高二第2学期期末考试数学练习题(理科)
高二下学期期末考试数学(理)试题及答案
第二学期高二数学(理)期末考试试卷一、选择题:(共10个小题,每小题4分;在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项代号填入答题卡对应符号栏内)1.已知集合}{2,A x x x R =≤∈,{|4,}B x x x Z =≤∈,则A B ⋂= ( )(A)(0,2) (B) {0,1,2} (C){}0,2 (D) [0,2]2.抛物线的顶点在坐标原点,焦点与双曲线22154y x -=的一个焦点重合,则该抛物线的标准方程可能是 ( ) A .24=x y B .24=-x y C .212=-x y D .212=-y x 3.已知向量()2,1=a ,()3,2-=b ,若向量c 满足()b a c //+,()b ac -⊥,则向量c = ( ) A. ⎪⎭⎫ ⎝⎛--177,1735 B.⎪⎭⎫ ⎝⎛1735,177 C. ⎪⎭⎫ ⎝⎛177,1735 D.⎪⎭⎫⎝⎛--1735,1774.复数z=22ii-+(i 为虚数单位)在复平面内对应的点所在象限为 ( ) A .第一象限 B. 第二象限 C.第三象限 D.第四象限5. 下列命题中,真命题是 ( ) A. 存在[0,],sin cos 22∈+≥x x x π; B. 任意2(3,),21∈+∞>+x x x ;C. 存在2,1∈+=-x R x x ;D. 任意[,],tan sin ;2∈>x x x ππ6.设函数)(x f 是定义在R 上的奇函数,且对任意R ∈x 都有)4()(+=x f x f ,当),(20∈x 时,x x f 2)(=,则)2011()2012(f f -的值为 ( ) A .2 B .2 C .12 D .127.设,a b 是两条不重合的直线,,αβ是两个不同的平面,则下列命题中错误的是 ( )A .若⊥a α,⊥a β,则//αβB .若b 是β内任意一条直线,aα,a b 则αβC .若a α,b ⊥α,则a bD .若a//α,b α,则a //b8.在在ABC 中,AB3,AC4,BC13,则AC 边上的高为 ( )A.223 B. 233 C. 23D. 33 9.设函数()sin(2)cos(2)44=+++f x x x ππ,则A .()=y f x 在(0,)2π单调递增,其图象关于直线4=x π对称B .()=y f x 在(0,)2π单调递增,其图象关于直线2=x π对称C .()=y f x 在(0,)2π单调递减,其图象关于直线4=x π对称D .()=y f x 在(0,)2π单调递减,其图象关于直线2=x π对称 10.直线20(0)-+=≥ax y a a 与圆229+=x y 的位置关系是 ( )A .相离B .相交C .相切D .不确定 二、填空题(共四个小题,每小题4分)11.已知函数()bx x x f 22+=过(1, 2)点,若数列()⎭⎬⎫⎩⎨⎧n f 1的前n 项和为n S ,则2012S 的值为_________.12.若将()()x a x b --逐项展开得2x ax bx ab --+,则2x 出现的概率为14,x 出现的概率为12,如果将()()()()()x a x b x c x d x e -----逐项展开,那么3x 出现的概率为 .13.对于三次函数d cx bx ax x f +++=23)((0≠a ),定义:设)(x f ''是函数()y f x =的导数'()y f x =的导数,若方程)(x f ''=0有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,函数3231()324f x x x x =-+-,则它的对称中心为_____;正视图 侧视图 俯视图 3 1 2 2 3 2 B A C S (第14题图)14.三棱锥S ABC 的三视图如下(尺寸的长度单位为m ).则这个三棱锥的体积为 _________;参考答案一、选择题(本题共10小题,每题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案 BCAD BAD BD B二、填空题(本题共4小题,每题4分,共16分) 题号11 1213 14答案20132012516(12, 1) 34m三、解答题15.(本题满分10分)如图所示,已知α的终边所在直线上的一点P 的坐标为(3,4)-,β的终边在第一象限且与单位圆的交点Q 的纵坐标为210.⑴求α-βtan()的值; ⑵若2παπ<<,20πβ<<,求αβ+.解:⑴由三角函数的定义知43tan α=-又由三角函数线知210sin β=,∵β为第一象限角,∴17tan β=,∴41--tan α-tan β3137tan(α-β)===-411+tan αtan β171+(-)37. ……5分 ⑵∵35cos α=-,2παπ<<,∴45sin α=.又210sin β=,20πβ<<,∴2721sin 10cos ββ-==. …7分∴4723225105102sin()sin cos cos sin αβαβαβ+=+=⨯-⨯=.由2παπ<<,20πβ<<,得322ππαβ<+<,∴34παβ+=. ……10分(2)2583n 138n a a a a a -+、、是首项为22a =,公比为8,项数为n+8项的等比数列,882583n 1382(18)2(81)187n n n a a a a a ++-+-++++==--++17.(本小题满分10分)学校在高二开设了当代战争风云、投资理财、汽车模拟驾驶与保养、硬笔书法共4门选修课,每个学生必须且只需选修1门选修课,对于该年级的甲、乙、丙3名学生。
高二(下)期末数学试卷(理科)(共2套,含参考答案)
高二(下)期末数学试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i是虚数单位,复数的共轭复数为()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣2i2.设全集U=R,已知集合A={x||x|≤1},B={x|log2x≤1},则(?U A)∩B=()A.(0,1]B.[﹣1,1]C.(1,2]D.(﹣∞,﹣1]∪[1,2]3.设等差数列{a n}的前n项和为S n,若a1=﹣11,a3+a7=﹣6,则当S n取最小值时,n等于()A.9 B.8 C.7 D.64.若,则sin(π+2α)=()A.B.C.D.<0”是“﹣1<x<0”的()5.“xA.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.已知x,y满足线性约束条件:,则目标函数z=y﹣3x的取值范围是()A.B.(﹣3,﹣1)C.D.7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.192 里B.96 里C.48 里D.24 里8.把函数y=sin x(x∈R)的图象上所有点的横坐标变为原来的2倍(纵坐标不变),再把所得图象上所有点向左平移个单位长度,得到图象的函数解析式为()A.y=sin(2x﹣)B.y=sin(2x+)C.y=sin(x+)D.y=sin(x+)9.在△ABC中,若,且=2,则A=()A.B.C. D.10.已知命题p:?x∈R,x+≥2;命题q:?x0∈[0,],使sin x0+cos x0=,则下列命题中为真命题的是()A.p∨(¬q)B.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∧q11.已知函数f(x)=x+,g(x)=2x+a,若?x1∈[,1],?x2∈[2,3],使得f(x1)≥g (x2),则实数a的取值范围是()A.(﹣∞,1]B.[1,+∞)C.(﹣∞,2]D.[2,+∞)12.设正实数x,y,z满足x2﹣3xy+4y2﹣z=0.则当取得最大值时,的最大值为()A.0 B.1 C.D.3二、填空题:本题共4小题,每小题5分,共20分.13.函数的最小正周期为.14.设函数f(x)=,则函数f(x)的值域是.15.△ABC中,若b=2,A=120°,三角形的面积,则三角形外接圆的半径为.16.若函数f(x)=﹣x3+x2+2ax在[,+∞)上存在单调递增区间,则a的取值范围是.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.17.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程是,圆C的极坐标方程是ρ=4sinθ.(Ⅰ)求l与C交点的极坐标;(Ⅱ)设P为C的圆心,Q为l与C交点连线的中点,已知直线PQ的参数方程是(t 为参数),求a,b的值.18.已知函数f(x)=2sinxsin(x+).(1)求函数f(x)的最小正周期和单调递增区间;(2)当x∈[0,]时,求f(x)的值域.19.已知数列{a n}满足a1=﹣1,na n+1=S n+n(n+1)(n∈N*),S n是数列{a n}的前n项和.(1)求数列{a n}的通项公式a n;(2)令b n=,求数列{b n}的前n项和T n.20.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h 的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.1500.1000.0500.0250.0100.0050.001k0 2.072 2.706 3.841 5.024 6.6357.87910.82821.在直三棱柱ABC﹣A'B'C'中,底面ABC是边长为2的正三角形,D'是棱A'C'的中点,且AA'=2.(1)试在棱CC'上确定一点M,使A'M⊥平面AB'D';(2)当点M在棱CC'中点时,求直线AB'与平面A'BM所成角的正弦值.22.设f(x)=e x﹣2ax﹣1.(Ⅰ)讨论函数f(x)的极值;(Ⅱ)当x≥0时,e x≥ax2+x+1,求a的取值范围.高中高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i是虚数单位,复数的共轭复数为()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣2i【考点】A5:复数代数形式的乘除运算.【分析】根据两个复数代数形式的乘除法法则,虚数单位i的幂运算性质,求出复数,可得它的共轭复数.【解答】解:复数==2﹣i,故它的共轭复数为2+i,故选:A.2.设全集U=R,已知集合A={x||x|≤1},B={x|log2x≤1},则(?U A)∩B=()A.(0,1]B.[﹣1,1]C.(1,2]D.(﹣∞,﹣1]∪[1,2]【考点】1H:交、并、补集的混合运算.【分析】分别求出A与B中不等式的解集,确定出A与B,根据全集U=R,求出A的补集,找出A补集与B的交集即可.【解答】解:集合A={x||x|≤1}=[﹣1,1],B={x|log2x≤1}=(0,2],∵全集U=R,∴?U A=(﹣∞,﹣1)∪(1,+∞)∴(?U A)∩B=(1,2],故选:C3.设等差数列{a n}的前n项和为S n,若a1=﹣11,a3+a7=﹣6,则当S n取最小值时,n等于()A.9 B.8 C.7 D.6【考点】89:等比数列的前n项和;84:等差数列的通项公式.【分析】根据等差数列的性质化简a3+a7=﹣6,得到a5的值,然后根据a1的值,利用等差数列的通项公式即可求出公差d的值,根据a1和d的值写出等差数列的通项公式,进而写出等差数列的前n项和公式S n,配方后即可得到Sn取最小值时n的值.【解答】解:由等差数列的性质可得a3+a7=2a5=﹣6,解得a5=﹣3.又a1=﹣11,设公差为d,所以,a5=a1+4d=﹣11+4d=﹣3,解得d=2.则a n=﹣11+2(n﹣1)=2n﹣13,所以S n==n2﹣12n=(n﹣6)2﹣36,所以当n=6时,S n取最小值.故选D.4.若,则sin(π+2α)=()A.B.C.D.【考点】GS:二倍角的正弦.【分析】利用两角差的正弦函数公式化简已知等式,得:(cosα﹣sinα)=,两边平方后,利用二倍角公式可求sin2α的值,进而利用诱导公式化简所求即可得解.【解答】解:∵,可得:(cosα﹣sinα)=,∴两边平方可得:1﹣2sinαcosα=,解得:sin2α=,﹣.∴sin(π+2α)=﹣sin2α=故选:A.<0”是“﹣1<x<0”的()5.“xA.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由﹣1<x<0?x<0;反之不成立.即可判断出关系.【解答】解:由﹣1<x<0?x<0;反之不成立.∴“x<0”是“﹣1<x<0”的必要不充分条件.故选:B.6.已知x,y满足线性约束条件:,则目标函数z=y﹣3x的取值范围是()A.B.(﹣3,﹣1)C.D.【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【解答】解:由z=y﹣3x得y=3x+z,作出不等式组,对应的平面区域如图,平移直线y=3x+z,由图象可知当直线y=3x+z,过点B时,直线y=3x+z的截距最小,此时z最小,由,解得,即B(1,0).代入目标函数z=y﹣3x,得z=0﹣3=﹣3,∴目标函数z=x﹣2y的最小值是﹣3.当直线y=3x+z,过点A时,直线y=3x+z的截距最大,此时z最大,由,解得A(,).代入目标函数z=y﹣3x,得z==,∴目标函数z=y﹣3x的最大值是.目标函数z=y﹣3x的取值范围是(﹣3,]故选:C.7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.192 里B.96 里C.48 里D.24 里【考点】8B:数列的应用.【分析】由题意得:每天行走的路程成等比数列{a n}、且公比为,由条件和等比数列的前项和公式求出a1,由等比数列的通项公式求出答案即可.【解答】解:由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得=378,解得a1=192,∴第此人二天走192×=96里,∴第二天走了96里,故选:B.8.把函数y=sin x(x∈R)的图象上所有点的横坐标变为原来的2倍(纵坐标不变),再把所得图象上所有点向左平移个单位长度,得到图象的函数解析式为()A.y=sin(2x﹣)B.y=sin(2x+)C.y=sin(x+) D.y=sin(x+)【考点】HJ:函数y=Asin(ωx+φ)的图象变换;HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】利用函数y=Asin(ωx+φ)的图象变换规律即可求得答案.【解答】解:∵函数y=sinx(x∈R),图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin x,图象上所有点向左平行移动个单位长度,得到y=sin(x+)=sin(x+),x∈R.故选:C.9.在△ABC中,若,且=2,则A=()A.B.C. D.【考点】HP:正弦定理.【分析】由已知及正弦定理可得c=2b,结合a2﹣b2=bc,可得a2=7b2,由余弦定理可求cosA=,结合范围A∈(0,π),即可求得A的值.【解答】解:∵在△ABC中,==2,由正弦定理可得:=2,即:c=2 b,∵=b(a×+b×),∴整理可得:a2﹣b2=bc,∴a2﹣b2=b×2,解得:a2=7b2,∴由余弦定理可得:cosA===,∵A∈(0,π),∴A=.故选:A.10.已知命题p:?x∈R,x+≥2;命题q:?x0∈[0,],使sin x0+cos x0=,则下列命题中为真命题的是()A.p∨(¬q)B.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∧q【考点】2K:命题的真假判断与应用.【分析】判断两个命题的真假,然后利用复合命题的真假判断选项即可.【解答】解:对于命题p:当x≤0时,x+≥2不成立,∴命题p是假命题,则¬p是真命题;对于命题q:sinx+cosx=sin(x+)∈[1,],则q是真命题,所以(¬p)∧q.故选:D.11.已知函数f(x)=x+,g(x)=2x+a,若?x1∈[,1],?x2∈[2,3],使得f(x1)≥g (x2),则实数a的取值范围是()A.(﹣∞,1]B.[1,+∞)C.(﹣∞,2]D.[2,+∞)【考点】3R:函数恒成立问题.【分析】首先将问题转化为在所给定义域上f(x)的最小值不小于g(x)的最小值,然后分别利用函数的单调性求得最值,最后求解不等式即可求得最终结果.【解答】解:满足题意时应有:f(x)在的最小值不小于g(x)在x2∈[2,3]的最小值,由对勾函数的性质可知函数在区间上单调递减,f(x)在的最小值为f(1)=5,当x2∈[2,3]时,g(x)=2x+a为增函数,g(x)在x2∈[2,3]的最小值为g(2)=a+4,据此可得:5?a+4,解得:a?1,实数a的取值范围是(﹣∞,1],故选:A.12.设正实数x,y,z满足x2﹣3xy+4y2﹣z=0.则当取得最大值时,的最大值为()A.0 B.1 C.D.3【考点】7F:基本不等式.【分析】依题意,当取得最大值时x=2y,代入所求关系式f(y)=+﹣,利用配方法即可求得其最大值.【解答】解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z均为正实数,∴==≤=1(当且仅当x=2y时取“=”),∴=1,此时,x=2y.∴z=x2﹣3xy+4y2=(2y)2﹣3×2y×y+4y2=2y2,∴+﹣=+﹣=﹣+1≤1,当且仅当y=1时取得“=”,满足题意.∴的最大值为1.故选B.二、填空题:本题共4小题,每小题5分,共20分.13.函数的最小正周期为π.【考点】H1:三角函数的周期性及其求法.【分析】直接利用三角函数的周期公式求解即可.【解答】解:函数的最小正周期为:=π.故答案为:π.14.设函数f(x)=,则函数f(x)的值域是(0,1)∪[﹣3,+∞).【考点】34:函数的值域.【分析】可根据不等式的性质,根据x的范围,可以分别求出和﹣x﹣2的范围,从而求出f (x)的值域.【解答】解:①x>1时,f(x)=;∴;即0<f(x)<1;②x≤1时,f(x)=﹣x﹣2;∴﹣x≥﹣1;∴﹣x﹣2≥﹣3;即f(x)≥﹣3;∴函数f(x)的值域为(0,1)∪[﹣3,+∞).故答案为:(0,1)∪[﹣3,+∞).15.△ABC中,若b=2,A=120°,三角形的面积,则三角形外接圆的半径为2.【考点】HP:正弦定理.【分析】利用三角形面积计算公式、正弦定理可得a,再利用正弦定理即可得出.【解答】解:=sin120°,解得c=2.∴a2=22+22﹣2×2×2×cos120°=12,解得a=2,∴2R===4,解得R=2.故答案为:2.16.若函数f(x)=﹣x3+x2+2ax在[,+∞)上存在单调递增区间,则a的取值范围是.【考点】6B:利用导数研究函数的单调性.【分析】求出函数的导数,利用导函数值大于0,转化为a的表达式,求出最值即可得到a的范围.【解答】解:函数f(x)=﹣x3+x2+2ax,f′(x)=﹣x2+x+2a=﹣(x﹣)2++2a.当x∈[,+∞)时,f′(x)的最大值为f′()=2a+,令2a+>0,解得a,所以a的取值范围是.故答案为:.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.17.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程是,圆C的极坐标方程是ρ=4sinθ.