(新)高中必修一对数与对数函数练习题答案

合集下载

新教材高中数学第4章对数运算与对数函数2 1对数的运算性质巩固练习含解析北师大版必修第一册

新教材高中数学第4章对数运算与对数函数2 1对数的运算性质巩固练习含解析北师大版必修第一册

2.1对数的运算性质课后训练·巩固提升1.log242+log243+log244等于()A.1B.2C.24D.12242+log243+log244=log24(2×3×4)=log2424=1.故选A.2.化简12log612-2log6√2的结果为()A.6√2B.12√2C.log6√3D.12=log6√12-log62=log6√122=log6√3.故选C.3.方程(lg x)2+(lg 2+lg 3)lg x+lg 2lg 3=0的两根的积x1x2等于()A.lg 2+lg 3B.lg 2lg 3C.16D.-6lg x1+lg x2=-(lg2+lg3),∴lg(x1x2)=-lg6=lg6-1=lg16,∴x1x2=16.故选C.4.21+12log25的值等于()A.2+√5B.2√5C.2+√52D.1+√521+12log25=2×212log25=2×2log2√5=2√5,选B.5.已知a=log32,那么log38-2log36用a表示为()A.a-2B.5a-2+a)2 D.3a-a2-1log38-2log36=3log32-2(log32+log33)=3a-2(a+1)=a-2.6.已知a 23=49(a>0),则lo g23a=.a 23=49,∴a2=64729,∴a=827=(23)3,∴lo g23a=lo g23(23)3=3.7.计算(lg 14-lg25)÷100-12= .14-lg25)÷100-12=(lg 1100)÷10-1=-2×10=-20.208.lg 0.01+log 216的值是 ..01+log 216=lg 1100+log 224=-2+4=2.(lg x )2+lg x 5-6=0.(lg x )2+5lg x-6=0,即(lg x+6)(lg x-1)=0,所以lg x=-6或lg x=1,解得x=10-6或x=10.经检验x=10-6和x=10都是原方程的解,所以原方程的解为x=10-6或x=10.1.计算log 3√2743+lg 25+lg 4+7log 72的值为( ) A.-14B.4C.-154D.154=log 3√274-log 33+lg52+lg22+2=14log 333-1+2lg5+2lg2+2=34-1+2+2=154.2.已知函数f (x )满足:当x ≥4时,f (x )=(12)x ;当x<4时,f (x )=f (x+1),则f (2+log 23)=( ) A.124 B.112 C.18 D.382+log 23<2+log 24=4,3+log 23>3+log 22=4,故f (2+log 23)=f (2+log 23+1)=f (3+log 23)=(12)3+log 23=(12)3·12log 23=18×13=124.3.若lg a ,lg b 是方程2x 2-4x+1=0的两个实根,则(lg a b )2的值为( ) A.2B.12C.4D.14a b )2=(lg a-lg b )2=(lg a+lg b )2-4lg a lg b=22-4×12=2.4.若lg 2=a ,lg 3=b ,则用a ,b 表示lg √45= .√45=12lg45=12lg(5×9)=12lg5+12lg9=12(1-lg2)+lg3=-12lg2+lg3+12=-12a+b+12. -12a+b+125.已知2x =9,log 283=y ,则x+2y 的值为 .2x =9,得log 29=x ,所以x+2y=log 29+2log 283=log 29+log 2649=log 264=6.6.求下列各式的值:(1)log 535+2log 5√2-log 515-log 514; (2)〖(1-log 63)2+log 62·log 618〗÷log 64;(3)lg 5(lg 8+lg 1 000)+(lg 2√3)2+lg 0.06+lg 16.原式=log 535+log 52-log 515-log 514=log 535×215×14=log 535014=log 525=2. (2)原式=[(log 663)2+log 62·log 6362]÷log 64=〖(log 62)2+log 62(log 636-log 62)〗÷log 64=〖(log 62)2+2log 62-(log 62)2〗÷log 64=2log 62÷log 64=log 64÷log 64=1.(3)原式=lg5(3lg2+3)+3(lg2)2+lg 6100-lg6=lg5(3lg2+3)+3(lg2)2+lg6-2-lg6=3·lg5·lg2+3lg5+3·(lg2)2-2=3lg2(lg2+lg5)+3lg5-2=3lg2+3lg5-2=3(lg2+lg5)-2=3-2=1. f (x )=x 2+(lg a+2)x+lg b ,f (-1)=-2,方程f (x )=2x 至多有一个实根,求实数a ,b 的值.f (-1)=-2得,1-(lg a+2)+lg b=-2,所以lg b a =-1=lg 110,所以b a =110,即a=10b.又因为方程f (x )=2x 至多有一个实根,即方程x 2+(lg a )x+lg b=0至多有一个实根,所以(lg a )2-4lg b ≤0,即〖lg(10b )〗2-4lg b ≤0,所以(1-lg b )2≤0,所以lg b=1,b=10,从而a=100. 故实数a ,b 的值分别为100,10.a>1,若对于任意的x ∈〖a ,2a 〗,都有y ∈〖a ,a 2〗满足方程log a x+log a y=3,求a 的取值范围.log a x+log a y=3,∴log a (xy )=3.∴xy=a 3.∴y=a 3x . ∵函数y=a 3x (a>1)在(0,+∞)上是减函数,又当x=a 时,y=a 2,当x=2a 时,y=a 32a =a 22,∴[a 22,a 2]⊆〖a ,a 2〗.∴a 22≥a.又a>1,∴a ≥2.∴a的取值范围为〖2,+∞).。

2023-2024学年高一上数学必修一:对数函数(附答案解析)

2023-2024学年高一上数学必修一:对数函数(附答案解析)

第1页共6页2023-2024学年高中数学必修一:对数函数一、选择题(每小题5分,共40分)1.已知a =log 213,b =5-3,c =212,则a ,b ,c 的大小关系为(A )A .a <b <cB .a <c <bC .c <b <aD .c <a <b解析:∵log 213<log 21=0,0<5-3<50=1,212=2>1,∴a <b <c .故选A.2.若a >b ,则(C )A .ln(a -b )>0B .3a <3bC .a 3-b 3>0D .|a |>|b |解析:法一:不妨设a =-1,b =-2,则a >b ,可验证A ,B ,D 错误,只有C 正确.法二:由a >b ,得a -b >0.但a -b >1不一定成立,则ln(a -b )>0不一定成立,故A 不一定成立.因为y =3x 在R 上是增函数,当a >b 时,3a >3b ,故B 不成立.因为y =x 3在R 上是增函数,当a >b 时,a 3>b 3,即a 3-b 3>0,故C 成立.因为当a =3,b =-6时,a >b ,但|a |<|b |,所以D 不一定成立.故选C.3.若log 34·log 8m =log 416,则m 等于(D )A .3B .9C .18D .27解析:原式可化为log 8m =2log 34,∴13log 2m =2log 43,∴m 13=3,m =27.4.下列函数中,随着x 的不断增大,增长速度最慢的是(B )A .y =5x B .y =log 5x C .y =x 5D .y =5x。

高一 对数与对数函数知识点+例题+练习 含答案

高一 对数与对数函数知识点+例题+练习 含答案

1.对数的概念一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么就称b 是以a 为底N 的对数,记作log a N =b ,N 叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R );④log am M n =nm log a M (m ,n ∈R ,且m ≠0).(2)对数的性质①a log a N =__N __;②log a a N =__N __(a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a,推广log a b ·log b c ·log c d =log a d . 3.对数函数的图象与性质a >10<a <1图象性 质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x =1时,y =0当0<x <1时,y <0 (4)当x >1时,y >0 当0<x <1时,y >0 (6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线__y =x __对称. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( × ) (2)log a x ·log a y =log a (x +y ).( × )(3)函数y =log 2x 及y =log 133x 都是对数函数.( × )(4)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.( × ) (5)函数y =ln 1+x 1-x与y =ln(1+x )-ln(1-x )的定义域相同.( √ )(6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.( √ )1.(2015·湖南改编)设函数f (x )=ln(1+x )-ln(1-x ),则有关f (x )的性质判断正确的是________(填序号).①奇函数,且在(0,1)上是增函数; ②奇函数,且在(0,1)上是减函数; ③偶函数,且在(0,1)上是增函数; ④偶函数,且在(0,1)上是减函数. 答案 ①解析 易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f (x )为奇函数,又f (x )=ln 1+x 1-x=ln ⎝ ⎛⎭⎪⎫-1-2x -1,由复合函数单调性判断方法知,f (x )在(0,1)上是增函数.2.设a =log 1312,b =log 1323,c =log 343,则a ,b ,c 的大小关系是________.答案 c <b <a解析 ∵a =log 1312=log 32,b =log 1323=log 332,c =log 343.log 3x 是定义域上的增函数,2>32>43,∴c <b <a .3.函数f (x )=lg(|x |-1)的大致图象是________.(填图象序号)答案 ②解析 由函数f (x )=lg(|x |-1)的定义域为(-∞,-1)∪(1,+∞),值域为R .又当x >1时,函数单调递增,所以只有②正确.4.(2015·浙江)若a =log 43,则2a +2-a =________. 答案4 33解析 2a+2-a =4log 32+4log 32-=3log log 322+=3+33=4 33. 5.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是________________.答案 ⎝⎛⎭⎫0,34∪(1,+∞) 解析 当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.∴实数a 的取值范围是⎝⎛⎭⎫0,34∪(1,+∞).题型一 对数式的运算例1 (1)设2a =5b =m ,且1a +1b =2,则m =________.(2)lg 5+lg 20的值是________. 答案 (1)10 (2)1解析 (1)∵2a =5b =m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. ∴m =10.(2)原式=lg 100=lg 10=1.思维升华 在对数运算中,要熟练掌握对数的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量先化成同底的形式再进行运算.(1)计算:(1-log 63)2+log 62·log 618log 64=________.(2)已知log a 2=m ,log a 3=n ,则a 2m +n =________. 答案 (1)1 (2)12 解析 (1)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+(1-log 63)(1+log 63)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.(2)∵log a 2=m ,log a 3=n ,∴a m =2,a n =3, ∴a 2m +n =(a m )2·a n =22×3=12.题型二 对数函数的图象及应用例2 (1)函数y =2log 4(1-x )的图象大致是________.(填序号)(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是____________.答案 (1)③ (2)(22,1) 解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除①、②; 又函数y =2log 4(1-x )在定义域内单调递减,排除④.故③正确.(2)构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图象, 可知f ⎝⎛⎭⎫12<g ⎝⎛⎭⎫12, 即2<log a 12,则a >22,所以a 的取值范围为⎝⎛⎭⎫22,1. 思维升华 应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(1)已知lg a +lg b =0,则函数f (x )=a x 与函数g (x )=-log b x 的图象可能是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是____________. 答案 (1)② (2)(10,12)解析 (1)∵lg a +lg b =0,∴ab =1,∵g (x )=-log b x 的定义域是(0,+∞),故排除①. 若a >1,则0<b <1,此时f (x )=a x 是增函数,g (x )=-log b x 是增函数,②符合,排除④.若0<a <1,则b >1,g (x )=-log b x 是减函数,排除③,故填②.(2)作出f (x )的大致图象(图略).由图象知,要使f (a )=f (b )=f (c ),不妨设a <b <c ,则-lg a =lg b =-12c +6,∴lg a +lg b =0,∴ab =1,∴abc =c .由图知10<c <12,∴abc ∈(10,12).题型三 对数函数的性质及应用命题点1 比较对数值的大小例3 设a =log 36,b =log 510,c =log 714,则a ,b ,c 的大小关系为__________. 答案 a >b >c解析 由对数运算法则得a =log 36=1+log 32,b =1+log 52,c =1+log 72,由对数函数图象得log 32>log 52>log 72,所以a >b >c . 命题点2 解对数不等式例4 若log a (a 2+1)<log a 2a <0,则a 的取值范围是__________. 答案 (12,1)解析 由题意得a >0,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,所以a >12.综上,a ∈(12,1).命题点3 和对数函数有关的复合函数 例5 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝⎛⎭⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数. ∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a (3-a )=1,即⎩⎨⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.思维升华 在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.(1)设a =log 32,b =log 52,c =log 23,则a ,b ,c 的大小关系为____________.(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为__________. (3)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是__________________.答案 (1)c >a >b (2)[1,2) (3)(-1,0)∪(1,+∞) 解析 (1)∵3<2<3,1<2<5,3>2,∴log 33<log 32<log 33,log 51<log 52<log 55,log 23>log 22, ∴12<a <1,0<b <12,c >1,∴c >a >b . (2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧ g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).(3)由题意可得⎩⎪⎨⎪⎧a >0,log 2a >log 12a或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ),解得a >1或-1<a <0.2.比较指数式、对数式的大小典例 (1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是__________. (2)设a =log 2π,b =log 12π,c =π-2,则a ,b ,c 的大小关系为____________.(3)已知324log 0.3log 3.4log 3.6155()5,=,=,=a b c 则a ,b ,c 大小关系为__________.思维点拨 (1)可根据幂函数y =x 0.5的单调性或比商法确定a ,b 的大小关系,然后利用中间值比较a ,c 大小.(2)a ,b 均为对数式,可化为同底,再利用中间变量和c 比较.(3)化为同底的指数式.解析 (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1;根据对数函数y =log 0.3x 的单调性,可得log 0.30.2>log 0.30.3=1,即c >1.所以b <a <c . (2)∵a =log 2π>log 22=1,b =log 12π=log 21π<log 21=0,0<c =1π2<1,∴b <c <a .(3)c =(15)3log 0.3=53log 0.3-=5310log 3.方法一 在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示.由图象知:log 23.4>log 3103>log 43.6.方法二 ∵log 3103>log 33=1,且103<3.4,∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.由于y =5x 为增函数, ∴52log 3.4>5310log 3>54log 3.6.即52log 3.4>(15)3log 0.3 >54log 3.6,故a >c >b . 答案 (1)b <a <c (2)a >c >b (3)a >c >b温馨提醒 (1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.[方法与技巧]1.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0. 2.对数函数的定义域及单调性在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性. 4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y =1交点的横坐标进行判定. [失误与防范]1.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N *,且α为偶数).2.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.A 组 专项基础训练 (时间:40分钟)1.已知log 7[log 3(log 2x )]=0,那么x 12-=________.答案24解析 由条件知,log 3(log 2x )=1,∴log 2x =3, ∴x =8,∴x12-=24. 2.已知x =ln π,y =log 52,z =e 12-,则x ,y ,z 的大小关系为____________.答案 y <z <x解析 ∵x =ln π>ln e ,∴x >1. ∵y =log 52<log 55,∴0<y <12.∵z =e12-=1e >14=12,∴12<z <1.综上可得,y <z <x .3.已知函数f (x )=⎩⎪⎨⎪⎧3x +1, x ≤0,log 2x , x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是__________.答案 (-1,0]∪(2,+∞)解析 当x ≤0时,3x +1>1⇒x +1>0,∴-1<x ≤0;当x >0时,log 2x >1⇒x >2,综上所述:-1<x ≤0或x >2.4.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是__________. 答案 (-1,0)解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x 1-x,定义域为(-1,1). 由f (x )<0,可得0<1+x 1-x<1,∴-1<x <0. 5.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=________.答案 -1解析 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4<log 220<5,所以f (log 220)=f (log 220-4)=-f (4-log 220)=-f (log 245)=-(224log 5+15)=-1. 6.(2015·安徽)lg 52+2lg 2-⎝⎛⎭⎫12-1=________. 答案 -1解析 lg 52+2lg 2-⎝⎛⎭⎫12-1=lg 52+lg 22-2 =lg ⎝⎛⎭⎫52×4-2=1-2=-1.7.设函数f (x )满足f (x )=1+f (12)log 2x ,则f (2)=_____________________. 答案 32解析 由已知得f (12)=1-f (12)·log 22,则f (12)=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32.8.(2015·福建)若函数f (x )=⎩⎪⎨⎪⎧ -x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是_____________________________________.答案 (1,2]解析 由题意f (x )的图象如右图,则⎩⎪⎨⎪⎧a >1,3+log a 2≥4,∴1<a ≤2. 9.已知函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,求a 的取值范围.解 函数y =log 12(x 2-ax +a )是由函数y =log 12t 和t =x 2-ax +a 复合而成.因为函数y =log 12t 在区间(0,+∞)上单调递减,而函数t =x 2-ax +a 在区间(-∞,a 2)上单调递减,又因为函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,所以⎩⎪⎨⎪⎧ 2≤a 2,(2)2-2a +a ≥0,解得⎩⎪⎨⎪⎧ a ≥22,a ≤2(2+1),即22≤a ≤2(2+1).10.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间[0,32]上的最大值.解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧ 1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在[0,32]上的最大值是f (1)=log 24=2. B 组 专项能力提升(时间:20分钟)11.(2015·陕西改编)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则p 、q 、r 的大小关系是____________.答案 p =r <q解析 ∵0<a <b ,∴a +b 2>ab , 又∵f (x )=ln x 在(0,+∞)上为增函数,∴f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p , 故p =r <q .12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则f ⎝⎛⎭⎫13,f ⎝⎛⎭⎫12,f (2)的大小关系是______________.答案 f (12)<f (13)<f (2) 解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|, ∴f (12)<f (13)<f (2). 13.若函数f (x )=lg(-x 2+8x -7)在区间(m ,m +1)上是增函数,则m 的取值范围是__________. 答案 [1,3]解析 由题意得⎩⎪⎨⎪⎧m +1≤4,-m 2+8m -7≥0,解得1≤m ≤3, 所以答案应填[1,3].14.已知函数f (x )=ln x 1-x,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________. 答案 ⎝⎛⎭⎫0,14 解析 由题意可知ln a 1-a +ln b 1-b =0, 即ln ⎝ ⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b=1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝⎛⎭⎫a -122+14, 又0<a <b <1,∴0<a <12,故0<-⎝⎛⎭⎫a -122+14<14. 15.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值.解 由题意知f (x )=12(log a x +1)(log a x +2) =12(log 2a x +3log a x +2)=12(log a x +32)2-18. 当f (x )取最小值-18时,log a x =-32. 又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12(log a 2+32)2-18=1,则a =2-13, 此时f (x )取得最小值时,x =1332(2)=--2∉[2,8],舍去.若12(log a 8+32)2-18=1,则a =12,此时f(x)取得最小值时,x=(12)32=22∈[2,8],符合题意,∴a=12.。

