)+ g(- x)= f(x) +f(- x)- x = 0,得2g(x)为 R 上的奇函数.当 x>0 时, g ′(x)= f ′(x)- x>0,故 g(x)在 (0,+ ∞)上单一递加,再联合2g(0) =0 及 g(x)为奇函数, 知 g(x)在 R 上为增函数. 又 g(2- a)- g(a)= f(2- a)-(2-a)- [f(a)22- a2 ] =f(2- a)-f(a)- 2+ 2a ≥ (2- 2a)- 2+2a = 0,则 g(2- a) ≥g(a)? 2-a ≥a? a ≤1,即 a ∈ (-∞, 1].12.直线 y = a 分别与直线 y = 2(x + 1),曲线 y = x + ln x 交于点 A ,B ,则 AB 的最小值为 ______.3 答案2分析解方程 2(x + 1)= a ,得 x =a2- 1.设方程 x + ln x =a 的根为 t(t>0) ,则 t + ln t = a ,则 AB = t - a + 1 = t - t + ln t + 1 = t - ln t + 1 .2 2 2 2设 g(t)= t -ln t+ 1(t>0) ,2 211 t - 1则 g ′(t)= 2- 2t = 2t (t>0) ,令 g ′(t)= 0,得 t = 1.当 t ∈ (0,1)时, g ′(t)<0 ;当 t ∈(1 ,+ ∞)时, g ′(t)>0 ,所以 g(t) min = g(1) = 3 2,3的最小值为 3所以 AB ≥ ,所以 AB2.21 3 1 2+ k( k ∈R) .13.已知函数 f(x)=x + kx32(1) 若曲线 y = f(x) 在点 (2, f(2)) 处的切线的斜率为 12,求函数 f(x)的极值;(2) 设 k<0, g(x)= f ′(x),求 F(x)= g(x 2)在区间 (0,2]上的最小值.1 312 2解 (1)函数 f(x)=x + kx+ k 的导数为 f ′(x)= x + kx.32由题意可得 f ′(2)= 4+ 2k =12,解得 k = 4,即 f(x)= 1x 3+ 2x 2+ 4, f ′(x)= x 2+4x. 3当 x>0 或 x<- 4 时, f ′(x)>0 ,f(x)单一递加;当- 4<x<0 时, f ′(x)<0, f(x)单一递减.可得 f( x)的极小值为 f(0)= 4,44f(x)的极大值为f( -4)= 3 .2(2) 由题意得 g(x)= x +kx.2设 t = x 2∈(0,2] ,可得 F(x)=h(t)= t 2 +kt = (t + k )2- k, k<0,- k>0.242①当- 4<k<0 时,- k ∈ (0,2), h(t)min = h(- k)=- k 2 ;2 2 4k②当 k ≤- 4 时,- ∈ [2,+ ∞), h(t)在 (0,2) 上单一递减, h(t)min = h(2) = 4+ 2k.2- k,- 4<k<0,综上可得, h(t)min =44+ 2k , k ≤- 4.。

《新步步高》高考数学大二轮总复习与增分策略(全国通用,理科)第二篇第2讲填空题的解法技巧.doc

《新步步高》高考数学大二轮总复习与增分策略(全国通用,理科)第二篇第2讲填空题的解法技巧.doc

第2讲填空题的解法技巧【题型概述】填空题是一种只要求写出结论,不要求解答过程的客观性试题,有小巧灵活、覆盖面广、跨 度大等特点,突出考查准确、严谨、灵活运用知识的能力.由于填空题不像选择题那样有备选提示,不像解答题那样有步骤得分,所填结果必须准确、 规范,因此得分率较低,解答填空题的第一要求是“准”,然后才是“快”、“巧”,要合 理灵活地运用恰当的方法,不可“小题大做”.方法一直接法直接法就是直接从题设出发,利用有关性质或结论,通过巧妙地变形,直接得到结果的方 法.要善于透过现象抓本质,有意识地采取灵活、简捷的方法解决问题.直接法是求解填空 题的基木方法•13445556678 1若将运动员按成绩由好到差编为1〜35号,再用系统抽样方法从中抽取7人,则其中成绩在 区间[139J51]上的运动员人数是 _______ .sin2/4(2)(2015-北京)在厶ABC 中,a=4, b = 5, c = 6,则不石= __________ •解析(1)由题意知,将1〜35号分成7组,每组5名运动员,落在区间[139,151]上的运动员 共有4组,故由系统抽样法知,共抽取4名. (2)白余弦定理:b 2-\~c 2—a 225 + 36—16 3. 羽cosA=—页—=2X5X6・:皿=4 '—a 2~\~b 2—c 216+25 — 361 .小 3^/7cosC=~2^ —= 2X4X5 =0 ・:smC= 8 52/_2><钗¥ ••sinC_ ■匸例1(1)(2015-湖南)在一次马拉松比赛中,35 名运动员的成绩(单位:分钟)的茎叶图如图所14 15答案(1)4 (2)1思维升华利用直接法求解填空题要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.跟踪演练1 (1)(2015-韶关联考)已知椭圆1的左、右焦点分别为鬥、尺,点P在椭圆上,则|"1|・『局|的最大值是 ________ .(2)己知方程x2 + 3ax + 3a + 1 = 0(a>2)的两根tana, tan0,且a f 0W (—号,号),贝!] a+p=方法二特例法当填空题己知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选収一些符合条件的恰当特殊值(特殊函数,特殊角,特殊数列,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出待求的结论.这样可大大地简化推理、论证的过程.例2 (1)如图所示,在平行四边形ABCD +,APLBD,垂足为P,且4- ------------------------------------(2)已知定义在R上的奇函数./(X)满足./(x—4)=—/(x),且在区间[0,2]上是增函数,若方程./(X)=加(加>0)在区间[―8,8]±有四个不同的根X], X2,兀3,X4,则X\+x2+x3+x4 = ___________ .解析(1)把平行四边形ABCD看成正方形,则点尸为对角线的交点,AC=6f则APAC= 18.(2)此题考查抽象函数的奇偶性,周期性,单调性和对称轴方程,条件多,将各种特殊条件结合的最有效方法是把抽象函数具体化.根据函数特点取./(x)=sin¥x,再由图象可得(X| +^2)+(%3 + JV4)=(—6 X 2) + (2 X 2) = — &答案(1)18 (2)-8思维升华求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.跟踪演练2 (2015•课标全国I )若函数./(Q=xlnC卄寸忑?)为偶函数,贝山= _____________ .方法三数形结合法对于一些含有几何背景的填空题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析儿何中两点间距离等,求解的关键是明确儿何含义,准确规范地作出相应的图形.兀—2y+120,例3 (1)已知点P(x,尹)的坐标x, y满足,,一则x2+y2~6x+9的取值范围是⑵已知函数fix)=x\x~2\f则不等式/(迈一x)W/(l)的解集为______________解析⑴画出可行域如图,所求的x2+y2-6x+9 = (x-3)2+y2是点0(3,0)到可行域上的点的距离的平方,由图形知最小值为0到射线x-y -1 =0(x^0)的距离〃的平方,晶in == (-V2)2 = 2.最大值为点0到点/的距离的平方,•:d爲x=16.・•・取值范围是[2,16].(2)函数y=j{x)的图象如图,由不等式./(迈一x)W/⑴知,y[2-x^y[2+ 1,从而得到不等式/(、问一QW/(1)的解集为[一1, +°°)・答案(1)[2,16] (2)[-1, +oo)思维升华数形结合法可直观快捷得到问题的结论,充分应用了图形的直观性,数中思形,以形助数.数形结合法是高考的热点,应用时要准确把握各种数式和几何图形中变量之间的关系.跟踪演练3 (1)(2015-山西大学附中月考)若方程x3~3x=k有3个不等的实根,则常数k的取值范围是_______________________________________________________________________ .J+bx+c,兀W0,⑵(2015•兰州一中期中)设函数心)=仁°若/(—4)=/(0), /(—2)=—2,贝IJ函2,x>0.方法四构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推 理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积 累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.456上单调递增,因此有_/(4)</(5)</(6),即芳沅.456答案(1从兀(2)y^<25<36 思维升华 构造法解题的关键是由条件和结论的特征构造数学模型.在立体几何中,补形构 造是常用的解题技巧,构造法实质上是转化与化归思想在解题中的应用. 跟踪演练4已知三个互不重合的平面a 、卩、丫, G Q“=〃2,且直线n 不重合,由下 列三个条件:①〃?〃?,刃U0; n//p ; @wCy, n//p.能推得m//n 的条件是 __________方法五归纳推理法做关于归纳推理的填空题的时候,一般是由题目的已知可以得出儿个结论(或直接给出了儿个 结论),然后根据这几个结论可以归纳出一个更一般性的结论,再利用这个一般性的结论来解 决问题.归纳推理是从个别或特殊认识到一般性认识的推演过程,这里可以大胆地猜想. 例5 (1)(2014-陕西)观察分析下表中的数据:例4 (1)如图,已知球0的球面上有四点4, B, C, D, D4丄平面ABC,丄BC, DA=AB=BC=^2,则球O 的体积等于 __________________ .456(2)怎,士, 士(其中e 为自然对数的底数)的大小关系是解析⑴如图,以加,AB, BC 为棱长构造正方体,设正方体的外接球球O 的半径为凡 则正方体的体对角线长即为球O 的直径,所以|CD| =7(何+(廊 +(何=2R,所以R 書,故球O 的体积7=警=4 4(2)由于討知 x 425 —雪=&,故可构造函数金)=?,于是.")=花,雁)=石,夬6)=36,e' ・ 丫厶—c"・ 2x e' (x? — 2 工)= - = 丿令・f (x)>0得x<0或x>2,即函数几丫)在(2, +oo) e 5 e 5 e 6 e 6 e 6e 5多面体面数(F)顶点数(耳棱数(E)三棱柱569五棱锥6610立方体6812猜想一般凸多面体中F, r, E所满足的等式是______________________________________按照上面的规律,笫〃个“金鱼”图需要火柴棒的根数为解析(1)观察F, V, E的变化得F+V~E=2.(2)观察题图①,共有8根火柴,以后依次增加6根火柴,即构成首项为8,公差为6的等差数列,所以,第”个“金鱼”图需要火柴棒的根数为6/7 + 2.答案(1)F+/—E=2 (2)6〃+ 2思维升华归纳推理法主要用于与自然数有关的结论,这类问题是近几年高考的热点,解题的关键在于找准归纳对象及其规律,如数列中项与项数之间的对应关系. 跟踪演练5观察下列各个等式:13=1;2—3 + 5;3‘ = 7 + 9+11;¥=13 + 15 + 17+19;若某数/按上述规律展开后,发现等式右边含有“2016”这个数,则加= ___________________ .方法六正反互推法多选型问题给出多个命题或结论,耍求从中选出所有满足条件的命题或结论.这类问题耍求较高,涉及图形、符号和文字语言,要准确阅读题目,读懂题意,通过推理证明,命题或结论之I'可互反互推,相互印证,也可举反例判断错误的命题或结论.例6已知/(x)为定义在R上的偶函数,当时,有/(x+l)=—/(x),且当xW[0,l)日寸,./(X) = log2(x+l),给岀下列命题:©A2013)+/(-2014)的值为0;②函数/(x)在定义域上为周期是2的周期函数;③直线与函数.心)的图象有1个交点;④两数.心)的值域为(一1,1).其中(2)用火柴棒摆“金鱼”正确的命题序号有 _________ .解析根据题意,可在同一坐标系中画出直线尹=兀和函数人力的图象如下:y/_丄__ _____ 丄」丄______ 丄____p\ n n >\-5:-4 审-2 -y >O \1 2 4 :5 x__ i^So,.•・•L__\ 1 < -111 11根据图象可知©A2013)+A-2014)=0正确,②函数./(x)在定义域上不是周期函数,所以②不正确,③根据图象确实只有一个交点,所以正确,④根据图象,函数.几丫)的值域是(-1,1),正确.答案①③④思维升华正反互推法适用于多选型问题,这类问题一般有两种形式,一是给出总的已知条件,判断多种结论的真假;二是多种知识点的汇总考查,主要覆盖考点功能.两种多选题在处理上不同,前者需要扣住已知条件进行分析,后者需要独立利用知识逐项进行判断.利用正反互推结合可以快速解决这类问題.跟踪演练6给出以下命题:2①双曲线号一x?=l的渐近线方程为y=±y[2x;②命题p:u R+»是真命题;m LAA③已知线性冋归方程为y=3+2x,当变量x增加2个单位,其预报值平均增加4个单位;④设随机变量F服从正态分布N(O,1),若尸(。