(Ⅰ)求l与C交点的极坐标;(Ⅱ)设P为C的圆心,Q为l与C交点连线的中点,已知直线PQ的参数方程是(t为参数),求a,b的值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(Ⅰ)列出关于θ符方程,通过三角函数求解θ,即可求l与C交点的极坐标;(Ⅱ)直线PQ的参数方程是消去参数t,得到普通方程,利用第一问的结果,即可求a,b的值.2θ.所以cosθ=0或tanθ=1,【解答】解:(Ⅰ)ρ=4sinθ代入,得sinθcosθ=cos取,.再由ρ=4sinθ得ρ=4,或.所以l与C交点的极坐标是,或.…(Ⅱ)参数方程化为普通方程得.由(Ⅰ)得P,Q的直角坐标分别是(0,2),(1,3),代入解得a=﹣1,b=2.…18.已知函数f(x)=2sinxsin(x+).(1)求函数f(x)的最小正周期和单调递增区间;(2)当x∈[0,]时,求f(x)的值域.【考点】GL:三角函数中的恒等变换应用;H1:三角函数的周期性及其求法.【分析】(1)运用两角和差公式和二倍角公式,化简整理,再由周期公式和正弦函数的单调增区间,即可得到;(2)由x的范围,可得2x﹣的范围,再由正弦函数的图象和性质,即可得到值域.【解答】解:(1)f(x)=2sinxsin(x+)=2sinx(sinx+cosx)=sin2x+sinxcosx=+sin2x=+sin(2x﹣)则函数f(x)的最小正周期T==π,由2k≤2kπ+,k∈Z,解得,kπ﹣≤x≤kπ+,k∈Z,则f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z;(2)当x∈[0,]时,2x﹣∈[﹣,],sin(2x﹣)∈[﹣,1],则f(x)的值域为[0,1+].19.已知数列{a n}满足a1=﹣1,na n+1=S n+n(n+1)(n∈N*),S n是数列{a n}的前n项和.(1)求数列{a n}的通项公式a n;(2)令b n=,求数列{b n}的前n项和T n.【考点】8E:数列的求和.【分析】(1)na n+1=S n+n(n+1)(n∈N*),n≥2时,(n﹣1)a n=S n﹣1+n(n﹣1),相减可得:a n+1﹣a n=2,又a1=﹣1,利用等差数列的通项公式即可得出.(2)b n==,利用错位相减法即可得出.【解答】解:(1)na n+1=S n+n(n+1)(n∈N*),n≥2时,(n﹣1)a n=S n﹣1+n(n﹣1),∴na n+1﹣(n﹣1)a n=a n+2n,化为:a n+1﹣a n=2,又a1=﹣1,∴数列{a n}是等差数列,公差为2,首项为﹣1.∴a n=﹣1+2(n﹣1)=2n﹣3.(2)b n==,∴数列{b n}的前n项和T n=﹣+++…+,=++…++,∴=﹣+﹣=﹣2×﹣,可得:T n=﹣.20.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h 的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.1500.1000.0500.0250.0100.0050.001k0 2.072 2.706 3.841 5.024 6.6357.87910.828【考点】CH:离散型随机变量的期望与方差;BL:独立性检验;CG:离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X0123P.…21.在直三棱柱ABC﹣A'B'C'中,底面ABC是边长为2的正三角形,D'是棱A'C'的中点,且AA'=2.(1)试在棱CC'上确定一点M,使A'M⊥平面AB'D';(2)当点M在棱CC'中点时,求直线AB'与平面A'BM所成角的正弦值.【考点】MI:直线与平面所成的角;LW:直线与平面垂直的判定.【分析】(1)取AC边中点为O,则OB⊥AC,连接OD',建立以O为坐标原点,OB为x轴,OC为y轴,OD'为z轴的空间直角坐标系,利用向量法能求出当CM=时,A'M⊥平面AB'D'.(2)当点M在棱CC'中点时,M(0,1,),求出平面A′BM的一个法向量,利用向量法能求出直线AB'与平面A'BM所成角的正弦值.【解答】解:(1)取AC边中点为O,∵底面ABC是边长为2的正三角形,∴OB⊥AC,连接OD',∵D'是边A'C'的中点,∴OD'⊥AC,OD'⊥OB,建立以O为坐标原点,OB为x轴,OC为y轴,OD'为z轴如图所示的空间直角坐标系…则有O(0,0,0),A(0,﹣1,0),B(,0,0),C(0,1,0),B'(,0,2),A'(0,﹣1,2),D'(0,0,2),C'(0,1,2),设M(0,1,t),则=(0,2,t﹣2),=(0,1,2),=(,1,2)…若A'M⊥平面AB'D',则有A'M⊥AD',A'M⊥AB',∴,解得t=,即当CM=时,A'M⊥平面AB'D'.…(2)当点M在棱CC'中点时,M(0,1,),∴=(﹣),=(0,2,﹣),设平面A′BM的一个法向量=(x,y,z),∴,令z=,得=(),…设直线AB'与平面A'BM所成角为θ,则sinθ==.∴直线AB'与平面A'BM所成角的正弦值为.…22.设f(x)=e x﹣2ax﹣1.(Ⅰ)讨论函数f(x)的极值;(Ⅱ)当x≥0时,e x≥ax2+x+1,求a的取值范围.【考点】6D:利用导数研究函数的极值;6K:导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的导数,通过a与0的大小讨论函数的单调性得到函数的极值.(Ⅱ)方法1设g(x)=e x﹣ax2﹣x﹣1,则g'(x)=e x﹣2ax﹣1=f(x).通过,时,通过函数的单调性,函数的最值,求解a的取值范围.(Ⅱ)方法2,由(Ⅰ)当时,推出e x≥1+x.(Ⅱ)设g(x)=e x﹣ax2﹣x﹣1,利用函数的单调性求解a的取值范围.【解答】解:(Ⅰ)f'(x)=e x﹣2a,若a≤0,则f'(x)>0,f(x)在g(x)上单调递增,没有极值.…若a>0,令f'(x)=0,x=ln2a,列表x(﹣∞,ln2a)ln2a(ln2a,+∞)f'(x)﹣0+f(x)↘f(2a)↗所以当x=ln2a时,f(x)有极小值f(2a)=2a﹣2aln2a﹣1,没有极大值.…(Ⅱ)方法1设g(x)=e x﹣ax2﹣x﹣1,则g'(x)=e x﹣2ax﹣1=f(x).从而当2a≤1,即时,f'(x)>0(x≥0),g'(x)≥g'(0)=0,g(x)在[0,+∞)单调递增,于是当x≥0时,g(x)≥g(0)=0.…当时,若x∈(0,ln2a),则f'(x)<0,g'(x)<g'(0)=0,g(x)在(0,ln2a)单调递减,于是当x∈(0,ln2a)时,g(x)<g(0)=0.综合得a的取值范围为.…(Ⅱ)方法2由(Ⅰ)当时,f(x)≥f(2)=0,得e x≥1+x.(Ⅱ)设g(x)=e x﹣ax2﹣x﹣1,则g'(x)=e x﹣2ax﹣1≥x(1﹣2a).从而当2a≤1,即时,g'(x)≥0(x≥0),而g'(0)=0,于是当x≥0时,g(x)≥0.…由e x>1+x(x≠0)可得,e﹣x>1﹣x,即x>1﹣e﹣x(x≠0),从而当时,g'(x)<e x﹣2a(1﹣e﹣x)﹣1=e x(e x﹣1)(e x﹣2a).故当x∈(0,ln2a)时,g'(x)<0,而g(0)=0,于是当x∈(0,ln2a)时,g(x)<g(0)=0.综合得a的取值范围为.…高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2]D.[﹣2,1]2.设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:?x∈A,2x∈B,则()A.¬p:?x∈A,2x∈B B.¬p:?x?A,2x∈BC.¬p:?x∈A,2x?B D.¬p:?x?A,2x?B3.“(2x﹣1)x=0”是“x=0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.函数f(x)=+lg的定义域为()A.(2,3) B.(2,4]C.(2,3)∪(3,4]D.(﹣1,3)∪(3,6]5.已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>b>a D.c>a>b6.函数f(x)=ln(x2+1)的图象大致是()A. B.C.D.7.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=x3 B.y=e﹣x C.y=﹣x2+1 D.y=lg|x|8.,,则t1,t2,t3的大小关系为()A.t2<t1<t3B.t1<t2<t3C.t2<t3<t1D.t3<t2<t19.已知函数y=f(x)+x+1是奇函数,且f(2)=3,则f(﹣2)=()A.﹣7 B.0 C.﹣3 D.﹣510.已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)11.已知函数f(x)=满足对任意的实数x1≠x2都有<0成立,则实数a的取值范围为()A.(﹣∞,2)B.(﹣∞,] C.(﹣∞,2]D.[,2)12.若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)﹣log3|x|的零点个数是()A.2 B.3 C.4 D.6二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.13.已知集合A={x|x2=4},B={x|ax=2}.若B?A,则实数a的取值集合是.14.函数y=|﹣x2+2x+3|的单调减区间为.15.函数f(x)=为奇函数,则a=.16.=.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知,则函数f(x)的解析式为.18.已知集合A={x|﹣a﹣2<x<a+2},B={x|x≤﹣2或x≥4},若A∩B=?,求实数a的取值范围.19.已知m∈R,命题p:对任意x∈[0,1],不等式2x﹣2≥m2﹣3m 恒成立;命题q:存在x∈[﹣1,1],使得m≤ax 成立.(1)若p为真命题,求m 的取值范围;(2)当a=1 时,若p且q为假,p或q为真,求m的取值范围.20.已知函数f(x)=x3﹣4x+m,(m∈R).(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在[0,3]上的最值.21.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.22.已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2]D.[﹣2,1]【考点】1E:交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:?x∈A,2x∈B,则()A.¬p:?x∈A,2x∈B B.¬p:?x?A,2x∈B C.¬p:?x∈A,2x?B D.¬p:?x?A,2x?B【考点】2J:命题的否定;2I:特称命题.【分析】“全称命题”的否定一定是“存在性命题”据此可解决问题.【解答】解:∵“全称命题”的否定一定是“存在性命题”,∴命题p:?x∈A,2x∈B 的否定是:¬p:?x∈A,2x?B.故选C.3.“(2x﹣1)x=0”是“x=0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】本题考查的判断充要条件的方法,我们可以根据充要条件的定义进行判断.【解答】解:若(2x﹣1)x=0 则x=0或x=.即(2x﹣1)x=0推不出x=0.反之,若x=0,则(2x﹣1)x=0,即x=0推出(2x﹣1)x=0的必要不充分条件.所以“(2x﹣1)x=0”是“x=0”故选B4.函数f(x)=+lg的定义域为()A.(2,3) B.(2,4]C.(2,3)∪(3,4]D.(﹣1,3)∪(3,6]【考点】33:函数的定义域及其求法.【分析】根据函数成立的条件进行求解即可.【解答】解:要使函数有意义,则,即,>0等价为①即,即x>3,②,即,此时2<x<3,即2<x<3或x>3,∵﹣4≤x≤4,∴解得3<x≤4且2<x<3,即函数的定义域为(2,3)∪(3,4],故选:C5.已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>b>a D.c>a>b【考点】4H:对数的运算性质.【分析】利用指数式的运算性质得到0<a<1,由对数的运算性质得到b<0,c>1,则答案可求.【解答】解:∵0<a=<20=1,b=log2<log21=0,c=log=log23>log22=1,∴c>a>b.故选:D.6.函数f(x)=ln(x2+1)的图象大致是()A. B.C.D.【考点】3O:函数的图象.【分析】∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,函数的图象应在x轴的上方,在令x取特殊值,选出答案.【解答】解:∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,∴函数的图象应在x轴的上方,又f(0)=ln(0+1)=ln1=0,∴图象过原点,综上只有A符合.故选:A7.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=x3 B.y=e﹣x C.y=﹣x2+1 D.y=lg|x|【考点】3K:函数奇偶性的判断;3E:函数单调性的判断与证明.【分析】根据偶函数的定义判断各个选项中的函数是否为偶函数,再看函数是否在区间(0,+∞)上单调递减,从而得出结论.【解答】解:y=x3为奇函数;y=e﹣x为非奇非偶函数;y=﹣x2+1符合条件,y=lg|x|在定义域(0,+∞)上为增函数.故选C.8.,,则t1,t2,t3的大小关系为()A.t2<t1<t3B.t1<t2<t3C.t2<t3<t1D.t3<t2<t1【考点】67:定积分.【分析】利用微积分基本定理即可得出大小关系.【解答】解:t1=dx==,==ln2,==e2﹣e.∴t2<t1<t3,故选:A.9.已知函数y=f(x)+x+1是奇函数,且f(2)=3,则f(﹣2)=()A.﹣7 B.0 C.﹣3 D.﹣5【考点】3L:函数奇偶性的性质.【分析】由题意利用奇函数的性质求得f(﹣2)的值.【解答】解:函数y=f(x)+x+1是奇函数,∴f(﹣2)﹣2+1=﹣[f(2)+2+1],又f(2)=3,∴f(﹣2)﹣2+1=﹣[3+2+1],求得f(﹣2)=﹣5,故选:D.10.已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)【考点】HA:余弦函数的单调性.【分析】由三角函数和二次函数的性质,分别对各个选项判断即可.【解答】解:由解析式可知当x≤0时,f(x)=cosx为周期函数,当x>0时,f(x)=x2+1,为二次函数的一部分,故f(x)不是单调函数,不是周期函数,也不具备奇偶性,故可排除A、B、C,对于D,当x≤0时,函数的值域为[﹣1,1],当x>0时,函数的值域为(1,+∞),故函数f(x)的值域为[﹣1,+∞),故正确.故选:D11.已知函数f(x)=满足对任意的实数x1≠x2都有<0成立,则实数a的取值范围为()A.(﹣∞,2)B.(﹣∞,] C.(﹣∞,2]D.[,2)【考点】5B:分段函数的应用.【分析】由已知可得函数f(x)在R上为减函数,则分段函数的每一段均为减函数,且在分界点左段函数不小于右段函数的值,进而得到实数a的取值范围.【解答】解:若对任意的实数x1≠x2都有<0成立,则函数f(x)在R上为减函数,∵函数f(x)=,故,解得:a∈(﹣∞,],故选:B.12.若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)﹣log3|x|的零点个数是()A.2 B.3 C.4 D.6【考点】3L:函数奇偶性的性质;52:函数零点的判定定理;54:根的存在性及根的个数判断.【分析】在同一个坐标系中画出函数y=f(x)的图象与函数y=log3|x|的图象,这两个函数图象的交点个数即为所求.【解答】解:∵偶函数f(x)满足f(x+2)=f(x),故函数的周期为2.当x∈[0,1]时,f(x)=x,故当x∈[﹣1,0]时,f(x)=﹣x.函数y=f(x)﹣log3|x|的零点的个数等于函数y=f(x)的图象与函数y=log3|x|的图象的交点个数.在同一个坐标系中画出函数y=f(x)的图象与函数y=log3|x|的图象,如图所示:显然函数y=f(x)的图象与函数y=log3|x|的图象有4个交点,故选:C二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.13.已知集合A={x|x2=4},B={x|ax=2}.若B?A,则实数a的取值集合是{﹣1,0,1} .【考点】18:集合的包含关系判断及应用.【分析】由题意推导出B=?或B={﹣2}或B={2},由此能求出实数a的取值集合.【解答】解:∵集合A={x|x2=4}={﹣2,2},B={x|ax=2},当a=0时,B=?,当a≠0时,B={},∵B?A,∴B=?或B={﹣2}或B={2},当B=?时,a=0;当B={﹣2}时,a=﹣1;当B={2}时,a=1.∴实数a的取值集合是{﹣1,0,1}.故答案为:{﹣1,0,1}.14.函数y=|﹣x2+2x+3|的单调减区间为(﹣∞,﹣1]和[1,3] .【考点】3W:二次函数的性质.【分析】根据题意化简函数y,画出函数y的图象,根据函数图象容易得出y的单调减区间.【解答】解:令﹣x2+2x+3=0,得x2﹣2x﹣3=0,解得x=﹣1或x=3;∴函数y=f(x)=|﹣x2+2x+3|=|x2﹣2x﹣3|=,画出函数y的图象如图所示,根据函数y的图象知y的单调减区间是(﹣∞,﹣1]和[1,3].故答案为:(﹣∞,﹣1]和[1,3].15.函数f(x)=为奇函数,则a=﹣1.【考点】3L:函数奇偶性的性质.【分析】由题意可得f(﹣x)=﹣f(x),由此求得a的值.【解答】解:∵函数f(x)=为奇函数,故有f(﹣x)===﹣f(x)=﹣,即(x﹣1)(x﹣a)=(x+1)(x+a),即x2﹣(a+1)x+a=x2+(a+1)x+a,∴a+1=0,∴a=﹣1,故答案为:﹣1.16.=.【考点】67:定积分.【分析】根据的几何意义求出其值即可.【解答】解:由题意得:的几何意义是以(0,0)为圆心,以3为半径的圆的面积的,而S圆=9π,故=,故答案为:.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知,则函数f(x)的解析式为f(x)=x2﹣1,(x≥1).【考点】36:函数解析式的求解及常用方法.【分析】换元法:令+1=t,可得=t﹣1,代入已知化简可得f(t),进而可得f(x)【解答】解:令+1=t,t≥1,可得=t﹣1,代入已知解析式可得f(t)=(t﹣1)2+2(t﹣1),化简可得f(t)=t2﹣1,t≥1故可得所求函数的解析式为:f(x)=x2﹣1,(x≥1)故答案为:f(x)=x2﹣1,(x≥1)18.已知集合A={x|﹣a﹣2<x<a+2},B={x|x≤﹣2或x≥4},若A∩B=?,求实数a的取值范围.【考点】1E:交集及其运算.【分析】根据题意,对集合A分2种情况讨论:①、若A=?,则﹣a﹣2≥a+2,②、若A≠?,则有,分别求出a的取值范围,综合即可得答案.