高中数学必修第一册第4章第8讲对数运算与对数函数(含详细解析)

高中数学必修第一册第4章第8讲对数运算与对数函数(含详细解析)

对数运算与对数函数1下列指数式与对数式互化不正确的一组是( )A . e °= 1 与 ln1 = 0 C . Iog 39= 2 与一 3 1 D . Iog 77= 1 与 7 = 7 2.若 xlog 23= 1,则 3x +9x的值为( ) 6C . 2) lg2- lg3 C .—) B .D . A . 3 B .3. 若2X = 3,则x 等于( A . Iog 32 B .4. 下列等式中一定正确的是( A . _C . _ — — x 的最大整数”,如[-2] =- 2, [ - 1. 5.已知符号[X ]表示“不超过 [log 2-]+[log 厂]+[log 厂]+[log 21]+[Iog 22]+[Iog 23]+[log 24]的值为( A . - 1 B . - 2C . 06. 下列函数是对数函数的是( )A . y = Iog 3 (x+1)B . y = log a (2x ) (a > 0,且 a 丰 1)C . y = InxD .>,且27. 函数f (x ) = ( a +a - 5) log a x 为对数函数,则f (一)等于( A . 3B . - 3C . - log 36&对数式log (a -2) (5 - a )中实数a 的取值范围是()A . (-R, 5)B . (2, 5)C . (2, 3)U( 3, 5)D . (2, +^)=-2, [2.5] = 2,则 ) D . 1)D . - log 389.函数y --------------- 的定义域为()B . [1 , + a)C . [0, -]D . (-a, 0)U(-, +m )214.已知函数f (x )= lg (ax - 2x+a )的值域为R ,则实数a 的取值范围为()A . [ - 1 , 1]B . [0 , 1]C . (-a,- 1)U( 1, +a)D . ( 1 , +a)215. 已知函数f (x )= log a (x+2) +3的图象恒过定点(m , n ),且函数g (x )= mx - 2bx+n 在[1 , + a)上单调递减,则实数 b 的取值范围是()C . (1 , 2)U ( 2, +a ) 10•如图所示曲线是对数函数D . (1, 2)U [3 , +a)y = log a x 的图象,已知a 的取值为,-),则相应11.若A.a vb vc B . b v c v a12.设a = log 43, -0 1b = log 86,c = 0.5 ,则( A .a >b >c B . b > a > c D. , , ,—,则( )C.a v c vb D . b v a v c)C .c > a > bD . c > b > a R ,则 k 的取值范围()A . (0, 一)图象C 1, C 2, C 3, C 4中的a 的值依次为(B .A . [1 , + a)B . [ — 1 , + a)C . (-a,- 1 )D . (-a, 1 )16. 已知定义域为 R 的偶函数f(x )在(0]上是减函数,且>2的解集为( )A .,—B . (2, +C .,- —D .,-17.-—;-a18.已知4 : =8,2 = 9 = 6,且一 — ,贝U a+b = X 49, -tH m 人 占 At TlZ Z —\log 535,则 log 535= 19.设 35 = 右用含x 的形式表示 20. __________________________________________________ 已知 2lg f x -2y )= Igx+lgy ,则—___________________________________________________________ .221. _______________________________________________________ 函数y _ (x +2x - 3)的单调递减区间是 ____________________________________________________ .222. _________________________________________________________________ 若函数y = log a (x - ax+1 )有最小值,则 a 的取值范围是 ____________________________________ . 23. ________________________________________________________________ 已知函数f (x )= lg|x - 1|,下列命题中所有正确的序号是 _______________________________________ .(1)函数f (x )的定义域和值域均为R ;(2) 函数f (x )在(-R,1)单调递减,在(1, +8)单调递增;(3) 函数f (x )的图象关于y 轴对称; (4) 函数f (x+1)为偶函数; (5) 若 f (a )> 0 则 a v 0 或 a > 2. 24. 已知函数 (3 - ax ) (0且a ^± 1)在[0 , 2]上是减函数,则实数范围是 ______________ .25. 若函数f(x )= loga(x - 1)( a > 0且a 丰1)的值域为R ,则实数a 的取值范围是2 226. 函数y =( x ) x +5在2< x < 4时的值域为 ___________ .2,则不等式f(log 4x )a 的取值27. 若24a= 12.将下列各式用a的代数式表示(1)log242; (2) log243.28. 计算下列各式的值:29. 计算下列各式:(只写出结果)(1) —___________(2) Iog23?log34?log45?log52= _______(3) 一(4) = =______(5) 已知:Igx+lgy = 2lg (2x—3y),则30. 已知f( x)= 1+log2x (1 w x w 4),求g (x)= f (x) +f ( x2)的值域.x x+131. 已知函数f (x)= log2 (- 4 +5?2 - 16).(1 )求f (x)的定义域;(2)求f (x)在区间[2 , log27]上的值域.32. 已知函数一(I)若函数f (x)是R上的奇函数,求a的值;(H)若函数f (x)的定义域是一切实数,求a的取值范围;(川)若函数f (x)在区间[0 , 1]上的最大值与最小值的差不小于2,求实数a的取值范围.33.设为奇函数,a为常数.(1)确定a的值(2)求证:f ( 乂)是(1, + 上的增函数m取值> - 恒成立,求实数(3)若对于区间[3 , 4]上的每一个x值,不等式范围.34.已知f (x)是定义在[-1, 1]上的奇函数,且f (1) = 1,若a, b€[ - 1, 1],且a+b^ 0,有---------- > 恒成立.(1)判断f (x)在[-1, 1]上的单调性,并证明你的结论;(2)解不等式 f (Iog2x)v f (Iog43x)的解集;m的取值(3)若f(x)w m2- 2am+1 对所有的x€[ - 1, 1], a €[ - 1, 1]恒成立,求实数范围.。

