轨迹方程问题的解决方法---四种

合集下载

高考数学难点突破_难点22__轨迹方程的求法

高考数学难点突破_难点22__轨迹方程的求法

高考数学难点突破_难点22__轨迹方程的求法在高考数学中,轨迹方程的求法是一个比较常见但也较为复杂的难点。

在解决这类问题时,我们需要考虑几个关键因素,如何确定相关点、如何利用已知条件及使用适当的数学知识等。

一、确定相关点对于轨迹方程的求法,首先需要明确或确定一些与所求轨迹相关的点。

这些点可以从已知条件中得出,如一个点的坐标、两个点的距离、特定点到直线的距离等。

这些已知条件将成为我们解题的基础。

二、利用已知条件在确定了相关的点之后,我们需要利用已知条件来求解轨迹方程。

对于不同的条件,我们可以使用不同的数学知识和方法来解决问题。

下面是一些常见的已知条件及相应的解决思路:1.已知点的坐标:如果已知轨迹上的其中一点的坐标,我们可以将这个点的坐标代入轨迹方程中,得到一个等式,并根据这个等式求解出其他未知量,从而得到轨迹方程。

例如,已知轨迹上的点的坐标满足$x^2+y^2=1$,则这是一个以原点为中心、半径为1的圆的轨迹方程。

2.已知点到另一点的距离:如果已知轨迹上的其中一点到另一点的距离等于一定值,我们可以根据距离公式来求解轨迹方程。

例如,已知轨迹上的点到点$(2,1)$的距离等于2,则可以列出方程$\sqrt{(x-2)^2 + (y-1)^2} = 2$,进而求解出轨迹方程。

3.已知点到直线的距离:如果已知轨迹上的其中一点到直线的距离等于一定值,我们可以利用距离公式和直线方程来求解轨迹方程。

例如,已知轨迹上的点到直线$2x+ 3y = 6$的距离等于3,则可以列出方程$\frac{,2x + 3y -6,}{\sqrt{2^2 + 3^2}} = 3$,进一步求解出轨迹方程。

三、使用适当的数学知识在解决轨迹方程的问题中,我们可能需要应用到一些特定的数学知识,如圆的性质、直线的性质、二次曲线方程等。

我们需要结合问题的具体情况,合理地选择和应用这些知识来解决问题。

总结起来,要解决轨迹方程的问题,我们需要明确相关点、利用已知条件和适当应用数学知识。

求动点的轨迹方程常用的四种方法

求动点的轨迹方程常用的四种方法

O

x
这个式子说明动点P到定点O , A的距离之差的绝 对值等于2(小于|OA|);所以点P的轨迹是双曲线。
该双曲线的两焦点为O , A(4, 0) ,中心在线段OA的中点 O(2, 0) 此时c = 2 , a = 1,所以 b 3 所以所求的双曲线方程为:
O
2
y
y ( x 2) 1 3
这样就有点M到点A的距离等于点M到 直线 x 2 的距离,这符合抛物线的定 O 义,所以点M的轨迹就是以点A为焦点, x 2 以直线 x 2为准线的抛物线。
A
x
即所求的轨迹方程为: y 2 8x( x 0)
或 y 0( x 0)
三、代入法
当主动点P在某曲线 f ( x, y ) 0 上移动时,与P具备相关 关系的因动点M随其移动而形成曲线,求动点M的轨迹 方程 g ( x, y) 0的方法叫代入法。分析关系如下:
例1 已知A、B为两定点,动点M到A与到B的距离比为
Y
1、如图所示建立直角坐标系
2、利用命题所给条件建立等量关系
| MA | | MB |

M ( x, y )
A(a,0)
( x a)2 y 2 ( x a) y
2 2

O
B(a, 0) x
3、把|MA|,|MB|转换代数式
a 2 4c 2 a 2c | CD | 4c c c 2 2 3 3 ( x 1) ( y 2) 1 2 F ( x, 2 y) 2 2 4 2 9( y 3 ) 2 ( x 1) 1 化简得: 4
二、定义法
1、熟练掌握椭圆、双曲线、抛物线的第一、第 二定义;以及初三时学习的六种基本轨迹定义。 2、分析命题给出的条件符合那种曲线的定义。 3、解题步骤:①定形——利用定义确定曲线类型 ②定位——利用条件确定曲线位置 (此时可确定曲线的待定系数方程) ③定大小——求方程中的待定系数。