【解答】解:根据题意,集合A={x|﹣a﹣2<x<a+2},B={x|x≤﹣2或x≥4},若A∩B=?,分2种情况讨论:①、若A=?,则﹣a﹣2≥a+2,解可得a≤﹣2,此时A∩B=?成立,②、若A≠?,则有,解可得﹣2<a≤0,综合可得:a≤0.19.已知m∈R,命题p:对任意x∈[0,1],不等式2x﹣2≥m2﹣3m 恒成立;命题q:存在x∈[﹣1,1],使得m≤ax 成立.(1)若p为真命题,求m 的取值范围;(2)当a=1 时,若p且q为假,p或q为真,求m的取值范围.【考点】2E:复合命题的真假.【分析】(1)对任意x∈[0,1],不等式2x﹣2≥m2﹣3m 恒成立,可得﹣2≥m2﹣3m,解得m范围.(2)a=1时,存在x∈[﹣1,1],使得m≤ax 成立.可得m≤1.由p且q为假,p或q为真,可得p与q必然一真一假,即可得出.【解答】解:(1)对任意x∈[0,1],不等式2x﹣2≥m2﹣3m 恒成立,∴﹣2≥m2﹣3m,解得1≤m≤2.(2)a=1时,存在x∈[﹣1,1],使得m≤ax 成立.∴m≤1.∵p且q为假,p或q为真,∴p与q必然一真一假,∴或,解得1<m≤2或m<1.∴m的取值范围是(﹣∞,1)∪(1,2].20.已知函数f(x)=x3﹣4x+m,(m∈R).(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在[0,3]上的最值.【考点】6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)求出函数的导数,求出函数的极大值和极小值,从而求出函数的最值即可.【解答】解:(Ⅰ)f′(x)=x2﹣4=(x﹣2)(x+2)由f′(x)>0得x>2,或x<﹣2由f′(x)<0得﹣2<x<2所以,f(x)在(﹣∞,﹣2)递增,在(﹣2,2)递减,在(2,+∞)递增;(Ⅱ)由f′(x)=0得x=2或x=﹣2,∴f(x)的极小值是f(2)=﹣+m,f(x)的极大值是f(﹣2)=+m;又∵f(0)=m,f(3)=﹣3+m∴f(x)在[0,3]的最大值为f(0)=m,故最小值是f(2)=﹣+m.21.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.【考点】3N:奇偶性与单调性的综合.【分析】(1)根据函数奇偶性的性质建立条件关系即可.(2)利用数形结合,以及函数奇偶性和单调性的关系进行判断即可.【解答】解:(1)∵f(x)是奇函数,∴设x>0,则﹣x<0,∴f(﹣x)=(﹣x)2﹣mx=﹣f(x)=﹣(﹣x2+2x)从而m=2.(2)由f(x)的图象知,若函数f(x)在区间[﹣1,a﹣2]上单调递增,则﹣1<a﹣2≤1∴1<a≤322.已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【考点】6H:利用导数研究曲线上某点切线方程;6B:利用导数研究函数的单调性.【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a;(Ⅱ)构造函数g(x)=f(x)﹣kx+2,利用函数导数和极值之间的关系即可得到结论.【解答】解:(Ⅰ)函数的导数f′(x)=3x2﹣6x+a;f′(0)=a;则y=f(x)在点(0,2)处的切线方程为y=ax+2,∵切线与x轴交点的横坐标为﹣2,∴f(﹣2)=﹣2a+2=0,解得a=1.(Ⅱ)当a=1时,f(x)=x3﹣3x2+x+2,设g(x)=f(x)﹣kx+2=x3﹣3x2+(1﹣k)x+4,由题设知1﹣k>0,当x≤0时,g′(x)=3x2﹣6x+1﹣k>0,g(x)单调递增,g(﹣1)=k﹣1,g(0)=4,当x>0时,令h(x)=x3﹣3x2+4,则g(x)=h(x)+(1﹣k)x>h(x).则h′(x)=3x2﹣6x=3x(x﹣2)在(0,2)上单调递减,在(2,+∞)单调递增,∴在x=2时,h(x)取得极小值h(2)=0,g(﹣1)=k﹣1,g(0)=4,则g(x)=0在(﹣∞,0]有唯一实根.∴g(x)>h(x)≥h(2)=0,∴g(x)=0在(0,+∞)上没有实根.综上当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.。
高二理科数学第二学期期末练考卷(二)含答案解析
高二理科数学第二学期期末练考卷(二)含答案解析一、选择题(本题共计 12 小题,每题 5 分,共计60分,)1. 复数z满足|z−2+i|=1,则|z|的最大值是()A.√5B.√6C.√5+1D.√5−12. 已知a−ln b=0,c−d=1,则(a−c)2+(b−d)2的最小值为()A.4B.2C.1D.√23. 将8个不同的小球放入3个不同的小盒,要求每个盒子中至少有一个球,且每个盒子里的球的个数都不同,则不同的放法有()种.A.2698B.2688C.1344D.53764. 函数f(x)=x−2ln x,则f′(1)=()A.−1B.1C.2D.−25. (2√x+1)6的展开式中x的系数是()A.120B.60C.30D.156. 设X∼N(1, σ2),其正态分布密度曲线如图所示,且P(X≥3)=0.0228,那么向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为()(附:随机变量ξ服从正态分布N(μ, σ2),则P(μ−σ<ξ<μ+σ)=68.26%,P(μ−2σ<ξ<μ+2σ)=95.44%)A.6038B.6587C.7028D.75397. 由“正三角形的内切圆切于三边的中点”可类比猜想:正四面体的内切球切于四个面()A.各正三角形内一点B.各正三角形的某高线上的点C.各正三角形的中心D.各正三角形外的某点8. 若∫(12x+m)dx=2,则m等于()A.0B.1C.2D.−19. 将两枚质地均与透明且各面分别标有1,2,3,4的正四面体玩具各掷一次,设事件A={两个玩具底面点数不同},B={两个玩具底面点数至少出现一个2点},则P(B|A)=()A.7 12B.512C.12D.111210. 某饮料店某5天的日销售收入y(单位:百元)与当天平均气温x(单位:∘C)之间的数据如下表:若x与y之间是线性相关关系,且y关于x的线性回归直线方程是ŷ=−x+m,则实数m的值是( )A.3B.2.8C.2.6D.2.411. 某学习小组有甲、乙、丙、丁四位同学,某次数学测验有一位同学没有及格,当其他同学问及他们四人时,甲说:“没及格的在乙、丙、丁三人中”;乙说:“是丙没及格”;丙说:“是甲或乙没及格”;丁说:“乙说的是正确的”.已知四人中有且只有两人的说法是正确的,则由此可推断未及格的同学是()A.甲B.乙C.丙D.丁12. 函数f(x)=(x−3)e x的单调递增区间是( )A.(−∞, 2)B.(0, 3)C.(2, +∞)D.(1, 4)二、填空题(本题共计 4 小题,每题 5 分,共计20分,)13. 复数z=1+2i1−i的实部为________.14. 已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为1000元,则所需检测费的均值为________元.15. 甲与其四位朋友各有一辆私家车,甲的车牌尾数是0,其四位朋友的车牌尾数分别是0,2,1,5,为遵守当地4月1日至5日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案总数为________.>0的16. 已知函数f(x)是定义在R上的奇函数,f(1)=0,当x>0时,xf′(x)−f(x)>0,则不等式f(x)x解集是________.三、解答题(本题共计 6 小题,共计70分,)17. (10分)若x,y都可以是1,2,3,4,5中的任一个,则不同的点(x, y)有多少个?18.(12分) 已知函数f(x)=xe mx.(1)若函数f(x)的图象在点(1, f(1))处的切线的斜率为2e,求函数f(x)在[−2, 2]上的最小值;在(0, +∞)上有两个解,求实数m的取值范围.(2)若关于x的方程f(x)=1x19. (12分)某学校为了解学生使用手机的情况,分别在高一和高二两个年级各随机抽取了100名学生进行调查.如图是根据调查结果绘制的学生日均使用手机时间的频率分布表和频数分布直方图,将使用手机时间不低于80分钟的学生称为“手机迷”.高一学生日均使用手机时间的频数分布表(Ⅰ)将频率视为概率,估计哪个年级的学生是“手机迷”的概率大?请说明理由.(Ⅱ)在高二的抽查中,已知随机抽到的女生共有55名,其中10名为“手机迷”.根据已知条件完成下面的2×2列联表,并据此资料你有多大的把握认为“手机迷”与性别有关?附:X 2=n(n 11n 22−n 12n 21)2n 1+∗n 2+∗n +1∗n +2.20.(12分)(1)已知x ∈R ,a =x 2+12,b =2−x ,c =x 2−x +1,用反证法证明:a ,b ,c 中至少有一个不小于1;(2)用数学归纳法证明:n +(n +1)+(n +2)+⋯+(3n −2)=(2n −1)2(n ∈N ∗).21. (12分) 某商场搞促销,规定顾客购物达到一定金额可抽奖,最多有三次机会,每次抽中,可依次分别获得20元、30元、50元奖金,顾客每次抽中后,可以选择带走所得奖金,结束抽奖;也可以选择继续抽奖,若有任何一次没有抽中,则连同前面所得奖金也全部归零,结束抽奖,设顾客甲第一次、第二次、第三次抽中的概率分别为34,23,12,选择继续抽奖的概率均为12,且每次是否抽中互不影响.(Ⅰ)求顾客甲第一次抽中,但所得奖金为零的概率;(Ⅱ)设该顾客所得奖金总数为X ,求随机变量X 的分布列和数学期望.22.(12分) 已知函数f(x)=e x −ax(a ∈R ).(1)讨论f(x)的单调性;(2)若f(x)<0在区间[−1,+∞)上有解,求a 的取值范围.参考答案与试题解析2020年7月5日高中数学一、选择题(本题共计 12 小题,每题 5 分,共计60分)1.【解答】|z−2+i|=1得|z−(2−i)|=1,则z的几何意义是以C(2, −1)为圆心,半径为1的圆,|z|的几何意义是圆上的点到原点的距离,则最大值为|OC|+1=√22+(−1)2+1=√5+1,2.【解答】解:由题意得,a=ln b,c=d+1.令f(x)=ln x,y=x+1,则(b,a)是曲线f(x)=ln x上的点,(d,c)是直线y=x+1上的点.设直线y=x+m与曲线f(x)=ln x相切于点P(x0,y0),因为f′(x)=1,x=1,所以1x0解得x0=1,可得P(1,0),代入y=x+m可得,0=1+m,解得m=−1.=√2,因为两条平行线y=x+1与y=x−1之间的距离为√2所以(a−c)2+(b−d)2的最小值为2.故选B.3.【解答】解:由于8个不同的小球放入3个不同的小盒,要求每个盒子中至少有一个球,且每个盒子里的球的个数都不同,则8个不同的小球可以分为(5, 2, 1),(4, 3, 1),第一类为(5, 2, 1)时,C85C32C11A33=1008种,第二类为(4, 3, 1)时,C84C43C11A33=1680种,根据分类计数原理,可得共有1008+1680=2688种,故选:B.4.故选:A.5.【解答】由二项式(2√x+1)6的展开式的通项为T r+1=C6r(2√x)6−r=26−rC6r x6−r2,令6−r2=1,解得r=4,则(2√x+1)6的展开式中x的系数是22C64=60,6.【解答】解:由正态分布的概率分布特点可得σ=1,则P(0≤ξ≤2)=0.6826,则点落入阴影部分的概率为1−12P(0≤ξ≤2)=1−0.3414=0.6587,所以10000个点大约有6587个点落入阴影部分.故选B.7.【解答】解:由平面中关于正三角形的内切圆的性质:“正三角形的内切圆切于三边的中点”,根据平面上关于正三角形的内切圆的性质类比为空间中关于内切球的性质,我们可以推断在空间几何中有:“正四面体的内切球切于四面体各正三角形的位置是各正三角形的中心”故选:C.8.【解答】解:∵ ∫(12x+m)dx=2,∴ (x2+mx)|01=2,即1+m=2,m=1.故选B.9.【解答】解:设事件A={两个玩具底面点数不相同},包括以下12个基本事件:(1, 2),(1, 3),(1, 4),(2, 1),(2, 3),(2, 4),(3, 1),(3, 2),(3, 4),(4, 1),(4, 2),(4, 3).事件B={两个玩具底面点数至少出现一个2点},则包括以下6个基本事件:(1, 2),(2, 1),(2, 3),(2, 4),(3, 2),(4, 2).故P(B|A)=612=12.故选:C.10.解:∵ x ¯=−2−1++0+1+25=0, y ¯=5+4+2+2+15=145, ∴ 145=0+m ,∴ m =2.8.故选B .11.【解答】解:注意到乙、丁说的同真或同假,当同真时,甲说的也真,不成立,故同假,所以甲、丙说的同真,故乙未及格.故选B .12.【解答】解:f′(x)=(x −3)′e x +(x −3)(e x )′=(x −2)e x ,求f(x)的单调递增区间,令f′(x)>0,解得x >2,故选C .二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13.【解答】∵ z =1+2i 1−i =(1+2i)(1+i)(1−i)(1+i)=−12+32i , ∴ z =1+2i 1−i 的实部为−12. 14.【解答】解:设检测的机器的台数为X ,则X 的所有可能取值为2,3,4,P(X =2)=C 22C 52=110,检测的前两台均为故障机器;P(X =3)=C 21+C 22C 52=310, 此时检测的第3台为故障机器,前2台有1台为故障机器,或检测的前3台均不是故障机器;P(X =4)=C 31C 21C 52=35,此时检测的前3台有一台为故障机器.E(X)=2×110+3×310+4×35=3.5,所以所需检测费的均值为1000×3.5=3500.故答案为:3500.15.【解答】根据题意,4月1日至5日,有3天奇数日,2天偶数日;分2步进行分析:①、安排奇数日出行,每天都有2种选择,共有23=8种,②、安排偶数日出行,分两种情况讨论,第一类,先选1天安排甲的车,另外一天安排其它车,有2×2=4种,第二类,不安排甲的车,每天都有2种选择,共有22=4种,共计4+4=8,根据分步计数原理,不同的用车方案种数共有8×8=64,16.【解答】依题意,f(1)=0由xf′(x)−f(x)>0,得函数g(x)=f(x)x在(0, +∞)上为增函数又由g(−x)=f(−x)−x =f(x)x=g(x),得函数g(x)在R上为偶函数∴函数g(x)在(−∞, 0)上为减函数且g(1)=0,g(−1)=0由图可知f(x)x>0的解集是(−∞, −1)∪(1, +∞)故答案为:(−∞, −1)∪(1, +∞).三、解答题(本题共计 6 小题,共计70分)17.【解答】x,y都可以是1,2,3,4,5中的任一个,则不同的点(x, y)有5×5=25个.因此不同的点(x, y)有25个.18.【解答】f(x)=xe mx,f′(x)=e mx+mxe mx,f′(1)=e m+me m=2e,解得m=1.∴f(x)=xe x,f′(x)=(1+x)e x,令f′(x)=0,解得x=−1.令f′(x)>0,解得x>−1,此时函数f(x)单调递增;令f′(x)<0,解得x<−1,此时函数f(x)单调递减.∴x=−1时,函数f(x)取得极小值即最小值,f(−1)=−e−1=−1e.f′(x)=e mx+mxe mx=(1+mx)e mx,x∈(0, +∞).①m≥0时,f′(x)>0,此时函数f(x)单调递增,函数y=1x在x∈(0, +∞)单调递减,因此此时两个函数的图象最多有一个交点,不满足题意,舍去.②m<0时,f′(x)=m(x−1−m )e mx,令f′(x)=0,解得x=1−m>0.可知:x>1−m 时,f′(x)<0,函数f(x)单调递减;0<x<1−m时,f′(x)>0,函数f(x)单调递增.∴x=1−m 时,函数f(x)取得极大值即最大值,f(−1m)=−1me.若关于x的方程f(x)=1x 在(0, +∞)上有两个解,则f(−1m)=−1me>1−1m,解得m<−√ee.综上可得:关于x的方程f(x)=1x 在(0, +∞)上有两个解,实数m的取值范围是(−∞,−√ee).19.【解答】(Ⅰ)由频率分布表知,高一学生是“手机迷”的概率为P1=22+4100=0.26;由频数分布直方图知,高二学生是“手机迷”的概率为P2=(0.010+0.0025)×20=0.25;因为P1>P2,所以高一年级的学生是“手机迷”的概率大;(Ⅱ)由题意知,在高二抽取的100人中,女生55人,“手机迷”有10人,非手机迷有45人,填写2×2列联表如下:将2×2列联表中的数据代入公式计算,得X 2=100×(30×10−45×15)245×55×75×25≈3.030>2.706,所以有90%的把握认为“手机迷”与性别有关.20.【解答】证明:(1)假设a ,b ,c 均小于1,即a <1,b <1,c <1,则有a +b +c <3,而a +b +c =2x 2−2x +12+3=2(x −12)2+3≥3,与假设矛盾, 假设不成立,故 a ,b ,c 中至少有一个不小于1.(2)用数学归纳法证明如下:①当n =1时,左边=1,右边=12=1,所以当n =1时,原等式成立. ②假设n =k (k ∈N ∗)时原等式成立,即k +(k +1)+(k +2)+⋯+(3k −2)=(2k −1)2(k ∈N ∗),则当n =k +1时,(k +1)+(k +2)+⋯+(3k −2)+(3k −1)+3k +(3k +1) =[(2k −1)2−k]+(3k −1)+3k +(3k +1)=4k 2+4k +1=(2k +1)2=[2(k +1)−1]2,所以当n =k +1时,原等式也成立.由①②知,(2)中的猜想对任何n ∈N ∗都成立.21.【解答】(1)顾客甲第一次抽中,但所得奖金为零包含两种情况:①第一次抽中第二次没有抽中,②第一次第二次都抽中,第三次没有抽中,∴ 顾客甲第一次抽中,但所得奖金为零的概率:p =34×12×(1−23)+34×12×23×12×(1−12)=316.(2)由题意得X 的可能取值为0,20,50,100,P(X =0)=(1−34)+34×12×(1−23)+34×12×23×12×(1−12)=716,P(X =20)=34×12=38, P(X =50)=34×12×23×12=18,P(X =100)=34×12×23×12×12=116,∴ X 的分布列为:EX=0×716+20×38+50×18+100×116=(20)22.【解答】解:(1)因为f(x)=e x−ax,所以f′(x)=e x−a.当a≤0时 ,f′(x)>0,则f(x)在R上单调递增,当a>0时,令f′(x)=0 ,解得x=ln a,所以f(x)在(ln a,+∞)上单调递增,在(−∞,+lna)上单调递减.(2)由(1)可知,当a≤0时,则f(x)在R上单调递增,因为f(x)<0在区间[−1,+∞)上有解,所以f(−1)=1e +a<0,则a<−1e.当a>0时,f(x)在(ln a,+∞)上单调递增,在(−∞,ln a)上单调递减.①当0<a≤1e时,ln a≤−1,f(x)在[−1,+∞)上单调递增,所以f(−1)=1e +a<0,则a<−1e,不符合题意.② 当a>1e时,ln a>−1,f(x)在(ln a,+∞)上单调递增.在(−1,ln a)上单调递减,所以f(x)min=f(ln a)=a−a ln a<0,则a>e.综上a∈(−∞,−1e)∪(e,+∞).试卷第11页,总11页。
高二下学期数学期末考试题理科(解析版)
,
,
, ,
所求线性回归方程为 ;