高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章 对数函数的图象和性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()2log 1f x x =-的图像为( )A .B .C .D .2.已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<3.函数1()ln f x x x x ⎛⎫=-⋅ ⎪⎝⎭的图象可能是( ) A . B .C .D .4.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--5.函数f (x )=|ax -a |(a >0且a ≠1)的图象可能为( )A. B . C . D .6.下列函数中是减函数的为( ) A .2()log f x x = B .()13x f x =- C .()f x = D .2()1f x x =-+7.设0.30.50.514,log 0.6,16a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<8.已知函数2(43)3,0()log (1)2,0a x a x a x f x x x ⎧+-+<=⎨++≥⎩ (a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A .30,4⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎡⎤⎢⎥⎣⎦D .23,34⎛⎤ ⎥⎝⎦9.已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈当12x x <时,则都有()()()12122f x f x x x -<-则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .1,2D .()2,+∞10.函数y ) A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .[]1,211.记函数2log 2x y x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( ) A .()2,+∞ B .[)2,+∞ C .()0,2D .(]0,212.下列函数在(),1-∞-上是减函数的为( )A .()ln f x x =-B .()11f x x =-+ C .()234f x x x =--D .()21f x x =13.下列函数是偶函数且值域为[)0,∞+的是( )①y x =;②3y x =;③||2x y =;④2y x x =+ .A .①②B .②③C .①④D .③④14.已知函数22,2()log ,2x a x f x x x ⎧-<=⎨≥⎩,若()f x 存在最小值,则实数a 的取值范围是( )A .(],2-∞B .[)1,-+∞C .(),1-∞-D .(],1-∞-15.已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>16.已知集合{}1,0,1,2A =-和2{|1}B x x =≤,则A B =( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,217.已知22log log 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()1()xf x a=与()log b g x x =的图像可能是( )A .B .C .D .18.设123a -=,1312b -⎛⎫= ⎪⎝⎭和21log 3c =,则( ) A .a c b << B .c a b << C .b c a << D .a b c <<19.已知函数212()log (3)f x x ax a =-+ 在[)2,+∞上单调递减,则a 的取值范围( )A .(,4]-∞B .(4,4]-C .[4,4]-D .(4,)-+∞20.函数22log (2)y x x =-的单调递减区间为( )A .(1,2)B .(]1,2C .(0,1)D .[)0,121.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,则()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞二、解答题22.比较下列各数的大小: (1)12log 3与12log π;(2)4log 3与5log 3; (3)5log 2与2log 5.23.已知函数()()()ln 1ln 1f x ax x =++-的图象经过点()3,3ln 2.(1)求a 的值,及()f x 的定义域; (2)求关于x 的不等式()()ln 2f x x ≤的解集.24.已知函数()()9log 91xf x x =++.(1)若()()20f x x a -+>对于任意x 恒成立,求a 的取值范围; (2)若函数()()9231f x xx g x m -=+⋅+和[]90,log 8x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值,若不存在,请说明理由.25.已知函数()ln f x x =.(1)在①()21g x x =-,②()21g x x =+这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,()()()=h x f g x 求()h x 的值域. 注:如果选择两个条件分别解答,按第一个解答计分.(2)若1x ∀∈R ,()20,x ∈+∞和()1122421ln x xa x x -+<-,求a 的取值范围.26.已知______,且函数()22x bg x x a+=+.①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题. (1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围. 27.定义:若函数()y f x =在某一区间D 上任取两个实数12x x 、,且12x x ≠,都有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭则称函数()y f x =在区间D 上具有性质L .(1)写出一个在其定义域上具有性质L 的对数函数(不要求证明). (2)判断函数1()f x x x=+在区间(0,)+∞上是否具有性质L ?并用所给定义证明你的结论. (3)若函数21()g x ax x=-在区间(0,1)上具有性质L ,求实数a 的取值范围.三、填空题28.函数()ln(4)f x x =+-的定义域是___________. 29.()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________.30.已知函数211,0()2,0xx f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 31.已知函数2(12)0()log (1)0a x a x f x x x +-<⎧=⎨+≥⎩,,的值域为R ,则实数a 的范围是_________32.已知函数()log (23)1(>0a f x x a =-+且1)a ≠,且的图象恒过定点P ,则点P 的坐标为_________.33.已知函数()2log 081584,,⎧<≤⎪=⎨-+>⎪⎩x x f x x x ,若a b c ,,互不相等,且()()()f a f b f c ==,则abc 的取值范围是____.34.若0x >和0y >,且111x y+=,则22log log x y +的最小值为___________.四、多选题35.已知函数()f x 和()g x 的零点所构成的集合分别为M ,N ,若存在M α∈和N β∈,使得1αβ-≤,则称()f x 与()g x 互为“零点伴侣”.若函数()1e 2xf x x -=+-与()23g x x ax a =--+互为“零点伴侣”,则实数a的取值不能是( ) A .1B .2C .3D .436.已知函数()()2lg 1f x x ax a =+--,下列结论中正确的是( )A .当0a =时,则()f x 的定义域为()(),11,-∞-⋃+∞B .()f x 一定有最小值C .当0a =时,则()f x 的值域为RD .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4a a ≥-参考答案与解析1.A【分析】根据函数的定义域为(),1-∞可排除B 、D.再由单调性即可选出答案.【详解】当0x =时,则()()20log 10=0f =-,故排除B 、D. 当1x =-时,则()()21log 1110f -=+=>,故A 正确. 故选A.【点睛】本题考查函数的图像,属于基础题.解决本类题型的两种思路:①将初等函数的图像通过平移、伸缩、对称变换选出答案,对学生能力要求较高;②根据选项代入具体的x 值,判断y 的正负号. 2.C【分析】根据对数函数可以解得2a =,4t =再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈和0.141c =>∴a b c << 故选:C . 3.A【分析】利用函数的奇偶性排除选项D ,利用当01x <<时,则()0f x >,排除选项B ,C ,即得解. 【详解】解:∵函数()f x 的定义域为{}0x x ≠,关于原点对称,1()ln f x x xx ⎛⎫-=-+⋅- ⎪⎝⎭1ln ()x x f x x ⎛⎫--⋅=- ⎪=⎝⎭ ∴()f x 为奇函数,排除选项D .当01x <<时,则2110x x x x--=<和ln 0x < ∴()0f x >,排除选项B ,C . 故选:A . 4.A【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,则1y =-,故排除B 、D 两项; 当1x >时,则函数图象单调递增,无限接近于0,对于C 项,当1x >时,则12x y -=-单调递减,故排除C项. 故选:A. 5.C【分析】根据指数函数的单调性分类讨论进行求解即可.【详解】当>1a 时,则,1()=,<1x xa a x f x a a x -≥-⎧⎨⎩显然当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而>1a ,故AB 不符合; 对于CD ,因为渐近线为=2y ,故=2a ,故=0x 时,则=1y 故选项C 符合,D 不符合;当0<<1a 时,则,<1()=,1x xa a x f x a a x --≥⎧⎨⎩当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而0<<1a ,故ABD 不符合; 故选:C 6.B【分析】利用对数函数单调性判断选项A ;利用指数函数单调性判断选项B ;利用幂数函数单调性判断选项C ;利用二次函数单调性判断选项D.【详解】选项A :由21>,可得2()log f x x =为增函数.判断错误; 选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确; 选项C :由12-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误. 故选:B 7.B【分析】计算可得2a =,再分析()0.5log 0.60,1b =∈,0.3116c a -⎛⎫=> ⎪⎝⎭即可判断【详解】由题意0.542a ==,()()0.50.50.5log 0.6log 1,log 0.50,1b =∈=和0.30.30.2511616216c a -⎛⎫==>== ⎪⎝⎭,故b ac <<故选:B 8.C【分析】根据二次函数和对数函数的单调性,结合分段函数的性质进行求解即可.【详解】二次函数2(43)3y x a x a =+-+的对称轴为:432a x -=-因为二次函数开口向上,所以当0x <时,则该二次函数不可能单调递增 所以函数()f x 是实数集上的减函数则有01432302343log 122a a a a a <<⎧⎪-⎪-≥⇒≤≤⎨⎪≥+=⎪⎩故选:C 9.B【分析】由题设知()()2h x f x x =-在R 上递增,将不等式转化为2(log )(1)h x h <,利用单调性求解集即可. 【详解】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-所以2(log )(1)h x h <,即2log 1x <,可得02x <<. 故不等式解集为()0,2. 故选:B 10.C【分析】依题意可得21log 0x +≥,根据对数函数的性质解不等式,即可求出函数的定义域. 【详解】解:依题意可得21log 0x +≥,即221log 1log 2x ≥-=,所以12x ≥ 即函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:C 11.B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案. 【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x << 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B . 12.C【分析】根据熟知函数的图象与性质判断函数的单调性.【详解】对于选项A ,()ln f x x =-在(),1-∞-上无意义,不符合题意; 对于选项B ,()11f x x =-+在(),1-∞-上是增函数,不符合题意; 对于选项C ,2234,? 4134,? 14x x x x x x x ⎧--≥≤-⎨-++-<<⎩或的大致图象如图所示中由图可知()f x 在(),1-∞-上是减函数,符合题意;对于选项D ,()21f x x =在(),1-∞-上是增函数,不符合题意. 故选:C. 13.C【分析】根据奇偶性的定义依次判断,并求函数的值域即可得答案. 【详解】对于①,y x =是偶函数,且值域为[)0,∞+; 对于②,3y x =是奇函数,值域为R ; 对于③,2xy =是偶函数,值域为[)1,+∞;对于④,2y x x=+是偶函数,且值域为[)0,∞+所以符合题意的有①④ 故选:C. 14.D【分析】根据函数的单调性可知,若函数存在最小值,则最小值是()21f =,则根据指数函数的性质,列式求实数a 的取值范围.【详解】2x <时,则()2,4xa a a -∈--,2x ≥时,则2log 1x ≥若要使得()f x 存在最小值,只需要2log 2a -≥,即1a ≤-. 故选:D. 15.A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m > 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数) 由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=- 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b >又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)mf x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.16.A【分析】根据一元二次不等式的求解得{}11B x x =-≤≤,根据集合的交运算即可求解. 【详解】因为{}1,0,1,2A =-和{}11B x x =-≤≤,所以{}1,0,1A B =-故选:A . 17.B【分析】由对数的运算性质可得ab =1,讨论a ,b 的范围,结合指数函数和对数函数的图像的单调性,即可得到答案.【详解】22log log 0a b +=,即为2log 0ab =,即有ab =1. 当a >1时,则0<b <1函数()1()xf x a=与()log b g x x =均为减函数,四个图像均不满足当0<a <1时,则b >1函数数()1()xf x a=与()log b g x x =均为增函数,排除ACD在同一坐标系中的图像可能是B 故选:B . 18.B【分析】结合指数函数,对数函数的单调性,以及临界值0和1,判断即可 【详解】由题意201313a -<==,故(0,1)a ∈ 1130312212b -⎛⎫==>= ⎪⎝⎭2231log log 10c =<= 故c a b << 故选:B 19.B【分析】转化为函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立,再根据二次函数的单调性以及不等式恒成立列式可求出结果. 【详解】因为函数212()log (3)f x x ax a =-+在[)2,+∞上单调递减所以函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立 所以2222230a a a ⎧≤⎪⎨⎪-+>⎩,解得44a -<≤.故选:B 20.A【分析】先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果【详解】由220x x ->,得02x <<令22t x x =-,则2log y t=22t x x =-在(0,1)上递增,在(1,2)上递减因为2log y t=在定义域内为增函数所以22log (2)y x x =-的单调递减区间为(1,2)故选:A 21.A【分析】由()f x 是R 上的奇函数求出a 值,并求出0x <时,则函数()f x 的解析式,再分段讨论解不等式作答.【详解】因函数()f x 是定义在R 上的奇函数,且当0x ≥时,则()4322x xf x a =-⨯+则()0004322220f a a =-⨯+=-=,解得1a =,即当0x ≥时,则()4322x xf x =-⨯+当0x <时,则0x ->,则()()(4322)x x f x f x --=--=--⨯+而当0x ≥时,则()2311(2)244xf x =--≥-,则当()6f x ≤-时,则0(4322)6x xx --<⎧⎨--⨯+≤-⎩,即0(24)(21)0x xx --<⎧⎨-+≥⎩变形得024x x -<⎧⎨≥⎩,解得2x -≤所以不等式()6f x ≤-的解集为(,2]-∞-. 故选:A22.(1)1122log 3log π>.(2)45log 3log 3>.(3)52log 2log 5<. 【分析】(1)根据12()log f x x=,在定义域内是减函数,即可比较二者大小;(2)根据3log y x =,在定义域内是增函数,可得330log 4log 5<<,故3311log 4log 5>,即可比较二者大小; (3)根据5log 21<,2log 51>即可比较二者大小. 【详解】(1)设12()log f x x =.3π<且()f x 是减函数 ∴(3)()f f π>即1122log 3log π>.(2)3log y x =是增函数∴330log 4log 5<<. ∴3311log 4log 5> 即45log 3log 3>. (3)55log 2log 51<=且22log 5log 21>=∴52log 2log 5<.【点睛】本题主要考查了比较对数的大小,解题关键是掌握对数的单调性和对数的运算性质,考查了分析能力和计算能力,属于基础题. 23.(1)1a =,定义域为()1,+∞ (2){112}x x <+∣【分析】(1)直接将()3,3ln 2代入函数解析式,即可求出参数a 的值,从而求出函数解析式,再根据对数的真数大于零得到不等式组,解得即可;(2)依题意可得()()2ln 1ln 2x x -,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; (1)解:由题意可得()()ln 31ln 313ln2a ++-=,即()ln 312ln2a +=,所以314a += 解得1a =则()()()ln 1ln 1f x x x =++-.由1010x x +>⎧⎨->⎩,解得1x >.所以()f x 的定义域为()1,+∞. (2)解:由(1)可得()()()()2ln 1ln 1ln 1,1f x x x x x =++-=->不等式()()ln 2f x x 可化为()()2ln 1ln 2x x -因为ln y x =在()0,+∞上是增函数所以20121x xx ⎧<-⎨>⎩ 解得112x <+.故不等式()()ln 2f x x 的解集为{}|112x x <+. 24.(1)(],0-∞(2)存在 m =【分析】(1)利用分离参数法得到()9log 91x a x <+-对于任意x 恒成立,令()()9log 91xh x x =+-,利用对数的图像与性质即可求得;(2)先整理得到()9232x xg x m =+⋅+令3x t =, t ⎡∈⎣研究函数()()222222p t t mt t m m =++=++-,t ⎡∈⎣根据二次函数的单调性对m 进行分类讨论,即可求出m . (1)由题意可知,()()20f x x a -+>对于任意x 恒成立代入可得()9log 910x x a +-->所以()9log 91xa x <+-对于任意x 恒成立令()()()99999911log 91log 91log 9log log 199x xxxx xh x x +⎛⎫=+-=+-==+ ⎪⎝⎭因为1119x +>,所以由对数的图像与性质可得:91log 109x⎛⎫+> ⎪⎝⎭,所以0a ≤. 即实数a 的范围为(],0-∞. (2) 由()()9231f x xx g x m -=+⋅+,[]90,log 8x ∈且()()9log 91x f x x =++代入化简可得()9232x xg x m =+⋅+.令3x t =,因为[]90,log 8x ∈,所以t ⎡∈⎣则()()222222p t t mt t m m =++=++- t ⎡∈⎣①当1m -≤,即1m ≥-时,则()p t 在⎡⎣上为增函数所以()()min 1230p t p m ==+=,解得32m =-,不合题意,舍去②当1m <-<1m -<-时,则()p t 在[]1,m -上为减函数,()p t 在m ⎡-⎣上为增函数所以()()2min 20p t p m m =-=-=,解得m =m =③当m ≤-,即m ≤-()p t 在⎡⎣上为减函数所以()(min 100p t p ==+=解得m =综上可知m =【点睛】二次函数中“轴动区间定”或“轴定区间动”类问题,分类讨论的标准是函数在区间里的单调性. 25.(1)答案见解析 (2)1,4⎛⎫-∞- ⎪⎝⎭【分析】(1)根据复合函数的性质即可得到()h x 的值域;(2)令()()1ln F x x x =-,求出其最小值,则问题转化为1142x x a <-恒成立,进而求1142x xy =-最小值即可.(1)选择①,()()2ln 1h x x =-令21t x =-,则()0,t ∈+∞,故函数ln y t =的值域为R ,即()h x 的值域为R .选择②,()()2ln 1h x x =+,令21t x =+,则[)1,t ∈+∞因为函数ln y t =单调递增,所以0y ≥,即()h x 的值域为[)0,∞+. (2)令()()1ln F x x x =-.令12x m =,则()0,m ∈+∞,所以112211142244x x m m m ⎛⎫-=-=--≥- ⎪⎝⎭故14a <-,即a 的取值范围为1,4⎛⎫-∞- ⎪⎝⎭.26.(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析; (2)77,88⎡-⎤⎢⎥⎣⎦.【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+.选择②.当0a >时,则()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩ 所以()222xg x x =+.()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数.(2) 当0x >时,则()122g x x x=+,因为224x x +≥,当且仅当22x x =,即x =1时等号成立,所以()104g x <≤; 当0x <时,则因为()g x 为奇函数,所以()104g x -≤<;当x =0时,则()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立 所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.27.(1)12log y x =;(2)函数1()f x x x =+在区间(0,)+∞上具有性质L ;答案见解析;(3)(,1]-∞.【分析】(1)由于底数在(0,1)上的对数函数满足题意,故可得答案; (2)任取12,(0,)x x ∈+∞,且12x x ≠,对()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭作差化简为因式乘积形式,判断出与零的大小,可得结论; (3)函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离求出最值,可得参数的范围. 【详解】(1)如12log y x=(或底在(0,1)上的对数函数);(2)函数1()f x x x=+在区间(0,)+∞上具有性质L .证明:任取12,(0,)x x ∈+∞,且12x x ≠()()12121212121211122222f x f x x x x x f x x x x x x +⎛⎫⎛⎫++⎛⎫-=+++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()2212121212121212121241112222x x x x x x x x x x x x x x x x x x +--⎛⎫=+-== ⎪+++⎝⎭ 因为12,(0,)x x ∈+∞且12x x ≠所以()()21212120,20x x x x x x ->⋅+>,即()()1212022f x f x x x f ++⎛⎫-> ⎪⎝⎭. 所以函数1()f x x x=+在区间(0,)+∞上具有性质L . (3)任取12,(0,1)x x ∈,且12x x ≠,则()()21222121212121211122222g x g x x x x x g ax ax a x x x x ⎡⎤+⎛⎫++⎛⎫⎛⎫-=-+---⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()()()()()2221212121212121212122244ax x x x x x x x a x x x x x x x x x x -+⎡⎤--⎣⎦=-⋅=-++ 因为12,(0,1)x x ∈且12x x ≠,所以()()21212120,40x x x x x x ->⋅+> 要使上式大于零,必须()121220a x x x x -⋅⋅+>在12,(0,1)x x ∈上恒成立 即()12122a x x x x <+()212124x x x x +< ()()()()231212*********8x x x x x x x x x x +∴++>=+ 令()()3120,8x x t +=∈,则38y t =在()0,1上单调递减,即()()()()2331212121212228148x x x x t x x x x x x ∴>=++=>++ 所以1a ≤,即实数a 的取值范围为(,1]-∞.【点睛】关键点点睛:本题考查函数新概念,考查不等式的恒成立问题,解决本题的关键点是将函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离后转化为求最值问题,并借助于基本不等式和幂函数的单调性得出参数的范围,考查学生逻辑思维能力和计算能力,属于中档题. 28.(3,4)【分析】由对数的真数大于零,同时二次根式在分母,则其被开方数大于零,从而可求出定义域【详解】由题意可得260,40,x x ->⎧⎨->⎩解得34x <<,即()f x 的定义域是(3,4).故答案为:(3,4) 29.413a <<【分析】使复合函数()()log 4a f x ax =-在(]1,3上递减,需内增外减或外增内减,讨论a 求解即可 【详解】由题可得,根据对数的定义,0a >且1a ≠,所以4y ax =-是减函数,根据复合函数单调性的“同增异减”特点,得到1430a a >⎧⎨->⎩,所以413a <<.故答案为:413a <<30.2⎛ ⎝⎭[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<所以当1≥x 时,则12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增当01x <<时,则21122()loglog g x x x =-+则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=由()0g x '>,得1212log 0x -<,解得0x <<所以()g x在⎛ ⎝⎭上递增 综上得函数()g x的单调递增区间为⎛ ⎝⎭ [1,)+∞故答案为:⎛ ⎝⎭,[1,)+∞ 31.1(,0]2-【分析】先求出分段函数中确定的一段的值域,然后分析另一段的值域应该有哪些元素.【详解】当0x ≥时,则2()log 0f x x =≥,因此当0x <时,则()(12)f x a x a =+-的取值范围应包含(,0)-∞ ∴1200a a +>⎧⎨-≥⎩,解得102-<≤a . 故答案为1(,0]2-. 【点睛】本题考查分段函数的值域问题,解题时注意分段讨论.32.()2,1【解析】根据对数函数的性质求解.【详解】令231x -=,则2x =,(2)1f =即()f x 图象过定点(2,1).故答案为:(2,1)33.()820,【分析】利用函数图像,数形结合进行分析.【详解】不妨设a b c <<,画出函数()f x 图像:()()()f a f b f c ==221log log 54a b c ∴==-+- ()2log 0ab ∴= 10534c <-+< 解得1ab = 820c <<820abc ∴<<.故答案为:()820,34.2【分析】由均值不等式求出xy 的最小值,再由对数的运算及性质即可求解.【详解】因为0x >,0y >且111x y+=所以111x y ≥+=4xy ≥,当且仅当11x y =,即2x y ==时等号成立 即xy 的最小值为4所以2222log log log log 42x y xy +=≥=故答案为:235.AD【分析】首先确定函数()f x 的零点,然后结合新定义的知识得到关于a 的等式,分离参数,结合函数的单调性确定实数a 的取值范围即可.【详解】因为函数()1e 2x f x x -=+-是R 上的增函数,且()10f =,所以1α=,结合“零点伴侣”的定义得11β-≤,则02β≤≤又函数()23g x x ax a =--+在区间[]0,2上存在零点,即方程230x ax a --+=在区间[]0,2上存在实数根 整理得2232122411x x x x a x x +++--+==++()4121x x =++-+ 令()()4121h x x x =++-+,[]0,2x ∈所以()h x 在区间[]0,1上单调递减,在[]1,2上单调递增 又()03h =,()723h =和()12h =,所以函数()h x 的值域为[]2,3 所以实数a 的取值范围是[]2,3.故选:AD .36.AC【分析】A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.【详解】对于A ,当0a =时,则()()2lg 1f x x =-,令210x ->,解得1x <-或1x >,则()f x 的定义域为()(),11,-∞-⋃+∞,故A 正确;对于B 、C ,当0a =时,则()()2lg 1f x x =-的值域为R ,无最小值,故B 错误,C 正确;对于D ,若()f x 在区间[)2,+∞上单调递增,则21y x ax a =+--在[)2,+∞上单调递增,且当2x =时,则0y >则224210aa a⎧-≤⎪⎨⎪+-->⎩,解得3a>-,故D错误.故选:AC.。