《新步步高》高考数学大二轮总复习与增分策略(全国通用,理科)第三篇建模板、看细则,突破高考拿高分高考

《新步步高》高考数学大二轮总复习与增分策略(全国通用,理科)第三篇建模板、看细则,突破高考拿高分高考

【模板特征概述】数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单纯的知识综合型转化为知识、方法和能力的综合型解答题.在高考考场上,能否做好解答题,是高考成败的关键,因此,在高考备考中学会怎样解题,是一项重要的内容.本节以著名数学家波利亚的《怎样解题》为理论依据,结合具体的题目类型,来谈一谈解答数学解答题的一般思维过程、解题程序和答题格式,即所谓的“答题模板”.“答题模板”就是首先把高考试题纳入某一类型,把数学解题的思维过程划分为一个个小题,按照一定的解题程序和答题格式分步解答,即化整为零.强调解题程序化,答题格式化,在最短的时间内拟定解决问题的最佳方案,实现答题效率的最优化.模板1 三角函数的性质典例1 (12分)(2015·天津)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 审题路线图 利用和角公式展开→降幂整理→用辅助角公式化f (x )为y =A sin (ωx +φ)+k 的形式→利用T =2π|ω|求周期→利用单调性或数形结合求最值规范解答·评分标准构建答题模板解 (1)由已知,有f (x )=1-cos2x2-1-cos ⎝⎛⎭⎫2x -π322分 =12⎝⎛⎭⎫12cos2x +32sin2x -12cos2x 4分 =34sin2x -14cos2x =12sin ⎝⎛⎭⎫2x -π6.6分 所以f (x )的最小正周期T =2π2=π.7分(2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间第一步 化简:利用辅助角公式化f (x )为y =A sin(ωx +φ)+k的形式.第二步 整体代换:设t =ωx+φ,确定t 的范围. 第三步 求解:利用y =sin t 的性质求y =A sin(ωx +φ)+k 的单调性、最值、对称性等.评分细则 第(1)问得分点:1 无化简过程,直接得到f (x )=12sin(2x -π6),扣5分2 化简结果错误,中间某一步正确,给2分 第(2)问得分点:1 只求f (-π3),f (π4)得出最值,给1分2 若单调性出错,给1分3 单调性正确,计算错误,扣2分4 求出2x -π6范围,利用数形结合求最值,同样得分.跟踪演练1 (2014·福建)已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.典例2 (14分)(2014·山东)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积.审题路线图 (1)利用同角公式、诱导公式→求得sin A 、sin B →利用正弦定理求b (2)方法一余弦定理求边c →S =12ac sin B方法二用和角正弦公式求sin C →S =12ab sin C评分细则 第(1)问得分点1.没求sin A 而直接求出sin B 的值,不扣分. 2.写出正弦定理,但b 计算错误,得1分. 第(2)问得分点1.写出余弦定理,但c 计算错误,得1分. 2.求出c 的两个值,但没舍去,扣2分. 3.面积公式正确,但计算错误,只给1分. 4.若求出sin C ,利用S =12ab sin C 计算,同样得分.跟踪演练2 (2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值.典例3 (12分)(2014·浙江)已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)n b(n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n ;(2)设c n =1a n -1b n(n ∈N *).记数列{c n }的前n 项和为S n .①求S n;②求正整数k,使得对任意n∈N*,均有S k≥S n.审题路线图a n,b n关系、特殊项→基本量法求a n→代入a n,b n关系求b n→求a n→分组求和求S n→利用数列的单调性、最值确定k评分细则(1)求出a3=8得2分,给出b2,b3的关系得1分;(2)求出q给1分,但q=-2不舍去不得分;(3)裂项得1分,每个求和写出正确结果得1分;(4)验算前4项给2分;(5)验算法给出最后结果得3分.跟踪演练3(2014·山东)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .模板4 利用向量求空间角典例4 (12分)(2014·山东)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点. (1)求证:C 1M ∥平面A 1ADD 1;(2)若CD 1垂直于平面ABCD 且CD 1=3,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值.审题路线图 (1)M 是AB 中点,四边形ABCD 是等腰梯形――→AB =2CDCD ∥AMCD =AM ⇒▱AMC 1D 1→C 1M ∥平面A 1ADD 1(2)CA ,CB ,CD 1两两垂直→建立空间直角坐标系,写各点坐标→求平面ABCD 的法向量→将所求两个平面所成的角转化为两个向量的夹角规范解答·评分标准构建答题模板 (1)证明 因为四边形ABCD 是等腰梯形, 且AB =2CD ,所以AB ∥DC .又由M 是AB 的中点,因此CD ∥MA 且CD =MA . 连接AD 1,如图(1).第一步 找垂直:找出(或作出)具有公共交点的三条两两垂直的直线. 第二步 写坐标:建立空在四棱柱ABCD-A1B1C1D1中,因为CD∥C1D1,CD=C1D1,可得C1D1∥MA,C1D1=MA,所以四边形AMC1D1为平行四边形,3分因为C1M∥D1A.又C1M⊄平面A1ADD1,D1A⊂平面A1ADD1,所以C1M∥平面A1ADD1.5分(2)解如图(2),连接AC,MC.由(1)知CD∥AM且CD=AM,所以四边形AMCD为平行四边形,可得BC=AD=MC,由题意得∠ABC=∠DAB=60°,所以△MBC为正三角形,因此AB=2BC=2,CA=3,7分因此CA⊥CB.以C为坐标原点,建立如图(2)所示的空间直角坐标系C-xyz,所以A(3,0,0),B(0,1,0),D1(0,0,3),8分因此M⎝⎛⎭⎫32,12,0,所以MD1→=⎝⎛⎭⎫-32,-12,3,D1C1→=MB→=⎝⎛⎭⎫-32,12,0.设平面C1D1M的一个法向量为n=(x,y,z),由错误!得错误!可得平面C1D1M的一个法向量n=(1,3,1).又CD1→=(0,0,3)为平面ABCD的一个法向量,间直角坐标系,写出特征点坐标.第三步求向量:求直线的方向向量或平面的法向量.第四步求夹角:计算向量的夹角.第五步得结论:得到所求两个平面所成的角或直线和平面所成的角.9分因此cos 〈CD 1→,n 〉=CD 1→·n |CD 1→||n |=55.11分所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55.12分评分细则 (1)得出C 1D 1∥AM 给1分,得出C 1D 1=MA 给1分; (2)线面平行条件不完整扣1分; (3)建系得1分;(4)写正确向量坐标给2分;(5)求出平面C 1D 1M 的一个法向量给2分.跟踪演练4 (2015·四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N .(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)证明:直线MN ∥平面BDH ; (3)求二面角AEGM 的余弦值.典例5 (12分)甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3题,每人答对其中2题就停止答题,即闯关成功.已知在6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是23.(1)求甲、乙至少有一人闯关成功的概率;(2)设甲答对题目的个数为ξ,求ξ的分布列及均值. 审题路线图 (1)标记事件→对事件分解→计算概率 (2)确定ξ取值→计算概率→得分布列→求均值评分细则(1)P(A),P(B)计算正确每个给2分;(2)对甲、乙至少有一人闯关成功事件分解、计算正确的参照给分;(3)P(ξ=1),P(ξ=2)计算正确每个给1分,列表给1分.跟踪演练5(2015·安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).典例6 (12分)(2014·课标全国Ⅰ)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 审题路线图 待定系数法求E 的方程→设l 方程→联立l 、E 方程→求|PQ |→求S △OPQ→求S△OPQ的最值评分细则(1)列出关于c的方程,结果算错给1分;(2)求出a=2,给2分,得E的方程给1分;(3)没有考虑斜率不存在的情况扣1分;(4)求|PQ|时结果正确没有过程扣1分;(5)没有验证Δ>0扣1分.跟踪演练6(2015·天津)已知椭圆x2a2+y2b2=1(a>b>0)的左焦点为F(-c,0),离心率为33,点M在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.典例7 (12分)已知定点C (-1,0)及椭圆x 2+3y 2=5,过点C 的动直线与椭圆相交于A ,B 两点.(1)若线段AB 中点的横坐标是-12,求直线AB 的方程;(2)在x 轴上是否存在点M ,使MA →·MB →为常数?若存在,求出点M 的坐标;若不存在,请说明理由.审题路线图 (1)设AB 的方程y =k (x +1)→待定系数法求k →写出方程(2)设M 存在即为(m ,0)→求MA →·MB →→在MA →·MB →为常数的条件下求m →下结论评分细则(1)不考虑直线AB斜率不存在的情况扣1分;(2)不验证Δ>0扣1分;(3)没有假设存在点M 不扣分;(4)MA →·MB →没有化简至最后结果,直接下结论扣1分.跟踪演练7 (2014·湖南)如图,O 为坐标原点,双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P (233,1),且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形. (1)求C 1,C 2的方程;(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA →+OB →|=|AB →|?证明你的结论.模板8 函数与导数典例8 (12分)(2015·课标全国Ⅱ)设函数f (x )=e mx +x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. 审题路线图 (1)求导f ′(x )=m (e mx -1)+2x →讨论m 确定f ′(x )符号→证明结论(2)条件转化为(|f (x 1)-f (x 2)|)max ≤e -1――→结合(1)知f (x )min =f (0)⎩⎪⎨⎪⎧f (1)-f (0)≤e -1f (-1)-f (0)≤e -1→⎩⎪⎨⎪⎧e m -m ≤e -1e -m+m ≤e -1→构造函数g (t )=e t-t -e +1→研究g (t )单调性→寻求⎩⎪⎨⎪⎧g (m )≤0g (-m )≤0的条件→对m 讨论得适合条件的范围评分细则 (1)讨论时漏掉m =0扣1分; (2)确定f ′(x )符号时只有结论无中间过程扣1分; (3)写出f (x )在x =0处取得最小值给1分; (4)无最后结论扣1分; (5)其他方法构造函数同样给分.跟踪演练8设函数f(x)=a2ln x-x2+ax,a>0.(1)求f(x)的单调区间;(2)求所有的实数a,使e-1≤f(x)≤e2对x∈[1,e]恒成立.学生用书答案精析第三篇 建模板,看细则,突破高考拿高分跟踪演练1 解 (1)因为0<α<π2,sin α=22,所以cos α=22. 所以f (α)=22×(22+22)-12=12. (2)因为f (x )=sin x cos x +cos 2x -12=12sin2x +1+cos2x 2-12 =12sin2x +12cos2x =22sin(2x +π4), 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为[k π-3π8,k π+π8],k ∈Z . 跟踪演练2 解 (1)由b 2-a 2=12c 2及正弦定理得sin 2B -12=12sin 2C .所以-cos2B =sin 2C .又由A =π4,即B +C =34π,得-cos2B =sin2C =2sin C cos C =sin 2C , 解得tan C =2.(2)由tan C =2,C ∈(0,π)得 sin C =255,cos C =55,又因为sin B =sin(A +C )=sin ⎝⎛⎭⎫π4+C , 所以sin B =31010,由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3.跟踪演练3 解 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)b n =(-1)n -14na n a n +1=(-1)n-14n(2n -1)(2n +1)=(-1)n -1(12n -1+12n +1).当n 为偶数时,T n =(1+13)-(13+15)+…+(12n -3+12n -1)-(12n -1+12n +1)=1-12n +1=2n2n +1.当n 为奇数时,T n =(1+13)-(13+15)+…-(12n -3+12n -1)+(12n -1+12n +1)=1+12n +1=2n +22n +1.所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.(或T n =2n +1+(-1)n -12n +1)跟踪演练4 (1)解 点F ,G ,H 的位置如图所示. (2)证明 连接BD ,设O 为BD 的中点, 因为M ,N 分别是BC ,GH 的中点,所以OM ∥CD ,且OM =12CD ,HN ∥CD ,且HN =12CD ,所以OM ∥HN ,OM =HN , 所以四边形MNHO 是平行四边形, 从而MN ∥OH ,又MN ⊄平面BDH ,OH ⊂平面BDH ,所以MN ∥平面BDH .(3)解 方法一 连接AC ,过M 作MP ⊥AC 于P , 在正方体ABCD-EFGH 中,AC ∥EG , 所以MP ⊥EG ,过P 作PK ⊥EG 于K ,连接KM , 所以EG ⊥平面PKM , 从而KM ⊥EG ,所以∠PKM 是二面角AEGM 的平面角,设AD =2,则CM =1,PK =2, 在Rt △CMP 中,PM =CM sin45°=22, 在Rt △PKM 中,KM =PK 2+PM 2=322,所以cos ∠PKM =PK KM =223,即二面角AEGM 的余弦值为223. 方法二 如图,以D 为坐标原点,分别以DA →,DC →,DH →方向为x ,y ,z 轴的正方向,建立空间直角坐标系D-xyz ,设AD =2,则M (1,2,0),G (0,2,2),E (2,0,2),O (1,1,0), 所以GE →=(2,-2,0),MG →=(-1,0,2), 设平面EGM 的一个法向量为n 1=(x ,y ,z ), 由⎩⎪⎨⎪⎧n 1·GE →=0,n 1·MG →=0,⎩⎪⎨⎪⎧2x -2y =0,-x +2z =0,取x =2,得n 1=(2,2,1), 在正方体ABCD-EFGH 中,DO ⊥平面AEGC , 则可取平面AEG 的一个法向量为n 2=DO →=(1,1,0), 所以cos n 1,n 2=n 1·n 2|n 1|·|n 2|=2+2+04+4+1·1+1+0=223, 故二面角AEGM 的余弦值为223. 跟踪演练5 解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A .P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400.P (X =200)=A 22A 25=110, P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300)=1-110-310=610. 故X 的分布列为E (X )=200×110+300×310+400×610=350. 跟踪演练6 解 (1)由已知有c 2a 2=13, 又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2. 设直线FM 的斜率为k (k >0),F (-c,0),则直线FM 的方程为y =k (x +c ).由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝⎛⎭⎫c 22=⎝⎛⎭⎫b 22, 解得k =33. (2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c ,或x =c . 因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎫c ,233c . 由|FM |=(c +c )2+⎝⎛⎭⎫233c -02=433. 解得c =1,所以椭圆的方程为x 23+y 22=1. (3)设点P 的坐标为(x ,y ),直线FP 的斜率为t ,得t =y x +1,即y =t (x +1)(x ≠-1),与椭圆方程联立. ⎩⎪⎨⎪⎧y =t (x +1),x 23+y 22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t =6-2x 23(x +1)2>2,解得-32<x <-1,或-1<x <0. 设直线OP 的斜率为m ,得m =y x ,即y =mx (x ≠0),与椭圆方程联立,整理得m 2=2x 2-23. ①当x ∈⎝⎛⎭⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m =2x 2-23,得m ∈⎝⎛⎭⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0.因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎫-∞,-233. 综上,直线OP 的斜率的取值范围是⎝⎛⎭⎫-∞,-233∪⎝⎛⎭⎫23,233. 跟踪演练7 解 (1)设C 2的焦距为2c 2,由题意知,2c 2=2,2a 1=2.从而a 1=1,c 2=1.因为点P (233,1)在双曲线x 2-y 2b 21=1上, 所以(233)2-1b 21=1.故b 21=3. 由椭圆的定义知2a 2=(233)2+(1-1)2+(233)2+(1+1)2=2 3. 于是a 2=3,b 22=a 22-c 22=2.故C 1,C 2的方程分别为 x 2-y 23=1,y 23+x 22=1. (2)不存在符合题设条件的直线.①若直线l 垂直于x 轴,因为l 与C 2只有一个公共点,所以直线l 的方程为x =2或x =- 2.当x =2时,易知A (2,3),B (2,-3),所以|OA →+OB →|=22,|AB →|=2 3.此时,|OA →+OB →|≠|AB →|.当x =-2时,同理可知,|OA →+OB →|≠|AB →|.②若直线l 不垂直于x 轴,设l 的方程为y =kx +m .由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 23=1得(3-k 2)x 2-2kmx -m 2-3=0. 当l 与C 1相交于A ,B 两点时,设A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是上述方程的两个实根,从而x 1+x 2=2km 3-k 2,x 1x 2=m 2+3k 2-3. 于是y 1y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3k 2-3m 2k 2-3. 由⎩⎪⎨⎪⎧ y =kx +m ,y 23+x 22=1得(2k 2+3)x 2+4kmx +2m 2-6=0. 因为直线l 与C 2只有一个公共点,所以上述方程的判别式Δ=16k 2m 2-8(2k 2+3)·(m 2-3)=0. 化简,得2k 2=m 2-3,因此OA →·OB →=x 1x 2+y 1y 2=m 2+3k 2-3+3k 2-3m 2k 2-3=-k 2-3k 2-3≠0, 于是OA →2+OB →2+2OA →·OB →≠OA →2+OB →2-2OA →·OB →,即|OA →+OB →|2≠|OA →-OB →|2,故|OA →+OB →|≠|AB →|.综合①②可知,不存在符合题设条件的直线.跟踪演练8 解 (1)因为f (x )=a 2ln x -x 2+ax ,其中x >0,所以f ′(x )=a 2x -2x +a =-(x -a )(2x +a )x. 由于a >0,所以f (x )的增区间为(0,a ),减区间为(a ,+∞).(2)由题意得f (1)=a -1≥e -1,即a ≥e.由(1)知f (x )在[1,e]内单调递增,要使e -1≤f (x )≤e 2对x ∈[1,e]恒成立.只要⎩⎪⎨⎪⎧ f (1)=a -1≥e -1,f (e )=a 2-e 2+a e ≤e 2,解得a =e.。