(2)由(1)知, ,故 年至 年该地区居民家庭人均纯收入逐年增加,平均每年增加 万元,
A. B.
C. D.
【答案】A
【解析】
【分析】
先求导数,再利用二次求导研究导函数零点以及对应区间导函数符号,即可判断选择.
【详解】
因此当 时, ;当 时, ;当 时, ;
故选:A
【点睛】本题考查利用导数研究函数单调性以及零点,考查基本分析判断能力,属中档题.
8.设函数 在区间 上单调递减,则实数 的取值范围是()
是偶函数,所以当 时, ,当 时, ,
所以使得 成立的 的取值范围是 .
故答案为:
【点睛】此题考查利用导函数讨论函数的单调性解决不等式相关问题,关键在于准确构造函数,需要在平常的学习中多做积累,常见的函数构造方法.
三、解答题(本题共6小题,共70分)
17.在平面直角坐标系xOy中,以原点O为极点, 轴的非负半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,曲线 的参数方程为 ( 为参数),若曲线 与 相交于A、B两点.
【答案】8和9
【解析】
【分析】
根据 求得 ,利用二项式系数的性质可得展开式中二项式系数的最大.
【详解】解:由题意可得, ,即 ,解得 ,
∵ ,
故展开式中二项式系数的最大的项为第8项或第9项,
故答案为:8和9.
【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.
P(X=50)= = ,
∴X的分布列为:
X
30
35
40
45
50
P
高二数学下学期期末考试理科试题含答案
第二学期高二年级期末考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.复数z 满足()134i z i -=+,则z =( )A.52B.2C. D.52.设集合{}419A x x =-≥,03x B xx ⎧⎫=≤⎨⎬+⎩⎭,则A B ⋂等于( )A.(3,2]--B.5(3,2]0,2⎡⎤--⋃⎢⎥⎣⎦C.5(,2],2⎛⎫-∞-⋃+∞ ⎪⎝⎭ D.5(,3),2⎡⎫-∞-⋃+∞⎪⎢⎣⎭3.二项式(52x +的展开式中,3x 的系数为( )A.80B.40C.20D.104.由直线2y x =及曲线24y x x =-围成的封闭图形的面积为( ) A.1B.43C.83D.45.已知命题:p 若0x >,则sin x x <,命题 :q 函数2()2xf x x =-有两个零点,则下列说法正确的是( )①p q ∧为真命题;②p q ⌝∨⌝为真命题;③p q ∨为真命题;④p q ⌝∨为真命题 A.①②B.①④C.②③D.①③④6.函数3()1f x ax x =++有极值的一个充分不必要条件是( ) A.1a <- B.1a <C.0a <D.0a >7.为了解某社区居民的家庭年收入年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:但是统计员不小心丢失了一个数据(用m 代替),在数据丢失之前得到回归直线方程为0.760.4y x =+,则m 的值等于( )A.8.60B.8.80C.9.25D.9.528.2020年全国高中生健美操大赛,某市高中生代表队运动员由2名男生和3名女生共5名同学组成,这5名同学站成一排合影留念,则3名女生中有且只有两位女生相邻的排列种数共有( ) A.36B.54种C.72种D.144种9.《易经》是中国传统文化中的精髓.下图是易经先天八卦图(记忆口诀:乾三连、坤六断、巽下断、震仰盂、坎中满、离中虚、艮覆碗、兑上缺),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线),现从八卦中任取两卦,已知每卦都含有阳线和阴线,则这两卦的六根线中恰有四根阳线和两根阴线的概率为( )A.13B.514C.314D.1510.观察下列算式:311=3235=+ 337911=++ 3413151719=+++若某数3n 按上述规律展开后,发现等式右边含有“2021”这个数,则n =( ) A.42B.43C.44D.4511.如图是一个质地均匀的转盘,一向上的指针固定在圆盘中心,盘面分为A ,B ,C 三个区域,每次转动转盘时,指针最终都会随机停留在A ,B ,C 中的某一个区域,且指针停留在区域A ,B 的概率分别是p 和1206p p ⎛⎫<<⎪⎝⎭.每次转动转盘时,指针停留在区域A ,B ,C 分别获得积分10,5,0.设某人转动转盘3次获得总积分为5的概率为()f p ,则()f p 的最大值点0p 的值为( )A.17B.18C.19D.11012.定义在(2,2)-上的函数()f x 的导函数为()f x ',已知2(1)f e =,且()2()f x f x '>,则不等式24(2)xe f x e -<的解集为( )A.(1,4)B.(2,1)-C.(1,)+∞D.(0,1)二、填空题:本大题共4小题,每小题5分,共20分. 13.命题“0x ∃<,220x x -->”的否定是“______”. 14.曲线1ln y x x=-在1x =处的切线在y 轴上的截距为______. 15.我国在2020年11月1日零时开始展开第七次全国人口普查,甲、乙等5名志愿者参加4个不同社区的人口普查工作,要求每个社区至少安排1名志愿者,每名志愿者只去一个社区,则不同的安排方法共有______种.16.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲、乙在每局中获胜的概率均为12,且各局胜负相互独立,比赛停止时一共打了ξ局,则ξ的方差()D ξ=______.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知函数()|3|f x x =-,()|4|g x x m =-++. (1)当9m =时,解关于x 的不等式()()f x g x >;(2)若()()f x g x >对任意x R ∈恒成立,求实数m 的取值范围. 18.(本小题满分12分)盲盒里面通常装的是动漫、影视作品的周边,或者设计师单独设计出来的玩偶.由于盒子上没有标注,购买者只有打开才会知道自己买到了什么,因此这种惊喜吸引了众多年轻人,形成了“盲盒经济”.某款盲盒内可能装有某一套玩偶的A ,B ,C 三种样式,且每个盲盒只装一个.(1)某销售网点为调查该款盲盒的受欢迎程度,随机发放了200份问卷,并全部收回.经统计,有30%的人购买了该款盲盒,在这些购买者当中,女生占23;而在未购买者当中,男生女生各占50%.请根据以上信息填写下表,并判断是否有95%的把握认为购买该款盲盒与性别有关?附:)22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:(2)该销售网点已经售卖该款盲盒6周,并记录了销售情况,如下表:由于电脑故障,第二周数据现已丢失,该销售网点负责人决定用第4、5、6周的数据求线性回归方程,再用第1,3周数据进行检验.①请用4,5,6周的数据求出)关于x 的线性回归方程y bx a =+;(注:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-)②若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2盒,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠? 19.(本小题满分12分)在某学校某次射箭比赛中,随机抽取了100名学员的成绩(单位:环),并把所得数据制成了如下所示的频数分布表; (1)求抽取的样本平均数x (同一组中的数据用该组区间的中点值作代表);(2)已知这次比赛共有2000名学员参加,如果近似地认为这次成绩Z 服从正态分布()2,N μσ(其中μ近似为样本平均数x ,2σ近似为样本方差2 1.61s =),且规定8.27环是合格线,那么在这2000名学员中,合格的有多少人?(3)已知样本中成绩在[9,10]的6名学员中,有4名男生和2名女生,现从中任选3人代表学校参加全国比赛,记选出的男生人数为ξ,求ξ的分布列与期望E ξ. [附:若()2~,Z N μσ,则()0.6827P Z μσμσ-<<+=,(22)0.9545P Z μσμσ-<<+=, 1.27≈,结果取整数部分]20.(本小题满分12分) 已知()23x x f e x e =--. (1)求函数()f x 的解析式; (2)求函数()f x 的值域;(3)若函数1()g x f kx x ⎛⎫=-⎪⎝⎭在定义域上是增函数,求实数k 的取值范围. 21.(本小题满分12分)随着5G 通讯技术的发展成熟,移动互联网短视频变得越来越普及,人们也越来越热衷于通过短视频获取资讯和学习成长.某短视频创作平台,为了鼓励短视频创作者生产出更多高质量的短视频,会对创作者上传的短视频进行审核,通过审核后的短视频,会对用户进行重点的分发推荐.短视频创作者上传一条短视频后,先由短视频创作平台的智能机器人进行第一阶段审核,短视频审核通过的概率为35,通过智能机器人审核后,进入第二阶段的人工审核,人工审核部门会随机分配3名员工对该条短视频进行审核,同一条短视频每名员工审核通过的概率均为12,若该视频获得2名或者2名以上员工审核通过,则该短视频获得重点分发推荐.(1)某创作者上传一条短视频,求该短视频获得重点分发推荐的概率;(2)若某创作者一次性上传3条短视频作品,求其获得重点分发推荐的短视频个数的分布列与数学期望.22.(本小题满分12分)已知2()sin sin xxf x x e xe x ax a x =--+. (1)当()f x 有两个零点时,求a 的取值范围; (2)当1a =,0x >时,设()()sin f x g x x x=-,求证:()ln g x x x ≥+.六安一中2020~2021学年第二学期高二年级期末考试数学试卷(理科)参考答案一、选择题:二、填空题:13.0x ∀<,220x x --≤ 14.-315.240 16.114三、解答题:17.解:(1)当9m =时,由()()f x g x >,得341x x -++>,4349x x x <-⎧⎨--->⎩或43349x x x -≤≤⎧⎨-++>⎩或3349x x x >⎧⎨-++>⎩ 解得,5x <-或x 无解或4x >, 故不等式的解集为(,5)(4,)x ∈-∞-⋃+∞.(2)因为()()f x g x >恒成立,即|3||4|x x m ->-++恒成立, 所以|3||4|m x x <-++恒成立,所以min (|3||4|)m x x <-++, 因为|3||4||(3)(4)|7x x x x -++≥--+=(当43x -≤≤时取等号)所以min (|3||4|)7x x -++=,所以实数m 的取值范围是(,7)-∞. 18.解:(1)则2 4.714 3.8411109060140K =≈>⨯⨯⨯,故有95%的把握认为“购买该款盲盒与性别有关”. (2)①由数据,求得5x =,27y =,由公式求得222(45)(2527)(55)(2627)(65)(3027)5ˆ(45)(55)(65)2b--+--+--==-+-+-, 5ˆˆ27514.52ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为ˆ 2.514.5yx =+. ②当1x =时,ˆ 2.5114.517y=⨯+=,|1716|2-<; 同样,当3x =时,ˆ 2.5314.522y=⨯+=,|2223|2-<. 所以,所得到的线性回归方程是可靠的.19.解:(1)由所得数据列成的频数分布表,得样本平均数4.50.055.50.186.50.287.50.268.50.179.50.067x =⨯+⨯+⨯+⨯+⨯+⨯=(2)由(1)知~(7,1.61)Z N ,10.6827(8.27)0.158652P Z -∴≥==∴在这2000名学员中,合格的有:20000.15865317⨯≈人(3)由已知得ξ的可能取值为1,2,31242361(1)5C C P C ξ===,2142363(2)5C C P C ξ===,3042361(3)5C C P C ξ===, ξ∴的分布列为:1232555E ξ=⨯+⨯+⨯=(人)20.解:(1)令x e t =,(0)t >,则ln x t =,由()23x x f e x e =--,得()ln 23f t t t =--, 所以函数()f x 的解析式为()ln 23f x x x =--.(2)依题意知函数的定义域是(0,)+∞,且1()2f x x'=-, 令()0f x '>,得102x <<,令()0f x '<,得12x >,故()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞⎪⎝⎭上单调递减, 所以max 1()ln 242f x f ⎛⎫==--⎪⎝⎭;又因为0x →,()f x →-∞, 所以函数()f x 的值域为(,ln 24]-∞--.(3)因为12()ln 3g x f kx x kx x x ⎛⎫=-=---- ⎪⎝⎭在(0,)+∞上是增函数, 所以212()0g x k x x '=-+-≥在(0,)+∞上恒成立, 则只需2min 12k x x ⎛⎫≤-+ ⎪⎝⎭,而221211112488x x x ⎛⎫-+=--≥- ⎪⎝⎭(当4x =时取等号),所以实数k 的取值范围为1,8⎛⎤-∞- ⎥⎝⎦.21.解:(1)设“该短视频获得重点分发推荐”为事件A ,则21302333311113()C 115222210P A C ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ (2)设其获得重点分发推荐的短视频个数为随机变量X ,X 可取0,1,2,3.则3~3,10X B ⎛⎫⎪⎝⎭, 030333343(0)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭;121333441(1)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭; 212333189(2)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭;30333327(3)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以随机变量X 的分布列如下:343441189279()0123100010001000100010E X =⨯+⨯+⨯+⨯=(或39()31010E X =⨯=) 22.解:(1)由题知,()()(sin )x f x xe a x x =--有两个零点,sin 0x x -=时,0x =故当0x xe a -=有一个非零实根设()x h x xe =,得()(1)xh x x e '=+,()h x ∴在(,1)-∞-上单调递减,在(1,)-+∞上单调递增.又1(1)h e-=-,(0)0h =,0x >时,(0)0h >;0x <时,(0)0h <. 所以,a 的取值范围是1a e=-或0a >. (2)由题,()()1sin x f x g x xe x x==--法一:()1ln ln x x xe x x xe -≥+=,令0x t xe =>,令()ln 1(0)H t t t t =-->11()1t H t t t -'=-=()H x ∴在(0,1)上单调递减,在(1,)+∞上单调递增. ()(1)0H x H ∴≥=.1ln x xe x x ∴-≥+法二:要证1ln x xe x x -≥+成立故设()ln 1xM x xe x x =---,1()(1)xM x x e x ⎛⎫'=+-⎪⎝⎭,(0)x >, 令1()x N x e x =-,则21()0x N x e x'=+>,()N x ∴在(0,)+∞上单调递增又1202N ⎛⎫=<⎪⎝⎭,(1)10N e =->, 01,12x ⎛⎫∴∃∈ ⎪⎝⎭使()00N x =.001x e x ∴=,00ln x x =-,()M x ∴在()00,x 上单调递减,在()0,x +∞上单调递增.()0min 0000[()]ln 10x M x M x x e x x ∴==---=.1ln x xe x x ∴-≥+。
高二下学期数学(理科)期末测试卷(含答案)