求轨迹方程的思路,方法和对应的题型

求轨迹方程的思路,方法和对应的题型

求轨迹方程的思路,方法和对应的题型全文共四篇示例,供读者参考第一篇示例:求轨迹方程是解析几何中的一个重要内容,它是描述一个物体在运动过程中的路径的数学方法。

在数学中,求轨迹方程的过程通常需要经过一系列的思路和方法,且会涉及到不同类型的题目。

本文将介绍求轨迹方程的思路、方法以及对应的题型,希望对读者有所帮助。

一、思路在求解轨迹方程时,我们首先需要明确物体的运动规律和路径,然后通过数学方法来描述它的运动状态。

通常来说,我们可以采用以下思路来求解轨迹方程:1. 分析运动规律:首先我们需要分析物体的运动规律,包括其运动方向、速度和加速度等。

了解物体的运动规律有助于我们更好地建立数学模型。

2. 建立数学模型:根据物体的运动规律,我们可以建立数学模型,一般是通过对其位置、速度和加速度等数据进行分析得到。

建立好数学模型后,我们就可以利用数学方法来求解轨迹方程。

3. 求解轨迹方程:根据建立的数学模型,我们可以利用数学方法如微积分、几何等来求解轨迹方程。

最终得到的轨迹方程可以描述物体在运动过程中的路径。

4. 验证结果:最后我们还需要验证求解得到的轨迹方程是否准确,通常可以通过数学推导和实际运动情况进行验证。

三、对应的题型在求解轨迹方程的过程中,我们会遇到不同类型的题目,包括但不限于以下几种:1. 直线运动问题:给定物体在直线运动过程中的速度和加速度,求解其轨迹方程。

2. 圆周运动问题:给定物体在圆周运动过程中的角速度和半径,求解其轨迹方程。

3. 曲线运动问题:给定物体在曲线运动过程中的运动规律,求解其轨迹方程。

4. 三维空间运动问题:给定物体在三维空间中的运动规律,求解其轨迹方程。

第二篇示例:求轨迹方程是数学中一个常见的问题,涉及到函数、几何和代数等多个方面的知识。

在解决这类问题时,我们需要掌握一定的思路和方法,同时要能灵活应用这些知识来解决具体的题目。

本文将介绍求轨迹方程的思路、方法以及几种常见的题型,并给出相应的解题思路和步骤。

求轨迹方程的思路,方法和对应的题型

求轨迹方程的思路,方法和对应的题型

求轨迹方程的思路,方法和对应的题型全文共四篇示例,供读者参考第一篇示例:求轨迹方程是高中数学中一个重要的话题,不仅是对数学知识综合运用的考验,也是培养学生逻辑思维和解决问题能力的一个重要环节。