【步步高】高考数学(文,江苏专用)大二轮总复习练习:专题三第3讲平面向量(含答案解析)

【步步高】高考数学(文,江苏专用)大二轮总复习练习:专题三第3讲平面向量(含答案解析)

第 3讲平面向量1. (2016 课·标全国丙改编→1,3→31,则∠ ABC= ________. )已知向量 BA=22, BC=,22答案30°分析→→∵ |BA|= 1, |BC|= 1,→ →3BA·BC=,∴∠ ABC = 30°.cos∠ ABC=→→2|BA|·|BC|12. (2016 ·东改编山 )已知非零向量m,n 知足 4|m|= 3|n|,cos〈 m, n〉=3.若 n⊥ (tm+ n),则实数 t 的值为 ______.答案- 4分析∵ n⊥ (tm+ n),∴ n·(tm+n)=0,即 t·m·n+ n2= 0,∴ t|m||n|cos〈 m, n〉+ |n|2=0,由3212已知得 t×|n| ×+ |n| = 0,解得 t=- 4.433. (2016 天·津改编 )已知△ABC 是边长为 1 的等边三角形,点 D, E 分别是边 AB, BC 的中点,连接 DE 并延伸到点F,使得 DE=→ →2EF ,则 AF ·BC的值为 ________.答案1 8分析→→→如下图, AF =AD +DF .又 D, E 分别为 AB, BC 的中点,→1→且 DE= 2EF,因此 AD=2AB,→=→+→=→+1→DF DE EF DE2DE3→ 3→=2DE =4AC,→1→ 3 →→→ →因此 AF=2AB+4AC.又 BC= AC-AB,→ →1→3→→ →则 AF·BC=AB+AC ·(AC- AB)241→ →1→ 2 3 →2 3 → →=AB·AC-AB+AC - AC·AB 2244→ 2 1→21→→= 4AC - 2AB -4AC ·AB.3→ →又 |AB|= |AC|= 1,∠ BAC = 60°,→ → 3 1 1 1 1故AF ·BC = - - ×1×1× = .4 2 4 2 84. (2016 ·江浙 )已知向量a ,b , |a|= 1,|b|= 2.若对随意单位向量 e ,均有 |a ·e|+ |b ·e| ≤6,则a ·b 的最大值是 ________.答案12分析 由已知可得:6≥|a ·e|+ |b ·e| ≥|a ·e + b ·e|= |(a + b) ·e|,因为上式对随意单位向量e 都成立.∴ 6≥|a + b|成立.∴ 6≥(a + b) 2= a 2+ b 2+ 2a ·b = 12+ 22+ 2a ·b.1即 6≥5+ 2a ·b ,∴ a ·b ≤2.1.考察平面向量的基本定理及基本运算,多以熟知的平面图形为背景进行考察, 多为填空题,难度中低档 .2.考察平面向量的数目积,以填空题为主,难度低;向量作为工具,还常与三角函数、解三角形、不等式、分析几何联合,以解答题形式出现.热门一平面向量的线性运算1.在平面向量的化简或运算中,要依据平面向量基本定理选好基底,变形要有方向不可以盲目转变.2.在用三角形加法法例时,要保证 “首尾相接 ”,结果向量是第一个向量的起点指向最后一个向量终点所得的向量;在用三角形减法法例时,要保证 “同起点 ”,结果向量的方向是指向被减向量.例 1π(1) 设 0<θ< ,向量 a = (sin 2θ, cos θ), b = (cos θ, 1),若 a ∥ b ,则 tan θ= ______.2→ → → →(2) 如图,在 △ ABC 中,已知 BD = 2DC ,以向量 AB ,向量 AC 作为基底,→则向量 AD 可表示为 ____________.答案 (1)1 (2)1 →+ 2 →2 3AB 3AC 分析(1)因为 a ∥ b ,因此 sin 2θ= cos 2θ,即 2sin θcos θ=cos 2θ.π 因为 0<θ< ,因此 cos θ>0,21得 2sin θ= cos θ,tan θ= 2.(2) 依据平面向量的运算法例及已知图形可知→2 →AB +3AC .→→→→ 2 → → 2 → → 1AD =AB + BD = AB + BC =AB + (BA + AC)=333思想升华(1) 关于平面向量的线性运算,要先选择一组基底;同时注意共线向量定理的灵活运用. (2)运算过程中重视数形联合,联合图形剖析向量间的关系. 追踪操练 1(1)如图,正方形 ABCD 中,点 E 是 DC 的中点,点 F 是 BC的一个三平分点,那么以向量 → → →AB 和向量 AD 为基底,向量 EF 可表示为__________ .→→ →(2) 如图,在正方形 ABCD 中, E 为 DC 的中点,若 AE = λAB + μAC ,则 λ + μ的值为 ________. 答案(1)1→ - 2 →(2)12AB 3AD2分析→ → → (1)在 △ CEF 中,有 EF = EC +CF .→ 1 →因为点 E 为 DC 的中点,因此 EC = DC .2因为点 F 为 BC 的一个三平分点,因此→ 2 →CF =CB.3→ 1→ 2→ 1→ 2→ 1→2→因此 EF = 2DC +3CB =2AB +3DA = 2AB - 3AD.(2)→ → → 1 →1 → → 1 → →→ 1 → 因为 E 为 DC 的中点,因此 AC = AB + AD = AB +AB + AD =AB + AE ,即 AE =-AB +2222→ AC ,1 1因此 λ=- , μ=1,因此 λ+ μ= .22热门二平面向量的数目积1.数目积的定义: a ·b = |a||b|cos θ.2.三个结论(1) 若 a = (x , y),则 |a|= a ·a = x 2+ y 2.(2) 若 A(x 1,y 1), B( x 2, y 2),则→ 2 2 .|AB|= (x 2- x 1 ) + (y 2- y 1 )(3)若 a= (x1,y1), b= ( x2,y2 ),θ为 a 与 b 的夹角,则 cos θ=a·b=x1x2+ y1y2|a||b|x12+ y12x22+ y22.例 2(1)如图,在矩形ABCD 中, AB=2, BC= 2,点 E 为 BC 的中点,点 F在边→ →=→ →CD 上,若 AB·AF2,则 AE ·BF的值是 ________.(2) 若 b=cos π, cos5π,|a|= 2|b|,且 (3a+b) ·b=- 2,则向量 a,b 的夹角1212为 ________.答案(1) 2 (2)5π6分析(1)以 A 为原点,成立如下图的坐标系,可得 A(0,0),B(2, 0), E(2, 1), F(x,2),→→∴ AB= ( 2,0) ,AF= (x,2),→ →2x=2,∴ AB·AF=解得 x= 1,∴ F(1,2).→→∴ AE= ( 2,1),BF= (1- 2, 2),→ →∴ AE·BF= 2×(1- 2)+ 1×2= 2.22π25π 2 π 2 π(2) b= cos+cos12=cos+ sin= 1,121212因此 |b|= 1,|a|= 2.由 (3a+b) ·b=- 2,可得3a·b+ b2=- 2,故 a·b=-3,故 cos〈 a, b〉=a·b=- 33=-|a||b|2×1 2.5π又〈 a, b〉∈ [0,π],因此〈 a, b〉=6 .思想升华(1) 数目积的计算往常有三种方法:数目积的定义,坐标运算,数目积的几何意义;(2) 能够利用数目积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算.追踪操练 2 (1)已知点 A,B,C,D 在边长为 1 的方格点图的地点如下图,→ →则向量 AD在AB方向上的投影为 ________.(2) 如图,在△ ABC 中,AB= AC= 3,cos∠ BAC=1→→→ →3,DC= 2BD,则 AD·BC的值为 ________.答案(1)-5(2)- 2 5分析(1)不如以点 A 为坐标原点,成立如下图的平面直角坐标系,易得→→AD = (- 2,3),AB→ →→ →- 25 AD ·AB= (4,2) ,因此向量 AD 在 AB方向上的投影为→=2 5=- 5.|AB |→→→→→→2→ →(2) AD·BC= (AC+ CD ) ·BC= (AC+CB) ·BC3→2→→→2→1→→→=[AC+3(AB -AC)] BC·= ( 3AB +3AC) ·(AC- AB)2 →2 1 → → 1 →2=-3|AB|+3AB·AC+3|AC|=-6+ 1+3=- 2.热门三平面向量与三角函数平面向量作为解决问题的工具,拥有代数形式和几何形式的“两重型”,高考常在平面向量与三角函数的交汇处命题,经过向量运算作为题目条件.例 3已知函数 f(x)= 2cos2x+ 23sin xcos x(x∈ R).π(1)当 x∈[0,2)时,求函数 f( x)的单一递加区间;(2)设△ABC 的内角 A,B, C 的对边分别为 a, b,c,且 c=3, f( C)= 2,若向量 m= (1, sin A)与向量 n= (2, sin B)共线,求 a, b 的值.解π (1)f(x)= 2cos 2x + 3sin 2x = cos 2x + 3sin 2x + 1=2sin(2 x + ) +1,6π π π 令- + 2k π≤2x +≤ + 2k π, k ∈ Z ,26 2π π解得 k π-≤x ≤k π+ , k ∈ Z ,36π因为 x ∈ [0, 2) ,π因此 f( x)的单一递加区间为 [0,6] .π(2) 由 f(C)= 2sin(2C +6)+ 1= 2,π 1得 sin(2C + 6)= 2,π π 13 π而 C ∈(0 ,π),因此 2C + 6∈( 6, 6 ), π 5 π因此 2C + =6π,解得 C = 3.6因为向量 m = (1,sin A)与向量 n =(2 ,sin B)共线,因此sin A 1sin B= .2由正弦定理得 a = 1,①b 2由余弦定理得π c 2= a 2+ b 2- 2abcos,3即 a 2+ b 2- ab =9.②联立①②,解得 a = 3,b = 2 3.思想升华 在平面向量与三角函数的综合问题中, 一方面用平面向量的语言表述三角函数中的问题, 如利用向量平行、 垂直的条件表述三角函数式之间的关系, 利用向量模表述三角函数之间的关系等; 另一方面能够利用三角函数的知识解决平面向量问题,在解决此类问题的 过程中, 只需依据题目的详细要求, 在向量和三角函数之间成立起联系, 就能够依据向量或者三角函数的知识解决问题.追踪操练 3已知 △ABC 是锐角三角形,向量m = cos A + π,3π, n = cos B , sin B ,且 m ⊥ n.sin A +3 ( )(1) 求 A -B 的值;3(2) 若 cos B = 5,AC =8,求 BC 的长.解(1)因为 m ⊥ n ,π π因此 m ·n = coscos B +sin A + 3 sin BA + 3 π= cos A +3- B =0,π又 A ,B ∈ 0,2 ,因此ππ 5πA + -B ∈ - , ,3 6 6 因此 π ππA + -B = ,即 A - B = .3 263π4(2) 因为 cos B =5, B ∈ 0,2 ,因此 sin B = 5,因此 sin A = sin π ππ = sin Bcos + cos Bsin 6B +664 3 3 1 4 3+ 3= · + ·= ,52 5 2104 3+3由正弦定理,得BC = sin A10 ×8= 4 3+ 3.4sin B·AC =5→ 1 →1.如图,在 △ ABC 中, AD = 3AB , DE ∥ BC 交AC 于E , BC边上的中线AM交DE于,设 → = , → = ,用ABaACb N, 表示向量ab→ →AN ,则 AN= ____________.押题依照平面向量基本定理是向量表示的基本依照,而向量表示 (用基底或坐标 )是向量应用的基础.1答案6(a + b)分析因为 DE ∥ BC ,因此 DN ∥ BM ,则 △ AND ∽△ AMB ,因此 AM AN = ADAB .→1 →→1 →因为 AD = 3AB ,因此 AN = 3AM . 因为 M 为 BC 的中点,→ 1 → → 1 因此 AM = (AB +AC)=(a + b),22→ 1 →1因此 AN =AM = (a + b).362.如图,BC 、DE 是半径为 →→ → →1 的圆 O 的两条直径, BF = 2FO ,则 FD ·FE= ________.押题依照数目积是平面向量最重要的观点,平面向量数目积的运算是高考的必考内容,和平面几何知识的联合是向量考察的常有形式.答案-89分析→→→1,∵BF =2FO ,圆 O 的半径为 1,∴ |FO |=3→→→→→→→2→→→→→1 2 8 ∴ FD ·FE = (FO + OD) ·(FO + OE)= FO + FO ·(OE + OD)+ OD ·OE = ( ) + 0- 1=- .39→ →120°sin 208 )°,则 △ABC3.在 △ABC 中,AB =(cos 32 °,cos 58 °),BC = (sin 60 sin ° 118 ,°sin 的面积为 ________.