高中数学必修一《对数函数》经典习题(含详细解析)

高中数学必修一《对数函数》经典习题(含详细解析)

高中数学必修一《对数函数》经典习题(含详细解析)一、选择题1.已知f=log3x,则f,f,f(2)的大小是( )A.f>f>f(2)B.f<f<f(2)C.f>f(2)>fD.f(2)>f>f2若log a2<log b2<0,则下列结论正确的是( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>13函数y=2+log2x(x≥1)的值域为( )A.(2,+∞)B.(-∞,2)C.[2,+∞)D.[3,+∞)4函数y=lo x,x∈(0,8]的值域是( )A.[-3,+∞)B.[3,+∞)C.(-∞,-3]D.(-∞,3]5.不等式log2(2x+3)>log2(5x-6)的解集为( )A.(-∞,3)B.C. D.6函数f(x)=lg是( )A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数7设a=log32,b=log52,c=log23,则( )A.a>c>bB.b>c>aC.c>b>aD.c>a>b8设a=log54,b=(log53)2,c=log45,则( )A.a<c<bB.b<c<aC.a<b<cD.b<a<c9.函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A. B. C.2 D.410.若log a=log a,且|log b a|=-log b a,则a,b满足的关系式是( )A.a>1,且b>1B.a>1,且0<b<1C.0<a<1,且b>1D.0<a<1,且0<b<1二、填空题11若函数y=log3x的定义域是[1,27],则值域是.12已知实数a,b满足lo a=lo b,下列五个关系式:①a>b>1,②0<b<a<1,③b>a>1,④0<a<b<1,⑤a=b.其中可能成立的关系式序号为.13log a<1,则a的取值范围是.14不等式12log xx<的解集是.15函数y=log0.8(-x2+4x)的递减区间是.三、解答题16.比较下列各组值的大小.(1)log3π,log20.8.(2)1.10.9,log1.10.9,log0.70.8.(3)log53,log63,log73.17已知函数f(x)=+的定义域为A.(1)求集合A.(2)若函数g(x)=(log2x)2-2log2x-1,且x∈A,求函数g(x)的最大值、最小值和对应的x值.18已知函数f=log2(2+x2).(1)判断f的奇偶性.(2)求函数f的值域.19已知函数f(x)=log a(1-x)+log a(x+3),其中0<a<1.(1)求函数f(x)的定义域.(2)若函数f(x)的最小值为-4,求a的值.参考答案与解析1【解析】选 B.由函数f=log3x在(0,+∞)是单调增函数,且<<2,知f()<f()<f(2).2【解析】选B.log a2<log b2<0,如图所示,所以0<b<a<1.6【解析】选A.因为f(-x)=lg=lg=lg=lg=-lg=-f(x),所以f(-x)=-f(x),又函数的定义域为R,故该函数为奇函数.7【解析】选D.因为log32=<1,log52=<1,又log23>1,所以c最大.又1<log23<log25,所以>,即a>b,所以c>a>b.8【解析】选D.a=log54<1,log53<log54<1,b=(log53)2<log53<a,c=log45>1,故b<a<c.9【解析】选 B.无论a>1还是0<a<1,f(x)在[0,1]上都是单调函数,所以a=(a0+log a1)+(a+log a2),所以a=1+a+log a2,所以log a2=-1,所以a=.10【解析】选C.因为log a=log a,所以log a>0,所以0<a<1.因为|log b a|=-log b a,所以log b a<0,b>1.11【解析】因为1≤x≤27,所以log31≤log3x≤log327=3.所以值域为[0,3].答案:[0,3]12【解析】当a=b=1或a=,b=或a=2,b=3时,都有lo a=lo b.故②③⑤均可能成立.答案:②③⑤13【解析】①当a>1时,log a<0,故满足log a<1;②当0<a<1时,log a>0,所以log a<log a a,所以0<a<,综上①②,a∈∪(1,+∞).答案:∪(1,+∞)14【解析】因为<=x-1,且x>0.①当0<x<1时,由原不等式可得,lo x>-1,所以x<2,所以0<x<1;②当x>1时,由原不等式可得,lo x<-1,x>2,综上可得,不等式的解集为{x|0<x<1或x>2}.答案:(0,1)∪(2,+∞)15【解析】因为t=-x2+4x的递增区间为(-∞,2].但当x≤0时,t≤0.故只能取(0,2],即为f(x)的递减区间.答案:(0,2]16【解析】(1)因为log3π>log31=0,log20.8<log21=0,所以log3π>log20.8.(2)因为1.10.9>1.10=1,log1.10.9<log1.11=0,0=log0.71<log0.70.8<log0.70.7=1,所以1.10.9>log0.70.8>log1.10.9.(3)因为0<log35<log36<log37,所以log53>log63>log73.17【解析】(1)所以所以≤x≤4,所以集合A=.(2)设t=log2x,因为x∈,所以t∈[-1,2],所以y=t2-2t-1,t∈[-1,2].因为y=t2-2t-1的对称轴为t=1∈[-1,2],所以当t=1时,y有最小值-2.所以当t=-1时,y有最大值2.所以当x=2时,g(x)的最小值为-2.当x=时,g(x)的最大值为2.18【解析】(1)因为2+x2>0对任意x∈R都成立,所以函数f=log2(2+x2)的定义域是R.因为f(-x)=log2[2+(-x)2]=log2(2+x2)=f(x),所以函数f(x)是偶函数.(2)由x∈R得2+x2≥2,所以log2(2+x2)≥log22=1,即函数f=log2(2+x2)的值域为[1,+∞).19【解析】(1)要使函数有意义,则有解之得-3<x<1,所以函数的定义域为(-3,1).(2)函数可化为:f(x)=log a[(1-x)(x+3)]=log a(-x2-2x+3)=log a[-(x+1)2+4],因为-3<x<1,所以0<-(x+1)2+4≤4.因为0<a<1,所以log a[-(x+1)2+4]≥log a4,即f(x)min=log a4,由log a4=-4得a-4=4,所以a==.3【解析】选C.设y=2+t,t=log2x(x≥1),因为t=log2x在[1,+∞)上是单调增函数,所以t≥log21=0.所以y=2+log2x(x≥1)的值域为[2,+∞).4【解析】选A.因为0<x≤8,所以lo x≥-3,故选A.5【解析】选D.原不等式等价于解得<x<3,所以原不等式的解集为.。

高三数学对数与对数函数试题答案及解析

高三数学对数与对数函数试题答案及解析

高三数学对数与对数函数试题答案及解析1.已知函数f(x)=x-1-(e-1)lnx,其中e为自然对数的底,则满足f(e x)<0的x的取值范围为.【答案】(0,1)【解析】因为由得:,又,所以由f(e x)<0得:【考点】利用导数解不等式2.函数f(x)=log2(2x-1)的定义域为________________.【答案】(,+∞)【解析】由2x-1>0,得x>.注意写成集合或者区间形式.考点:函数的定义域,对数函数的性质3.函数y=(-x2+6x)的值域()A.(0,6)B.(-∞,-2]C.[-2,0)D.[-2,+∞)【答案】D【解析】∵-x2+6x=-(x-3)2+9,∴0<-x2+6x≤9,∴y≥9=-2,故选D.4.设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a 【答案】A【解析】∵a=log3π>log33=1,b=log2<log22=1,∴a>b,又==(log23)2>1,∴b>c,故a>b>c.5.将函数的图象向左平移1个单位长度,那么所得图象的函数解析式为()A.B.C.D.【答案】C【解析】因为,所以将其图象向左平移1个单位长度所得函数解析式为.故C正确.【考点】1对数函数的运算;2函数图像的平移.6.设a=log36,b=log510,c=log714,则a,b,c的大小关系为________.【答案】a>b>c【解析】a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,则只要比较log32,log52,log72的大小即可,在同一坐标系中作出函数y=log3x,y=log5x,y=log7x的图像,由三个图像的相对位置关系,可知a>b>c.7. [2014·湛江模拟]已知函数y=loga(2-ax)在区间[0,1]上是关于x的减函数,则a的取值范围是()A.(0,1)B.(1,2)C.(0,2)D.(2,+∞)【答案】B【解析】由题意可知,a>0,故内函数y=2-ax必是减函数,又复合函数是减函数,所以a>1,同时在[0,1]上2-ax>0,故2-a>0,即a<2,综上可知,a∈(1,2).8.已知上的增函数,那么的取值范围是A.B.C.D.【答案】C【解析】由题设,故选C.【考点】1、分段函数;2、对数函数的性质;3、不等式组的解法.9. 2log510+log50.25=()A.0B.1C.2D.4【答案】C【解析】∵2log510+log50.25=log5100+log50.25=log525=2故选C.10.下列区间中,函数f(x)=|lg(2﹣x)|在其上为增函数的是()A.(﹣∞,1]B.C.D.(1,2)【答案】D【解析】∵f(x)=|lg(2﹣x)|,∴f(x)=根据复合函数的单调性我们易得在区间(﹣∞,1]上单调递减在区间(1,2)上单调递增故选D11.方程的解是.【答案】1【解析】原方程可变为,即,∴,解得或,又,∴.【考点】解对数方程.12.(1)设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差是,则a=________;(2)若a=log0.40.3,b=log54,c=log20.8,用小于号“<”将a、b、c连结起来________;(3)设f(x)=lg是奇函数,则使f(x)<0的x的取值范围是________;(4)已知函数f(x)=|log2x|,正实数m、n满足m<n且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则m、n的值分别为________.【答案】(1)4(2)c<b<a(3)-1<x<0(4),2【解析】解析:(1)∵a>1,∴函数f(x)=loga x在区间[a,2a]上是增函数,∴loga2a-logaa=,∴a=4.(2)由于a>1,0<b<1,c<0,所以c<b<a.(3)由f(-x)+f(x)=0,得a=-1,则由lg<0,得解得-1<x<0.(4)结合函数f(x)=|log2x|的图象,易知0<m<1,n>1,且mn=1,所以f(m2)=|log2m2|=2,解得m=,所以n=2.13.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log4,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.【答案】(1)k=-.(2){-3}∪(1,+∞).【解析】(1)由函数f(x)是偶函数,可知f(x)=f(-x),∴log4(4x+1)+kx=log4(4-x+1)-kx.log4=-2kx,即x=-2kx对一切x∈R恒成立,∴k=-.(2)函数f(x)与g(x)的图象有且只有一个公共点,即方程log4(4x+1)-x=log4有且只有一个实根,化简得方程2x+=a·2x-a有且只有一个实根.令t=2x>0,则方程(a-1)t2-at-1=0有且只有一个正根.①a=1t=-,不合题意;②a≠1时,Δ=0a=或-3.若a=t=-2,不合题意,若a =-3t=;③a≠1时,Δ>0,一个正根与一个负根,即<0a>1.综上,实数a的取值范围是{-3}∪(1,+∞).14.已知实数a、b满足等式a=b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中所有不可能成立的关系式为________.(填序号)【答案】③④【解析】条件中的等式Û2a=3bÛa lg2=b lg3.若a≠0,则∈(0,1).(1)当a >0时,有a >b >0,即关系式①成立,而③不可能成立; (2)当a <0时,则b <0,b >a ,即关系式②成立,而④不可能成立; 若a =0,则b =0,故关系式⑤可能成立.15. 已知m 、n 为正整数,a >0且a≠1,且log a m +log a+log a+…+log a=log a m +log a n ,求m 、n 的值.【答案】【解析】左边=log a m +log a+log a+…+log a=log a=log a (m +n),∴已知等式可化为log a (m +n)=log a m +log a n =log a mn. 比较真数得m +n =mn ,即(m -1)(n -1)=1. ∵m 、n 为正整数,∴解得16. 若|log a |=log a ,|log b a|=-log b a,则a,b 满足的条件是( ) A .a>1,b>1 B .0<a<1,b>1 C .a>1,0<b<1 D .0<a<1,0<b<1【答案】B【解析】先利用|m|=m,则m≥0,|m|=-m,则m≤0,将条件进行化简,然后利用对数函数的单调性即可求出a 和b 的范围. ∵|log a |=log a ,∴log a ≥0=log a 1,根据对数函数的单调性可知0<a<1. ∵|log b a|=-log b a,∴log b a≤0=log b 1,但b≠1,所以根据对数函数的单调性可知b>1.17. 已知a>0,且a≠1,log a 3<1,则实数a 的取值范围是( ) A .(0,1) B .(0,1)∪(3,+∞) C .(3,+∞) D .(1,2)∪(3,+∞)【答案】B【解析】由已知得log a 3<log a a.当a>1时,3<a ,所以a>3;当0<a<1时,3>a ,因此0<a<1.综合选B.18. 已知A={x|,x ∈R },B={x||x-i|<,i 为虚数单位,x>0},则A B=( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)【答案】C 【解析】,即。