在学习求轨迹方程的过程中,学生需要掌握一定的方法和技巧,同时要注意对不同类型的题目进行分类和分析,以便能够正确地找到轨迹方程。

一、思路和方法求轨迹方程的基本思路是根据给定的条件,建立方程,然后通过逻辑推理和代数计算,最终得到表达轨迹的方程。

在具体进行求解的过程中,我们可以采用以下几种方法:1. 笛卡尔坐标系法在求轨迹方程的过程中,我们常常需要用到二维平面坐标系。

通过设定坐标轴,建立直角坐标系,将问题中的各个点的坐标表示成(x,y),然后根据给定条件进行分析,建立方程,最终得到轨迹方程。

2. 参数法有时候通过引入参数,可以简化问题的解决过程。

我们可以设一个参数t,用其作为辅助变量,来表达轨迹上各点的位置关系。

通过对参数的变化范围和步骤进行分析,最终得到轨迹方程。

3. 抽象化方法对于一些复杂的问题,我们可以通过抽象化的方法来求解轨迹方程。

将问题转化成一个更加简单的形式,然后进行分析和计算,最终得到轨迹方程。

二、对应的题型在求轨迹方程的过程中,我们会遇到各种各样的题目,不同的题目需要采用不同的方法和技巧进行求解。

下面列举一些常见的求轨迹方程的题型:1. 直线的轨迹方程有时候给定直线上的一个点和直线的方向向量,我们需要求直线的轨迹方程。

这时可以通过点斜式或者两点式求解。

给定圆心和半径,求圆的轨迹方程。

可以通过圆的标准方程(x-a)²+(y-b)²=r²来求解。

有时候会给定一组参数方程,我们需要求这些参数方程表示的轨迹方程。

可以通过把参数方程组合起来,得到关于自变量的函数表达式,最终得到轨迹方程。

第二篇示例:求轨迹方程是一种常见的数学问题,涉及到解析几何和函数方程的知识。

在数学学习中,经常会遇到求轨迹方程的题目,需要运用相关的方法和思路来解决。

求动点轨迹方程最简捷的四种方法

求动点轨迹方程最简捷的四种方法

2023年4月上半月㊀学法指导㊀㊀㊀㊀求动点轨迹方程最简捷的四种方法◉安徽省全椒县城东中学㊀殷宏林㊀㊀摘要:求符合某种条件的动点轨迹方程,实际上就是利用已知的点的坐标之间的运动规律去寻找变量间的关系.求轨迹方程的常规思路,就是想方设法地把题目中的几何问题转化为代数方程问题来解决.关键词:参数法;复数法;交轨法;相关点法㊀㊀求动点的轨迹方程既是高中数学教学大纲要求掌握的主要内容,也是近年来高考考查的高频考点[1].这类题型由于涉及到的知识点多,综合性较强,考查的范围广,分值较高,因此学习和掌握求轨迹方程的方法与技巧,已成为考生在高考中夺取高分的必要条件.轨迹是指点的集合,而方程是实数对的集合.二者看似毫不相干,实则它们之间是可以沟通转化的,求轨迹方程运用的就是这种转化思想.由于动点运动规律所给出的条件不同,因此求动点轨迹方程的方法也就不同[2],但其中最简捷㊁最实用的有以下四种.1参数法当所求动点满足的几何条件不易得出,也看不出明显的相关性时,如果经过仔细观察,发现这个动点的运动常常会受到某个变量(时间㊁角度㊁斜率㊁比值等)的制约,那么我们就可以用这个变量作参数,建立轨迹的参数方程,这就是参数法.图1例1㊀动直线l 与单位圆交于不同的两点A ,B ,当l 总保持平行于直线y =2x 的条件下移动时,求弦A B 中点轨迹的方程.解:由l 平行于直线y =2x ,可设l 的方程为y =2x +b (b 为参数),将其代入单位圆的方程x 2+y 2=1中,整理得5x 2+4b x +b 2-1=0.如图1,因为l 与单位圆有两个交点,所以Δ=16b 2-20b 2+20=20-4b 2>0,则-5<b <5.设弦A B 的中点为P (x ,y ),根据韦达定理可知x =x 1+x 22=-25b ,代入l 的方程中,得y =b5.所以中点P 的轨迹方程为x =-25b ,y =b 5,ìîíïïïï其中-5<b <5.消去参数b ,得x +2y =0(-255<x <255),此即为弦A B 中点轨迹的普通方程,其轨迹为单位圆中的一条线段.思路与方法:从本题的解题思路可以看出以下几点.①利用几何直观即可判断出动点轨迹为过原点且垂直于y =2x 的含于单位圆中的线段;②当动点位置随着直线的平行移动而变化时,常选择截距作为参数较方便;③在求轨迹方程时,只要参数选择得当,常能使问题获得更简捷的解法.2复数法有些问题可以由复数的几何意义将动点和已知点表示成复数式,然后经过复数运算转化为动点的轨迹,这就是复数法.当涉及有向线段绕定点旋转,长度伸缩变化,或可用复数模的形式给出坐标间关系等问题时,运用复数法求解最简捷.图2例2㊀如图2,以抛物线y 2=4x 的焦半径F B 为对角线作正方形F A B C (顶点按逆时针方向顺序排列).求顶点C 的轨迹方程.解:因为抛物线y 2=4x 中焦参数p =2,所以焦点坐标为F (1,0).设动点C (x ,y ),其相关点B (x ᶄ,yᶄ).把x 轴看作实轴,y 轴为虚轴,则在复平面上,有z C =x +y i ,z B =x ᶄ+y ᶄi ,z F =1,所以z F Cң=(x -1)+y i ,z F Bң=(x ᶄ-1)+y ᶄi .由øB F C =π4,F B =2F C ,得z F B ң=z F C ңˑ2c o s (-π4)+i s i n (-π4)éëêêùûúú,即(x ᶄ-1)+y ᶄi=[(x -1)+y i ] 2(22-22i )=[(x -1)+y ]+[y -(x -1)]i .所以x ᶄ-1=x -1+y ,y ᶄ=y -x +1,{即x ᶄ=x +y ,yᶄ=y -x +1.{因为点B 在y 2=4x 上,所以(yᶄ)2=4x ᶄ.故(y -x +1)2=4(x +y ).整理即得动点C 的轨迹方程为14Copyright ©博看网. All Rights Reserved.学法指导2023年4月上半月㊀㊀㊀x 2+y 2-2x y -6x -2y =0.思路与方法:本题通过建立复平面,利用复数加法和乘法的几何意义,求出动点对应的复数表达式,然后通过比较实部㊁虚部求得动点的轨迹方程.3交轨法在求动点轨迹时,有时会遇到求两动曲线交点的轨迹问题.这类问题可以通过解方程组求出含参数的交点坐标,再消去参数得出所求轨迹的方程,这就是交轨法.图3例3㊀在直角坐标系中,矩形O A B C 的边O A =a ,O C =b ,点D 在A O 的延长线上,D O =a ,设M ,N 分别是O C ,B C 上的动点,使O M ʒM C =B N ʒN C ʂ0,求直线DM 和A N 的交点P 的轨迹方程.解:如图3,建立平面直角坐标系,则各点的坐标分别为A (a ,0),C (0,b ),D (-a ,0),B (a ,b ),设P (x ,y ).设O M ʒM C =B N ʒN C =λ(ʂ0).由定比分点公式,得M (0,λb 1+λ),N (a1+λ,b ).根据两点式,可得直线DM ,A N 的方程分别为㊀㊀㊀㊀y =λba (1+λ)(x +a ),①㊀㊀㊀㊀y =-b (1+λ)λa(x -a ).②①ˑ②,得y 2=-b 2a 2(x 2-a2),即x 2a 2+y 2b2=1(0<x <a ,0<y <b ).故点P 的轨迹方程为x 2a 2+y 2b2=1其中0<x <a ,0<b <y .思路与方法:本题中由于动点P 为动直线DM ,A N 的交点,两动直线均有一定点(D ,A )一动点(M ,N ),而两动点又满足O M ʒM C =B N ʒN C 这一比值条件,所以设此比值为参数较为方便.从本题的求解过程我们发现,运用交轨法求解时,可以不用求交点的坐标,只要能消掉参数,得出点P 的坐标间的关系即可.这也充分展示了运用交轨法求轨迹方程的便捷性与实用性.4相关点法在求动点轨迹方程的过程中,有时动点满足的条件不方便用等式列出,但动点是随着另外相关点而运动的.如果相关点所满足的条件能够看出,或可分析出,这时就可以用动点的坐标来表示相关点的坐标,根据相关点所满足的方程就能够求得动点的轨迹方程,这就是相关点法.图4例4㊀已知定点O (0,0)和A (6,0),M 为O A 的中点,以O A为一边作菱形O A B C ,M B 与A C 交于点P ,当菱形变动时,求点P 的轨迹方程.解:如图4,设动点P (x ,y ),其相关点B (x ᶄ,yᶄ).由A (6,0),得M (3,0).易知M P P B =12.所以由x =3+12x ᶄ1+12,y =0+12y ᶄ1+12,ìîíïïïïïïïïïï得x ᶄ=3x -6,y ᶄ=3y .{由A B =O A =6,可得(x ᶄ-6)2+(yᶄ-0)2=6.即(3x -6-6)2+(3y -0)2=6.整理,得(x -4)2+y 2=4.因为点P 不可能在x 轴上,所以点P 的轨迹方程为(x -4)2+y 2=4(y ʂ0).思路与方法:本题分析已知点与动点间的关系时,找出相关点是关键的一步.在图4中,若连接O B ,则可知P 为әA B O 的重心,所以选B 为相关点更方便;当然也可由A C 平分øO A B ,推知|B P ||PM |=2.事实上,求已知曲线关于某定点(或定直线)的中心对称(或轴对称)的曲线方程时,通常选择相关点法较简捷[3].5结论从上述典型实例可以看出,求动点轨迹方程的方法虽然很多,但上述四种方法最简捷,也非常实用,值得学生借鉴.当然,在求轨迹方程的过程中,要注意以上方法的灵活运用.对同一问题,若几种方法都可解决时,应择优选用;对较复杂的问题,有时需将两种或两种以上的方法结合起来使用.参考文献:[1]钟载硕.求动点轨迹方程八法[J ].理科考试研究:高中版,2004(3):10G14.[2]张黎青.求动点轨迹方程的常用方法介绍[J ].新高考(高二语数外),2010(2):33G35.[3]陆钧.浅谈求动点轨迹方程[J ].理科考试研究:高中版,2006(11):12G13.Z 24Copyright ©博看网. All Rights Reserved.。