押题依照平面向量作为数学解题工具, 经过向量的运算给出条件解决三角函数问题已成为近几年高考的热门.答案38分析→ 2 2°|AB|= cos 32 °+ cos 58= cos 232°+ sin 232°=1,→33,BC =2 cos 28 ,°- 2 sin 28°→323 23 因此 |BC|=+ -2 sin 28 =2.2 cos 28 °°→ →33 °则 AB ·BC = cos 32 °×2cos 28-°sin 32 ×° sin 2823=2 (cos 32 cos ° 28 -°sin 32 sin ° 28 ) °=333,2 cos(32 +°28°)= 2cos 60 =° 4→ →3 → →4 1AB ·BC = . 故 cos 〈 AB , BC 〉= →→ = 3 2 |AB| ×|BC| 1×2→ → °, 180°],因此〈 → →又〈 AB , BC 〉∈ [0 AB , BC 〉= 60°,→ →故 B = 180°-〈 AB , BC 〉= 180°- 60°= 120°.故 △ ABC 的面积为1 →S = 2×|AB|→×|BC|sin B1 3 = ×1××sin221203 =° .84.如图,在半径为1 的扇形 AOB中,∠ AOB =60°,C为弧上的动点, AB 与OC交于点P ,→ →则 OP ·BP 的最小值是 _______________________________________ .押题依照 此题将向量与平面几何、 最值问题等有机联合,表现了高考在知识交汇点命题的方向,此题解法灵巧,难度适中.答案-116分析→ → →→→→→→→→→2 = 60 °,因为 OP = OB + BP ,因此 OP ·BP = (OB + BP) ·BP =OB ·BP + BP .又因为∠ AOB OA = OB ,因此∠ OBA = 60°, OB = → → →1 → →→1→→21.因此 OB ·BP = |BP |cos 120=°-|BP|,因此 OP ·BP =- |BP|+ |BP|22→1 2 11→1 → →1= (|BP|- )-≥-,当且仅当 |BP|= 时, OP ·BP 获得最小值-.4 16 16416A 组 专题通关1.在 △ ABC 中,已知 D 是 AB 边上一点,若→ →→ 1 →→AD = 2DB, CD = CA + λCB ,则 λ= ________.3答案23分析 在 △ABC 中,已知 D 是 AB 边上一点,→→ →1→→→→→→ 2 → → 2 → → 1 → 2 → ∵ AD = 2DB ,CD = CA + λCB ,∴ CD = CA + AD = CA + AB = CA +3 (CB - CA)= CA + CB ,3333∴ λ= 2.32. △ ABC 是边长为 2 的等边三角形,已知向量→ →a ,b 知足 AB = 2a , AC = 2a + b ,则以下结论正确的选项是 ________.① |b|= 1; ② a ⊥ b ;→③ a ·b = 1; ④ (4a + b)⊥BC.答案 ④分析→ → →在 △ABC 中,由 BC = AC - AB = 2a + b - 2a = b ,得 |b|= 2.又 |a|= 1,因此 a ·b = |a||b|cos 120 =°- 1,→ 2因此 (4a + b) ·BC = (4a + b) ·b = 4a ·b + |b|= 4×(- 1)+ 4= 0,→因此 (4a + b)⊥ BC.→ → → → → →3.在等腰 △ ABC 中,∠ BAC =90°,AB = AC = 2,BC = 2BD ,AC = 3AE ,则 AD ·BE = ________.答案-43分析由已知获得→ → 1→→→1 →1 →2 1 → → 1 → → 1 → 2,AD ·BE =(AB + AC) ·(BA + AC) =-2AB + AB ·AC +2 AC ·BA + AC2366→ → 1212△ ABC 是等腰直角三角形,∠ BAC = 90 °, AB = AC =2,因此 AD ·BE =- 2×2 + 0+0+ 6×24=- 3.4. (2016 ·津蓟县期中天 )已知向量 a , b 知足 (a + 2b) ·(a - b)=- 6,且 |a|= 1, |b|= 2,则 a与 b 的夹角为 ________.答案π 3分析 设 a 与 b 的夹角为θ,∵ (a + 2b) ·(a - b)=- 6,且 |a|= 1,|b|= 2,∴ 1+a ·b - 8=- 6,∴ a ·b = 1=|a||b |cos θ,∴ cos θ= 1,2π又∵ θ∈ [0,π],∴ θ=3.5. (2016 安·徽江淮十校第二次联考 )已知平面向量 a 、b(a ≠0, a ≠b)知足 |a|= 3,且 b 与 b - a 的夹角为 30°,则 |b|的最大值为 ________.答案 6分析→ → → → →令OA = a , OB = b ,则 b - a = OB -OA =AB ,如图,∵ b 与 b - a 的夹角为 30°,∴∠ OBA =30°,→→→→,∴由正弦定 理|OA| = |OB|得 , ∵ |a| = |OA |= 3 sin ∠ OBA sin ∠ OAB |b|= | OB | =6·sin ∠ OAB ≤ 6.6.已知向量 a = (2,1),b = (- 1, 2),若 a , b 在向量 c 方向上的投影相等,且 (c - a) ·(c - b) =- 5,则向量 c 的坐标为 ________.21 3答案 (2,2)分析设 c = (x , y),依据题意有x 2+ y 2- x - 3y =- 5,22x + y =- x + 2y ,1,x = 2解得3y = 2.→→ → 7.设向量 OA = (5+ cos θ,4+ sin θ), OB = (2,0) ,则 |AB|的取值范围是 ________. 答案[4,6]分析→ → →= (- 3- cos θ,- 4- sin θ),∵AB =OB -OA → 2 2 2 ∴ |AB| = (- 3-cos θ) +( -4- sin θ)= 6cos θ+ 8sin θ+26= 10sin(θ+ φ)+ 26,此中 tan φ= 3,4→ 2 →∴ 16≤|AB | ≤ 36,∴ 4≤|AB| ≤ 6.8.设向量 a = (a 1, a 2), b = (b 1, b 2),定义一种向量积 a?b = (a 1b 1, a 2b 2),已知向量 m =(2 , 1 π →2),n = (,0),点 P(x ,y)在 y = sin x 的图象上运动, Q 是函数 y = f(x)图象上的点, 且知足 OQ3→为坐标原点 ),则函数 y = f( x)的值域是 ________.= m?OP + n(此中 O1 1 答案 [- 2, 2]分析令 Q(c ,d),由新的运算可得→ →1 π π 1sin x), OQ = m?OP + n =(2x ,sin x)+ ( , 0)= (2x + ,233 2π, 11∴c =2x + 3π1消去 x 得 d =sin( c - ),22 6d = 2sin x ,1 1π1 1] .∴ y = f( x)= sin(x -),易知 y = f(x)的值域是 [- ,2262 2π9.设向量 a = ( 3sin x , sin x), b =(cos x ,sin x), x ∈ [0, 2].(1) 若 |a|= |b|,求 x 的值;(2) 设函数 f(x)= a ·b ,求 f(x)的最大值.解(1)由 |a|2= ( 3sin x)2+ (sin x)2= 4sin 2x ,222= 1,|b| =(cos x) + (sin x) 及 |a|= |b|,得 4sin 2x = 1.π1π又 x ∈ [0, ],进而 sin x = ,因此 x = .22 62(2) f(x)= a ·b = 3sin x ·cos x + sin x=3 1 1π 1,2sin 2x - cos 2x += sin(2x - )+ 2262π π π1,当 x = ∈ [0, ] 时, sin(2 x -)取最大值326因此 f( x)的最大值为32.10.已知向量 a = (cos α, sin α),b = (cos x , sin x), c = (sin x + 2sin α, cos x + 2cos α),此中 0<α<x<π.π(1) 若 α=4,求函数 f(x)= b ·c 的最小值及相应 x 的值;π (2) 若 a 与 b 的夹角为,且 a ⊥ c ,求 tan 2α的值.3解 (1)∵ b = (cos x , sin x),πc = (sin x + 2sin α, cos x + 2cos α), α= 4,∴ f(x)= b ·c= cos xsin x + 2cos xsin α+sin xcos x +2sin xcos α= 2sin xcos x + 2(sin x + cos x).π令 t = sin x +cos x 4<x<π ,则 2sin xcos x = t 2 -1,且- 1<t< 2.则 y = t 2+ 2t - 1= t +2 2-3,- 1<t< 2,2 2∴ t =- 2时, y min =-3,此时 sin x + cos x =- 2, 2 2 2 即 2sin x + π=- 2,42π π π 5π,∵ <x<π,∴ <x + <424 4 π 7 11π∴ x + = π,∴ x =12 .46∴函数 f(x)的最小值为- 3,相应 x 的值为 11π2 12.π(2) ∵ a 与 b 的夹角为 ,3π a ·b∴ cos= = cos αcos x + sin αsin x3 |a| ·|b|= cos(x - α).π∵ 0< α<x<π,∴ 0<x - α<π,∴ x - α=3.∵ a ⊥ c ,∴ cos α(sin x + 2sin α)+ sin α(cos x + 2cos α)= 0,π∴ sin(x + α)+ 2sin 2α= 0,即 sin 2α+3 + 2sin 2α= 0.5 sin 2α+ 3 3. ∴ 2cos 2α=0,∴ tan 2α=-52B 组 能力提升11.已知非零单位向量a 与非零向量b 知足 |a +b|= |a - b|,则向量 b - a 在向量 a 上的投影为 ________.答案 -1分析 因为 |a + b|= |a - b|,因此 (a + b)2= (a - b)2,2解得 a ·b = 0,因此向量 b - a 在向量 a 上的投影为 |b - a|cos 〈 a , b - a 〉=a ·(b -a)=0-|a||a||a|=- |a|=- 1.→ → →AB AC12.已知点 P 为 △ ABC 所在平面内一点, 且知足 AP = λ( → + →)(λ∈ R),则直线 |AB|cos B |AC|cos CAP 必经过 △ ABC 的 ________心. 答案垂→ → →AB AC分析 ∵BC ·( → + → )|AB|cos B |AC|cos C→ →=- |BC|+ |BC|= 0,→ → →AB AC∴ BC 与 λ( → + →)垂直,|AB|cos B |AC|cos C→ →AP 经过 △ABC 的垂心.∴ AP ⊥ BC ,∴点 P 在 BC 的高线上,即直线13.若 a = (2+ λ,1),b = (3,λ),若〈 a ,b 〉为钝角, 则实数 λ的取值范围是 ______________.答案3 (- ∞,- 3)∪( -3,- )2分析3 ∵ a = (2+ λ,1),b = (3,λ),∴ a ·b = 3(2+ λ)+ λ<0,得 λ<- .若 a ,b 共线,则 λ(2+ λ)2- 3= 0,解得λ=- 3 或λ=1.即当λ=- 3 时, a, b 方向相反,3又〈 a, b〉为钝角,则λ<-且λ≠- 3.14.在直角坐标系xOy 中,已知点A(1,1), B(2,3), C(3,2) ,点 P(x, y)在△ABC 三边围成的地区 (含界限 )上.→→→→(1) 若 PA+PB + PC= 0,求 |OP|;→→→(2) 设 OP=mAB+ nAC(m, n∈ R),用 x, y 表示 m-n,并求 m-n 的最大值.解 (1)方法一→ →→∵ PA+ PB+ PC= 0,→→→又 PA+ PB+ PC= (1- x,1- y)+ (2-x,3- y)+ (3- x,2- y)=(6 -3x,6- 3y),6- 3x= 0,x=2,∴解得6- 3y= 0,y=2,→→即 OP= (2,2),故 |OP|= 2 2.方法二→→→∵PA+ PB+ PC= 0,→→→→→→则 (OA- OP)+(OB -OP) +(OC-OP) =0,→1→→→→2.∴ OP=3(OA+ OB+ OC)=(2,2),∴ |OP|= 2→→→(2) ∵ OP=mAB+ nAC,x= m+2n,∴ (x, y)= (m+ 2n, 2m+ n),∴y= 2m+ n,两式相减得, m- n= y- x.令 y-x= t,由图知,当直线y= x+t 过点B(2,3) 时, t 获得最大值 1,故 m- n 的最大值为1.。