高二下学期数学(理科)期末测试卷(含答案)一、选择题(共12小题).1.设集合A={x|x2+2x﹣3<0},B={x|log2x<1},则A∩B=()A.{x|0<x<2}B.{x|0<x<1}C.{x|﹣3<x<1}D.{x|﹣1<x<2} 2.若复数z满足z(1+2i)=10i,则=()A.4﹣2i B.4+2i C.﹣4﹣2i D.﹣4+2i3.(﹣2x)5的展开式中含x3项的系数是()A.40B.﹣40C.80D.﹣804.已知向量,若,则m=()A.B.C.D.5.某中学有高中生3600人,初中生2400人为了解学生课外锻炼情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本.已知从高中生中抽取的人数比从初中生中抽取的人数多24,则n=()A.48B.72C.60D.1206.已知,则=()A.B.C.D.7.已知l,m,n为不同的直线,α,β,γ为不同的平面,则下列判断错误的是()A.若m⊥α,n⊥β,α∥β,则m∥nB.若m⊥α,n⊥β,m∥n,则α∥βC.若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥nD.若α⊥γ,β⊥γ,则α∥β8.在△ABC中,角A,B,C所对的边分别是a,b,c,若bc cos A=,则=()A.﹣2B.2C.D.9.已知函数f(x)=是R上的单调递增函数,则a的取值范围是()A.(1,4)B.[2,4)C.(1,3]D.[3,4)10.已知抛物线C:x=4y2的焦点为F,若斜率为的直线l过点F,且与抛物线C交于A,B两点,则线段AB的中点到准线的距离为()A.B.C.D.11.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体外接球的表面积是()A.41πB.C.25πD.12.已知函数f(x)=sin x的图象与直线kx﹣y﹣kπ=0(k>0)恰有三个公共点,这三个点的横坐标从小到大分别为x1,x2,x3,则属于()A.(0,)B.(,)C.(,1)D.(1,)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.函数的图象的对称中心是.14.已知函数f(x)是偶函数,且当x≥0时,f(x)=log3(x+1)+x2,则f(﹣2)=.15.黄金三角形有两种,一种是顶角为36°的等腰三角形,另一种是顶角为108°的等腰三角形.例如,一个正五边形可以看成是由正五角星和五个顶角为108°的黄金三角形组成的,如图所示,在黄金三角形A1AB中,.根据这些信息,若在正五边形ABCDE内任取一点,则该点取自正五边形A1B1C1D1E1内的概率是.16.已知双曲线的左、右焦点分别是F1,F2,直线l:y=3x+6过点F1,且与双曲线C在第二象限交于点P,若点P在以F1F2为直径的圆上,则双曲线C的离心率为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{a n}的前n项和为S n,且a1=2,.(1)求{a n}的通项公式;(2)令,求数列{b n}的前n项和T n.18.某航空公司规定:国内航班(不构成国际运输的国内航段)托运行李每件重量上限为50kg,每件尺寸限制为40cm×60cm×100cm,其中头等舱乘客免费行李额为40kg,经济舱乘客免费行李额为20kg.某调研小组随机抽取了100位国内航班旅客进行调查,得到如表数据;携带行李重量(kg)[0,20](20,30](30,40](40,50]头等舱乘客人数833122经济舱乘客人数37530合计4538152(1)请完成答题卡上的2×2列联表,并判断是否在犯错概率不超过0.05的前提下,认为托运超额行李与乘客乘坐座位的等级有关?(2)调研小组为感谢参与调查的旅客,决定从托运行李超出免费行李额且不超出10kg 的旅客中(其中女性旅客4人)随机抽取4人,对其中的女性旅客赠送“100元超额行李补助券”,记赠送的补助券总金额为X元,求X的分布列与数学期望.参考公式:,其中n=a+b+c+d.参考数据P(K2≥k0)0.0500.0100.001 k0 3.841 6.63510.828 19.图1是由平行四边形ABCD和Rt△ABE组成的一个平面图形.其中∠BAD=60°,AB⊥AE,AD=AE=2AB=2,将△ABE沿AB折起到△ABP的位置,使得,如图2.(1)证明:PA⊥BD;(2)求二面角A﹣PD﹣B的余弦值.20.已知函数在x=0处取得极值.(1)求m的值;(2)若过点(2,t)可作曲线y=f(x)的三条切线,求t的取值范围.21.已知椭圆的离心率为,左、右焦点分别为F1,F2,且F2到直线的距离为.(1)求椭圆C的方程.(2)过F1的直线m交椭圆C于P,Q两点,O为坐标原点,以OP,OQ为邻边作平行四边形OPDQ,是否存在直线m,使得点D在椭圆C上?若存在,求出直线m的方程;若不存在,说明理由.22.已知函数f(x)=lnx﹣ax+1有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:f'(x1•x2)<1﹣a.参考答案一、选择题(共12小题).1.设集合A={x|x2+2x﹣3<0},B={x|log2x<1},则A∩B=()A.{x|0<x<2}B.{x|0<x<1}C.{x|﹣3<x<1}D.{x|﹣1<x<2}【分析】求出集合A,B,由此能求出A∩B.解:∵集合A={x|x2+2x﹣3<0}={x|﹣3<x<1},B={x|log2x<1}={x|0<x<2},∴A∩B={x|0<x<1}.故选:B.2.若复数z满足z(1+2i)=10i,则=()A.4﹣2i B.4+2i C.﹣4﹣2i D.﹣4+2i【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:由z(1+2i)=10i,得z=,∴.故选:A.3.(﹣2x)5的展开式中含x3项的系数是()A.40B.﹣40C.80D.﹣80【分析】先求出二项式展开式的通项公式,再令x的幂指数等于3,求得r的值,即可求得展开式中的含x3的项的系数.解:二项式(﹣2x)5的展开式的通项公式为T r+1=•(﹣2)r•x2r﹣5,令2r﹣5=3,求得r=4,∴展开式中含x3的项的系数是•(﹣2)4=80,故选:C.4.已知向量,若,则m=()A.B.C.D.【分析】可求出,然后根据即可得出,然后进行向量坐标的数量积运算即可求出m的值.解:,,且,∴,解得.故选:B.5.某中学有高中生3600人,初中生2400人为了解学生课外锻炼情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本.已知从高中生中抽取的人数比从初中生中抽取的人数多24,则n=()A.48B.72C.60D.120【分析】根据分层抽样的基本知识建立比例关系并解方程即可.解:高中人数初中人数∴∴n=120故选:D.6.已知,则=()A.B.C.D.【分析】由已知利用诱导公式,二倍角的余弦函数公式化简所求即可计算得解.解:∵,∴=cos[﹣(2)]=cos(2θ﹣)=1﹣2sin2()=1﹣2×=.故选:D.7.已知l,m,n为不同的直线,α,β,γ为不同的平面,则下列判断错误的是()A.若m⊥α,n⊥β,α∥β,则m∥nB.若m⊥α,n⊥β,m∥n,则α∥βC.若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥nD.若α⊥γ,β⊥γ,则α∥β【分析】对于A,由线面垂直的性质定理和面面平行的性质得m∥n;对于B,由线线平行的性质、面面平行的判定定理得α∥β;对于C,由线线平行的判定定理得m∥n;对于D,α与β相交或平行.解:由l,m,n为不同的直线,α,β,γ为不同的平面,知:对于A,若m⊥α,n⊥β,α∥β,则由线面垂直的性质定理和面面平行的性质得m∥n,故A正确;对于B,若m⊥α,n⊥β,m∥n,则由线线平行的性质、面面平行的判定定理得α∥β,故B正确;对于C,若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则由线线平行的判定定理得m∥n,故C正确;对于D,若α⊥γ,β⊥γ,则α与β相交或平行,故D错误.故选:D.8.在△ABC中,角A,B,C所对的边分别是a,b,c,若bc cos A=,则=()A.﹣2B.2C.D.【分析】由已知利用三角形的面积公式,同角三角函数基本关系式可求tan A的值,进而根据三角函数恒等变换的应用化简所求即可计算得解.解:∵=×bc sin A,可得bc cos A=bc sin A,∴tan A=,∴=====﹣.故选:C.9.已知函数f(x)=是R上的单调递增函数,则a的取值范围是()A.(1,4)B.[2,4)C.(1,3]D.[3,4)【分析】根据题意,由函数单调性的定义可得,解可得a的取值范围,即可得答案.解:根据题意,函数f(x)=是R上的单调递增函数,必有,解可得3≤a<4,即a的取值范围为[3,4);故选:D.10.已知抛物线C:x=4y2的焦点为F,若斜率为的直线l过点F,且与抛物线C交于A,B两点,则线段AB的中点到准线的距离为()A.B.C.D.【分析】求出抛物线的准线方程,然后求解准线方程,求出线段AB的中点的横坐标,然后求解即可.解:抛物线C:x=4y2,可得准线方程为:x=﹣,过点F(,0)且斜率的直线l:y=(x﹣),由题意可得:,可得x2﹣x+=0,直线l与抛物线C相交于A、B两点,则线段AB的中点的横坐标为:,则线段AB的中点到抛物线C的准线的距离为:+=.故选:A.11.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体外接球的表面积是()A.41πB.C.25πD.【分析】由三视图得到直观图,然后把所得几何体改变位置放置,找出其外接球的球心,求出三角形的半径,代入球的表面积公式得答案.解:由三视图得到直观图,如图,该几何体为三棱锥D1﹣CC1E,正方体的棱长为4,E为BB1的中点,取出该几何体如图,三棱锥E﹣C1D1C,底面三角形C1D1C为等腰直角三角形,直角边长为4,侧面EC1C⊥底面C1D1C,.则底面三角形的外心为CD1的中点G,设△EC1C的外心为H,分别过G与H作底面C1D1C与侧面EC1C的垂线相交于O,则O为三棱锥E﹣C1D1C的外接球的球心,在△EC1C中,求得CK=4,sin∠ECK=,则2EH=,即EH=,则HK=,,则.∴该几何体外接球的表面积是4.故选:A.12.已知函数f(x)=sin x的图象与直线kx﹣y﹣kπ=0(k>0)恰有三个公共点,这三个点的横坐标从小到大分别为x1,x2,x3,则属于()A.(0,)B.(,)C.(,1)D.(1,)【分析】画出函数f(x)=sin x的图象,直线kx﹣y﹣kπ=0(k>0)的图象,利用数形结合,推出x1+x3=2x2=2π,x3∈(2π,),转化求解所求表达式的范围即可.解:函数f(x)=sin x的图象关于(π,0)对称,直线kx﹣y﹣kπ=0过(π,0),作出函数y=sin x的图象,与直线kx﹣y﹣kπ=0(k>0)的图象,恰有三个公共点,由图象可知x1+x3=2x2=2π,并且x3∈(2π,),由f′(x)=cos x,x∈(2π,),所以cos x3=,即x3=π+tan x3,所以==∈(,).故选:B.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.函数的图象的对称中心是(﹣,0),k∈Z.【分析】由题意利用正切函数的图象的对称性,得出结论.解:对于函数,令2x+=,求得x=﹣,故函数的图象的对称中心是(﹣,0),k∈Z,故答案为:(﹣,0),k∈Z.14.已知函数f(x)是偶函数,且当x≥0时,f(x)=log3(x+1)+x2,则f(﹣2)=5.【分析】根据题意,由函数的解析式可得f(2)的值,结合函数的解析式分析可得答案.解:根据题意,当x≥0时,f(x)=log3(x+1)+x2,则f(2)=log33+22=5,又由f(x)为偶函数,则f(﹣2)=f(2)=5;故答案为:515.黄金三角形有两种,一种是顶角为36°的等腰三角形,另一种是顶角为108°的等腰三角形.例如,一个正五边形可以看成是由正五角星和五个顶角为108°的黄金三角形组成的,如图所示,在黄金三角形A1AB中,.根据这些信息,若在正五边形ABCDE内任取一点,则该点取自正五边形A1B1C1D1E1内的概率是.【分析】根据多边形相似,求出满足条件的概率即可.解:如图示:,在△ABC中,过点B作BH⊥AC,垂足为H,设AB=2,由题意知AA1=A1B=﹣1,∠A1AB=36°,在△A1AB中,由余弦定理得:cos∠A1AB===,在RT△ABH中,得:cos∠A1AB==,∴AH=AB•=2×=,∴A1H=AH﹣AA1=﹣(﹣1)=,∴A1B1=2A1H=3﹣,正五边形ABCDE与正五边形A1B1C1D1E1的面积分别记作S1,S2,∵正五边形ABCDE与正五边形A1B1C1D1E1相似,∴===,若在正五边形ABCDE内任取一点,则该点取自正五边形A1B1C1D1E1内的概率是,故答案为:.16.已知双曲线的左、右焦点分别是F1,F2,直线l:y=3x+6过点F1,且与双曲线C在第二象限交于点P,若点P在以F1F2为直径的圆上,则双曲线C的离心率为.【分析】求出双曲线的焦距,结合双曲线定义,利用勾股定理以及点到直线的距离,列出方程组,求出a,即可求解双曲线的离心率.解:双曲线的左、右焦点分别为F1、F2直线l:y=3x+6过点F1,可得c=2,直线l:y=3x+6过点F1与双曲线C在第二象限交于点P,设PF1=2m,PF2=2a+2m,所以,解得m=,a=,可得e===.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{a n}的前n项和为S n,且a1=2,.(1)求{a n}的通项公式;(2)令,求数列{b n}的前n项和T n.【分析】(1)当n≥2时,2S n﹣1=na n﹣1,可得2a n=(n+1)a n﹣na n﹣1(n≥2),整理化简可得:,利用“累乘求积法”可得a n.(2)由(1)可知=,利用裂项求和方法即可得出.解:(1)当n≥2时,2S n﹣1=na n﹣1,又2S n=(n+1)a n,相减可得2a n=(n+1)a n﹣na n﹣1(n≥2),整理得(n﹣1)a n=na n﹣1(n≥2),则,故,当n=1时,a1=2满足上式,故a n=2n.(2)由(1)可知=,则=.18.某航空公司规定:国内航班(不构成国际运输的国内航段)托运行李每件重量上限为50kg,每件尺寸限制为40cm×60cm×100cm,其中头等舱乘客免费行李额为40kg,经济舱乘客免费行李额为20kg.某调研小组随机抽取了100位国内航班旅客进行调查,得到如表数据;携带行李重量(kg)[0,20](20,30](30,40](40,50]头等舱乘客人数833122经济舱乘客人数37530合计4538152(1)请完成答题卡上的2×2列联表,并判断是否在犯错概率不超过0.05的前提下,认为托运超额行李与乘客乘坐座位的等级有关?(2)调研小组为感谢参与调查的旅客,决定从托运行李超出免费行李额且不超出10kg 的旅客中(其中女性旅客4人)随机抽取4人,对其中的女性旅客赠送“100元超额行李补助券”,记赠送的补助券总金额为X元,求X的分布列与数学期望.参考公式:,其中n=a+b+c+d.参考数据P(K2≥k0)0.0500.0100.001 k0 3.841 6.63510.828【分析】(1)由题意补全列联表,计算观测值,对照临界值得出结论;(2)根据题意知随机变量X的可能取值,计算所求的概率值,写出分布列,求出数学期望值.解:(1)由题意补全2×2列联表如下;托运免费行李托运超额行李合计头等舱乘客人数53255经济舱乘客人数37845合计9010100因为,所以在犯错概率不超过0.05的前提下,认为托运超额行李与乘客乘坐座位的等级有关.(2)根据题意可得,托运行李超出免费行李额且不超过10kg的旅客有7人,从中随机抽取4人,则其中女性旅客的人数可能为1、2、3、4,所以补助券总金额X的所有取值可能为100元,200元,300元,400元;计算,,,,所以X的分布列为:X100200300400P数学期望为(元).19.图1是由平行四边形ABCD和Rt△ABE组成的一个平面图形.其中∠BAD=60°,AB⊥AE,AD=AE=2AB=2,将△ABE沿AB折起到△ABP的位置,使得,如图2.(1)证明:PA⊥BD;(2)求二面角A﹣PD﹣B的余弦值.