高考解析几何轨迹问题解题策略

高考解析几何轨迹问题解题策略

高考解析几何轨迹问题解题策略
一、轨迹方程的求法
1. 直接法:直接法就是不设出动点的坐标,而是根据题设条件,直接列出轨迹上满足的点的几何条件,并从这个条件对方程进行整理,得到轨迹方程.
2. 定义法:定义法就是根据已知条件,结合所学过的圆锥曲线的定义直接写出曲线的方程.
3. 参数法:参数法是指先引入一个参数,如时间、速度等,根据已知条件,写出参数方程,再消去参数化为普通方程.
4. 交轨法:交轨法是指利用圆锥曲线统一定义,通过求交点坐标来求轨迹方程的方法.
二、轨迹问题的解题策略
1. 转化化归:将待求问题转化为已知问题,将复杂问题转化为简单问题,将抽象问题转化为具体问题,这是解决轨迹问题的基本策略.
2. 设而不求:在轨迹问题中,设点而不求出点的坐标是常用的一种解题策略.
3. 整体代换:在轨迹问题中,有时通过整体代换可以简化运算.
4. 坐标转移:在轨迹问题中,有时可以通过坐标转移来转化问题.
5. 逆向思维:在轨迹问题中,有时通过逆向思维可以简化运算.。