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.已知函数,且,则使成立的的取值范围是().A.B.C.D.【答案】C【解析】,且,,即,,则,即.【考点】对数不等式.2.定义在上的函数满足,则的值为_____.【答案】.【解析】由题意,得,,,,;即是周期函数,且,所以.【考点】函数的周期性.3.已知()A.B.C.D.【答案】【解析】根据对数的运算法则,有.【考点】对数的运算法则.4.函数在区间上恒为正值,则实数的取值范围是()A.B.C.D.【答案】B【解析】解:由题意,且在区间上恒成立.即恒成立,其中当时,,所以在区间单调递增,所以,即适合题意.当时,,与矛盾,不合题意.综上可知:故选B.【考点】1、对数函数的性质;2:二次函数的性质.5.函数的零点所在区间是()A.B.C.D.【答案】C【解析】解:根据函数的零点存在性定理可以判断,函数在区间内存在零点.【考点】1、对数的运算性质;2、函数的零点存在性定理.6.函数的定义域为A.B.C.D.【答案】A【解析】要使函数有意义,必须:解得:所以函数的定义域是所以,应选A.【考点】1、函数定义域的求法;2、对数函数.7.函数的定义域为___________.【答案】【解析】因为依题意可得,解得.所以填.本小题的关键是考察了两个知识点.一是偶次方根的被开方数要大于或等于零,另一个就是对数函数的真数要大于零.取这两个的解集的公共部分即可得结论.【考点】1.对数知识.2.根式的知识.8.函数y =2+(x-1)的图象必过定点, 点的坐标为_________.【答案】【解析】令,则,此时,故原函数过定点.【考点】对数函数的图像性质,对数函数横过定点(1,0).9.若函数是幂函数,且满足,则的值等于 .【答案】【解析】可设,则有,即,解得,所以函数的解析式为,故,所以所求的值为.【考点】1.幂函数;2.对数的运算.10.已知函数若函数有3个零点,则实数的取值范围是_______________.【解析】将函数的图像向左移动一个单位,可得函数在区间上为单调递增函数且,因为二次函数在上单调递增且,在上单调递减且,故若函数有3个零点,即函数与函数的图像有3个交点,所以所求的取值范围为.【考点】1.对数函数;2.二次函数;3.分段函数;4.函数的零点.11.设,用二分法求方程在,内近似解的过程中得则方程的根落在区间()A.B.C.D.不能确定【答案】C.【解析】由题意得,因为f(1.25)<0.f(1.5)>0.所以f(1.25)f(1.5)<0,即有零点定理得在的落在.故选B.【考点】1.函数的零点的判定.2.指数函数值的计算.3.估算的思想.12.已知函数,则函数定义域是()A.B.C.D.【答案】C【解析】要使函数有意义需满足条件:,所以原函数的定义域为,答案选.【考点】1.根式有意义的条件以及对数函数有意义的条件;2.对数不等式.13.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:①f(x1+x2)=f(x1)f(x2),②f(x1x2)=f(x1)+f(x2),③,④,当f(x)=lnx时,上述结论中正确结论的序号是_____________.【答案】②④.【解析】把函数代入结论①②:,,结合对数的运算法则,知②正确,①错误;③说明时,,从而为减函数,但函数是增函数,故③错误;④等价于,当且时,上式显然成立.故④也是正确的.【考点】1、对数的运算法则;2、对数函数的性质;3、基本不等式.14.计算:= .【答案】【解析】解.【考点】对数的运算.15.如果,那么的最小值是()A.4B.C.9D.18【解析】∵,∴mn=81,∴,当且仅当m=n=9时“=”成立,故选D【考点】本题考查了对数的运算及基本不等式的运用点评:熟练掌握对数的运算法则及基本不等式的运用是解决此类问题的关键,属基础题16.求(lg2)2+lg2·lg50+lg25的值.【答案】2【解析】原式=(lg2)2+lg2·(lg2+2lg5)+2lg5 2分=2(lg2)2+2lg2·lg5+2lg5 4分=2lg2(lg2+lg5)+2lg5 6分=2lg2+2lg5 8分=2(lg2+lg5) 10分=2. 12分【考点】本题考查了对数的运算点评:熟练掌握对数的运算法则是解决此类问题的关键,属基础题17.(本小题满分12分)设关于x的方程=0.(Ⅰ) 如果b=1,求实数x的值;(Ⅱ) 如果且,求实数b的取值范围.【答案】(Ⅰ) . (Ⅱ) 。

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.下列区间中,函数在其上为减函数的是().A.(-∞,1]B.C.D.【答案】D【解析】当时,,在区间上为减函数,当时,在区间上是增函数.【考点】函数的单调性.2.函数=的值域为.【答案】【解析】由于,因此,因此的值域为【考点】与对数函数有关的值域.3.函数的单调减区间为 .【答案】【解析】由题意可得函数的定义域为,又在其定义域上为增函数,的减区间即为的减区间,故的减区间为.故答案为.【考点】复合函数的单调性.4.已知函数.(1)求函数的定义域;(2)若不等式有解,求实数的取值范围.【答案】(1);(2).【解析】解题思路:(1)利用对数式的真数为正数,列出不等式组,求不等式的解集即可;(2)不等式有解,即,先求出的最大值,再求的范围即可.规律总结:1.求函数的定义域时要注意以下几点:①分式中分母不为零;②偶次方根被开方数非负;③对数式中,真数大于零,底数为大于零且不等于1的实数;④中,底数不为零;要注意区别以下两条:;.试题解析:(1)须满足,∴,∴所求函数的定义域为.说明:如果直接由,得到定义域,不得分.但不再影响后面的得分. (2)∵不等式有解,∴令,由于,∴∴的最大值为∴实数的取值范围为 .说明:也可以结合的是偶函数和单调性,求得的最大值,参照给分.【考点】1.函数的定义域;2.解不等式.5.函数的零点所在区间是()A.B.C.D.【答案】C【解析】解:根据函数的零点存在性定理可以判断,函数在区间内存在零点.【考点】1、对数的运算性质;2、函数的零点存在性定理.6.已知函数(1)求函数的定义域;(2)求函数的零点;(3)若函数的最小值为-4,求a的值.【答案】(1)函数的定义域为;(2的零点是;(3).【解析】(1)函数的定义域是使函数有意义的取值范围,而对数有意义则真数大于0,即;(2)函数的零点等价于方程的根,可先利用对数运算性质进行化简,即,要注意定义域的范围,检验解得的根是否在定义域内;(3)可利用函数的单调性求最值来解参数,由(2)可知,令,在单调递减,则在取最大值时函数的最小值取-4,而,当时,则,.试题解析:21.(普通班)(1)要使函数有意义,则有解之得,所以函数的定义域为.(2)函数可化为由,得,即,,,的零点是.21.(联办班)(1)要使函数有意义:则有,解之得:,所以函数的定义域为:.(2)函数可化为由,得,即,,,的零点是.(3).,,.由,得,.【考点】1、对数函数的定义域;2对数的运算性质;3、函数的零点;4、对数方程的解法;5、复合函数的最值问题;6、二次函数的最值.7.设,用二分法求方程在,内近似解的过程中得则方程的根落在区间()A.B.C.D.不能确定【答案】C.【解析】由题意得,因为f(1.25)<0.f(1.5)>0.所以f(1.25)f(1.5)<0,即有零点定理得在的落在.故选B.【考点】1.函数的零点的判定.2.指数函数值的计算.3.估算的思想.8.设a>0,则()A.1B.2C.3D.4【答案】D【解析】。

【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)

【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)

07课 对数运算1.下列式子中正确的个数是( )①log a (b 2-c 2)=2log a b -2log a c ②(log a 3)2=log a 32③log a (bc)=(log a b)·(log a c) ④log a x 2=2log a xA.0B.1C.2D.3 2.log 22的值为( )A.- 2B. 2C.-12D.123.如果lgx=lga +2lgb -3lgc ,则x 等于( )A.a +2b -3cB.a +b 2-c 3C.ab 2c 3D.2ab 3c4.计算2log 510+log 50.25=( )A.0B.1C.2D.4 5.已知a=log 32,那么log 38-2log 36用a 表示为( )A.a -2B.5a -2C.3a -(1+a)2D.3a -a 2-16.已知f(log 2x)=x ,则f(12)=( )A.14B.12C.22 D. 2 7.设lg2=a ,lg3=b ,则log 512等于( )A.2a +b 1+aB.a +2b 1+aC.2a +b 1-aD.a +2b1-a8.已知log 72=p ,log 75=q ,则lg2用p 、q 表示为( )A.pqB.q p +qC.pp +qD.pq1+pq 9.设方程(lgx)2-lgx 2-3=0的两实根是a 和b ,则log a b +log b a 等于()A.1B.-2C.-103D.-410.计算:log 6[log 4(log 381)]=________.11.使对数式log (x -1)(3-x)有意义的x 的取值范围是________.12.已知5lgx=25,则x=________,已知log x 8=32,则x=________.13.计算:(1)2log 210+log 20.04=________; (2)lg3+2lg2-1lg1.2=________;(3)lg 23-lg9+1=________; (4)13log 168+2log 163=________; (5)log 6112-2log 63+13log 627=________.14.计算:log 23·log 34·log 45·log 56·log 67·log 78= 15.设log 89=a ,log 35=b ,则lg2=________.16.已知log 34·log 48·log 8m=log 416,求m 的值.17.设4a =5b=m ,且1a +2b=1,求m 的值.18.计算(lg 12+lg1+lg2+lg4+lg8+……+lg1024)·log 210.19.已知lg(x +2y)+lg(x -y)=lg2+lgx +lgy ,求xy的值.20.若25a =53b =102c,试求a 、b 、c 之间的关系.21.已知二次函数f(x)=(lga)x 2+2x +4lga 的最大值是3,求a 的值.指数函数练习题1.函数f(x)=ln(x2-x)的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)2.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是( )3.函数的单调减区间为()A. B.C. D.4.设全集U=R,A={x|<2},B={x|},则右图中阴影部分表示的集合为( )A.{x|1≤x<2}B.{x|x≥1}C.{x|0<x≤1}D.{x|x≤1}5.计算所得的结果为()A.1B.2.5C.3.5D.46.设, 则()A. B. C. D.7.设全集,集合,,则 ( )A. B. C. D.8.已知集合,则( )A. B. C. D.9.已知f(x)是定义在R上的偶函数,在区间[0,+∞)上为增函数,且,则不等式的解集为()A. B. C. D.10.已知x, y为正实数, 则( )A.2lg x+lg y=2lg x+2lg yB.2lg(x+y) =2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy) =2lg x·2lg y11.已知集合A={x|0<log4x<1}, B={x|x≤2}, 则A∩B=( )A.(0,1)B.(0,2]C.(1,2)D.(1,2]12.设a=log36, b=log510, c=log714, 则( )A.c> b> aB.b> c> aC.a> c> bD.a> b> c13.若a=log43,则2a+2-a=________.14.已知4a=2,lg x=a,则x=________.15.函数f(x) =lg(x-2) 的定义域是.16.函数f(x) =的定义域为.17.函数f(x) =log5(2x+1)的单调增区间是.18.函数f (x)=的定义域为.19.关于x的不等式|log2x|>4的解集为.20. 函数的定义域为___________ .21. .22.已知函数.(Ⅰ)当a=3时,求函数在上的最大值和最小值;(Ⅱ)求函数的定义域,并求函数的值域. (用a表示)答案[答案] 1.C[答案] 2.D[答案] 3.D[答案] 4.A[答案] 5.A[答案] 6.C[答案] 7.B[答案] 8.C[答案] 9.C[答案] 10.D[答案] 11.D[答案] 12.D[答案] 13.[答案] 14.[答案] 15. (2,+∞)[答案] 16.[3, +∞)[答案] 17.(-0.5,+∞)[答案] 18.{x|0<x≤}[答案] 19.[答案] 20.[-0.25,0)∪(0.75,1][答案] 21.4。

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.将转化为对数形式,其中错误的是().A.B.C.D.【答案】D【解析】将转化为对数式应为,即;由换底公式,得;;故选项A,B,C正确;而选项D:,错误;故选D.【考点】指数式与对数式的互化、换底公式.2.已知则的值等于( )A.B.C.D.【答案】A【解析】因为,所以因此【考点】对数式化简3.在对数函数中,下列描述正确的是()①定义域是、值域是R ②图像必过点(1,0).③当时,在上是减函数;当时,在上是增函数.④对数函数既不是奇函数,也不是偶函数.A.①②B.②③C.①②④D.①②③④【答案】D【解析】对数函数的性质可结合函数图像来进行理解.单调性,对称性都可由图可以清楚的感知.【考点】对数函数的性质.4.已知且,函数,,记(1)求函数的定义域及其零点;(2)若关于的方程在区间内仅有一解,求实数的取值范围.【答案】(1),0;(2)【解析】(1)均有意义时,才有意义,即两个对数的真数均大于0.解关于x的不等式即可得出的定义域,函数的零点,即,整理得,对数相等时底数相同所以真数相等,得到,基础x即为函数的零点(2)即,,应分和两种情况讨论的单调性在求其值域。

有分析可知在这两种情况下均为单调函数,所以的值域即为。

解关于m的不等式即可求得m。

所以本问的重点就是讨论单调性求其值域。

试题解析:(1)解:(1)(且),解得,所以函数的定义域为 2分令,则(*)方程变为,,即解得, 3分经检验是(*)的增根,所以方程(*)的解为,所以函数的零点为, 4分(2)∵函数在定义域D上是增函数∴①当时,在定义域D上是增函数②当时,函数在定义域D上是减函数 6分问题等价于关于的方程在区间内仅有一解,∴①当时,由(2)知,函数F(x)在上是增函数∴∴只需解得:或∴②当时,由(2)知,函数F(x)在上是减函数∴∴只需解得: 10分综上所述,当时:;当时,或(12分)【考点】对数函数的定义域,函数的零点,复合函数单调性5.式子的值为.【答案】5【解析】根据对数公式,可知,=5+0=5【考点】对数公式6.,则 ( )A.B.C.D.【答案】B【解析】由得故选B【考点】对数运算7.已知函数,则函数定义域是()A.B.C.D.【答案】C【解析】要使函数有意义需满足条件:,所以原函数的定义域为,答案选.【考点】1.根式有意义的条件以及对数函数有意义的条件;2.对数不等式.8.计算的结果为___________.【答案】1.【解析】由对数恒等式知,根据对数运算法则知,∴.【考点】对数的运算及对数恒等式.9.。

【高中数学必修一】2.2.1 对数与对数运算-高一数学人教版(必修1)(解析版)

【高中数学必修一】2.2.1 对数与对数运算-高一数学人教版(必修1)(解析版)

一、选择题1.将指数式2a =b 写成对数式为A .log 2b =aB .log a b =2C .log 2a =bD .log b 2=a【答案】A【解析】指数式2a =b 所对应的对数式是:log 2b =a .故选A .2.若log a b •log 3a =5,则b =A .a 3B .a 5C .35D .53 【答案】C3.如果log 3x =log 6x ,那么x 的值为A .1B .1或0C .3D .6【答案】A【解析】∵log 3x =log 6x ,36log 1log 1==0,而对数函数3log y x =,6log y x =在x >0时,具有单调性,因此x =1.故选A .4.1411log 9+1511log 3= A .lg3B .–lg3C .1lg3D .–1lg3【答案】C 【解析】原式=191log 4+131log 5=131log 2+131log 5=131log 10=log 310=1lg3.故选C .5.若x =12log 16,则x = A.–4 B .–3 C .3 D .4【答案】A【解析】∵x =12log 16,∴2–x =24,∴–x =4,解得x =–4.故选A .6.log 8127等于A .34B .43C .12D .13【答案】A【解析】log 8127=3lg334lg34=.故选A . 7.计算lg (103–102)的结果为A .1B .32C .90D .2+lg9【答案】D8.若x log 34=1,则4x +4–x 的值为A .3B .4C .174D .103【答案】D【解析】∵x log 34=1,∴43log x =1,则4x =3,∴4x +4–x =3+11033=,故选D . 9.273log 16log 4的值为 A .2 B .32 C .1 D .23【答案】D【解析】原式=164332734433log 2log log 23log log 3==.故选D .二、填空题10.已知log 3(log 2x )=1,那么x 的值为__________.【答案】8【解析】由log 3(log 2x )=1,得log 2x =3,解得x =8.故答案为:8.11.已知lg2=a ,lg3=b ,用a ,b 的代数式表示lg12=__________.【答案】2a +b【解析】lg12=lg (3×4)=lg3+2lg2=2a +b .故答案为:2a +b .12.求值:2log 510+log 50.25–log 39=__________.【答案】0【解析】原式=()25log 100.25⨯–2=25log 5–2=2–2=0.故答案为:0.13.若lg2=a ,lg3=b ,则log 418=__________.(用含a ,b 的式子表示)【答案】22a b a+14.若log 32=log 23x ,则x =__________.【答案】223(log ) 【解析】∵log 32=log 23x ,∴32321log log x =,∴223(log )x =.故答案为:223(log ). 三、解答题15.计算(log 43+log 83)(log 32+log 92)的值.【解析】(log 43+log 83)(log 32+log 92)=lg3lg3lg2lg2lg4lg8lg3lg9⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=lg3lg3lg2lg22lg23lg2lg32lg3⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ =1111524364+++=. 16.解方程:log 2(x –1)+log 2x =1.【解析】∵log 2(x –1)+log 2x =1,∴log 2(x –1)x =1, ∴x (x –1)=2,解得x =–1或x =2,经检验,得x =–1是增根,x =2是原方程的解,∴x =2.17.计算:(1)lg 12–lg 58+lg12.5–log 89•log 34+0.5log 32; (2)0.21log 35-–(log 43+log 83)(log 32+log 92).(2)0.21log 35-–(log 43+log 83)(log 32+log 92) =5÷51log 35–(log 6427+log 649)(log 94+log 92)=15–5362lg3lg2lg2lg3⨯ =15–1512=554. 18.解关于x 的方程:lg (x 2+1)–2lg (x +3)+lg2=0.【解析】∵lg (x 2+1)–2lg (x +3)+lg2=0,∴()2221lg (3)x x ++=0,∴()2221(3)x x ++=1,解得x =–1或x =7,经检验满足条件.∴方程的根为:x =–1或x =7.。