【分析】(1)由已知得∠ABC=120°,连接AC,在△ABC中,由余弦定理求得AC,利用勾股定理得到PA⊥AC,再由PA⊥AB,利用直线与平面垂直的判定可得PA⊥平面ABCD,从而得到PA⊥BD;(2)由(1)可知PA⊥平面ABCD,以D为原点,以DB,DC的方向分别为x轴,y 轴的正方向,以过点D作PA的平行线为z轴,建立空间直角坐标系D﹣xyz,分别求出平面PAD与平面PBD的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PD﹣B的余弦值.解:(1)证明:∵四边形ABCD是平行四边形,∠BAD=60°,∴∠ABC=120°.连接AC,在△ABC中,根据余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=7,∵,PA=2,∴PC2=AC2+PA2,得PA⊥AC,∵PA⊥AB,且AB∩AC=A,∴PA⊥平面ABCD,∵BD⊂平面ABCD,∴PA⊥BD;(2)∵BC=2,CD=1,∠BCD=60°,∴BD2=BC2+CD2﹣2BC•CD•cos∠BCD=3,∴BD2+CD2=BC2,得BD⊥CD.由(1)可知PA⊥平面ABCD,则以D为原点,以DB,DC的方向分别为x轴,y轴的正方向,以过点D作PA的平行线为z轴,建立如图所示的空间直角坐标系D﹣xyz,则D(0,0,0),,,,故,,.设平面PAD的一个法向量为,则,令x1=1,可得;设平面PBD的一个法向量是,则,令y2=2,可得.故.设二面角A﹣PD﹣B为θ,由图可知θ为锐角,则.20.已知函数在x=0处取得极值.(1)求m的值;(2)若过点(2,t)可作曲线y=f(x)的三条切线,求t的取值范围.【分析】(1)对f(x)求导,再结合题意可得f′(0)=0,解得m.(2)设切点坐标为,由导数的几何意义可得切线斜率k=,写出切线的方程,再代入(2,t),得.令,由于有三条切线所以y=t与y=g(x)由三个交点.对函数g(x)求导分析单调性及极值,进而得出t的取值范围.解:(1)因为,以.因为f(x)在x=0处取得极值,所以f'(0)=m=0.经验证m=0符合题意.(2)设切点坐标为,由,得,所以切线方程为,将(2,t)代入切线方程,得.令,则g'(x)=x2﹣4,则g'(x)=x2﹣4=0,解得x=±2.当x<﹣2或x>2时,g'(x)>0,所以g(x)在(﹣∞,﹣2),(2,+∞)上单调递增;当﹣2<x<2时,g'(x)<0,所以g(x)在(﹣2,2)上单调递减.所以g(x)的极大值为,g(x)的极小值为.因为有三条切线,所以方程t=g(x)有三个不同的解,y=t与y=g(x)的图象有三个不同的交点,所以.21.已知椭圆的离心率为,左、右焦点分别为F1,F2,且F2到直线的距离为.(1)求椭圆C的方程.(2)过F1的直线m交椭圆C于P,Q两点,O为坐标原点,以OP,OQ为邻边作平行四边形OPDQ,是否存在直线m,使得点D在椭圆C上?若存在,求出直线m的方程;若不存在,说明理由.【分析】(1)根据离心率得到a,b,c的关系,进而可表示出直线l的方程为,则可表示出F2到直线的距离,解得c=1,即可得到C的方程;(2)考虑直线PQ斜率存在时的情况,联立直线与椭圆方程,利用根与系数关系结合平行四边形性质,运用向量法得到,求得D的坐标,代入椭圆方程,解出k∈∅;斜率不存在时m:x=﹣1,满足条件,得到D坐标解:(1)因为椭圆C的离心率为,所以,所以a=2c,,所以直线l的方程为,即.由题意可得F2(c,0),则,解得c=1.故椭圆C的标准方程为.(2)①当直线PQ的斜率存在时,设直线m的方程为y=k(x+1),P(x1,y1),Q(x2,y2).联立,整理得(3+4k2)x2+8k2x+4k2﹣12=0,则,.设D(x0,y0),由四边形OPDQ为平行四边形,得,则,即,若点D落在椭圆C上,则,即,整理得,解得k∈∅.②当直线PQ的斜率不存在时,直线m的方程为x=﹣1,此时存在点D(﹣2,0)在椭圆C上.综上,存在直线m:x=﹣1,使得点D(﹣2,0)在椭圆C上.22.已知函数f(x)=lnx﹣ax+1有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:f'(x1•x2)<1﹣a.【分析】(1)由题意推出,构造函数,问题转化为函数与y=a 在(0,+∞)上有两个不同交点,通过函数的导数,判断函数的单调性,求解函数的最小值,然后求解a的范围.(2)求出,要证f'(x1•x2)<1﹣a,只需证(ax1﹣1)+(ax2﹣1)>0,即证.令,转化证明即可.解:(1)由题意,可得,转化为函数与直线y=a在(0,+∞)上有两个不同交点,,故当x∈(0,1)时,g'(x)>0;当x∈(1,+∞)时,g'(x)<0.故g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以g(x)max=g(1)=1.又,故当时,g(x)<0;当时,g(x)>0.可得a∈(0,1).(2)证明:,由(1)知x1,x2是lnx﹣ax+1=0的两个根,故,要证f'(x1•x2)<1﹣a,只需证x1•x2>1,即证lnx1+lnx2>0,即证(ax1﹣1)+(ax2﹣1)>0,即证,即证.不妨设0<x1<x2,故,令,,=,则h(t)在(0,1)上单调递增,则h(t)<h(1)=0,故(*)式成立,即要证不等式得证.。
高二下学期期末数学试题含答案(理科)
高二下学期期末数学试题(理科)一、选择题:本大题共8小题,每小题5分,满分40分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 在复平面内,复数iz +=21对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2. 设随机变量等可能地取值1,2,3,⋯,n ,若3.0)4(=<X P ,则n 的值为 A. 11 B. 10 C. 9 D. 8 3. 若1)1(4)1(6)1(4)1(234+-+-+-+-=x x x x S ,则S =A. 4)2(-xB. 4)1(-xC. 4xD. 4)1(+x4. 已知随机变量X 服从二项分布,即X ~B (6,31),则P (X =2)的值为A. 24380B. 24313C. 2434D. 1635. 函数x x x f cos 2)(+=在[0,2π]上取得最大值时的x 的值为A. 0B. 6πC. 3πD. 2π6. 如果)()()(b f a f b a f =+,且2)1(=f ,则=++++)2009()2010()5()6()3()4()1()2(f f f f f f f f A. 2010 B. 2009C. 2008D. 10057. 若n n n x a x a x a a x x 2222102)1(++++=++ ,则=++++n a a a a 2420 A. n2 B. 12+n C. 213-n D. 213+n8. 定义在R 上的函数f (x )满足)2()2(x f x f -=+,若方程0)(=x f 有且只有三个不相等的实根,且0是其中的一个根,则方程的另外两个根必为A. -1,1B. -1,4C. 2,4D. -2,2二、填空题:本大题共6小题,每小题5分,满分30分. 请把答案填在题中横线上.9. 对于回归方程25775.4ˆ+=x y,当4=x 时,y 的估计值是 ▲ .10. 质点运动规律为t t y 233+=,其中y (单位:m )表示在时刻t (单位:s )的位移,则t =2s 时,质点的加速度是 ▲ m/s 2.11. 计算=⎰dx xπ022cos ▲ .12. 函数)2ln(2--=x x y 的单调递增区间为 ▲ .13. 某班周一的课程表要排入语文、数学、英语、物理、化学、体育共六门课程,如果第一节不排体育,第六节不排数学,则不同的排法共有 ▲ 种(用数字作答). 14.已知点列如下:)1,1(1P ,)2,1(2P ,)1,2(3P ,)3,1(4P ,)2,2(5P ,)1,3(6P ,)4,1(7P ,)3,2(8P ,)2,3(9P ,)1,4(10P ,)5,1(11P ,)4,2(12P ,…,则60P 的坐标为 ▲ .三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分12分). 假定在这段时间内两地是否降雨相互之间没有影响,求在这段时间内: (1)甲、乙两地都降雨的概率; (2)甲、乙两地都不降雨的概率; (3)其中至少一个地方降雨的概率.16.(本小题满分12分)设复数i m m m m m z )65(3622++++--=,试求实数m 为何值时, (1)z 是实数; (2)z 是虚数; (3)z 是纯虚数.17.(本小题满分14分)某单位有8名员工,其中有5名员工曾经参加过一种或几种技能培训,另外3名员工没有参加过任何技能培训,现要从8名员工中任选3人参加一种新的技能培训.(1)求恰好选到1名曾经参加过技能培训的员工的概率;(2)这次培训结束后,仍然没有参加过任何技能培训的员工人数ξ是一个随机变量,求ξ的分布列和数学期望.18.(本小题满分14分)已知函数12)(+=x x f .(1)求过点(1,3),且与函数)(x f y =的图象相切的直线方程; (2)求过点(2,4),且与函数)(x f y =的图象相切的直线方程.19.(本小题满分14分)已知函数2)()(a x x x f -=,求f (x )的单调区间与极值.20.(本小题满分14分)在数列}{n a 中,)2(1>=a a a ,)()1(2*21N n a a a n nn ∈-=+. (1)求证:2>n a ; (2)求证:11<+nn a a ; (3)若3>n a ,证明:当43lg 3lga n ≥时,31<+n a .参考答案及评分标准一、选择题二、填空题9. 276 10. 312 11. 2π 12. (2,+∞) 13. 504 14. (5,7)三、解答题15.(本小题满分12分)解:设在元旦期间甲地降雨的事件为A ,乙地降雨的事件为B , 则P (A )=0.2,P (B )=0.3.(1)甲、乙两地都降雨的事件为AB ,所以甲、乙两地都降雨的概率为 P (AB )=P (A )P (B ⨯0.3=0.06; (4分)(2)甲、乙两地都不降雨的事件为B A ,所以甲、乙两地都不降雨的概率为56.07.08.0))(1))((1()()()(=⨯=--==B P A P B P A P B A P ; (8分)(3)设元旦期间甲、乙两地至少一个地方降雨的事件为C ,则事件C 与事件B A 互斥,所以甲、乙两地至少一个地方降雨的概率为44.056.01)(1)(=-=-=B A P C P . (12分)16.(本小题满分12分)解:(1)要使z 为实数,则⎩⎨⎧≠+=++.03,0652m m m , (2分)解之得 2-=m . (4分)(2)要使z 为虚数,则⎩⎨⎧≠+≠++.03,0652m m m (6分)解之得2-≠m ,且3-≠m . (8分)(3)要使z 为纯虚数,则⎪⎪⎪⎩⎪⎪⎪⎨⎧≠+≠++=+--.03,065,03622m m m m m m , (10分)解之得3=m . (12分)17.(本小题满分14分)解:(1)恰好选到1名已参加过其它技能培训的员工的概率为5615382315==C C C P . (5分) (2)随机变量ξ可能取值为:0,1,2,3. (6分)561)0(3833===C C P ξ;5615)1(382315===C C C P ξ; 2815)2(381325===C C C P ξ;285)3(3835===C C P ξ. 所以随机变量ξ的分布列是(10分) 随机变量ξ的数学期望为56105285328152561515610=⨯+⨯+⨯+⨯=ξE . (14分)18.(本小题满分14分) 解:由12)(+=x x f ,得xx f 1)(='. (2分)(1)由3)1(=f ,得点(1,3)在函数)(x f y =的图象上, (3分) 所以过点(1,3)的切线斜率1)1(1='=f k , (5分)故过点(1,3),且与函数)(x f y =的图象相切的直线方程为)1(13-⨯=-x y ,即2+=x y . (7分)(2)由4122)2(≠+=f ,得点(2,4)不在函数)(x f y =的图象上.设过点(2,4)的直线,且与函数)(x f y =的图象相切于点(0x ,120+x ),于是可得该切线的斜率021x k =, (9分)所以该切线的方程为)(112000x x x x y -=--. (10分)由点(2,4)在该切线上,得)2(1124000x x x -=--,解得10=x 或40=x . (12分) 故过点(2,4),且与函数)(x f y =的图象相切的直线方程为2+=x y 或321+=x y . (14分)19.(本小题满分14分)解:))(3(43)(2)()(222a x a x a ax x a x x a x x f --=+-=-⨯+-=', (2分) 令0)(='x f ,得3ax =,或a x =. (3分) (1)当0=a 时,03)(2≥='x x f , (4分) 所以函数f (x )单调递增区间为(-∞,+∞),且f (x )没有极值; (6分) (2)当0>a 时,a a<,当x 变化时,)(x f ',f (x )变化情况如下表:(8分)所以函数f (x )单调递增区间为(-∞,3a )与(a ,+∞),单调递减区间为(3a,a ),f (x )的极大值为3274)3(a a f =,极小值为0)(=a f ; (10分)(3)当0<a 时,aa <,当x 变化时,)(x f ',f (x )变化情况如下表:(12分) 所以函数f (x )单调递增区间为(-∞,a )与(3a ,+∞),单调递减区间为(a ,3a ),f (x )的极大值为0)(=a f ,极小值为3274)3(a a f =. (14分)20.(本小题满分14分)证明:(1)①当1=n 时,21>=a a 结论成立; (1分) ②假设)(*N k k n ∈=时,2>k a 成立, 当1+=k n 时,要证2)1(221>-=+k kk a a a ,只要证0442>+-k k a a , 即证0)2(2>-k a .由2>k a 知,0)2(2>-k a 成立,所以21>+k a . (4分) 由①、②知,对于*N n ∈,2>n a . (5分) (2)由2>n a 及)1(221-=+n nn a a a ,得)2()1(21-+=-=+n n n n n n n a a a a a a a , 因为02>-n a ,所以n n n a a a >-+)2(,所以1)2(<-+n n n a a a ,故11<+nn a a)(*N n ∈.(8分)(3)若3>n a ,则43)1311(21)111(21)1(21=-+<-+=-=+n n n n n a a a a a , 即431<+n n a a ,431<-n n a a ,⋯⋯,4312<a a , (10分)将上述n 个式子相乘得n n a a )43(11<+,即n n a a )43(1<+. (11分) 下面用反证法证明:假设31≥+n a ,则n a )43(3<,即43lg 3lg n a <,则43lg 3lga n <,与已知43lg 3lga n ≥矛盾. (13分)所以假设不成立,原结论成立,即当43lg 3lga n ≥时,31<+n a . (14分)。
高二理科数学下学期期末考试
1 1
(k 1) 0 成立
k1
由①②可知,对 n 3, f (n) (1 1 ) n n 0 成立 n
……………… 10 分
x 19.解:( 1) l 的参数方程 y
高二数学理期末测试(二)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分共 钟.
150 分,考试时间 120 分
第Ⅰ 卷 (选择题 共 60 分)
一. 选择题(本大题共 12 个小题,每小题 5 分,共 60 分 .在每个小题的四个选项中,只有 一项是符合题目要求的 .)
(1 3i )2
1.复数
( 4)当 变化时,求弦 BC 的中点的轨迹方程.
20.(本小题满分 9 分)设在一个盒子中,放有标号分别为 1, 2,3 的三张卡片,现从这个
盒 子 中 , 有 放 回 地 先 后 抽 得 两 张 卡 片 , 标 号 分 别 记 为 x, y , 设 随 机 变 量 x 2 y x.