解轨迹问题4种方法

解轨迹问题4种方法

解轨迹问题4种方法求轨迹方程常用的方法:(1)结合解析几何中某种曲线的定义,从定义出发寻找解决问题的方法;(2)利用几何性质,若所求的轨迹与图形的性质相关,利用三角形或圆的性质来解问题;(3)如果点P 的运动轨迹或所在曲线已知,又点Q 与点P 之间的坐标可以建立某种关系,则借助点P 的轨迹可以得到点Q 的轨迹; (4)参数法. ●点击双基1.动点P 到直线x =1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是 A.中心在原点的椭圆 B.中心在(5,0)的椭圆C.中心在原点的双曲线D.中心在(5,0)的双曲线 解析:直接法. 答案:B2.(2005年春季北京,6)已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=2,则该双曲线的方程是A.22x -32y =1B.32x -22y =1C.42x -y 2=1D.x 2-42y =1解析:设双曲线的方程为22a x -22by =1.由题意||PF 1|-|PF 2||=2a ,|PF 1|2+|PF 2|2=(25)2.又∵|PF 1|·|PF 2|=2,∴a =2,b =1.故双曲线方程为42x -y 2=1.答案:C3.已知A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是A.y 2-482x =1(y ≤-1) B.y 2-482x =1 C.y 2-482x =-1 D.x 2-482y =1解析:由题意|AC |=13,|BC |=15,|AB |=14,又|AF |+|AC |=|BF |+|BC |,∴|AF |-|BF |=|BC |-|AC |=2.故F 点的轨迹是以A 、B 为焦点,实轴长为2的双曲线下支.又c =7,a =1,b 2=48,所以轨迹方程为y 2-482x =1(y ≤-1).答案:A4.F 1、F 2为椭圆42x +32y =1的左、右焦点,A 为椭圆上任一点,过焦点F 1向∠F 1AF 2的外角平分线作垂线,垂足为D ,则点D 的轨迹方程是________________.解析:延长F 1D 与F 2A 交于B ,连结DO ,可知DO =21F 2B =2,∴动点D 的轨迹方程为x 2+y 2=4.答案:x 2+y 2=45.已知△ABC 中,B (1,0)、C (5,0),点A 在x 轴上方移动,且tan B +tan C =3,则△ABC 的重心G 的轨迹方程为________________.解析:设A (x 0,y 0),∵tan B +tan C =3,∴100-x y -500-x y =3,点A 的轨迹方程为y 0=-43(x 02-6x 0+5)(x 0≠1且x 0≠5).若 G (x ,y )为△ABC 的重心,则由重心坐标公式:x =3510x ++,y =30y,∴x 0=3x -6,且y 0=3y .代入A 点轨迹方程得G 的轨迹方程为y -1=-49(x -3)2(x ≠37且x ≠311).答案:y -1=-49(x -3)2(x ≠37且x ≠311)●典例剖析【例1】 在△PMN 中,tan ∠PMN =21,tan ∠MNP =-2,且△PMN 的面积为1,建立适当的坐标系,求以M 、N 为焦点,且过点P 的椭圆的方程.M N剖析:如上图,以直线MN 为x 轴,线段MN 的垂直平分线为y 轴,建立平面直角坐标系,则所求椭圆方程为22a x +22by =1.显然a 2、b 2是未知数,但a 2、b 2与已知条件没有直接联系,因此应寻找与已知条件和谐统一的未知元,或改造已知条件.解法一:如上图,过P 作PQ ⊥MN ,垂足为Q ,令|PQ |=m ,于是可得|MQ |=|PQ |cot ∠PMQ =2m ,|QN |=|PQ |cot ∠PNQ =21m . ∴|MN |=|MQ |-|NQ |=2m -21m =23m . 于是S △PMN =21|MN |·|PQ |=21·23m ·m =1.因而m =34,|MQ |=234,|NQ |=31,|MN |=3.|MP |=22||||PQ MQ +=34316+=3152,|NP |=22||||PQ NQ +=3431+=315.以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设椭圆方程为22a x +22b y =1(a >b >0).则2a =|MP |+|NP |=15,2c =|MN |=3,故所求椭圆方程为1542x +32y =1.解法二:设M (-c ,0)、N (c ,0),P (x ,y ),y >0,c x y + =21,cx y -=2, y ·c =1, 解之,得x =635,y =332,c =23.设椭圆方程为b 2x 2+a 2y 2=a 2b 2,则b 2·(635)2+a 2(332)2=a 2b 2, a 2-b 2=43, 解之,得a 2=415,b 2=3.(以下略)评述:解法一选择了与a 较接近的未知元|PM |、|PN |,但需改造已知条件,以便利用正弦定理和面积公式;解法二以条件为主,选择了与条件联系最直接的未知元x 、y 、c .本题解法较多,但最能体现方程思则想方法的、学生易于理解和接受的是这两种解法.深化拓展若把△PMN 的面积为1改为PM ·PN =38,求椭圆方程. 提示:由tan ∠PMN =21,tan ∠MNP =-2,易得sin ∠MPN =53,cos ∠MPN =54. 