高三数学对数与对数函数试题答案及解析

高三数学对数与对数函数试题答案及解析

高三数学对数与对数函数试题答案及解析1.函数的图象大致是()A. B. C. D.【答案】A【解析】因为f(-x)=f(x),可知函数图象关于y轴对称,且f(0)=0,可知选A【考点】对数的性质,函数的图象2.函数f(x)=log(2x-1)的定义域为________________.2【答案】(,+∞)【解析】由2x-1>0,得x>.注意写成集合或者区间形式.考点:函数的定义域,对数函数的性质3.已知函数f(x)=,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c 的取值范围为()A.()B.()C.(,12)D.(6,l2)【答案】B【解析】由,可知,,则, ,位于函数的减区间,所以将和代入,得到结果(),故选B.【考点】1.分段函数的图象;2.对勾函数求最值.4.等比数列的各项均为正数,且,则 .【答案】.【解析】由题意知,且数列的各项均为正数,所以,,.【考点】本题考查等比数列的基本性质与对数的基本运算,属于中等偏难题.5.若的最小值是A.B.C.D.【答案】D【解析】由题意,且,所以又,所以,,所以,所以,当且仅当,即,时,等号成立.故选D.【考点】1、对数的运算;2、基本不等式.6. [2014·济南调研]下列区间中,函数f(x)=|ln(2-x)|在其上为增函数的是()A.(-∞,1]B.C.D.[1,2)【答案】D【解析】当2-x≥1,即x≤1时,f(x)=|ln(2-x)|=ln(2-x),此时函数f(x)在(-∞,1]上单调递减.当0<2-x≤1,即1≤x<2时,f(x)=|ln(2-x)|=-ln(2-x),此时函数f(x)在[1,2)上单调递增.7.函数的定义域是.【答案】【解析】只需,∴,所以函数的定义域是.【考点】函数的定义域.8.若,且,则()A.0B.C.1D.2【答案】D【解析】∵,∴,∴,∴,∴,∴.【考点】对数的运算.9.函数的值域为 .【答案】【解析】由得 ,所以函数的定义域是:设点=所以,,所以答案填:【考点】1、对数函数的性质;2、数形结合的思想.10.设且.若对恒成立,则的取值范围是()A.B.C.D.【答案】D【解析】时显然不成立.当时,结合图象可知:.【考点】对数函数与三角函数.11.定义两个实数间的一种运算“”:,、.对任意实数、、,给出如下结论:;②;③.其中正确的个数是()A.B.C.D.【答案】D【解析】根据题中的定义,对于命题,左边,右边,左边右边,命题正确;对于命题②,左边,右边左边,命题②正确;对于命题③,左边,右边,左边右边,命题③也正确.故选D.【考点】新定义12.函数,关于方程有三个不同实数解,则实数的取值范围为()A.B.C.D.【答案】D【解析】函数,根据的图象,设,∵关于x的方程有有三个不同的实数解,即为有两个根,且一个在上,一个在上.设,①当有一个根为时,,,此时另一根为,符合题意.②当没有根为时,则:,解得,综上可得,m 的取值范围是.【考点】对数函数图象与性质的综合应用.13. 已知两条直线l 1:y =m 和l 2:y =,l 1与函数y =|log 2x|的图象从左至右相交于点A 、B ,l 2与函数y =|log 2x|的图象从左至右相交于点C 、D.记线段AC 和BD 在x 轴上的投影长度分别为a 、b.当m 变化时,求的最小值. 【答案】8【解析】由题意得x A =m,x B =2m ,x C =,x D =,所以a =|x A -x C |=,b =|x B -x D |=,即==·2m =2+m.因为+m = (2m +1)+-≥2-=,当且仅当 (2m +1)=,即m =时取等号.所以,的最小值为=8.14. 计算:(lg5)2+lg2×lg50=________. 【答案】1【解析】原式=(lg5)2+lg2×(1+lg5)=lg5(lg2+lg5)+lg2=1.15. 计算:lg -lg +lg7= .【答案】【解析】原式=lg4+lg2-lg7-lg8+lg7+ lg5=2lg2+(lg2+lg5)-2lg2=.16. 下列区间中,函数f(x)=|ln(2-x)|在其上为增函数的是( ) A .(-∞,1] B .C .D .[1,2)【答案】D【解析】法一:当2-x>1,即x<1时,f(x)=|ln(2-x)|=ln(2-x),此时函数f(x)在(-∞,1]上单调递减.当0<2-x≤1,即1≤x<2时,f(x)=|ln(2-x)|=-ln(2-x),此时函数f(x)在[1,2)上单调递增,故选D.法二:f(x)=|ln(2-x)|的图像如图所示.由图像可得,函数f(x)在区间[1,2)上为增函数,故选D.17.已知函数,则.【答案】【解析】.【考点】对数函数求值18.在各项均为正数的等比数列中,若,则.【答案】2【解析】因为,所以,所以,因为数列是等比数列,所以【考点】1.对数的运算;2.等比数列的性质。

高一数学(必修一)《第四章-对数函数的概念》练习题及答案解析-人教版

高一数学(必修一)《第四章-对数函数的概念》练习题及答案解析-人教版

高一数学(必修一)《第四章 对数函数的概念》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.下列函数是对数函数的是( )A .log (2)a y x =B .2log 2x y =C .2log 1y x =+D .lg y x =2.已知对数函数()f x 的图象经过点21,9A ⎛⎫- ⎪⎝⎭与点则( )A .c a b <<B .c b a <<C .b a c <<D .a b c <<3.对数函数的图像过点M (125,3),则此对数函数的解析式为( )A .y =log 5xB .y =15log xC .y =13log xD .y =log 3x4.与函数2y x =表示同一函数是( )A .2y =B .u =C .y =D .22n m n=5.函数y 的定义域是( )A .(]0,4B .(],4-∞C .()0,∞+D .()0,1.6.下列各组函数是同一函数的是( )①()f x ()g x = ②()f x x =与()g x =③()0f x x =与01()g x x=; ④2()21f x x x =--与2()21g t t t =-- A .①② B .①③ C .③④ D .①④7.下列各式为y 关于x 的函数解析式是( )A .()3y x x =--B .y =.1,01,0x x y x x -<⎧=⎨+≥⎩ D .0,1,x y x ⎧=⎨⎩为有理数为实数8.若集合{}220,{03}A x x x B x x =--<=<<,则A B =( )A .(0,2)B .(2,3)C .(1,0)-D .(1,3)-二、填空题9.已知对数函数()()233log m f x m m x =-+,则m =______.10.已知函数(()ln 3f x x =+,若()f a m =,则()f a -=_________.三、解答题11.已知对数函数()2(1)()1log ,m f x m m x +=--求(27)f 的值.12.已知函数()()4log 65x x f x m =+⋅.(1)当1m =-时,求()f x 的定义域;(2)若()2f x ≤对任意的[]0,1x ∈恒成立,求m 的取值范围.13.已知函数()()()ln 1ln 1f x ax x =++-的图象经过点()3,3ln 2.(1)求a 的值,及()f x 的定义域;(2)求关于x 的不等式()()ln 2f x x ≤的解集.14.判断下列函数的奇偶性:(1)()f x =(2)()22,0,0x x x f x x x x ⎧+<=⎨-+>⎩;(3)()(2log f x x =. 参考答案与解析1.【答案】D【分析】根据对数函数的定义即可判断.【详解】由对数函数的定义:形如log (0a y x a =>且1)a ≠的形式,则函数为对数函数,只有D 符合. 故选D【点睛】本题考查对数函数的定义,需掌握对数函数的定义.2.【答案】D【分析】求出对数函数()f x 的解析式,可求出t 的值,再利用中间值法可得出a 、b 、c 三个数的大小关系.【详解】设()log m f x x =(其中0m >且1m ≠),则11log 299m f ⎛⎫==- ⎪⎝⎭,解得3m = 则()3log f x x =,所以3log 814t ==所以,0.10.10.1log log 4log 10a t ==<=和400.20.20.21t b ==<=且0b >,即01b <<0.10441c =>=,因此,c b a >>.故选:D.3.【答案】A【分析】设对数函数y =log ax (a >0,且a ≠1),将点代入即可求解.【详解】设函数解析式为y =log ax (a >0,且a ≠1).由于对数函数的图像过点M (125,3)所以3=log a 125,得a =5.所以对数函数的解析式为y =log 5x .故选:A.4.【答案】B【分析】先化简所给函数,根据相同的函数定义域、对应关系相同即可求解.【详解】对于A ,函数22(0)y x x ==,与函数2()y x x R =∈的定义域不同,不是同一函数;对于B ,函数2()u v v R =∈,与函数2()y x x R =∈的定义域相同,对应关系也相同,是同一函数;对于C ,函数2||()y x x R =∈,与函数2()y x x R =∈的定义域相同,但对应关系不同,不是同一函数;对于D ,函数222(0)n m n n n==≠,与函数2()y x x R =∈的定义域不相同,不是同一函数. 故选:B5.【答案】A【分析】根据偶次方根的被开方数为非负数,对数的真数大于零列不等式,由此求得函数的定义域.【详解】依题意2222log 0log 2log 40400x x x x x -≥≤=⎧⎧⇒⇒<≤⎨⎨>>⎩⎩所以()f x 的定义域为(]0,4.故选:A6.【答案】C【分析】利用两函数为同一函数则定义域和对应法则要相同,逐项分析即得.【详解】①()f x =()g x ={}|0x x ≤,而()f x =-数不是同一函数;②()f x x =与()g x =R ,()g x x =这两个函数的定义域相同,对应法则不同,故这两个函数不是同一函数;③()0f x x =与()01g x x =的定义域是{}|0x x ≠,并且()()g 1f x x ==,对应法则也相同,故这两个函数是同一函数;④()221f x x x =--与()221g t t t =--是同一函数;所以是同一函数的是③④.故选:C.7.【答案】C【分析】根据函数的定义逐个分析判断即可【详解】A 项,()33y x x =--=定义域为R ,定义域内每个值按对应法则不是唯一实数与之对应,所以不是函数,A 项错误;B 项,y =2010x x -≥⎧⎨-≥⎩,无解,所以不是函数,B 项错误; C 项,1,01,0x x y x x -<⎧=⎨+≥⎩定义域为R ,对于定义域内每一个值都有唯一实数与之对应,所以是函数,C 项正确; D 项,0,1,x y x ⎧=⎨⎩为有理数为实数当1x =时,y 有两个值0,1与之对应,所以不是函数,D 项错误. 故选:C.8.【答案】A【分析】化简集合,然后利用交集的定义运算即得.【详解】由题可知(1,2),(0,3)A B =-=所以(0,2)A B ⋂=.故选:A .9.【答案】2【分析】利用对数函数的解析式,求出m ,然后求解函数值即可.【详解】由对数函数的定义可得233101m m m m ⎧-+=⎪>⎨⎪≠⎩解得2m =.故答案为2.10.【答案】6m -+ ##6m -【分析】注意到((ln ln 0x x +-= ,将x a =- 代入函数解析式运算即可求解. 【详解】由已知:函数定义域为R,(ln 3m a =+和(ln 3a m =- 则()((()ln 3ln 3336f a a a m m -=-+=-+=--+=-+ 故答案为:6m -+11.【答案】3【分析】由2111011m m m m ⎧--=⎪+>⎨⎪+≠⎩可得m 的值,从而通过()f x 的解析式求()27f . 【详解】因为()f x 是对数函数,故2111011m m m m ⎧--=⎪+>⎨⎪+≠⎩,解得2m = 所以()3log f x x = ()327log 273f ==12.【答案】(1)()0,∞+ (2)(]1,2-【分析】(1)根据对数函数、指数函数的性质计算可得;(2)依题意可得06516x x m <+⋅≤对任意的[]0,1x ∈恒成立,参变分离可得6166555x xx m ⎛⎫⎛⎫-<≤- ⎪ ⎪⎝⎭⎝⎭对任意的[]0,1x ∈恒成立,再根据指数函数的性质计算可得;(1)解:当1m =-时()()4log 65x x f x =-,令650x x ->即65x x >,即615x⎛⎫> ⎪⎝⎭,解得0x >,所以()f x 的定义域为()0,∞+. (2)解:由()2f x ≤对任意的[]0,1x ∈恒成立所以06516x x m <+⋅≤对任意的[]0,1x ∈恒成立即6166555x xx m ⎛⎫⎛⎫-<≤- ⎪ ⎪⎝⎭⎝⎭对任意的[]0,1x ∈恒成立 因为165x y =是单调递减函数,65xy ⎛⎫=- ⎪⎝⎭是单调递减函数 所以()16655xx g x ⎛⎫=- ⎪⎝⎭在[]0,1上单调递减,所以()()min 12g x g == 所以()65x h x ⎛⎫=- ⎪⎝⎭在[]0,1上单调递减,所以()()max 01h x h ==- 所以12m -<,即m 的取值范围为(]1,2-.13.【答案】(1)1a =,定义域为()1,+∞(2){112}xx <+∣ 【分析】(1)直接将()3,3ln 2代入函数解析式,即可求出参数a 的值,从而求出函数解析式,再根据对数的真数大于零得到不等式组,解得即可;(2)依题意可得()()2ln 1ln 2x x -,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可;(1)解:由题意可得()()ln 31ln 313ln2a ++-=,即()ln 312ln2a +=,所以314a +=解得1a =则()()()ln 1ln 1f x x x =++-. 由1010x x +>⎧⎨->⎩,解得1x >. 所以()f x 的定义域为()1,+∞.(2)解:由(1)可得()()()()2ln 1ln 1ln 1,1f x x x x x =++-=->不等式()()ln 2f x x 可化为()()2ln 1ln 2x x -因为ln y x =在()0,+∞上是增函数所以20121x x x ⎧<-⎨>⎩ 解得112x <+.故不等式()()ln 2f x x 的解集为{}|112x x <+.14.【答案】(1)既是奇函数又是偶函数(2)奇函数(3)奇函数【分析】(1)求出函数定义域后化简函数式,由奇偶性定义可得;(2)根据奇偶性定义分类讨论判断()f x -与()f x 的关系;(3)确定定义域后,根据奇偶性定义及对数运算法则变形可得. (1)由2230,30,x x ⎧-≥⎨-≥⎩得x 2=3,解得x =即函数f (x )的定义域为{从而f (x因此f (-x )=-f (x )且f (-x )=f (x )∴函数f (x )既是奇函数又是偶函数.(2)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称. ∵当x <0时,-x >0则f (-x )=-(-x )2-x =-x 2-x =-f (x );当x >0时,-x <0则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知,对于定义域内的任意x ,总有f (-x )=-f (x )成立 ∴函数f (x )为奇函数.(3)显然函数f (x )的定义域为R f (-x )=log2[-x=log 2x)=log 2x )-1=-log 2x )=-f (x )故f (x )为奇函数.。