( 1)写出 x, y 的可能取值,并求随机变量
∵ lg(| x 3| | x 7 |) a 解集为 R .∴ a 1………………………… 8 分
1
17
18.解:( 1) f (1) 1, f (2) , f (3)
2
27
( 2)猜想: n 3, f ( n) (1 1 ) n n 0 n
证明:①当 n 3 时, f (3)
17 0 成立 27
②假设当 n k (n 3, n N * ) 时猜想正确,即 f k
装箱分配给这 3 台卡车运送,则不同的分配方案的种数为
()
A . 168
B .84
C. 56
D. 42
第Ⅱ 卷(非选择题满分 90)
高二下期末统一考试数学试题(理)含答案
高二数学试卷(理科)本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1、答卷前,考生务必用2B铅笔在答题卡“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己姓名、考生号、试室号、座位号填写在答题卡上.2、选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上.如需改动,先划掉原来的答案,然后再写上新的答案.不准使用铅笔和涂改液.不按以上要求作答的答案无效.4、考生必须保持答题卡的整洁.考试结束,将答题卡交回,试卷不用上交.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.)1. 若复数满足,则A. B. C. D.【答案】C【解析】,故选C.2. 设随机变量X~B(8,p),且D(X)=1.28,则概率p的值是A. 0.2B. 0.8C. 0.2或0.8D. 0.16【答案】C【解析】∵随机变量X~B(8,p),且D(X)=1.28,∴8P(1-p)=1.28,∴p=0.2或0.8故选:C3. 某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:附表:经计算的观测值为10,,则下列选项正确的是( )A. 有99.5%的把握认为使用智能手机对学习有影响B. 有99.5%的把握认为使用智能手机对学习无影响C. 在犯错误的概率不超过0.001的前提下认为使用智能手机对学习有影响D. 在犯错误的概率不超过0.001的前提下认为使用智能手机对学习无影响 【答案】A【解析】因为7.879<K 2=10<10.828,对照数表知,有99.5%的把握认为使用智能手机对学习有影响. 故选:A .4. 用反证法证明:若整系数一元二次方程有有理数根,那么中至少有一个是偶数.下列假设正确的是 A. 假设都是偶数; B. 假设都不是偶数C. 假设至多有一个偶数D. 假设至多有两个偶数【答案】B【解析】试题分析:“中至少有一个是偶数”包括一个、两个或三个偶数三种情况,其否定应为不存在偶数,即“假设都不是偶数”,故选B...............................考点:命题的否定.5. 函数的单调递减区间是A. B.C. ,D.【答案】A【解析】函数y=x2﹣lnx的定义域为(0,+∞).令y′=2x﹣= ,解得,∴函数y=x2﹣lnx的单调递减区间是.故选:A .点睛:求函数的单调区间的“两个”方法方法一(1)确定函数y=f(x)的定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.方法二(1)确定函数y=f(x)的定义域;(2)求导数y′=f′(x),令f′(x)=0,解此方程,求出在定义区间内的一切实根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f′(x)在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性6. 已知X的分布列为设Y=2X+3,则E(Y)的值为A. B. 4 C. -1 D. 1 【答案】A【解析】由条件中所给的随机变量的分布列可知 EX=﹣1×+0×+1×=﹣, ∵E (2X+3)=2E (X )+3,∴E (2X+3)=2×(﹣)+3= .故答案为:A .7. 从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )等于( )A. B. C. D. 【答案】B【解析】事件A=“取到的2个数之和为偶数”所包含的基本事件有:(1,3)、(1,5)、(3,5)、(2,4),∴p(A)= ,事件B=“取到的2个数均为偶数”所包含的基本事件有(2,4),∴P(AB)= ∴.本题选择B 选项.8. 在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布 N(-1,1)的部分密度曲线)的点的个数的估计值为附:若X ~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.682 6,P(μ-2σ<X<μ+2σ)=0.954 4.A. 1 193B. 1 359C. 2 718D. 3 413【答案】B【解析】正态分布的图象如下图:正态分布N(﹣1,1)则在(0,1)的概率如上图阴影部分,其概率为×[P(μ﹣2σ<X≤μ+2σ)﹣P(μ﹣σ<X≤μ+σ)]= ×(0.9544﹣0.6826)=0.1359;即阴影部分的面积为0.1359;所以点落入图中阴影部分的概率为p==0.1359;投入10000个点,落入阴影部分的个数期望为10000×0.1359=1359.故选B.点睛:正态曲线的性质:(1)曲线在轴的上方,与轴不相交 .(2)曲线是单峰的,它关于直线=μ对称(由得)(3)曲线在=μ处达到峰值(4)曲线与轴之间的面积为19. 下表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,则下列结论错误的是( )A. 产品的生产能耗与产量呈正相关B. t的值是3.15C. 回归直线一定过(4.5,3.5)D. A产品每多生产1吨,则相应的生产能耗约增加0.7吨【答案】B【解析】由题意,故选:B.10. 将5件不同的奖品全部奖给3个学生,每人至少一件奖品,则不同的获奖情况种数是A. 150B. 210C. 240D. 300【答案】A【解析】将5本不同的书分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有C53•A33=60种分法,分成2、2、1时,根据分组公式90种分法,所以共有60+90=150种分法,故选A.点睛:一般地,如果把不同的元素分配给几个不同对象,并且每个不同对象可接受的元素个数没有限制,那么实际上是先分组后排列的问题,即分组方案数乘以不同对象数的全排列数。
高二理科数学下册期末复习测试题及答案
高二理科数学下册期末复习测试题及答案第Ⅰ卷选择题共60分一、选择题每小题5分,共50分。
1、已知复数满足,则等于A. B. C. D.2、一个家庭中有两个小孩,已知其中有一个是女孩,则这时另一个是女孩的概率是A. B. C. D.3、黑白两种颜色的正六边形地面砖如图的规律拼成若干个图案,则第2021个图案中,白色地面砖的块数是A.8046B.8042C.4024D.60334、右图是计算1+3+5+…+99的值的算法程序框图, 那么在空白的判断框中, 应该填入下面四个选项中的A. i≤50B. i≤97C. i≤99D. i≤1015、一次测试有25道选择题,每题选对得4分,选错或不选得0分,满分100分。
某学生选对每道题的概率为0.8,则考生在这次考试中成绩的期望与方差分别是A、80;8B、80;64C、70;4D、70;36、在上有一点,它到的距离与它到焦点的距离之和最小,则点的坐标是A.-2,1B. 1,2C.2,1D. -1,27、从某校高三年级中随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其结果的频率分布直方图如图所示,若某高校 A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为A.10B.20C.8D.168、设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为A. B. C. D.9、如图所示,定点A和B都在平面α内,定点P α,PB⊥α,C是α内异于A和B 的动点,且PC⊥AC,那么,动点C在平面α内的轨迹是A.一条线段,但要去掉两个点B.一个圆,但要去掉两个点C.一个椭圆,但要去掉两个点D.半圆,但要去掉两个点10、矩形ABCD中,AB=3,BC=4,沿对角线BD将△ABD折起,使A点在平面BCD内的射影落在BC边上,若二面角C—AB—D的平面角大小为,则sin 的值等A. B. C. D.二、填空题每题5分,共25分,注意将答案写在答题纸上11、若随机变量X服从两点分布,且成功概率为0.7;随机变量Y服从二项分布,且Y~B10,0.8,则EX, EY分别是, .12、甲乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,且。
高二第二学期期末试卷 理科数学
高二数学 期末测试卷(理)试卷分为两卷,卷(I )100分,卷(II )50分,满分共计150分考试时间:120分钟卷(I )一.选择题:本大题共10小题,每小题5分,共50分 1.设i 为虚数单位,则()61i +展开式中的第三项为( )A .30 iB .15i -C .30D .15-2.从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为( )A .184 B .121C .25D .353.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .44.将A 、B 、C 、D 四个球放入编号为1、2、3的三个盒子中,若每个盒子中至少放一个球且A 、B 两个球不能放在同一盒子中,则不同的放法有( )A .15B .18C .30D .365.若6260126(1)mx a a x a x a x +=++++且12663a a a +++=,则实数m =( )A .1B .1-C .3-D .1或3-6.若随机变量X 的分布列如下表,则()E X =( )A .181 B .9 C .20 D . 9207.某电视台连续播放5个不同的广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有( )A .120种B .48种C .36种D .18种8.若函数()(1)(2)(3)(4)(5)f x x x x x x =-----,且()f x '是函数()f x 的导函数,则(1)f '=( )A .24B .24-C .10D .10-9.若复数z 满足|43|3z i ++=,则复数z 的模应满足的不等式是( )A .5||8z ≤≤B .2||8z ≤≤C .||5z ≤D . ||8z <10.设ξ是离散型随机变量,32)(1==x p ξ,31)(2==x p ξ,且21x x <,若34=ξE ,92=ξD ,则21x x +的值为( )A .35B .37C .3D .311二.填空题:本大题共4小题,每小题5分,共20分11.若二项式(12)nx +的展开式中第七项的二项式系数最大,则n = ;此时42n +除以7的余数是 。
高二第二学期理科数学期末考试试卷-附答案
高二第二学期期末考试试卷数学(理科)一、选择题(每小题4分,共40分)请将正确选项填入答题纸选择题答题栏....... 1.从甲地到乙地,每天有直达汽车4班,从甲地到丙地,每天有5个班车,从丙地到乙地,每天有3个班车,则从甲地到乙地不同的乘车方法有( )A .19种B .12种C .32种D .60种2.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A .B .C .D .3.甲、乙两工人在同样的条件下生产某种产品,日产量相等,每天出废品的情况为下表所示,则有结论( )A .甲的产品质量比乙的产品质量好一些;B .两人的产品质量一样好;C .乙的产品质量比甲的产品质是好一些;D .无法判断谁的质量好一些.3题表 4题图6.设随机变量ξ服从正态分布ξ~N (0,1),,则=( )A .B .C .D .7.的展开式中x 3的系数为( )A .﹣84B .84C .﹣36D .368.有6个人排成一排照相,要求甲、乙、丙三人站在一起,则不同的排法种数为( )A .24B .72C .144D .2889.对同一目标进行两次射击,第一、二次射击命中目标的概率分别为0.5和0.7,则两次射击中至少有一次命中目标的概率是( )A .0.15B .0.35C .0.42D .0。
85 10.已知随机变量ξ的分布列为右表所示,若, 则( )A .B .C .1D .二、填空题.(每小题4分,共16分)11.观察下面四个图:① ② ③ ④其中两个分类变量x ,y 之间关系最强的是 .(填序号) 12.如果随机变量X 服从二项分布X ~,则的值为 . 13.对具有线性相关关系的变量x 和y ,测得一组数据如下表:若已求得它们的回归直线的斜率为6。
5,则这条回归直线的方程为 .根据表中的数据,得到K 2=错误!≈10。
653,因为K 2〉7.879,所以产品的颜色接受程度与性别有关系,那么这种判断出错的可能性为 .三、解答题(共44分)解答应写出文字说明,证明过程或演算步骤.15.(本小题满分10分)某班从6名班干部(男生4人,女生2人)中,任选3人参加学校的义务劳动;(1)共有多少种不同的选法; (2)求选中的3人都是男生的概率;(3)求男生甲.和女生乙.至少有一个被选中的概率. 16.(本小题满分10分)某校组织一次冬令营活动,有8名同学参加,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中有X 名男同学.(1)求去执行任务的同学中有男有女的概率; (2)求X 的分布列和数学期望.17.(本小题满分12分)某电脑公司有六名产品推销员,其工作年限与年推销金额数据如下表:(1)画出y 关于x 的散点图.(2)求年推销金额y 关于工作年限x 的线性回归方程,若第六名推销员的工作年限为10年,试估计他的年推销金额;(3)计算R 2的值,并说明回归模型拟合程度的好坏. 参考公式:(参考数据:x -=6,错误!=3.4,错误!错误!=200,错误!错误!=63,错误!i y i =112,错误!(y i -错误!i )2=0。
高二数学(理科)下学期期末考试试题(带参考答案)
)
e e
x 3 ax b
1没有实根 1至多有两个实根
z 1 i i 2
C )
e e
x3 ax b
x 3 ax b
x3 ax b
2.设 i 是虚数单位,若 A. 1
a
i ,则复数 z 的共轭复数是(
.3
i 1 x e
2 e
B
.2
i
D
.3
i
3. A.
dx
3 ,则 a (
B .e
4
1 2
C
.e
3
D
.e
2
n
y 关于 x 的回归方程并预测当
x
?精确到 9 时,对应的 y 值为多少( b
y
? bx
? 中斜率和截距的最小二乘法估计公式分别为: a
n
xi yi ? b
i 1 n
nx y
,
2
xi yi ? a ? ,相关系数 r 公式为: r y bx
i 1 n 2 n
nx y
2
x
i 1
2 i
nx
i 1
xi
x
i 1
yi
y
参考数据:
6 6 6 6
xi yi
i 1
47.64 ,
i 1
x
2 i
139 ,
i 1
xi
x
4.18 ,
i 1
yi
y
1.53 .