由PM ·PN =38,得|PM ||PN |=310.易求得|PM |=3152,|PN |=315.进而求得椭圆方程为1542x +32y =1.【例2】 (2004年福建,22)如下图,P 是抛物线C :y =21x 2上一点,直线l 过点P 且与抛物线C交于另一点Q .若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程.xyOQMTP Sl 剖析:欲求PQ 中点M 的轨迹方程,需知P 、Q 的坐标.思路一,P 、Q 是直线l 与抛物线C 的交点,故需求直线l 的方程,再与抛物线C 的方程联立,利用韦达定理、中点坐标公式可求得M 的轨迹方程;思路二,设出P 、Q 的坐标,利用P 、Q 的坐标满足抛物线C 的方程,代入抛物线C 的方程相减得PQ 的斜率,利用PQ 的斜率就是l 的斜率,可求得M 的轨迹方程.解:设P (x 1,y 1)、Q (x 2,y 2)、M (x 0,y 0),依题意知x 1≠0,y 1>0,y 2>0.由y =21x 2, ① 得y ′=x . ∴过点P 的切线的斜率k 切=x 1, ∴直线l 的斜率k l =-切k 1=-11x ,直线l 的方程为y -21x 12=-11x (x -x 1). ②方法一:联立①②消去y ,得x 2+12x x -x 12-2=0.∵M 为PQ 的中点, x 0=221x x +=-11x ,y 0=21x 12-11x (x 0-x 1). 消去x 1,得y 0=x 02+221x +1(x 0≠0), ∴PQ 中点M 的轨迹方程为y =x 2+221x +1(x ≠0). 方法二:由y 1=21x 12,y 2=21x 22,x 0=221x x +,得y 1-y 2=21x 12-21x 22=21(x 1+x 2)(x 1-x 2)=x 0(x 1-x 2),则x 0=2121x x y y --=k l =-11x ,∴x 1=-01x .将上式代入②并整理,得y 0=x 02+221x +1(x 0≠0), ∴∴PQ 中点M 的轨迹方程为y =x 2+221x+1(x ≠0). 评述:本题主要考查了直线、抛物线的基础知识,以及求轨迹方程的常用方法.本题的关键是利用导数求切线的斜率以及灵活运用数学知识分析问题、解决问题.深化拓展当点P 在抛物线C 上移动时,求点M 到x 轴的最短距离. 提示:∵x ≠0,x 2>0,∴y =x 2+221x +1≥221+1=2+1,当且仅当x 2=221x ,x =±214时等号成立,即点M 到x 轴的最短距离为2+1.【例3】 (2000年春季全国)已知抛物线y 2=4px (p >0),O 为顶点,A 、B 为抛物线上的两动点,且满足OA ⊥OB ,如果OM ⊥AB 于M 点,求点M 的轨迹方程.剖析:点M 是OM 与AB 的交点,点M 随着A 、B 两点的变化而变化,而A 、B 为抛物线上的动点,点M 与A 、B 的直接关系不明显,因此需引入参数.解法一:设M (x 0,y 0),则k OM =00x y ,k AB =-00y x ,直线AB 方程是y =-00y x(x -x 0)+y 0. 由y 2=4px 可得x =py 42,将其代入上式,整理,得x 0y 2-(4py 0)y -4py 02-4px 02=0. ①此方程的两根y 1、y 2分别是A 、B 两点的纵坐标,∴A (p y 421,y 1)、B (py422,y 2).∵OA ⊥OB ,∴k OA ·k OB =-1.∴14y p ·24y p=-1.∴y 1y 2=-16p 2. 根据根与系数的关系,由①可得y 1·y 2=02020)(4x y x p +-,∴02020)(4x y x p +-=16p 2.化简,得x 02+y 02-4px 0=0,即x 2+y 2-4px =0(除去原点)为所求.∴点M 的轨迹是以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点. 解法二:设A 、B 两点坐标为A (pt 12,2pt 1)、B (pt 22,2pt 2). ∴k OA =12t ,k OB =22t ,k AB =212t t +.∵OA ⊥OB ,∴t 1·t 2=-4.∴AB 方程是y -2pt 1=212t t +(x -pt 12), ① 直线OM 的方程是y =-221t t +x . ② ①×②,得(px )t 12+2pyt 1-(x 2+y 2)=0. ③ ∴直线AB 的方程还可写为 y -2pt 2=212t t +(x -pt 22). ④ 由②×④,得(px )t 22+(2py )t 2-(x 2+y 2)=0. ⑤由③⑤可知t 1、t 2是方程(px )t 2+(2py )t 2-(x 2+y 2)=0的两根.由根与系数的关系可得t 1t 2=pxy x )(22+-.又t 1·t 2=-4,∴x 2+y 2-4px =0(原点除外)为所求点M 的轨迹方程.故M 的轨迹是以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点. 解法三:设M (x ,y ),直线AB 方程为y =kx +b ,由OM ⊥AB 得k =-yx. 由y 2=4px 及y =kx +b 消去y ,得k 2x 2+x (2kb -4p )+b 2=0.所以x 1x 2=22k b .消去x ,得ky 2-4py +4pb =0.所以y 1y 2=k pb4.由OA ⊥OB ,得y 1y 2=-x 1x 2,所以k pk4=-22kb ,b =-4kp .