高三数学对数与对数函数试题答案及解析

高三数学对数与对数函数试题答案及解析

高三数学对数与对数函数试题答案及解析1.函数的单调递增区间为()A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)【答案】D【解析】首先由得函数的定义域为(-∞,-2) (2,+∞);再令,则在(0,+∞)是减函数,又因为在(-∞,-2)上是减函数;由复合函数的单调性可知:函数的单调递增区间为(-∞,-2);故选D.【考点】复合函数的单调性.2.已知函数为奇函数则实数的值为【答案】1【解析】由奇函数得:,,,因为,所以【考点】奇函数3.计算.【答案】2【解析】【考点】对数式的运算.4.已知函数为常数,其中的图象如右图,则下列结论成立的是()A.B.C.D.【答案】D【解析】由图可知,的图象是由的图象向左平移个单位而得到的,其中,再根据单调性易知,故选D.【考点】对数函数的图象和性质.5.设且.若对恒成立,则的取值范围是()A.B.C.D.【答案】D【解析】时显然不成立.当时,结合图象可知:.【考点】对数函数与三角函数.6.函数的定义域是A.[1,2]B.C.D.【答案】C【解析】根据函数定义域的要求得:.【考点】(1)函数的定义域;(1)对数函数的性质.7. (1)解方程:(2)已知命题命题且命题是的必要条件,求实数m的取值范围【答案】(1);(2).【解析】(1)解对数方程,一般把利用对数的运算法则把对数方程变形为,转化为代数方程,但解题过程中要注意对数函数的定义域,即,;(2)这类问题的解决,首先要把两个命题化简,本题中命题化为:,命题是命题的必要条件,说明由命题成立可推导出命题也成立,若把命题成立时的变量的集合分别记为,从集合角度,即有,由此我们可得出关于的不等关系,从而求出的取值范围. 试题解析:(1)解:由原方程化简得,即:所以,,解得.(2)解:由于命题是的必要条件,所以,所以.【考点】(1)对数方程;(2)充分与必要条件.8.函数f(x)=ln是________(填“奇”或“偶”)函数.【答案】奇【解析】因为f(-x)=ln=ln=-ln=-f(x),所以f(x)是奇函数.9.已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是________.【答案】(3,+∞)【解析】因为f(a)=f(b),即|lga|=|lgb|,所以a=b(舍去)或b=,得a+2b=a+.又0<a<b,所以0<a<1<b.令f(a)=a+,则f′(a)=1-<0,所以f(a)在a∈(0,1)上为减函数,得f(a)>f(1)=1+2=3,即a+2b的取值范围是(3,+∞).10.设a=lge,b=(lge)2,c=lg,则a、b、c的大小关系是________.【答案】a>c>b【解析】本题考查对数函数的增减性,由1>lge>0,知a>b.又c=lge,作商比较知c>b,故a>c>b.x|,正实数m、n满足m<n,且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2, 11.已知函数f(x)=|log2则m+n等于()A.-1B.C.1D.2【答案】B【解析】由函数f(x)=|log2x|的图象知,当m<n且f(m)=f(n),得mn=1,且0<m<1<n.∴0<m2<m<1<n.∵f(x)在区间[m2,n]上的最大值为2,∴|log2m2|=2,∴m=,n=2,∴m+n=.12.设则a,b,c的大小关系为A.a<c<b B.b<a<c C.a<b<c D.b<c<a【答案】B【解析】因为所以显然,所以的值最大.故排除A,D选项.又因为,所以.即.综上.故选B.本小题关键是进行对数的运算.【考点】1.对数的运算.2.数的大小比较的方法.13.已知f(x)是定义域为实数集R的偶函数,∀x1≥0,∀x2≥0,若x1≠x2,则<0.如果f=,4f()>3,那么x的取值范围为()A.B.C.∪(2,+∞)D.∪【答案】B【解析】依题意得,函数f(x)在[0,+∞)上是减函数,不等式4f()>3等价于f()>,f(||)>f,||<,即-<<,由此解得<x<2,故选B.14.计算:lg-lg+lg7=.【答案】【解析】原式=lg4+lg2-lg7-lg8+lg7+lg5=2lg2+(lg2+lg5)-2lg2=.15.已知函数.(1)若,当时,求的取值范围;(2)若定义在上奇函数满足,且当时,,求在上的反函数;(3)若关于的不等式在区间上有解,求实数的取值范围.【答案】(1);(2);(3).【解析】(1)这实质上是解不等式,即,但是要注意对数的真数要为正,,;(2)上奇函数满足,可很快求出,要求在上的反函数,必须求出在上的解析式,当时,,故,当然求反函数还要求出反函数的定义域即原函数的值域;(3)可转化为,这样利用对数函数的性质得,变成了整式不等式,问题转化为不等式在区间上有解,而这个问题通常采用分离参数法,转化为求相应函数的值域或最值.试题解析:(1)原不等式可化为 1分所以,, 1分得 2分(2)因为是奇函数,所以,得 1分当时,2分此时,,所以 2分(3)由题意, 1分即 1分所以不等式在区间上有解,即 3分所以实数的取值范围为 1分【考点】(1)对数不等式;(2)分段函数的反函数;(3)不等式有解问题.16.设,则之间的关系是()A.B.C.D.【答案】A【解析】由函数的图象可知,又由函数的图象可得该函数在上单调增,因为,则,综上所述选A.【考点】1.对数函数;2.幂函数的单调性17.使不等式(其中)成立的的取值范围是.【答案】【解析】即,而,所以,,答案为.【考点】对数函数及其性质18.已知,,,,则()A.B.C.D.【答案】C【解析】,,,因为且,所以.【考点】对数的运算.19.设函数的定义域为,值域为,若的最小值为,则实数的值为.【答案】.【解析】由题意函数的值域为,,则,当即时,,;当即时,,,.【考点】对数函数的值域.20.设,则( )A.B.C.D.【答案】D【解析】因为,所以.【考点】对数比较大小21.函数,其中满足且∥,则_________。