. 现由天气预报得知,某地在
20.近几年来,我国许多地区经常出现干旱现象,为抗旱经常要进行人工降雨 未来 5 天的指定时间的降雨概率是:前 3 天均为
9.如果
x
B
高二下学期期末考试理科数学试题 (含答案)
高二下学期期末考试理科数学试题(含答案)一、选择题(本题共12道小题,每小题5分,共60分)1.已知集合A=﹛-2,0,2﹜,B=﹛x |x 2-x -2=0﹜,则A∩B= ( )(A) ∅ (B ){2} (C ){0} (D) {-2}2.复数的共轭复数是( )A .2+iB .2-iC .-1+iD .-1-i3.已知命题p :∃x 0∈R ,lg x 0<0,那么命题 ⌝p 为A. ∀x ∈R ,lg x >0B. ∃x 0∈R ,lg x 0>0C. ∀x ∈R ,lg x ≥0D. ∃x 0∈R ,lg x 0≥04.已知向量(2,1)a =,(3,)b m =,若(2)//a b b +,则m 的值是( )A .32B .32-C .12D .12- 5.已知实数,x y 满足3141y x x y y ≤-⎧⎪+≤⎨⎪≥⎩,则目标函数z x y =-的最大值为( )A .-3B .3C .2D .-26.钝角三角形ABC 的面积是12,AB=1,,则AC=( ) (A ) 5 (B(C ) 2 (D ) 17.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6c m 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )(A )1727 (B ) 59 (C )1027 (D) 13 8.若21()nx x -展开式中的所有二项式系数之和为512,则该开式中常数项为( ) A. 84- B. 84 C. 36- D. 369.已知三棱锥P ABC -的三条棱PA ,PB ,PC 长分别是3、4、5,三条棱PA ,PB ,PC 两两垂直,且该棱锥4个顶点都在同一球面上,则这个球的表面积是 ( )A .25π B.50π C. 125π D.都不对10.已知ω>0,函数f(x)=sin(ωx +4π)在(2π,π)上单调递减,则ω的取值范围是( ) (A )[21,45] (B )[21,43] (C )(0,21] (D )(0,2] 11.已知双曲线2222:1x y C a b-=(0a >,0b >)的左顶点为M ,右焦点为F ,过左顶点且斜率为l 的直线l 与双曲线C 的右支交于点N ,若MNF ∆的面积为232b ,双曲线C 的离心率为( ) A . 3 B .2 C. 53 D .4312.若存在实数[ln3,)x ∈+∞,使得(3)21x a e a -<+,则实数a 的取值范围是( )A .(10,+∞)B .(-∞,10) C. (-∞,3) D .(3,+∞)二、填空题(本题共4道小题,每小题5分,共20分)13.已知向量()1,3a =-,()3,b t =,若a b ⊥,则2a b += .14.已知3()5sin 8f x x a x =+-,且(2)4f -=-,则(2)f = .15.函数)sin()(ϕ+=x x f —2ϕsin x cos 的最大值为_________.16.定义: 区间[](),c d c d <的长度为d c -. 已知函数3log y x =的定义域为[],a b , 值域为[]0,2,则区间[],a b 长度的最大值与最小值的差等于________.三、解答题(本题共6道小题,第1题0分,第2题0分,第3题0分,第4题0分,第5题0分,第6题0分,共0分)17.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,且()2cos cos a b C c B -⋅=⋅.(1)求角C 的大小;(2)若2c =,ABC ∆.18.设数列{}n a 的前n 项和为n S ,满足112n n a S -=,又数列{}n b 为等差数列,且109b =,2346b b b ++=. (1)求数列{}n a 的通项公式;(2)记112n n n a c b b ++=,求数列{}n c 的前n 项和n T .19.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值. 附:相关系数公式∑∑∑===----=n i i n i in i ii y y x x y y x x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,,//AD CD AB CD ⊥,122AB AD CD ===,点M 是线段EC 的中点.(1)求证://BM 面ADEF ;(2)求平面BDM 与平面ABF 所成锐二面角的余弦值.21.已知椭圆C :12222=+by a x (a >b >0)的焦点在圆x 2+y 2=3上,且离心率为23. (Ⅰ)求椭圆C 的方程;(Ⅱ)过原点O 的直线l 与椭圆C 交于A ,B 两点,F 为右焦点,若△F AB 为直角三角形,求直线l 的方程.22.已知函数()ln a f x x x=+. (1)求函数()f x 的单调区间;(2)证明:当2a e≥时, ()x f x e ->.试卷答案1.BB=﹛-1,2﹜,故A B=﹛2﹜.2.D略3.C4.A5.C6.BAC=1,但ABC ∆为直角三角形不是钝角三7.C该零件是一个由两个圆柱组成的组合体,其体积为π×32×2+π×22×4=34π(cm 3),原毛坯的体积为π×32×6=54π(cm 3),切削掉部分的体积为54π-34π=20π(cm 3),故所求的比值为ππ5420=2710. 8.B略9.B10.A 592()[,]444x πππωω=⇒+∈ 不合题意 排除()D 351()[,]444x πππωω=⇒+∈ 合题意 排除()()B C 另:()22πωππω-≤⇔≤,3()[,][,]424422x ππππππωωπω+∈++⊂得:315,2424224πππππωπωω+≥+≤⇔≤≤11.B12.B13.14.-1215.1(x )=sin(x +φ)-2sin φcos x =sin x cos φ-sin φcos x =sin(x -φ),故其最大值为1.16.817.(1)由()2cos cos a b C c B -⋅=⋅得2sin sin cos AcosC BcosC BsinC =+∴2sin cos sin A C A = ∴1cos 2C =∵0C π<< ∴3C π=(2)∵1sin 2ABC S ab C ∆=∴4ab = 又2222()23c a b abcosC a b ab =+-=+-∴2()16a b += ∴4a b += ∴周长为6.18.(1)设{}n b 的公差为d ,则1199366b d b d +=⎧⎨+=⎩ ∴101b d =⎧⎨=⎩∴1n b n =-当1n =时,11112a S -=,∴12a =当2n ≥时,()111222222n n n n n n n a S S a a a a ---=-=---=-∴12n n a a -= ∴2n n a =(2)由(1)知 11,2n b n a =-=,()211211n c n n n n ⎛⎫==- ⎪++⎝⎭ ∴1211111212231n n T c c c n n ⎛⎫=+++=-+-++- ⎪+⎝⎭122111n n n ⎛⎫=-= ⎪++⎝⎭ 19.(1)由已知数据可得2456855x ++++==,3444545y ++++==.………1分 因为51()()(3)(1)000316i i i x x y y =--=-⨯-++++⨯=∑, …………………2分 ,52310)1()3()(22222512=+++-+-=-∑=i ix x …………………………3分==…………………………4分所以相关系数()()0.95n i i x x y y r --===≈∑.………5分 因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.……………6分(2)记商家周总利润为Y 元,由条件可得在过去50周里:当70X >时,共有10周,此时只有1台光照控制仪运行,周总利润Y =1×3000-2×1000=1000元.…………8分当5070X ≤≤时,共有35周,此时有2台光照控制仪运行,周总利润Y =2×3000-1×1000=5000元. ……………………………9分当50X <时,共有5周,此时3台光照控制仪都运行,周总利润Y =3×3000=9000元.…………………10分所以过去50周周总利润的平均值10001050003590005460050Y ⨯+⨯+⨯==元, 所以商家在过去50周周总利润的平均值为4600元. ………………………12分20.(1)证明:取DE 中点N ,连,MN AN 则//MN AB ,且MN AB =∴ABMN 是平行四边形,∴//BM AN∵BM ⊄平面ADEF ,AN ⊂平面ADEF ,∴//BM 平面ADEF(2)如图,建立空间直角坐标系,则()()()()()2,0,0,2,2,0,0,4,0,0,0,0,0,0,2A B C D E因为点M 是线段EC 的中点,则()0,2,1M ,()0,2,1DM =,又()2,2,0DB =.设()111,,n x y z =是平面BDM 的法向量,则1111220,20DB n x y DM n y z ⋅=+=⋅=+=.取11x =,得111,2y z =-=,即得平面BDM 的一个法向量为()1,1,2n =-.由题可知,()2,0,0DA =是平面ABF 的一个法向量.设平面BDM 与平面ABF 所成锐二面角为θ,因此,cos 2DA n DA n θ⋅===⨯⋅. 21.解:(Ⅰ)因为椭圆的焦点在x 轴上,所以焦点为圆x 2+y 2=3与xa=2.分 (Ⅱ)当△FAB 为直角三角形时,显然直线l 斜率存在,可设直线l 方程为y=kx ,设A(x 1,y 1),B(x 2,y 2).(ⅰ)当FA ⊥FB消y 得(4k 2+1)x 2-4=0.则x 1+x 2=0此时直线l 分 (ⅱ)当FA 与FB此时直线l综上,直线l 分 22.(1)函数()ln a f x x x =+的定义域为()0,+∞. 由()ln a f x x x =+,得()221a x a f x x x x ='-=-.………1分 ①当0a ≤时, ()0f x '>恒成立, ()f x 递增,∴函数()f x 的单调递增区间是()0,+∞ ………2分②当0a >时,则()0,x a ∈时,()0,f x '<()f x 递减,(),x a ∈+∞时, ()0f x '>,()f x 递增.∴函数()f x 的单调递减区间是(0,)a ,单调递增区间是(),a +∞.………4分(2)要证明当2a e ≥时, ()x f x e ->,即证明当20,x a e >≥时, ln x a x e x-+>,………5分 即ln x x x a xe -+>,令()ln h x x x a =+,则()ln 1h x x ='+, 当10x e <<时, ()0h x '<;当1x e>时, ()0h x '>. 所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增. 当1x e =时, ()min 1h x a e ⎡⎤=-+⎣⎦.于是,当2a e ≥时, ()11h x a e e≥-+≥.①………8分 令()x x xe φ-=,则()()1x x x x e xe e x φ---'=-=-.当01x <<时, ()0x ϕ'>;当1x >时, ()0x φ'<.所以函数()x φ在()0,1上单调递增,在()1,+∞上单调递减.当1x =时, ()max 1x e φ⎡⎤=⎣⎦.于是,当0x >时, ()1x eφ≤.②………11分 显然,不等式①、②中的等号不能同时成立.故当2a e ≥时, (f x )x e ->.………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二第2学期期末考试训练数学试题(理科)注意事项1.本试题满分150分,考试时间为120分钟;2. 使用答题纸时,必须使用0.5毫米的黑色墨水签字笔书写,作图时,可用2B 铅笔,要字迹工整,笔迹清晰,超出答题区书写的答案无效;在草稿纸,试题卷上答题无效;3.答卷前将密封线内的项目填写清楚。
参考公式()0.6826,(22)0.9544,(33)0.9974.P X P X P X μσμσμσμσμσμσ-<≤+=-<≤+=-<≤+= 如果事件A 在一次试验中发生的概率是P ,那 么n 次独立重复试验中恰好发生k 次的概率k n k k n n P P C k P --=)1()(用最小二乘法求线性回归方程系数公式1221ˆˆˆ,ni ii nii x y nx ybay bx xnx==-⋅==--∑∑ . 独立性检验公式 ()()()()()22n ad bc K a b a c c d b d -=++++.独立性检验临界值表:一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.用反证法证明:“,a b 至少有一个为0”,应假设A .,a b 没有一个为0B .,a b 只有一个为0C .,a b 至多有一个为0D .,a b 两个都为0 2.已知,,x y R i ∈为虚数单位,且(2)1x i y i --=+,则(1)x y i ++的值为A .4B .4-C .44i +D .2i3.已知ξ~B (n ,p ),且E ξ=7,D ξ=6,则p 等于A.71B.61C.51D.41 P k ≥2(K )0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.8284. 在4次独立试验中,事件A 出现的概率相同,若事件A 至少发生1次的概率是8165,则事件A 在一次试验中出现的概率是 A.31 B. 52 C. 65 D. 325. 某电视台连续播放5个不同的广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有A.120种B.48种C.36种D.18种6.若7217722107...,...)21(a a a x a x a x a a x +++++++=-那么的值等于A. 2B.-1C.0D.27.设随机变量ξ服从标准正态分布N (0,1),已知)96.1|(|,025.0)96.1(<=-≤ξξP P 则等于A.0.025B. 0.950C. 0.050D.0.9758. 由曲线x y x y 232=-=和直线所围成的封闭图形的面积为A.386B.332C.316D. 314 9.函数12)(+⋅=x e x x f ,[]1,2-∈x 的最大值为A.14e - B.1 C. 2e D. 23e10.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了下表:喜爱打篮球 不喜爱打篮球 合计 男生 20 5 25 女生 10 15 25 合计3020 50则根据表中的数据,计算随机变量2K 的值,并参考有关公式,你认为性别与是否喜爱打篮球之间有关系的把握有A .0B .99%C .99.5%D .100%11.在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别为0.9,0.9,0.8,若至少有两枚导弹命中目标方可将其摧毁,则目标被摧毁的概率为A.0.998 B.0.046 C.0.002 D.0.95412.设函数()sin cos =+f x x x x 的图像在点()(),t f t 处切线的斜率为k ,则函数()=k g t 的部分图像为B C D二、填空题:本大题共4小题,每小题4分,满分16分。
13.已知121cos,cos cos ,32554πππ==231cos cos cos 7778πππ=, ,根据以上等式,可猜想出的一般结论是 .14.某校某次数学考试的成绩x 服从正态分布,其密度函数为,21)(222)(σμσπ--=x ex f 密度曲线如右图,已知该校学生总数是10000人, 则成绩位于]85,65(的人数约是 .15.设[][]⎩⎨⎧∈-∈=2,1,21,0,)(2x x x x x f 则⎰20)(dx x f 等于 . 16.排球比赛的规则是5局3胜制,A 、B 两队每局比赛获胜的概率分别为32和31.前2局中B 队以2:0领先,则最后 B 队获胜的概率为 .三、解答题:本大题6个小题,共74分.解答须写出必要的文字说明、证明过程及演算步骤.17.(本小题满分12分)已知nxx )2(-展开式中第三项的系数比第二项的系数大162,求:(1)n 的值;(2)展开式中含3x 的项.18.(本小题满分12分)在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第一次抽到理科题的概率;(2)在第一次抽到理科题的条件下,第二次抽到理科题的概率.19.(本小题满分12分)山东省某示范性高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座概率如下表:信息技术生物化学物理数学周一414141412175Oxπ251周三21 21 21 21 32 周五31 31 31 31 32(1)求数学辅导讲座在周一、周三、周五都不满座的概率;(2)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望.20.(本小题满分12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日 期 1月10日2月10日 3月10日4月10日5月10日6月10日昼夜温差)(0C x10 11 13 12 8 6 就诊人数y 个222529261612该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.⑴ 求选取的2组数据恰好是相邻两个月的概率; ⑵ 若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程a bx y+=ˆ; ⑶ 若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?21.(本小题满分12分)若*N n ∈,n n S n 211214131211--+⋅⋅⋅+-+-=,nn n T n 212111+⋅⋅⋅++++=.⑴ 求;,,,2121T T S S⑵ 猜想n S 与n T 的关系,并用数学归纳法证明.22.(本小题满分14分)已知函数x x f =)(,函数x x f x g sin )()(+=λ是区间[-1,1]上的减函数. ⑴ 求λ的最大值;⑵ 若]1,1[1)(2-∈++<x t t x g 在λ上恒成立,求t 的取值范围; ⑶ 讨论关于x的方程m ex x x f x+-=2)(ln 2的根的个数.高二模块检测 数学(理)试题参考答案一、选择题:ADAAC ABBCC DB 二、填空题: 13. 21coscoscos 2121212n n n n n πππ=+++ ,n N *∈.14. 954415. 56 16. 2719三、解答题:17. 解:(1)∵26222234)2()(--=-=n n n nx C x x C T 2311122)2()(---=-=n n n n xC xx C T依题意得1622412=+n n C C ∴81212=+n n C C812=n ,9=n ……………………………………6分 (2)设第1+r 项含3x 项,则2399991)2()2()(rrr r r r r x C xx C T --+-=-= ∴1,3239==-r r ∴第二项为含3x 的项:33192182x x C T -=-= ………………12分18.解:设第一次抽到理科题的概率的概率为A ,第二次抽到理科题的概率B , 第一次和第二次都抽到理科题为事件AB .⑴ 从5道题中不放回地依次抽2道题事件为`20)(25==ΩA n依据分步乘法计数原理, 12)(1413=⨯=A A a n .∴ 532012)()()(==Ω=n A n A p ………………5分 ⑵ ∵6)(23==A AB n , ∴103206)()()(==Ω=n AB n AB P ………………8分∴P(A)P(AB))B P(A ==2153103== ………………12分19、解:(1)设数学辅导讲座在周一、周三、周五都不满座为事件A ,则181)321)(321)(211()(=---=A P ………………3分(2)ξ可能取值为0,1,2,3,4,5481)321()211()0(4=-⋅-==ξP8132)211()321()211(21)1(4314=⋅-+-⋅-⋅==C P ξ 24732)211(21)321()211()21()2(3142224=⋅-⋅⋅+-⋅-⋅==C C P ξ 3132)211()21()321()211()21()3(2224334=⋅-⋅⋅+-⋅-⋅==C C P ξ16332)211()21()321()21()4(3344=⋅-⋅⋅+-⋅==C P ξ24132)21()5(4=⋅==ξP ………………9分所以,随机变量ξ的分布列如下ξ0 12 34 5P48181 24731 163 2412415163431324728114810⨯+⨯+⨯+⨯+⨯+⨯=ξE = ………………12分 20.解:⑴设抽到相邻两个月的数据为事件A因为从6组数据中选取2组数据共有2615C =种情况,每种情况都是等可能出现的,其中抽到相邻两个月的数据的情况有5种所以()51153P A == …………………………………4分 ⑵ 由数据求得24,11==y x ,109252=∑=ii i yx ,498522=∑=i i x由公式求得718ˆ=b,再由 ˆˆay bx =-.730ˆ-=a …………………………8分 所以y 关于x 的线性回归方程为730718ˆ-=x y………………………10分⑶ 当10x =时,7150=y ,74227150=-<2 同样,当6,x =时,778=y ,7612778=-<2 所以,该小组所得线性回归方程是理想的. ……………………………12分21.解:(1)111122S =-=,21117123412S =-+-= 111112T ==+,2117212212T =+=++ …………………………………2分(2)猜想:*()n n S T n N =∈ 即:1111111111.2342121232n n n n n n -+-++-=++++-+++ (n ∈N*)…5分 下面用数学归纳法证明① n=1时,已证S 1=T 1 ……………………………………………6分 ② 假设n=k 时,S k =T k (k ≥1,k ∈N*),即:1111111111.2342121232k k k k k k-+-++-=++++-+++ ………8分 则111212(1)k k S S k k +=+-++ 11212(1)k T k k =+-++ 1111111232212(1)k k k k k k =+++++-+++++ 11111232112(1)k k k k k ⎛⎫=++++- ⎪+++++⎝⎭ 11111(1)1(1)22212(1)k k k k k =+++++++++++1k T +=所以1+=k n 命题成立. ……………11分 由①,②可知,对任意*N n ∈,n n T S =都成立. ……………12分22.解: ⑴ x x x g x x f sin )(,)(+=∴=λ,]1,1[)(-在x g 上单调递减,0cos )('≤+=∴x x g λx cos -≤∴λ在[-1,1]上恒成立,1-≤∴λ,故λ的最大值为.1-……4分⑵ 由题意,1sin )1()]([max --=-=λg x g,11sin 2++<--∴t t λλ只需∴11sin )1(2++++t t λ>0(其中1-≤λ),恒成立, 令)1(011sin )1()(2-≤>++++=λλλt t h ,则2101sin110t t t +<⎧⎨--+++>⎩, 01sin ,01sin 122>+-⎩⎨⎧>+--<∴t t t t t 而恒成立, 1-<∴t…………9分 ⑶ 由.2ln )(ln 2m ex x xxx f x +-==令,2)(,ln )(221m ex x x f x xx f +-==,ln 1)(2'1x xx f -=当,0)(,),0('1≥∈x f e x 时(]e x f ,0)(1在∴上为增函数;当[)+∞∈,e x 时,,0)('1≤x f[)+∞∴,)(1e x f 在为减函数;当,1)()]([,1max 1ee f x f e x ===时 而,)()(222e m e x x f -+-=,1,122时即当e e m e e m +>>-∴方程无解;当e e m e e m 1,122+==-即时,方程有一个根;当ee m e e m 1,122+<<-时时,方程有两个根.…………14分。