故y =kx +b =k (x -4p ).用k =-yx代入,得x 2+y 2-4px =0(x ≠0). 解法四:设点M 的坐标为(x ,y ),直线OA 的方程为y =kx ,显然k ≠0,则直线OB 的方程为y =-k1x . y =kx , y 2=4px , 类似地可得B 点的坐标为(4pk 2,-4pk ), 从而知当k ≠±1时,yxABM Ok AB =)1(4)1(422k kp k k p -+=kk -11.故得直线AB 的方程为y +4pk =k k-11(x -4pk 2),即(k1-k )y +4p =x , ① 直线OM 的方程为y =-(k1-k )x . ② 可知M 点的坐标同时满足①②,由①及②消去k 便得4px =x 2+y 2,即(x -2p )2+y 2=4p 2,但x ≠0,当k =±1时,容易验证M 点的坐标仍适合上述方程. 故点M 的轨迹方程为(x -2p )2+y 2=4p 2(x ≠0), 它表示以点(2p ,0)为圆心,以2p 为半径的圆.评述:本题考查了交轨法、参数法求轨迹方程,涉及了类比、分类讨论等数学方法,消参时又用到了整体思想法,对含字母的式子的运算能力有较高的要求,同时还需要注意轨迹的“完备性和纯粹性”.此题是综合考查学生能力的一道好题.深化拓展本题中直线AB 恒过定点(4p ,0),读者不妨探究一番. ●闯关训练由 解得A 点的坐标为(24k p ,kp4),夯实基础1.已知M (-2,0)、N (2,0),|PM |-|PN |=4,则动点P 的轨迹是 A.双曲线 B.双曲线左边一支 C.一条射线 D.双曲线右边一支 解析:利用几何性质.答案:C2.(2003年河南)已知双曲线中心在原点且一个焦点为F (7,0),直线y =x -1与其相交于M 、N 两点,MN 中点的横坐标为-32,则此双曲线的方程是 A.32x -42y =1 B.42x -32y =1 C.52x -22y =1 D.22x -52y =1解析:设双曲线方程为22a x -22b y =1.将y =x -1代入22a x -22b y =1,整理得(b 2-a 2)x 2+2a 2x -a 2-a 2b 2=0.由韦达定理得x 1+x 2=2222b a a -,221x x +=222ba a -=-32.由c 2=a 2+b 2求得a 2=2,b 2=5.答案:D 3.曲线x 2+4y 2=4关于点M (3,5)对称的曲线方程为____________.解析:代入法(或相关点法).答案:(x -6)2+4(y -10)2=44.与圆x 2+y 2-4x =0外切,且与y 轴相切的动圆圆心的轨迹方程是____________.解析:若动圆在y 轴右侧,则动圆圆心到定点(2,0)与到定直线x =-2的距离相等,其轨迹是抛物线;若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴.答案:y 2=8x (x >0)或y =0(x <0)5.自抛物线y 2=2x 上任意一点P 向其准线l 引垂线,垂足为Q ,连结顶点O 与P 的直线和连结焦点F 与Q 的直线交于R 点,求R 点的轨迹方程.解:设P (x 1,y 1)、R (x ,y ),则Q (-21,y 1)、F (21,0), ∴OP 的方程为y =11x y x , ① FQ 的方程为y =-y 1(x -21). ② 由①②得x 1=x x212-,y 1=xy 212-,代入y 2=2x ,可得y 2=-2x 2+x . 6.求经过定点A (1,2),以x 轴为准线,离心率为21的椭圆下方的顶点的轨迹方程.解:设椭圆下方的焦点F (x 0,y 0),由定义2||AF =21,∴|AF |=1,即点F 的轨迹方程为(x 0-1)2+(y 0-2)2=1. 又设椭圆下方顶点为P (x ,y ),则x 0=x ,y 0=23y , ∴点P 的轨迹方程是(x -1)2+(23y -2)2=1. 培养能力7.AB 是圆O 的直径,且|AB |=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使|OP |=|MN |,求点P 的轨迹.解:以圆心O 为原点,AB 所在直线为x 轴建立直角坐标系(如下图),则⊙O 的方程为x 2+y 2=a 2,设点P 坐标为(x ,y ),并设圆与y 轴交于C 、D 两点,作PQ ⊥AB 于Q ,则有||||OM OP =||||MN PQ .∵|OP |=|MN |,∴|OP |2=|OM |·|PQ |. ∴x 2+y 2=a |y |,即 x 2+(y ±2a )2=(2a)2. 轨迹是分别以CO 、OD 为直径的两个圆.8.过抛物线y 2=4x 的焦点的直线l 与抛物线交于A 、B 两点,O 为坐标原点.求△AOB 的重心G 的轨迹C 的方程.解:抛物线的焦点坐标为(1,0),当直线l 不垂直于x 轴时,设方程为y =k (x -1),代入y 2=4x , 得k 2x 2-x (2k 2+4)+k 2=0.设l 方程与抛物线相交于两点, ∴k ≠0.设点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),根据韦达定理,有x 1+x 2=22)2(2kk +,从而y 1+y 2=k (x 1+x 2-2)=k 4. 设△AOB 的重心为G (x ,y ),x =3021x x ++=32+234k,y =3021y y ++=k34,∴y 2=34x -98.