2016版《步步高》高考数学大二轮总复习总结与增分策略(文科)配套课件+配套文档:专题六-解析几何-

2016版《步步高》高考数学大二轮总复习总结与增分策略(文科)配套课件+配套文档:专题六-解析几何-

第3讲 圆锥曲线的综合问题1.(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+ 2 C .7+ 2 D .6 22.(2015·陕西)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探索性问题.2.试题解答往往要综合应用函数与方程、数形结合、分类讨论等多种思想方法,对计算能力也有较高要求,难度较大.热点一范围、最值问题圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.例1(2014·北京)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.思维升华 解决范围问题的常用方法:(1)数形结合法:利用待求量的几何意义,确定出极端位置后,数形结合求解.(2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.跟踪演练1 已知椭圆C 的左,右焦点分别为F 1,F 2,椭圆的离心率为12,且椭圆经过点P (1,32). (1)求椭圆C 的标准方程;(2)线段PQ 是椭圆过点F 2的弦,且PF 2→=λF 2Q →,求△PF 1Q 内切圆面积最大时实数λ的值.热点二 定点、定值问题1.由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).2.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.例2 椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10. (1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左,右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.思维升华 (1)动直线l 过定点问题解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).(2)动曲线C 过定点问题解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.跟踪演练2 已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b 2=1(a >b >0)的离心率e =33,直线l 被圆O 截得的弦长与椭圆的短轴长相等. (1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.热点三探索性问题1.解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型,解决这类问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.2.反证法与验证法也是求解存在性问题常用的方法.例3如图,抛物线C:y2=2px的焦点为F,抛物线上一定点Q(1,2).(1)求抛物线C的方程及准线l的方程;(2)过焦点F的直线(不经过Q点)与抛物线交于A,B两点,与准线l交于点M,记QA,QB,QM的斜率分别为k1,k2,k3,问是否存在常数λ,使得k1+k2=λk3成立,若存在λ,求出λ的值;若不存在,说明理由.思维升华 解决探索性问题的注意事项:存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.跟踪演练3 (2015·四川)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1. (1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求λ的值;若不存在,请说明理由.已知椭圆C 1:x 2a 2+y 23=1(a >0)与抛物线C 2:y 2=2ax 相交于A ,B 两点,且两曲线的焦点F 重合.(1)求C 1,C 2的方程;(2)若过焦点F 的直线l 与椭圆分别交于M ,Q 两点,与抛物线分别交于P ,N 两点,是否存在斜率为k (k ≠0)的直线l ,使得|PN ||MQ |=2?若存在,求出k 的值;若不存在,请说明理由.提醒:完成作业 专题六 第3讲二轮专题强化练专题六第3讲 圆锥曲线的综合问题A 组 专题通关1.(2015·北京西城区期末)若曲线ax 2+by 2=1为焦点在x 轴上的椭圆,则实数a ,b 满足( )A .a 2>b 2B.1a <1b C .0<a <b D .0<b <a2.已知椭圆x 24+y 2b 2=1(0<b <2)的左,右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1 B. 2 C.32D. 3 3.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则||F A |-|FB ||的值为( )A .4 2B .8C .8 2D .164.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( )A .必在圆x 2+y 2=2内B .必在圆x 2+y 2=2上C .必在圆x 2+y 2=2外D .以上三种情形都有可能5.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .86.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为_______________________________________________________________.7.已知A (1,2),B (-1,2),动点P 满足AP →⊥BP →.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与动点P 的轨迹没有公共点,则双曲线离心率的取值范围是________.8.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A 、B ,则直线AB 恒过定点________.9.已知抛物线x 2=2py (p >0),过点M (0,m )的直线l 与抛物线交于A ,B 两点,又过A ,B 两点分别作抛物线的切线,两条切线相交于点P .(1)求证:两条切线的斜率之积为定值;(2)当p =m =4时,求△P AB 面积的最小值.10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,离心率为22,过点M (2,0)的直线l 与椭圆C相交于A,B两点,O为坐标原点.(1)求椭圆C的方程;(2)若B点关于x轴的对称点是N,证明:直线AN恒过一定点.B 组 能力提高11.已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.12.直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为________. 13.已知P 、Q 、M 、N 四点都在以中心为坐标原点,离心率为22,左焦点为F (-1,0)的椭圆C 上,已知PF →与FQ →共线,MF →与FN →共线,PF →·MF →=0.(1)求椭圆C 的方程;(2)试用直线PQ 的斜率k (k ≠0)表示四边形PMQN 的面积S ,并求S 的最小值.学生用书答案精析第3讲 圆锥曲线的综合问题高考真题体验1.D[如图所示,设以(0,6)为圆心,以r 为半径的圆的方程为x 2+(y -6)2=r 2(r >0),与椭圆方程x 210+y 2=1联立得方程组,消掉x 2得9y 2+12y +r 2-46=0.令Δ=122-4×9(r 2-46)=0,解得r 2=50,即r =5 2.由题意易知P ,Q 两点间的最大距离为r +2=62,故选D.]2.(1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2,所以椭圆的方程为x 22+y 2=1. (2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1, 得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2,从而直线AP ,AQ 的斜率之和 k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2 =2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2. 热点分类突破例1 解 (1)由题意,得椭圆C 的标准方程为x 24+y 22=1, 所以a 2=4,b 2=2,从而c 2=a 2-b 2=2.因此a =2,c = 2.故椭圆C 的离心率e =c a =22. (2)设点A ,B 的坐标分别为(t,2),(x 0,y 0),其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0,即tx 0+2y 0=0,解得t =-2y 0x 0. 又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2 =x 20+y 20+4y 20x 20+4 =x 20+4-x 202+2(4-x 20)x 20+4 =x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),且当x 20=4时等号成立, 所以|AB |2≥8.故线段AB 长度的最小值为2 2.跟踪演练1 解 (1)e =c a =12,P (1,32)满足1a 2+(32)2b 2=1, 又a 2=b 2+c 2,∴a 2=4,b 2=3,∴椭圆标准方程为x 24+y 23=1. (2)显然直线PQ 不与x 轴重合,当直线PQ 与x 轴垂直时,|PQ |=3,|F 1F 2|=2,1PF Q S =3;当直线PQ 不与x 轴垂直时,设直线PQ :y =k (x -1),k ≠0代入椭圆C 的标准方程, 整理,得(3+4k 2)y 2+6ky -9k 2=0,Δ>0,y 1+y 2=-6k 3+4k 2,y 1·y 2=-9k 23+4k 2. 1PF Q S =12·|F 1F 2|·|y 1-y 2|=12k 2+k 4(3+4k 2)2,令t =3+4k 2,∴t >3,k 2=t -34, ∴1PF Q S =3-3(1t +13)2+43, ∵0<1t <13, ∴1PF Q S ∈(0,3),∴当直线PQ 与x 轴垂直时1PF Q S 最大,且最大面积为3. 设△PF 1Q 内切圆半径为r ,则1PF Q S =12(|PF 1|+|QF 1|+|PQ |)·r =4r ≤3. 即r max =34,此时直线PQ 与x 轴垂直,△PF 1Q 内切圆面积最大, ∴PF 2→=F 2Q →,∴λ=1.例2 解 (1)设椭圆方程为x 2a 2+y 2b 2=1 (a >b >0), 由e =c a =12,得a =2c , ∵a 2=b 2+c 2,∴b 2=3c 2,则椭圆方程变为x 24c 2+y 23c 2=1. 又由题意知(2+c )2+12=10,解得c 2=1,故a 2=4,b 2=3,即得椭圆的标准方程为x 24+y 23=1. (2)设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0. 则⎩⎪⎨⎪⎧ Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,x 1+x 2=-8mk 3+4k 2,x 1·x 2=4(m 2-3)3+4k 2.①又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2,∴(x 1-2)(x 2-2)+y 1y 2=0,∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0,∴3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0,∴7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7, 由①,得3+4k 2-m 2>0,②当m 1=-2k 时,l 的方程为y =k (x -2),直线过定点(2,0),与已知矛盾.当m 2=-2k 7时,l 的方程为y =k ⎝⎛⎭⎫x -27,直线过定点⎝⎛⎭⎫27,0,且满足②, ∴直线l 过定点,定点坐标为⎝⎛⎭⎫27,0.跟踪演练2 (1)解 设椭圆的半焦距为c ,圆心O 到直线l 的距离d =61+1=3,∴b =5-3= 2.由题意得⎩⎪⎨⎪⎧ c a =33,a 2=b 2+c 2,b =2,∴a 2=3,b 2=2. ∴椭圆E 的方程为y 23+x 22=1. (2)证明 设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0),联立直线l 0与椭圆E 的方程得⎩⎪⎨⎪⎧y =k (x -x 0)+y 0,y 23+x 22=1,消去y 得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0,∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0,整理得,(2-x 20)k 2+2kx 0y 0-(y 20-3)=0, 设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2,则k 1·k 2=-y 20-32-x 20,∵点P 在圆O 上,∴x 20+y 20=5,∴k 1·k 2=-5-x 20-32-x 20=-1. ∴两条切线的斜率之积为常数-1.例3 解 (1)把Q (1,2)代入y 2=2px ,得2p =4,所以抛物线方程为y 2=4x ,准线l 的方程为x =-1.(2)由条件可设直线AB 的方程为y =k (x -1),k ≠0.由抛物线准线l :x =-1,可知M (-1,-2k ).又Q (1,2),所以k 3=2+2k 1+1=k +1, 即k 3=k +1.把直线AB 的方程y =k (x -1),代入抛物线方程y 2=4x ,并整理,可得k 2x 2-2(k 2+2)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,知x 1+x 2=2k 2+4k 2,x 1x 2=1. 又Q (1,2),则k 1=2-y 11-x 1,k 2=2-y 21-x 2. 因为A ,F ,B 共线,所以k AF =k BF =k ,即y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=2-y 11-x 1+2-y 21-x 2=y 1x 1-1+y 2x 2-1-2(x 1+x 2-2)x 1x 2-(x 1+x 2)+1=2k -2(2k 2+4k 2-2)1-2k 2+4k 2+1=2k +2, 即k 1+k 2=2k +2.又k 3=k +1,可得k 1+k 2=2k 3.即存在常数λ=2,使得k 1+k 2=λk 3成立.跟踪演练3 解 (1)由已知,点C 、D 的坐标分别为(0,-b ),(0,b ),又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧ 1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b =2,所以椭圆E 的方程为x 24+y 22=1. (2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧ x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0, 其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1, 从而,OA →·OB →+λP A →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)]=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2. 所以当λ=1时,-λ-12k 2+1-λ-2=-3,此时OA →·OB →+λP A →·PB →=-3为定值.当直线AB 斜率不存在时,直线AB 即为直线CD ,此时,OA →·OB →+λP A →·PB →=OC →·OD →+PC →·PD →=-2-1=-3.故存在常数λ=1,使得OA →·OB →+λP A →·PB →为定值-3.高考押题精练解 (1)因为C 1,C 2的焦点重合, 所以a 2-3=a 2, 所以a 2=4.又a >0,所以a =2.于是椭圆C 1的方程为x 24+y 23=1, 抛物线C 2的方程为y 2=4x .(2)假设存在直线l 使得|PN ||MQ |=2, 则可设直线l 的方程为y =k (x -1),P (x 1,y 1),Q (x 2,y 2),M (x 3,y 3),N (x 4,y 4).由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),可得k 2x 2-(2k 2+4)x +k 2=0, 则x 1+x 4=2k 2+4k 2,x 1x 4=1, 所以|PN |=1+k 2·(x 1+x 4)2-4x 1x 4=4(1+k 2)k 2. 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),可得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 2+x 3=8k 23+4k 2,x 2x 3=4k 2-123+4k 2, 所以|MQ |=1+k 2·(x 2+x 3)2-4x 2x 3=12(1+k 2)3+4k 2. 若|PN ||MQ |=2,则4(1+k 2)k 2=2×12(1+k 2)3+4k 2,解得k =±62.故存在斜率为k =±62的直线l ,使得|PN ||MQ |=2.二轮专题强化练答案精析第3讲 圆锥曲线的综合问题1.C [由ax 2+by 2=1,得x 21a +y 21b =1, 因为焦点在x 轴上,所以1a >1b>0, 所以0<a <b .]2.D [由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a =3,可求得b 2=3,即b = 3.]3.C [依题意知F (2,0),所以直线l 的方程为y =x -2,联立方程⎩⎪⎨⎪⎧y =x -2,y 2=8x消去y 得x 2-12x +4=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=12,x 1x 2=4,则||AF |-|BF ||=|(x 1+2)-(x 2+2)|=|x 1-x 2| =(x 1+x 2)2-4x 1x 2=144-16=8 2.] 4.A [∵x 1+x 2=-b a ,x 1x 2=-c a. ∴x 21+x 22=(x 1+x 2)2-2x 1x 2=b 2a 2+2c a =b 2+2ac a 2. ∵e =c a =12,∴c =12a , ∴b 2=a 2-c 2=a 2-⎝⎛⎭⎫12a 2=34a 2.∴x 21+x 22=34a 2+2a ×12a a 2=74<2.∴P (x 1,x 2)在圆x 2+y 2=2内.]5.C [设P (x 0,y 0),则x 204+y 203=1,即y 20=3-3x 204, 又因为F (-1,0),所以OP →·FP →=x 0·(x 0+1)+y 20=14x 20+x 0+3=14(x 0+2)2+2, 又x 0∈[-2,2],即OP →·FP →∈[2,6],所以(OP →·FP →)max =6.]6.-2解析 由已知得A 1(-1,0),F 2(2,0).设P (x ,y ) (x ≥1),则P A 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即P A 1→·PF 2→取最小值,最小值为-2.7.(1,2)解析 设P (x ,y ),由题设条件,得动点P 的轨迹为(x -1)(x +1)+(y -2)·(y -2)=0,即x 2+(y -2)2=1,它是以(0,2)为圆心,1为半径的圆.又双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b ax ,即bx ±ay =0, 由题意,可得2aa 2+b 2>1,即2ac >1, 所以e =c a<2,又e >1,故1<e <2. 8.(0,2)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A 处的切线方程为y -y 1=12x 1(x -x 1),化简得,y =12x 1x -y 1,同理,在点B 处的切线方程为y =12x 2x -y 2.又点Q (t ,-2)的坐标满足这两个方程,代入得:-2=12x 1t -y 1,-2=12x 2t -y 2,则说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为y -2=12tx ,因此直线AB 恒过定点(0,2).9.(1)证明 依题意,设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 2=2py ,得x 2-2pkx -2pm =0, 则由根与系数的关系,得x 1+x 2=2pk ,x 1x 2=-2pm .对抛物线y =x 22p 求导,得y ′=x p, 设两条切线的斜率分别为k 1,k 2,则k 1=x 1p ,k 2=x 2p, 所以k 1k 2=x 1p ·x 2p =-2pm p 2=-2m p, 即两条切线的斜率之积为定值-2m p. (2)解 因为p =m =4,所以抛物线方程为x 2=8y ,y ′=x 4,x 1+x 2=8k ,x 1x 2=-32, 则直线P A 的方程为y -x 218=x 14(x -x 1), PB 的方程为y -x 228=x 24(x -x 2). 将两方程联立,得P 点的坐标为(x 1+x 22,x 1x 28),所以P (4k ,-4). 于是|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=81+k 2·k 2+2, 又点P 到直线AB 的距离d =4(k 2+2)1+k2, 所以S △P AB =16k 2+2·(k 2+2).当k 2=0,即k =0时,所求面积最小为32 2. 10.(1)解 由题意知b =1,e =c a =22,得a 2=2c 2=2a 2-2b 2,故a 2=2.故所求椭圆C 的方程为x 22+y 2=1. (2)证明 设直线l 的方程为y =k (x -2),则由⎩⎪⎨⎪⎧ y =k (x -2),x 22+y 2=1,得(1+2k 2)x 2-8k 2x +8k 2-2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8k 21+2k 2, x 1x 2=8k 2-21+2k 2. 由对称性可知N (x 2,-y 2),定点在x 轴上,直线AN :y -y 1=y 1+y 2x 1-x 2(x -x 1). 令y =0得:x =x 1-y 1(x 1-x 2)y 1+y 2=x 1y 2+x 2y 1y 1+y 2=2kx 1x 2-2k (x 1+x 2)k (x 1+x 2-4)=2x 1x 2-2(x 1+x 2)x 1+x 2-4=16k 2-41+2k 2-16k 21+2k 28k 21+2k 2-4=1, 故直线AN 恒过定点(1,0).11.[1,+∞)解析 以AB 为直径的圆的方程为x 2+(y -a )2=a ,由⎩⎪⎨⎪⎧y =x 2,x 2+(y -a )2=a , 得y 2+(1-2a )y +a 2-a =0.即(y -a )[y -(a -1)]=0,由已知⎩⎪⎨⎪⎧a >0,a -1≥0,解得a ≥1. 12.116 解析 由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y得x 2-3x -4=0,∴x A =-1,x D =4,∴y A =14,y D =4. 直线3x -4y +4=0恰过抛物线的焦点F (0,1),∴|AF |=y A +1=54,|DF |=y D +1=5, ∴|AB ||CD |=|AF |-1|DF |-1=116. 13.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则a 2=b 2+c 2,又依题意,知c =1,c a =22,所以a =2,b =1.所以椭圆C 的方程为x 22+y 2=1. (2)依题意,易知PQ 与MN 垂直于点F .设PQ 的方程为y =k (x +1), 由⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1,消y , 得(1+2k 2)x 2+4k 2x +2k 2-2=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2,所以|PQ |=(1+k 2)(x 1-x 2)2 =(1+k 2)[(x 1+x 2)2-4x 1x 2]=22(1+k 2)1+2k 2. 同理,可得|MN |=22(1+1k 2)1+2k 2=22(1+k 2)2+k 2, 所以四边形PMQN 的面积为S =12|PQ |·|MN |=4(1+k 2)2(1+2k 2)(k 2+2)=2-2k 22k 4+5k 2+2=2-22k 2+2k2+5≥169. 当且仅当k 2=1时,取等号.所以四边形PMQN 的面积S 的最小值为169.。