高一数学(必修一)《第四章 对数》练习题及答案解析-人教版

高一数学(必修一)《第四章 对数》练习题及答案解析-人教版

高一数学(必修一)《第四章 对数》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、解答题1.求下列各式的值: (1)2log 32-; (2)2lg310; (3)3ln 7e ; (4)23log 9; (5)2lg100; (6)2lg 0.001. 2.求下列各式的值:(1)2log 32-;(2)2lg310;(3)3ln 7e ;(4)23log 9;(5)2lg100;(6)2lg 0.001. 3.化简下列各式(1)1223321()4(0.1)()a b ---.4.已知()2lg lg lg lg lg 0lg lg lg lg x y x y x y x y x y-⎡⎤++⎣⎦++=⋅,求()2log xy 的值. 5.对数的运算性质在数学发展史上是伟大的成就.(1)对数运算性质的推导有很多方法,请同学们推导如下的对数运算性质:如果0a >,且1a ≠,0M >那么()log log n a a M n M n =∈R ;(2)因为()10342102410,10=∈,所以102的位数为4(一个自然数数位的个数,叫作位数),试判断220219的位数;(注:lg 219 2.34≈)(3)中国围棋九段棋手柯洁与机器人阿尔法狗曾进行了三局对弈,以复杂的围棋来测试人工智能,围棋复杂度的上限约为3613=M .根据有关资料,可观测宇宙中普通物质的原子总数的和约为8010=N ,甲、乙两个同学都估算了MN的近似值,甲认为是7310,乙认为是9310.现有一种定义:若实数x 、y 满足x m y m -<-,则称x 比y 接近m ,试判断哪个同学的近似值更接近MN,并说明理由.(注:lg 20.3010≈和lg30.4771≈)6.计算:(1)21023213(2)(9.6)(3)(1.5)48----+(2)lg232log 9lg lg 4105+--7.计算求值(1)()362189-⎛⎫--- ⎪⎝⎭;(2)221lg lg2log 24log log 32+++;(3)已知623a b ==,求11a b-的值.8.计算:(1)7lg142lg lg 7lg183-+-;(2)()2lg53lg 22lg5lg 2lg5+++⨯;(3)()()22666661log 2log 33log 2log log 23⎛⎫++⨯ ⎪⎝⎭.9.近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式0lnMv v m=计算火箭的最大速度v (单位:m/s ).其中0v (单位m/s )是喷流相对速度,m (单位:kg )是火箭(除推进剂外)的质量,M (单位:kg )是推进剂与火箭质量的总和,Mm称为“总质比”,已知A 型火箭的喷流相对速度为2000m/s . 参考数据:ln 230 5.4≈和0.51.648 1.649e <<.(1)当总质比为230时,则利用给出的参考数据求A 型火箭的最大速度;(2)经过材料更新和技术改进后,A 型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的13,若要使火箭的最大速度增加500 m/s ,记此时在材料更新和技术改进前的总质比为T ,求不小于T 的最小整数? 10.(1)()()2293777log 49log 7log 3log 3log 3+--;(2)2log 31431lg 25lg 2log 9log 822-++-⨯++11.已知函数()()()ln 3ln 3f x x x =++-. (1)证明:函数()f x 是偶函数;(2)求函数()f x 的零点.12.已知集合{}54log 2,log 25,2A =,集合231log 5,log 9B ⎧⎫=⎨⎬⎩⎭.记集合A 中最小元素为a ,集合B 中最大元素为b . (1)求A B 及a ,b 的值; (2)证明:函数()1f x x x =+在[)2,+∞上单调递增;并用上述结论比较a b +与52的大小. 13.某公司为了实现2019年销售利润1000万元的目标,准备制定一个激励销售人员的奖励方案:从销售利润达到10万元开始,按销售利润进行奖励,且奖金数额y (万元)随销售利润x (万元)的增加而增加,但奖金数额不超过5万元.现有三个奖励模型:y =0.025x ,y =1.003x ,y =12ln x +1,其中是否有模型能完全符合公司的要求?请说明理由.(参考数据:1.003538≈5,e ≈2.71828…,e 8≈2981)14.已知2x =3y =a ,若112x y+=,求a 的值.15.将下列对数形式化为指数形式或将指数形式化为对数形式: (1)2-7=1128; (2)12log 325=-;(3)lg1000=3; (4)ln 2x =二、单选题16.在下列函数中,最小值为2的是( ) A .1y x x=+B .1lg (110)lg y x x x=+<< C .222(1)1x x y x x -+=>-D .1sin 0sin 2y x x x π⎛⎫=+<< ⎪⎝⎭17.已知集合{}|2x A x x N *=≤∈,{}2|log (1)0B x x =-=,则A B =( )A .{}1,2B .{}2C .∅D .{}0,1,2参考答案与解析1.(1)13;(2)9;(3)343; (4)4; (5)4; (6)6-.【分析】根据指对数的关系及对数的运算性质求值. (1)由2log 3a =-,则1232aa -==,即123a=,故2log 33212a -==. (2)由22lg 3lg 3lg 9a ===,则109a =,故2lg309110a ==. (3)由33ln 7ln 7a ==,则3e 7343a ==,故3ln733e 4a e ==. (4)223333log 9log 9log 34log 2234====.(5)2222lg100lg100lg104lg104====.(6)23lg 0.001lg 0.001lg106lg10622-==-=-=. 2.(1)13(2)9(3)343(4)4(5)4(6)6-【解析】(1)根据log a b a b =,即可求得2log 32-; (2)根据log a b a b =,即可求得2lg310; (3)根据log a b a b =,即可求得3ln 7e ;(4)根据log log Ma ab M b =和log 1a a =,即可求得23log 9;(5)根据log log Ma ab M b =和log 1a a =,即可求得2lg100;(6)根据log log M a a b M b =和,log 1a a =,即可求得2lg 0.001.【详解】(1) log a b a b =∴ 22log 3log 31112(2)33---===;(2) log a b a b = ∴2lg3lg32210(10)39===;(3) log a b a b = ∴3ln 7ln 33e (e 7)7343===;(4) log log Ma ab M b =和log 1a a =∴2433log 9log 34==;(5) log log Ma ab M b =和log 1a a =∴24lg100lg104==;(6) log log Ma ab M b =和log 1a a =∴26lg 0.001lg106-==-.【点睛】本题考查了对数的化简求值,解题关键是掌握log log Ma ab M b =和log 1a a =,考查了计算能力,属于基础题. 3.(1)425(2)-4【分析】(1)利用分数指数幂和根式的性质和运算法则求解即可得到结果; (2)利用对数的性质和运算法则求解即可得到结果. (1) ()1原式3312233221824222525100a ba b---⎛⎫=⨯=⨯= ⎪⎝⎭; (2) 原式()()lg 812525100241111222lg ⨯÷÷====-⨯---. 4.()2log 0xy =【分析】对原式化简,得()()22lg lg lg 0x y x y ++-=⎡⎤⎣⎦,由对数的运算性质求解xy 的值,再代入即可. 【详解】由()2lg lg lg lg lg 0lg lg lg lg x y x y x y x y x y-⎡⎤++⎣⎦++=,去分母可得 ()()22lg lg lg 0x y x y ++-=⎡⎤⎣⎦,所以()lg lg lg 01lg 01x y xy xy x y x y +===⎧⎧⇒⎨⎨-=-=⎩⎩所以()2log 0xy =. 5.(1)答案见解析 (2)515(3)甲同学的近似值更接近MN,理由见解析【分析】(1)利用对数的恒等式结合指数的运算性质可证得结论成立; (2)利用对数运算性质计算出220lg 219的近似值,即可得出220219的位数;(3)由题意可得出36180310=M N ,比较7310M N -与9310M N -的大小关系,即可得出结论. (1)解:若0a >,且1a ≠,0M >和n ∈R ,则()log log a a nn M M n a a M ==化为对数式得log log na a M n M =.(2)解:令220219t =,所以lg 220lg 219t = 因为lg 219 2.34≈,所以lg 220lg 219514.8t =≈ 所以()514.85145151010,10t ≈∈,所以220219的位数为515.(3)解:根据题意,得36180310=M N 所以36136180803lg lg lg3lg10361lg38092.233110M N ==-=⋅-≈ 所以()92.233192931010,10MN≈∈ 因为()361173lg 23lg 2361lg3172.5341173lg10⨯=+⋅≈<=所以36117317315323101010⨯<<+,所以36193738023101010⨯<+ 所以361361739380803310101010-<-,所以甲同学的近似值更接近M N .6.(1)4736- (2)1-【分析】(1)根据指数幂运算性质计算即可; (2)根据对数的运算性质计算即可. (1)解:21023213(2)(9.6)(3)(1.5)48----+=212329273()1()()482=23233321[()]()223=22132()()223=194249=4736-; (2)解:lg232log 9lg lg 4105+--=2lg 2lg52lg 22=lg 2(1lg 2)2lg 21.7.(1)44 (2)92(3)1【分析】(1)由指数的运算法则计算 (2)由对数的运算法则计算 (3)将指数式转化为对数式后计算 (1)()33622023218323172271449-⨯⎛⎫---=⨯--=--= ⎪⎝⎭;(2)221lglg 2log 24log log 32+++ ()32232lg 2lg 2log 38log 3log 3=-++⨯+- 2239log 33log 322=++-=; (3)6log 3a = 2log 3b =则31log 6a = 31log 2b=; 所以33311log 6log 2log 31a b-=-==.8.(1)0 (2)3 (3)1【分析】(1)利用对数相加相减的运算法则求解即可; (2)提公因式,逐步化简即可求解; (3)逐步将原式化成只含6log 2和6log 3形式. (1)方法一:(直接运算)原式227147lg14lg lg 7lg18lg lg1037183⎛⨯⎛⎫=-+-==⎫⎪⎝⎭= ⎪⎝⎭⨯. 方法二:(拆项后运算)原式()()()2lg 272lg7lg3lg7lg 32=⨯--+-⨯lg 2lg72lg72lg3lg72lg3lg 20=+-++--=.(2)原式()()lg5lg5lg22lg2lg5lg2=⨯++++()lg5lg102lg10lg22lg5lg23=⨯++=++=.(3)原式()()226666log 2log 33log 2log =++⨯ ()()22666log 2log 33log 2log =++⨯()()226666log 2log 32log 2log 3=++⨯ ()626log 2log 31=+=.9.(1)10800 m/s (2)45【分析】(1)运用代入法直接求解即可;(2)根据题意列出不等式,结合对数的运算性质和已知题中所给的参考数据进行求解即可. (1)当总质比为230时,则2000ln 2302000 5.410800v =≈⨯= 即A 型火箭的最大速度为10800m /s . (2)A 型火箭的喷流相对速度提高到了原来的1.5倍,所以A 型火箭的喷流相对速度为2000 1.53000/m s ⨯=,总质比为3Mm由题意得:3000ln2000ln 5003M M m m-≥ 0.50.5ln 0.5272727M M M e e m m m⇒≥⇒≥⇒≥因为0.51.648 1.649e <<,所以0.544.4962744.523e << 即44.49644.523T <<,所以不小于T 的最小整数为45. 10.(1)2;(2)4.【分析】(1)将()237log 7log 3+展开再根据对数的运算求解; (2)根据对数的运算求解即可.【详解】解:(1)原式()()()2223373777log 7log 7log 32log 7log 3log 3log 3=++⨯-- ()()2233log 72log 72=+-=.(2)原式2221221log 322233312log 3lg 5lg 2log 3log 2ln e 22=++-⨯++323314log 3lg5lg 2log 33log 222=++-⨯++ ()4lg 52324114=+⨯-+=+-=.11.(1)证明见解析;(2)-【分析】(1)先证明函数()f x 的定义域关于原点对称,再证明()()f x f x -=即可;(2)利用对数运算对函数()f x 的解析式进行化简,求解方程()0f x =即可得到函数()f x 的零点. (1)证明:由3030x x +>⎧⎨->⎩,解得33x -<<∴函数的定义域为{}33x x -<<,且定义域关于原点对称 又∵()()()()ln 3ln 3f x x x f x -=-++=,∴()f x 是偶函数. (2)解:()()()()2ln 3ln 3ln 9f x x x x =-++=-,令()()2ln 90f x x =-=∴291x -=,解得x =±∴函数()f x的零点为-和12.(1){}2log 5⋂=A B ,5log 2a =和2log 5b =; (2)证明见解析52+>a b【分析】(1)根据对数的运算性质以及对数函数的单调性即可解出; (2)根据单调性的定义即可证明函数()1f x x x=+在[)2,+∞上单调递增,再根据单调性以及对数的性质1log log a b b a=即可比较出大小. (1)因为42log 25log 5=,所以{}52log 2,log 5,2A =,{}2log 5,2B =-即{}2log 5⋂=A B .因为5522log 2log 252log 4log 5<==<,所以5log 2a = 2log 5b =.(2)设12,x x 为[)2,+∞上任意两个实数,且122x x ≤<,则120x x -< 121x x >()()()1212121212121212111110x x f x f x x x x x x x x x x x x x ⎛⎫⎛⎫--=+-+=-+-=-⨯< ⎪ ⎪⎝⎭⎝⎭,即()()12f x f x <,所以()f x 在[)2,+∞上单调递增.所以()()522f x f >=,所以()5222215log 2log 5log 5log 5log 52f +=+=>. 13.奖励模型1ln 12y x =+能完全符合公司的要求,答案见解析.【分析】由题意得模型需满足①函数为增函数;②函数的最大值不超过5;③y ≤x ·25%,依次判断三个模型是否满足上述条件即可.【详解】解:由题意,符合公司要求的模型需同时满足:当x∈[10,1000]时,则①函数为增函数;②函数的最大值不超过5;③y≤x·25%. (1)对于y=0.025x,易知满足①,但当x>200时,则y>5,不满足公司的要求;(2)对于y=1.003x,易知满足①,但当x>538时,则不满足公司的要求;(3)对于1ln12y x=+,易知满足①.当x∈[10,1000]时,则y≤12ln1000+1.下面证明12ln1000+1<5.因为12ln1000+1-5=12ln1000-4=12(ln1000-8)=12(ln1000-ln2981)<0,满足②.再证明12ln x+1≤x·25%,即2ln x+4-x≤0.设F(x)=2ln x+4-x,则F′(x)= 2x-1=2xx-<0,x∈[10,1000]所以F(x)在[10,1000]上为减函数F(x)max=F(10)=2ln10+4-10=2ln10-6=2(ln10-3)<0,满足③.综上,奖励模型1ln12y x=+能完全符合公司的要求.【点睛】本题主要考查函数的模型应用,属于简单题.14.a.【分析】利用对指互化得到x=log2a,y=log3a,再利用对数的运算化简求值. 【详解】因为2x=3y=a,所以x=log2a,y=log3a所以1x+1y=2311log loga a+=log a2+log a3=log a6=2所以a2=6,解得a=又因为a>0,所以a15.(1)log217 128=-(2)511 232-⎛⎫=⎪⎝⎭(3)103=1 000(4)2e x=【分析】根据对数和指数互化公式得到相应结果即可.(1)由2-7=1128,可得log 21128=-7. (2) 由12log 325=-,可得512-⎛⎫ ⎪⎝⎭=32. (3)由lg 1 000=3,可得103=1 000.(4)由ln 2x =,可得e 2=x .16.C【分析】结合基本不等式的知识对选项逐一分析,由此确定正确选项.【详解】对于A 选项,1x =-时,则y 为负数,A 错误.以D 错误.故选:C17.B【分析】分别求出集合,A B ,根据集合的交集运算得出答案.【详解】由题意知:{}{}|20,1,2x A x x N *=≤∈= {}{}2|log (1)02B x x =-== {}2A B ⋂=.故选:B.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数和对数函数一、 选择题1.若3a =2,则log 38-2log 36用a 的代数式可表示为( ) (A )a-2 (B )3a-(1+a)2 (C )5a-2 (D )3a-a 2 2.2log a (M-2N)=log a M+log a N,则NM的值为( ) (A )41(B )4 (C )1 (D )4或1 3.已知x 2+y 2=1,x>0,y>0,且log a (1+x)=m,logaya n xlog ,11则=-等于( ) (A )m+n (B )m-n (C )21(m+n) (D )21(m-n)4.如果方程lg2x+(lg5+lg7)lgx+lg5·lg7=0的两根是α、β,则α·β的值是( ) (A )lg5·lg7 (B )lg35 (C )35 (D )351 5.已知log 7[log 3(log 2x)]=0,那么x 21-等于( )(A )31(B )321 (C )221 (D )331 6.函数y=lg (112-+x)的图像关于( ) (A )x 轴对称 (B )y 轴对称 (C )原点对称 (D )直线y=x 对称 7.函数y=log 2x-123-x 的定义域是( )(A )(32,1)⋃(1,+∞) (B )(21,1)⋃(1,+∞) (C )(32,+∞) (D )(21,+∞)8.函数y=log 21(x 2-6x+17)的值域是( )(A )R (B )[8,+∞](C )(-∞,-3) (D )[3,+∞] 9.函数y=log 21(2x 2-3x+1)的递减区间为( )(A )(1,+∞) (B )(-∞,43] (C )(21,+∞) (D )(-∞,21]10.函数y=(21)2x +1+2,(x<0)的反函数为( )(A )y=-)2(1log )2(21>--x x (B ))2(1log )2(21>--x x(C )y=-)252(1log )2(21<<--x x (D )y=-)252(1log )2(21<<--x x11.若log m 9<log n 9<0,那么m,n 满足的条件是( ) (A )m>n>1 (B )n>m>1 (C )0<n<m<1 (D )0<m<n<112.log a132<,则a 的取值范围是( ) (A )(0,32)⋃(1,+∞) (B )(32,+∞)(C )(1,32) (D )(0,32)⋃(32,+∞)14.下列函数中,在(0,2)上为增函数的是( ) (A )y=log 21(x+1) (B )y=log 212-x(C )y=log 2x 1(D )y=log21(x 2-4x+5) 15.下列函数中,同时满足:有反函数,是奇函数,定义域和值域相同的函数是( )(A )y=2x x e e -+ (B )y=lg xx+-11(C )y=-x 3 (D )y=x16.已知函数y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是( )(A )(0,1) (B )(1,2) (C )(0,2) (D )[2,+∞) 17.已知g(x)=log a 1+x (a>0且a ≠1)在(-1,0)上有g(x)>0,则f(x)=a1+x 是( )(A )在(-∞,0)上的增函数 (B )在(-∞,0)上的减函数 (C )在(-∞,-1)上的增函数 (D )在(-∞,-1)上的减函数 18.若0<a<1,b>1,则M=a b ,N=log b a,p=b a 的大小是( ) (A )M<N<P (B )N<M<P (C )P<M<N (D )P<N<M 二、填空题1.若log a 2=m,log a 3=n,a 2m+n = 。

2.函数y=log (x-1)(3-x)的定义域是 。

3.lg25+lg2lg50+(lg2)2= 。

4.函数f(x)=lg(x x -+12)是 (奇、偶)函数。

5.已知函数f(x)=log 0.5 (-x 2+4x+5),则f(3)与f (4)的大小关系为 。

6.函数y=log 21(x 2-5x+17)的值域为 。

7.函数y=lg(ax+1)的定义域为(-∞,1),则a= 。

8.若函数y=lg[x 2+(k+2)x+45]的定义域为R ,则k 的取值范围是 。

9.函数f(x)=xx10110+的反函数是 。

10.已知函数f(x)=(21)x,又定义在(-1,1)上的奇函数g(x),当x>0时有g(x)=f -1(x ),则当x<0时,g(x)= 。

三、解答题1. 若f(x)=1+log x 3,g(x)=2log 2x ,试比较f(x)与g(x)的大小。

2. 已知函数f(x)=xx xx --+-10101010。

(1)判断f(x)的单调性; (2)求f -1(x)。

3. 已知x 满足不等式2(log 2x )2-7log 2x+3≤0,求函数f(x)=log 24log 22xx ⋅的最大值和最小值。

4. 已知函数f(x 2-3)=lg622-x x , (1)f(x)的定义域; (2)判断f(x)的奇偶性; (3)求f(x)的反函数; (4)若f[)(x φ]=lgx,求)3(φ的值。

5. 已知x>0,y ≥0,且x+2y=21,求g=log 21(8xy+4y 2+1)的最小值。

第五单元 对数与对数函数一、选择题二、填空题1.12 2.{x 31<<x 且x 2≠} 由⎪⎩⎪⎨⎧≠->->-110103x x x 解得1<x<3且x 2≠。

3.2 4.奇)(),()1lg(11lg)1lg()(222x f x f x x xx x x x f R x ∴-=-+-=-+=++=-∈且 为奇函数。

5.f(3)<f(4)设y=log 0.5u,u=-x 2+4x+5,由-x 2+4x+5>0解得-1<x<5。

又 u=-x 2+4x+5=-(x-2)2+9,∴ 当x ∈(-1,2)时,y=log 0.5(-x 2+4x+5)单调递减;当x ∈[2,5]时,y=log 0.5(-x 2+4x+5)单调递减,∴f(3)<f(4) 6.(-3,-∞) ∵x 2-6x+17=(x-3)2+88≥,又y=log u 21单调递减,∴ y 3-≤7.-18.-2525-<<-ky=lg[x 2+(k+2)x+45]的定义域为R ,∴ x 2+(k+2)x+45>0恒成立,则∆(k+2)2-5<0,即k 2+4k-1<0,由此解得-5-2<k<5-2 9.y=lg)10(1<<-x xxy=xx 10110+,则10x =∴-=<<∴>-,1lg ,10,01y y x y y y 又反函数为y=lg )10(1<<-x x x10.-log 21(-x) 已知f(x)=(21)x ,则f -1(x)=log 21x,∴当x>0时,g(x)=log 21x,当x<0时,-x>0, ∴g(-x)=log 21(-x),又∵g(x)是奇函数,∴ g(x)=-log 21(-x)(x<0)三、解答题1. f (x)-g(x)=log x 3x-log x 4=log x43x.当0<x<1时,f(x)>g(x);当x=34时,f(x)=g(x);当1<x<34时,f(x)<g(x);当x>34时,f(x)>g(x)。

2. 已知f(x)=lg∴=--++=++-+,1)1)(1()1)(1(lg )1(11z y z y yz z y f x x ∵⋯⋯=--++10)1)(1()1)(1(z y z y ①,又∵f(yzz y --1)=lg⋯⋯=+--+∴=+--+100)1)(1()1)(1(,2)1)(1()1)(1(z y z y z y z y ②,①②联立解得21231011,1011-=-+=-+zzy y ,∴f(y)=23,f(z)=-21。

3.(1)f(x)=),(,.,1101102122+∞-∞∈∈+-x x R x xx 设, ,且x 1<x 2,f(x 1)-f(x 2)=)110)(110()1010(21101101101102121221122222222++-=+--+-x x x x x x x x <0,(∵102x1<102x 2)∴f(x)为增函数。

(2)由y=11011022+-x x 得102x =.11y y-+ ∵102x >0, ∴-1<y<1,又x=)1,1((11lg 21)(.11lg 211-∈-+=∴-+-x xx x f y y )。

3. 由2(log 2x )2-7log 2x+3≤0解得21≤log 2x ≤3。

∵f(x)=log 2)1(log 4log 222-=⋅x xx (log 2x-2)=(log 2x-23)2-41,∴当log 2x=23时,f(x)取得最小值-41;当log 2x=3时,f(x)取得最大值2。

5.(1)∵f(x 2-3)=lg 3)3(3)3(22--+-x x ,∴f(x)=lg 33-+x x ,又由0622>-x x 得x 2-3>3,∴ f(x)的定义域为(3,+∞)。

(2)∵f(x)的定义域不关于原点对称,∴ f(x)为非奇非偶函数。

(3)由y=lg ,33-+x x 得x=110)110(3-+y y , x>3,解得y>0, ∴f -1(x)=)0(110)110(3>-+x xx(4) ∵f[)3(φ]=lg 3lg 3)3(3)3(=-+φφ,∴33)3(3)3(=-+φφ,解得φ(3)=6。

相关文档
最新文档