2016版《步步高》高考数学大二轮总复习与增分策略(文科)配套课件+配套文档:专题六 解析几何 第1讲

2016版《步步高》高考数学大二轮总复习与增分策略(文科)配套课件+配套文档:专题六 解析几何 第1讲

-y-3=0上的圆的方程为________________.
解析 由题意知KAB=2,AB的中点为(4,0),
设圆心为C(a,b),
∵圆过A(5,2),B(3,-2)两点,
∴圆心一定在线段AB的垂直平分线上. 1 b a=2, =-2, 则a-4 解得 ∴C(2,1), 2a-b-3=0, b=1
A.1或3
解析
当k=4时,直线l1的斜率不存在,直线l2的斜率存在,
则两直线不平行; 3-k 当 k≠4 时,两直线平行的一个必要条件是 =k-3,解 4-k
得 k=3 或 k=5. 1 3 但必须满足 ≠2(截距不相等)才是充要条件, 经检验知满 k-4
足这个条件.
(2) 已知两点 A(3,2) 和 B( - 1,4) 到直线 mx + y + 3 = 0 的距离相
的距离问题.
跟踪演练 3
(1)已知在平面直角坐标系 xOy 中,圆C 的方程
为x2+y2=-2y+3,直线l过点(1,0)且与直线x-y+1=0垂
直.若直线l与圆C交于A、B两点,则△OAB的面积为(
A.1 B. 2 C.2 D.2 2
)
解析 因为圆C的标准方程为x2+(y+1)2=4, 圆心为C(0,-1),半径r=2,直线l的斜率为-1, 其方程为x+y-1=0.
|3×0-4×0+5| 又|OD|= =1,∴r=2|OD|=2. 5
1 2 3 4
3.(2015· 重庆)若点P(1,2)在以坐标原点为圆心的圆上,则该
x+2y-5=0 圆在点P处的切线方程为____________. 解析 点P(1,2)在以坐标原点为圆心的圆上, 则圆的方程为x2+y2=5,
2.求直线方程 要注意几种直线方程的局限性.点斜式、两点式、斜截式要 求直线不能与 x轴垂直 .而截距式方程不能表示过原点的直 线,也不能表示垂直于坐标轴的直线.

2016年高考数学自由复习步步高系列(江苏版)专题05圆锥曲线Word版含解析

2016年高考数学自由复习步步高系列(江苏版)专题05圆锥曲线Word版含解析

一.基础知识整合1. 直线的倾斜角和斜率:任何直线都有倾斜角,但不一定都有斜率,如倾斜角等于90°时,斜率不存在;若两直线的倾斜角相等,斜率相等或都不存在;若两条直线的斜率相等,则两直线的倾斜角相等;当倾斜角为锐角时,倾斜角越大,斜率也越大;当倾斜角为钝角时,倾斜角越大,斜率也越大;与x 轴平行或重合的直线的倾斜角为零,斜率也为零;2. 直线的方程:点斜式:)(11x x k y y -=-; 截距式:b kx y +=;两点式:121121x x x x y y y y --=--; 截距式:1=+bya x ;一般式:0=++C By Ax ,其中A 、B 不同时为0.3.两条直线的位置关系:两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交.两直线平行⇔两直线的斜率相等或两直线斜率都不存在;两直线垂直⇔两直线的斜率之积为1-或一直线斜率不存在,另一直线斜率为零; 与已知直线0(0,0)Ax By C A B ++=≠≠平行的直线系方程为0()Ax By m C m ++=≠; 若给定的方程是一般式,即l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0,则有下列结论:l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0;l 1⊥l 2⇔A 1A 2+B 1B 2=0.两平行直线间距离公式:10(0,0)Ax By C A B ++=≠≠与2120(0,0,)Ax By C A B C C ++=≠≠≠的距离d =4.圆的有关问题:圆的标准方程:222)()(r b y a x =-+-(r >0),称为圆的标准方程,其圆心坐标为(a ,b ),半径为r ,特别地,当圆心在原点(0,0),半径为r 时,圆的方程为222r y x =+,几种特殊的圆的方程设圆的圆心为(,)a b ,半径为r(1)若圆过坐标原点,则圆的标准方程为:2222()()x a y b a b -+-=+ (2)若圆与x 轴相切,则圆的标准方程为:222()()x a y b b -+-= (3)若圆与y 轴相切,则圆的标准方程为:222()()x a y b a -+-= (4)若圆心在x 轴上,则圆的标准方程为:222()x a y r -+= (5)若圆心在y 轴上,则圆的标准方程为:222()x y b r +-= (6)若圆与坐标轴相切,则圆的标准方程为:222()()x a y a a -+-=或222()()x b y b b -+-=.圆的一般方程:022=++++F Ey Dx y x (F E D 422-+>0)称为圆的一般方程,其圆心坐标为(2D -,2E -),半径为F E D r 42122-+=. 当F E D 422-+=0时,方程表示一个点(2D -,2E -);当F E D 422-+<0时,方程不表示任何图形.圆的参数方程:圆的普通方程与参数方程之间有如下关系:222r y x =+ ⇔ cos sin x r y r θθ=⎧⎨=⎩(θ为参数)222)()(r b y a x =-+- ⇔ cos sin x a r y b r θθ=+⎧⎨=+⎩ (θ为参数)直线与圆的位置关系: 直线与圆的位置关系的判断:【方法一】几何法:根据圆心与直线的距离与半径的大小关系进行判断;设圆心到直线的距离为d ,圆的半径为r ,则(1)d r <⇔直线与圆相交⇔直线与圆有两个公共点;(2)d r >⇔直线与圆相离⇔直线与圆无公共点;(3)d r =⇔直线与圆相切⇔直线与圆有且只有一个公共点;【方法二】代数法:把直线的方程圆的方程联立方程组,消去其中一个未知数得到关于另外一个数的未知数的一元二次方程,则(1)0∆>⇔直线与圆相交⇔直线与圆有两个公共点; (2)0∆<⇔直线与圆相离⇔直线与圆无公共点;(3)0∆=⇔直线与圆相切⇔直线与圆有且只有一个公共点;若直线与圆相交,设弦长为l ,弦心距为d ,半径为r ,则l =圆与圆的位置关系:圆与圆的位置关系的判断:设两个圆的圆心分别为12,O O ,半径分别为12,r r ,则 (1)1212||O O r r >+⇔圆与圆相离⇔两个圆有四条公切线; (2)121212||||r r O O r r -<<+⇔圆与圆相交⇔两个圆有两条公切线; (3)1212||O O r r =+⇔圆与圆相外切⇔两个圆有三条公切线; (4)1212||||O O r r =-⇔圆与圆相内切⇔两个圆有一条公切线; (5)1212||||O O r r <-⇔圆与圆相内含⇔两个圆没有公切线;若圆221110x y D x E y F ++++=与圆222220x y D x E y F ++++=相交,则公共弦所在的直线方程为121212()()()0D D x E E y F F -+-+-=; 5.椭圆及其标准方程:椭圆的定义:椭圆的定义中,平面内动点与两定点1F 、2F 的距离的和大于|1F 2F |这个条件不可忽视.若这个距离之和小于|1F 2F |,则这样的点不存在;若距离之和等于|1F 2F |,则动点的轨迹是线段1F 2F .椭圆的标准方程:12222=+b y a x (a >b >0),12222=+bx a y (a >b >0).椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.如果已知椭圆过两个点(不是在坐标轴上的点),求其标准方程时,为了避免对焦点的讨论可以设其方程为221(0,0)Ax By A B +=>>或221(0,0)x y A B A B+=>>; 椭圆的参数方程: 椭圆12222=+b y a x (a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).说明 ⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P 的离心角θ与直线OP 的倾斜角α不同:θαtan tan a b=;⑵ 椭圆的参数方程可以由方程12222=+by a x 与三角恒等式1sin cos 22=+θθ相比较而得到,所以椭圆的参数方程的实质是三角代换.6.椭圆的简单几何性质椭圆的几何性质:设椭圆方程为12222=+by a x (a >b >0).范围: -a≤x≤a,-b≤x≤b,所以椭圆位于直线x=a ±和y=b ±所围成的矩形里.对称性:分别关于x 轴、y 轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心. 顶点:有四个1A (-a ,0)、2A (a ,0)1B (0,-b )、2B (0,b ). 线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点. 离心率:椭圆的焦距与长轴长的比ace =叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆.椭圆的第二定义:平面内动点M 与一个顶点的距离和它到一条定直线的距离的比是常数ac e =(e <1=时,这个动点的轨迹是椭圆.准线:根据椭圆的对称性,12222=+b y a x (a >b >0)的准线有两条,它们的方程为c a x 2±=.对于椭圆12222=+bx a y (a >b >0)的准线方程,只要把x 换成y 就可以了,即c a y 2±=.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设1F (-c ,0),2F (c ,0)分别为椭圆122=+ba (a >b >0)的左、右两焦点,M (x ,y )是椭圆上任一点,则两条焦半径长分别为ex a MF +=1,ex a MF -=2,椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a 、b 、c 、e 中有2a =2b +2c 、ace =两个关系,因此确定椭圆的标准方程只需两个独立条件.在椭圆中,如果一个三角形的两个顶点是焦点12,F F ,另一个顶点P 在椭圆上,称该三角形为焦点三角形,则三角形12F PF 的周长为定值等于22a c +,面积等于212tan 2F PF b ∠,其中b 是短半轴的长;过焦点垂直于对称轴的弦长即通径长为2b2a7.双曲线及其标准方程:双曲线的定义:平面内与两个定点1F 、2F 的距离的差的绝对值等于常数2a (小于|1F 2F |)的动点M 的轨迹叫做双曲线.在这个定义中,要注意条件2a <|1F 2F |,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=|1F 2F |,则动点的轨迹是两条射线;若2a >|1F 2F |,则无轨迹.若1MF <2MF 时,动点M 的轨迹仅为双曲线的一个分支,又若1MF >2MF 时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.双曲线的标准方程:12222=-b y a x 和12222=-bx a y (a >0,b >0).这里222a c b -=,其中|1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.如果已知双曲线过两个点(不是在坐标轴上的点),求其标准方程时,为了避免对焦点的讨论可以设其方程为221(0)Ax By AB +=<或1(0)AB A B+=< 8.双曲线的简单几何性质双曲线12222=-by a x 的实轴长为2a ,虚轴长为2b ,离心率a ce =>1,离心率e 越大,双曲线的开口越大.双曲线12222=-b y a x 的渐近线方程为x a by ±=或表示为02222=-by a x .若已知双曲线的渐近线方程是x nmy ±=,即0=±ny mx ,那么双曲线的方程具有以下形式:k y n x m =-2222,其中k 是一个不为零的常数.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线12222=-b y a x ,它的焦点坐标是(-c ,0)和(c ,0),与它们对应的准线方程分别是ca x 2-=和c a x 2=.在双曲线中,a 、b 、c 、e 四个元素间有ac e =与222b a c +=的关系,与椭圆一样确定双曲线的标准方程只要两个独立的条件.在双曲线中,如果一个三角形的两个顶点是焦点12,F F ,另一个顶点P 在椭圆上,称该三角形为焦点三角形,则面积等于212tan2b F PF ∠,其中b 是虚半轴的长;过焦点垂直于对称轴的弦长即通径长为22b a.9.抛物线的标准方程和几何性质抛物线的定义:平面内到一定点(F )和一条定直线(l )的距离相等的点的轨迹叫抛物线。

2016年高考数学自由复习步步高系列(江苏版)专题03数列Word版含解析

2016年高考数学自由复习步步高系列(江苏版)专题03数列Word版含解析

1.等差、等比数列的通项公式等差数列{a n }的通项公式为a n =a 1+(n -1)d =a m +(n -m )d ;等比数列{a n }的通项公式为a n =a 1q n -1=a m q n -m .2.等差、等比数列的前n 项和(1)等差数列的前n 项和为S n =n a 1+a n 2=na 1+n n -2d .特别地,当d ≠0时,S n 是关于n 的二次函数,且常数项为0,即可设S n =an 2+bn (a ,b 为常数).(2)等比数列的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-q n 1-q=a 1-a n q1-q ,q ≠1,特别地,若q ≠1,设a =a 11-q,则S n =a -aq n.3.等差数列、等比数列常用性质(1)若序号m +n =p +q ,在等差数列中,则有a m +a n =a p +a q ;特别的,若序号m +n =2p ,则a m +a n =2a p ;在等比数列中,则有a m ·a n =a p ·a q ;特别的,若序号m +n =2p ,则a m ·a n =a 2p ;(2)在等差数列{a n }中,S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,其公差为kd ;其中S n 为前n 项的和,且S n ≠0(n ∈N *);在等比数列{a n }中,当q ≠-1或k 不为偶数时S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其中S n 为前n 项的和(n ∈N *). 4.数列求和的方法归纳(1)转化法:将数列的项进行分组重组,使之转化为n 个等差数列或等比数列,然后应用公式求和;(2)错位相减法:适用于{a n ·b n }的前n 项和,其中{a n }是等差数列,{b n }是等比数列; (3)裂项法:求{a n }的前n 项和时,若能将a n 拆分为a n =b n -b n +1,则a 1+a 2+…+a n =b 1-b n +1;(4)倒序相加法:一个数列倒过来与原数列相加时,若有公因式可提,并且剩余的项的和容易求出,那么这样的数列求和可采用此法.其主要用于求组合数列的和.这里易忽视因式为零的情况;(5)试值猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.易错点:对于S n 不加证明;(6)并项求和法:先将某些项放在一起先求和,然后再求Sn .例如对于数列{a n }:a 1=1,a 2=3,a 3=2,a n +2=a n +1-a n ,可证其满足a n +6=a n ,在求和时,依次6项求和,再求S n .5.数列的应用题(1)应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读理解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推理予以解决.(2)数列应用题一般是等比、等差数列问题,其中,等比数列涉及的范围比较广,如经济上涉及利润、成本、效益的增减,解决该类题的关键是建立一个数列模型{a n },利用该数列的通项公式、递推公式或前n 项和公式.热点一:等差数列【典例】设公差为d 的等差数列{}n a 的前n 项和为n S ,若11a =,21179d -<<-,则当nS 取最大值时,n 的值为 . 【答案】9【考点定位】等差数列的性质、等差数列的前n 项和【题型概述】等差数列是高考的必考内容,可以填空题单独出现,也可在解答题中与函数、不等式结合进行考查,处理时可回归基本量构造方程组,有时也要考虑与一元一次函数和一元二次函数相结合,体现出数列的函数特征.【跟踪练习1】在等差数列}{n a 中,首项31=a ,公差2=d ,若某学生对其连续10项求和,在遗漏一项的情况下,求得余下9项的和为185,则此连续10项的和为 . 【答案】200考点:等差数列的前n 项和.【跟踪练习2】等差数列{a n }的前n 项和为S n ,且满足a 1+a 7=﹣9,S 9=﹣.(Ⅰ)求数列{a n }的通项公式; (Ⅱ)设b n =,数列{b n }的前n 项和为T n ,求证:T n >﹣.【解析】(Ⅰ)设数列{a n }的公差为d ,∵a 1+a 7=﹣9,S 9=﹣,∴,解得,∴=﹣.(Ⅱ)证明:∵S n ==,∴b n ==﹣=﹣,∴数列{b n }的前n 项和为T n =﹣+…+==.∴T n >﹣.考点:数列的求和;等差数列的性质. 热点二:等比数列【典例】设{}n a 是等比数列,公比2=q ,n S 为{}n a 的前n 项和。

【步步高】(全国通用)2016版高考数学 考前三个月复习冲刺 专题2 第3练“三个二次”的转化与应用课件 理

【步步高】(全国通用)2016版高考数学 考前三个月复习冲刺 专题2 第3练“三个二次”的转化与应用课件 理
答案 D
题型三 方程与不等式的转化
例3 已知关于x的二次方程x2+2mx+2m+1=0. (1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间 (1,2)内,求m的取值范围; 解 由条件,抛物线f(x)=x2+2mx+2m+1与x轴的交点分别 在区间(-1,0)和(1,2)内,如图所示,
高考题型精练
2
1
2
3
4
5
6
7
8
9
10 11 12
3 3 9 2 解析 m=x - x=x- - , 2 4 16 x∈[-1,1]. 5 当 x=-1 时,m 取最大值为 , 2 3 9 当 x= 时,m 取最小值为- , 4 16 9 5 ∴- ≤m≤ . 答案 D 16 2
调递增,则f(2-x)>0的解集为(
A.{x|x>2或x<-2}
)
B.{x|-2<x<2}
C.{x|x<0或x>4}
∵f(x)是偶函数, ∴b-2a=0,即b=2a.
D.{x|0<x<4}
解析 f(x)=ax2+(b-2a)x-2b.
高考题型精练
1
2
3
4
5
6
7
8
9
10 11 12
∴f(x)=ax2-4a,又f(2)=0,x∈(0,+∞)时,f(x)为增函数.
方程在[-1,3]上有两个实数根,不合题意,故a≠1.
1 6 2 13 (2)当 f(3)=0 时,a=- ,此时 f(x)=x - x- . 5 5 5 6 2 2 13 令 f(x)=0,即 x - x- =0,解得 x=- 或 x=3. 5 5 5
1 方程在[ -1,3] 上有两个实数根,不合题意,故 a≠- . 5 1 综上所述,a<- 或 a>1. 5

2016版《步步高》高考数学大二轮总复习专题八 系列4选讲第2讲

2016版《步步高》高考数学大二轮总复习专题八 系列4选讲第2讲
a2x2 则 4 +b2y2=1 为曲线 C 的方程.
又已知曲线C的方程为x2+y2=1,
a2=4, a=2, 故 2 又 a>0,b>0,所以 b =1. b=1.
思维升华
对于二阶矩阵,若有 AB = BA = E ,则称 B 为 A的逆 矩阵.因而求一个二阶矩阵的逆矩阵,可用待定系数
0 (其中 a>0,b>0). b
(1)若a=2,b=3,求矩阵M的逆矩阵M-1;
解 设矩阵 M 的逆矩阵 M
-1
-1
x1 = x2
y1 , y2
则 MM

1 = 0
0 . 1
2 M= 0
0 , 3
2 所以 0
0 x1 3 x2
1 2
x-1=-2, x=-1, 则 即 y=2, y=2,
所以矩阵
-1 A= 2
1 . 0
从而矩阵A的特征多项式f(λ)=(λ+2)(λ-1),
所以矩阵A的另一个特征值为1.
考情考向分析
本讲从内容上看,主要考查二阶矩阵的基本运算,考查矩
阵的逆运算及利用系数矩阵的逆矩阵求点的坐标或曲线方
x α = ,则 y
x x x A = λ ,即 满足二元一次方程组 y y y
ax+by=λx, λ-ax-by=0, 故 (*) cx+dy=λy, -cx+λ-dy=0.
由特征向量的定义知 α≠0, 因此 x, y 不全为 0, 此时 Dx=0, Dy=0,因此,若要上述二元一次方程组有不全为 0 的解,则

1 由题意得 a 1 0 -1 = , 11 -3

2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套学案53 抛物线

2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套学案53 抛物线

学案53 抛物线导学目标: 1.掌握抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.2.理解数形结合的思想.自主梳理1.抛物线的概念平面内与一个定点F 和一条定直线l (F ∉l )距离______的点的轨迹叫做抛物线.点F 叫做抛物线的__________,直线l 叫做抛物线的________.2自我检测 1.(2010·四川)抛物线y 2=8x 的焦点到准线的距离是( ) A .1 B .2 C .4 D .82.若抛物线y 2=2px 的焦点与椭圆x 26+y22=1的右焦点重合,则p 的值为( )A .-2B .2C .-4D .4 3.(2011·陕西)设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( )A .y 2=-8x B .y 2=8x C .y 2=-4x D .y 2=4x4.已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A .|FP 1|+|FP 2|=|FP 3|B .|FP 1|2+|FP 2|2=|FP 3|2C .2|FP 2|=|FP 1|+|FP 3|D .|FP 2|2=|FP 1|·|FP 3| 5.(2011·佛山模拟)已知抛物线方程为y 2=2px (p >0),过该抛物线焦点F 且不与x 轴垂直的直线AB 交抛物线于A 、B 两点,过点A 、点B 分别作AM 、BN 垂直于抛物线的准线,分别交准线于M 、N 两点,那么∠MFN 必是( )A .锐角B .直角C .钝角D .以上皆有可能探究点一 抛物线的定义及应用例1 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|P A |+|PF |的最小值,并求出取最小值时P 点的坐标.变式迁移1 已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A.⎝⎛⎭⎫14,-1B.⎝⎛⎭⎫14,1 C .(1,2) D .(1,-2) 探究点二 求抛物线的标准方程 例2 (2011·芜湖调研)已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (m ,-3)到焦点的距离为5,求m 的值、抛物线方程和准线方程.变式迁移2 根据下列条件求抛物线的标准方程:(1)抛物线的焦点F 是双曲线16x 2-9y 2=144的左顶点; (2)过点P (2,-4).探究点三 抛物线的几何性质例3 过抛物线y 2=2px 的焦点F 的直线和抛物线相交于A ,B 两点,如图所示.(1)若A ,B 的纵坐标分别为y 1,y 2,求证:y 1y 2=-p 2;(2)若直线AO 与抛物线的准线相交于点C ,求证:BC ∥x 轴.变式迁移3 已知AB 是抛物线y 2=2px (p >0)的焦点弦,F 为抛物线的焦点,A (x 1,y 1),B (x 2,y 2).求证:(1)x 1x 2=p 24;(2)1|AF |+1|BF |为定值.分类讨论思想的应用例 (12分)过抛物线y 2=2px (p >0)焦点F 的直线交抛物线于A 、B 两点,过B 点作其准线的垂线,垂足为D ,设O 为坐标原点,问:是否存在实数λ,使AO →=λOD →?多角度审题 这是一道探索存在性问题,应先假设存在,设出A 、B 两点坐标,从而得到D 点坐标,再设出直线AB 的方程,利用方程组和向量条件求出λ.【答题模板】解 假设存在实数λ,使AO →=λOD →. 抛物线方程为y 2=2px (p >0),则F ⎝⎛⎭⎫p 2,0,准线l :x =-p 2, (1)当直线AB 的斜率不存在,即AB ⊥x 轴时,交点A 、B 坐标不妨设为:A ⎝⎛⎭⎫p 2,p ,B ⎝⎛⎭⎫p2,-p . ∵BD ⊥l ,∴D ⎝⎛⎭⎫-p2,-p , ∴AO →=⎝⎛⎭⎫-p 2,-p ,OD →=⎝⎛⎭⎫-p 2,-p ,∴存在λ=1使AO →=λOD →.[4分] (2)当直线AB 的斜率存在时,设直线AB 的方程为y =k ⎝⎛⎭⎫x -p2 (k ≠0), 设A (x 1,y 1),B (x 2,y 2),则D ⎝⎛⎭⎫-p 2,y 2,x 1=y 212p ,x 2=y222p, 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2y 2=2px得ky 2-2py -kp 2=0,∴y 1y 2=-p 2,∴y 2=-p 2y 1,[8分]AO →=(-x 1,-y 1)=⎝⎛⎭⎫-y 212p ,-y 1,OD →=⎝⎛⎭⎫-p 2,y 2=⎝⎛⎭⎫-p 2,-p 2y 1,假设存在实数λ,使AO →=λOD →,则⎩⎨⎧-y 212p =-p 2λ-y 1=-p 2y1λ,解得λ=y 21p 2,∴存在实数λ=y 21p2,使AO→=λOD →.综上所述,存在实数λ,使AO →=λOD →.[12分] 【突破思维障碍】由抛物线方程得其焦点坐标和准线方程,按斜率存在和不存在讨论,由直线方程和抛物线方程组成方程组,研究A 、D 两点坐标关系,求出AO →和OD →的坐标,判断λ是否存在.【易错点剖析】解答本题易漏掉讨论直线AB 的斜率不存在的情况,出现错误的原因是对直线的点斜式方程认识不足.(满分:75分)一、选择题(每小题5分,共25分) 1.(2011·大纲全国)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB 等于( )A.45B.35C .-35D .-452.(2011·湖北)将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则( )A .n =0B .n =1C .n =2D .n ≥33.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是( ) A .相离 B .相交 C .相切 D .不确定 4.(2011·泉州月考)已知点A (-2,1),y 2=-4x 的焦点是F ,P 是y 2=-4x 上的点,为使|P A |+|PF |取得最小值,则P 点的坐标是( )A.⎝⎛⎭⎫-14,1 B .(-2,22) C.⎝⎛⎭⎫-14,-1 D .(-2,-22) 5.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →·AF →=-4,则点A 的坐标为( )A .(2,±2)B .(1,±2)C .(1,2)D .(2,2) 二、填空题(每小题4分,共12分) 6.(2011·重庆)设圆C 位于抛物线y 2=2x 与直线x =3所围成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为________.7.(2011·济宁期末)已知A 、B 是抛物线x 2=4y 上的两点,线段AB 的中点为M (2,2),则|AB |=________.8.(2010·浙江)设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.三、解答题(共38分)9.(12分)已知顶点在原点,焦点在x 轴上的抛物线截直线y =2x +1所得的弦长为15,求抛物线方程.10.(12分)(2011·韶关模拟)已知抛物线C :x 2=8y .AB 是抛物线C 的动弦,且AB 过F (0,2),分别以A 、B 为切点作轨迹C 的切线,设两切线交点为Q ,证明:AQ ⊥BQ .11.(14分)(2011·济南模拟)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹C 于两点P 、Q ,交直线l 1于点R ,求RP →·RQ →的最小值.学案53 抛物线自主梳理1.相等 焦点 准线 自我检测 1.C2.B [因为抛物线的准线方程为x =-2,所以p2=2,所以p =4,所以抛物线的方程是y 2=8x .所以选B.]3.B 4.C 5.B 课堂活动区例1 解题导引 重视定义在解题中的应用,灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化,是解决抛物线焦点弦有关问题的重要途径.解将x =3代入抛物线方程 y 2=2x ,得y =±6. ∵6>2,∴A 在抛物线内部. 设抛物线上点P 到准线l :x =-12的距离为d ,由定义知|P A |+|PF |=|P A |+d ,当P A ⊥l 时,|P A |+d 最小,最小值为72,即|P A |+|PF |的最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2, ∴点P 坐标为(2,2). 变式迁移1 A [点P 到抛物线焦点的距离等于点P 到抛物线准线的距离,如图,|PF |+|PQ |=|PS |+|PQ |,故最小值在S ,P ,Q 三点共线时取得,此时P ,Q 的纵坐标都是-1,点P 的坐标为⎝⎛⎭⎫14,-1.]例2 解题导引 (1)求抛物线方程时,若由已知条件可知所求曲线是抛物线,一般用待定系数法.若由已知条件可知所求曲线的动点的轨迹,一般用轨迹法;(2)待定系数法求抛物线方程时既要定位(即确定抛物线开口方向),又要定量(即确定参数p 的值).解题关键是定位,最好结合图形确定方程适合哪种形式,避免漏解;(3)解决抛物线相关问题时,要善于用定义解题,即把|PF |转化为点P 到准线的距离,这种“化斜为直”的转化方法非常有效,要注意领会和运用.解 方法一 设抛物线方程为x 2=-2py (p >0),则焦点为F ⎝⎛⎭⎫0,-p 2,准线方程为y =p 2. ∵M (m ,-3)在抛物线上,且|MF |=5,∴⎩⎪⎨⎪⎧m 2=6p ,m 2+⎝⎛⎭⎫-3+p22=5, 解得⎩⎪⎨⎪⎧p =4,m =±2 6.∴抛物线方程为x 2=-8y ,m =±26,准线方程为y =2. 方法二 如图所示,设抛物线方程为x 2=-2py (p >0),则焦点F ⎝⎛⎭⎫0,-p 2, 准线l :y =p2,作MN ⊥l ,垂足为N .则|MN |=|MF |=5,而|MN |=3+p2,∴3+p2=5,∴p =4.∴抛物线方程为x 2=-8y ,准线方程为y =2.由m 2=(-8)×(-3),得m =±2 6.变式迁移2 解 (1)双曲线方程化为x 29-y 216=1,左顶点为(-3,0),由题意设抛物线方程为y 2=-2px (p >0)且-p2=-3,∴p =6.∴方程为y 2=-12x .(2)由于P (2,-4)在第四象限且对称轴为坐标轴,可设方程为y 2=mx (m >0)或x 2=ny (n <0),代入P 点坐标求得m =8,n =-1,∴所求抛物线方程为y 2=8x 或x 2=-y .例3 解题导引 解决焦点弦问题时,抛物线的定义有着广泛的应用,而且还应注意焦点弦的几何性质.焦点弦有以下重要性质(AB 为焦点弦,以y 2=2px (p >0)为例):①y 1y 2=-p 2,x 1x 2=p 24;②|AB |=x 1+x 2+p .证明 (1)方法一 由抛物线的方程可得焦点坐标为F ⎝⎛⎭⎫p 2,0.设过焦点F 的直线交抛物线于A ,B 两点的坐标分别为(x 1,y 1)、(x 2,y 2).①当斜率存在时,过焦点的直线方程可设为 y =k ⎝⎛⎭⎫x -p 2,由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2,y 2=2px ,消去x ,得ky 2-2py -kp 2=0.(*) 当k =0时,方程(*)只有一解,∴k ≠0, 由韦达定理,得y 1y 2=-p 2; ②当斜率不存在时,得两交点坐标为⎝⎛⎭⎫p 2,p ,⎝⎛⎭⎫p 2,-p ,∴y 1y 2=-p 2. 综合两种情况,总有y 1y 2=-p 2.方法二 由抛物线方程可得焦点F ⎝⎛⎭⎫p 2,0,设直线AB 的方程为x =ky +p2,并设A (x 1,y 1),B (x 2,y 2),则A 、B 坐标满足⎩⎪⎨⎪⎧x =ky +p 2,y 2=2px ,消去x ,可得y 2=2p ⎝⎛⎭⎫ky +p 2, 整理,得y 2-2pky -p 2=0,∴y 1y 2=-p 2. (2)直线AC 的方程为y =y 1x 1x ,∴点C 坐标为⎝⎛⎭⎫-p 2,-py 12x 1,y C =-py 12x 1=-p 2y 12px 1. ∵点A (x 1,y 1)在抛物线上,∴y 21=2px 1. 又由(1)知,y 1y 2=-p 2,∴y C =y 1y 2·y 1y 21=y 2,∴BC ∥x 轴.变式迁移3 证明 (1)∵y 2=2px (p >0)的焦点F ⎝⎛⎭⎫p 2,0,设直线方程为y =k ⎝⎛⎭⎫x -p2 (k ≠0), 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2y 2=2px ,消去x ,得ky 2-2py -kp 2=0.∴y 1y 2=-p 2,x 1x 2=(y 1y 2)24p 2=p 24,当k 不存在时,直线方程为x =p 2,这时x 1x 2=p 24.因此,x 1x 2=p24恒成立.(2)1|AF |+1|BF |=1x 1+p 2+1x 2+p2=x 1+x 2+px 1x 2+p 2(x 1+x 2)+p 24.又∵x 1x 2=p 24,代入上式得1|AF |+1|BF |=2p =常数,所以1|AF |+1|BF |为定值.课后练习区1.D [方法一 由⎩⎪⎨⎪⎧ y =2x -4,y 2=4x ,得⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =4,y =4.令B (1,-2),A (4,4),又F (1,0),∴由两点间距离公式得|BF |=2,|AF |=5,|AB |=3 5. ∴cos ∠AFB =|BF |2+|AF |2-|AB |22|BF |·|AF |=4+25-452×2×5=-45.方法二 由方法一得A (4,4),B (1,-2),F (1,0), ∴F A →=(3,4),FB →=(0,-2), ∴|F A →|=32+42=5,|FB →|=2.∴cos ∠AFB =F A →·FB →|F A →|·|FB →|=3×0+4×(-2)5×2=-45.]2.C [如图所示,A ,B 两点关于x 轴对称,F 点坐标为(p2,0),设A (m ,2pm )(m >0),则由抛物线定义,|AF |=|AA 1|,即m +p2=|AF |.又|AF |=|AB |=22pm ,∴m +p 2=22pm ,整理,得m 2-7pm +p 24=0,①∴Δ=(-7p )2-4×p24=48p 2>0,∴方程①有两相异实根,记为m 1,m 2,且m 1+m 2=7p >0,m 1·m 2=p 24>0,∴m 1>0,m 2>0,∴n =2.] 3.C4.A [过P 作PK ⊥l (l 为抛物线的准线)于K ,则|PF |=|PK |, ∴|P A |+|PF |=|P A |+|PK |.∴当P 点的纵坐标与A 点的纵坐标相同时,|P A |+|PK |最小,此时P 点的纵坐标为1,把y=1代入y 2=-4x ,得x =-14,即当P 点的坐标为⎝⎛⎭⎫-14,1时,|P A |+|PF |最小.] 5.B 6.6-1解析 如图所示,若圆C 的半径取到最大值,需圆与抛物线及直线x =3同时相切,设圆心的坐标为(a,0)(a <3),则圆的方程为(x -a )2+y 2=(3-a )2,与抛物线方程y 2=2x 联立得x 2+(2-2a )x +6a -9=0,由判别式Δ=(2-2a )2-4(6a -9)=0,得a =4-6,故此时半径为3-(4-6)=6-1.7.4 2解析 由题意可设AB 的方程为y =kx +m ,与抛物线方程联立得x 2-4kx -4m =0,线段AB 中点坐标为(2,2),x 1+x 2=4k =4,得k =1.又∵y 1+y 2=k (x 1+x 2)+2m =4,∴m =0.从而直线AB :y =x ,|AB |=2|OM |=4 2. 8.324解析 抛物线的焦点F 的坐标为⎝⎛⎭⎫p 2,0,线段F A 的中点B 的坐标为⎝⎛⎭⎫p4,1,代入抛物线方程得1=2p ×p 4,解得p =2,故点B 的坐标为⎝⎛⎭⎫24,1,故点B 到该抛物线准线的距离为24+22=324. 9.解 设直线和抛物线交于点A (x 1,y 1),B (x 2,y 2),(1)当抛物线开口向右时,设抛物线方程为y 2=2px (p >0),则⎩⎪⎨⎪⎧y 2=2px y =2x +1,消去y 得,4x 2-(2p -4)x +1=0,∴x 1+x 2=p -22,x 1x 2=14,(4分) ∴|AB |=1+k 2|x 1-x 2|=5·(x 1+x 2)2-4x 1x 2=5·⎝ ⎛⎭⎪⎫p -222-4×14=15,(7分) 则 p 24-p =3,p 2-4p -12=0,解得p =6(p =-2舍去), 抛物线方程为y 2=12x .(9分)(2)当抛物线开口向左时,设抛物线方程为y 2=-2px (p >0),仿(1)不难求出p =2, 此时抛物线方程为y 2=-4x .(11分)综上可得,所求的抛物线方程为y 2=-4x 或y 2=12x .(12分)10.证明 因为直线AB 与x 轴不垂直,设直线AB 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +2,y =18x 2,可得x 2-8kx -16=0,x 1+x 2=8k ,x 1x 2=-16.(4分)抛物线方程为y =18x 2,求导得y ′=14x .(7分) 所以过抛物线上A 、B 两点的切线斜率分别是k 1=14x 1,k 2=14x 2,k 1k 2=14x 1·14x 2 =116x 1·x 2=-1.(10分) 所以AQ ⊥BQ .(12分)11.解 (1)由题设点C 到点F 的距离等于它到l 1的距离,所以点C 的轨迹是以F 为焦点,l 1为准线的抛物线,∴所求轨迹的方程为x 2=4y .(5分)(2)由题意直线l 2的方程为y =kx +1,与抛物线方程联立消去y 得x 2-4kx -4=0. 记P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.(8分)因为直线PQ 的斜率k ≠0,易得点R 的坐标为⎝⎛⎭⎫-2k ,-1.(9分) RP →·RQ →=⎝⎛⎭⎫x 1+2k ,y 1+1·⎝⎛⎭⎫x 2+2k ,y 2+1 =⎝⎛⎭⎫x 1+2k ⎝⎛⎭⎫x 2+2k +(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+⎝⎛⎭⎫2k +2k (x 1+x 2)+4k 2+4 =-4(1+k 2)+4k ⎝⎛⎭⎫2k +2k +4k 2+4 =4⎝⎛⎭⎫k 2+1k 2+8,(11分) ∵k 2+1k 2≥2,当且仅当k 2=1时取到等号. RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16. (14分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文档为《步步高》高考数学大一轮总复习的函数与导数部分,涵盖了高考真题体验、热点分类突破等关键内容。在高考真题体验部分,通过详细的解析和答案,展示了如何解答关于函数图象与性质的题目,如偶函数的判断、函数图象的识别以及函数性质的综合应用。此外,还提供了考情考向分析,帮助考生了解高考对函数知识的考查重点和方向。热点分类突破部分则针对函数的单调性、奇偶性周期性等核心性质进行了深入剖析,通过例题和解析,强化了考生对这些性质的理解和应用能力。整体来看,本文档为高三学生提供了宝贵的数学复习资料,特别是函数与导数部分的精讲和答案解析,有助于考生系统提升数学成绩。
相关文档
最新文档