当l 垂直于x 轴时,A 、B 的坐标分别为(1,2)和(1,-2),△AOB 的重心G (32,0),也适合y 2=34x -98,因此所求轨迹C 的方程为y 2=34x -98.探究创新9.(2004年春季安徽)已知k >0,直线l 1:y =kx ,l 2:y =-kx .(1)证明:到l 1、l 2的距离的平方和为定值a (a >0)的点的轨迹是圆或椭圆; (2)求到l 1、l 2的距离之和为定值c (c >0)的点的轨迹. (1)证明:设点P (x ,y )为动点,则221||k kx y +-+221||kkx y ++=a ,整理得2222)1(k a k x ++2)1(22a k y +=1. 因此,当k =1时,动点的轨迹为圆;当k ≠1时,动点的轨迹为椭圆. (2)解:设点P (x ,y )为动点,则|y -kx |+|y +kx |=c 21k +.当y ≥k |x |时,y -kx +y +kx =c 21k +,即y =21c 21k +; 当y ≤-k |x |时,kx -y -y -kx =c 21k +,即y =-21c 21k +;当-k |x |<y <k |x |,x >0时,kx -y +y +kx =c 21k +,即x =k21c 21k +;则消去k ,得x =32+34(43y )2,当-k |x |<y <k |x |,x <0时,y -kx -y -kx =c 21k +,即x =-k21c 21k +. 综上,动点的轨迹为矩形. ●思悟小结1.求轨迹方程的一般步骤是:建系、设点、列式、代入、化简、检验.检验就是要检验点的轨迹的纯粹性和完备性.2.如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法.3.如果能够确定动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法.4.如果轨迹动点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程.此法称为代入法.5.如果轨迹动点P (x ,y )的坐标之间的关系不易找到,也没有相关点可用时,可先考虑将x 、y 用一个或几个参数来表示,消去参数得轨迹方程,此法称为参数法.参数法中常选变角、变斜率等为参数.6.注意参数的取值范围对方程的影响. 教学点睛1.已知曲线求方程或已知方程画曲线是解析几何中的两个基本问题.如何探求动点的轨迹方程呢?①从定义出发,还本索源.在探求动点的轨迹方程时,如能结合解析几何中某种曲线的定义,也就能寻找到解决问题的钥匙;②利用平面几何的性质.动点的轨迹与图形的性质相关,若某些轨迹与直线或圆有关,则可以利用三角形或圆的性质来帮助分析;③伴随曲线的思想和方法.如果点P 的运动轨迹或所在的曲线已知,又点P 与点Q 的坐标之间可以建立起某种关系,则借助于点P 的运动轨迹,我们便可以得到点Q 的运动轨迹,这便是伴随曲线的思想方法.2.在探求轨迹的过程中,需要注意的是轨迹的“完备性”和“纯粹性”,也就是说既不能多,也不能少,因此,在求得轨迹方程之后,要深入地再思考一下:①是否还遗漏了一些点?是否还有另一个满足条件的轨迹方程存在?②在所求得的轨迹方程中,x 、y 的取值范围是否有什么限制?拓展题例【例1】 是否存在同时满足下列条件的抛物线?若存在,求出它的方程;若不存在,请说明理由. (1)准线是y 轴; (2)顶点在x 轴上;(3)点A (3,0)到此抛物线上动点P 的距离最小值是2. 解:假设存在这样的抛物线,顶点为(a ,0),则方程为y 2=4a (x -a )(a ≠0), 设P (x 0,y 0),则y 02=4a (x 0-a ),|AP |2=(x 0-3)2+y 02 =[x 0-(3-2a )]2+12a -8a 2,令f (a )=|AP |2, ①当a >0时,有x 0≥a ,当3-2a ≥a 即a ∈(0,1]时,|AP |2=f (3-2a ),∴a =1或a =21;抛物线方程为y 2=4(x -1)或y 2=2(x -21). 当3-2a <a 即a >1时,|AP |2=f (a ).∴a =5或a =1(舍),抛物线方程为y 2=20(x -5).②当a <0时,显然与已知矛盾,∴所求抛物线方程为y 2=4(x -1)或y 2=2(x -21)或y 2=20(x -5). 【例2】 (2003年太原市模拟题)已知椭圆的焦点为F 1(-1,0)、F 2(1,0),直线x =4是它的一条准线.(1)求椭圆的方程;(2)设A 1、A 2分别是椭圆的左顶点和右顶点,P 是椭圆上满足|P A 1|-|P A 2|=2的一点,求tan ∠A 1P A 2的值;(3)若过点(1,0)的直线与以原点为顶点、A 2为焦点的抛物线相交于点M 、N ,求MN 中点Q 的轨迹方程.解:(1)设椭圆方程为22a x +22by =1(a >b >0).c =1,ca 2=4,c =1, a =2,所求椭圆方程为42x +32y =1.(2)由题设知,点P 在以A 1、A 2为焦点,实轴长为2的双曲线的右支上.由(1)知A 1(-2,0),A 2(2,0),设双曲线方程为22mx -22n y =1(m >0,n >0).2m =2, m =1,m 2+n 2=4, n =3.∴双曲线方程为x 2-32y =1.由42x +32y =1, x 2-32y =1,解得P 点的坐标为(5102,553)或(5102,-553).当P 点坐标为(5102,553)时,tan∠A 1P A 2=12121PA PA PA PA k k k k +-=-45.同理当P 点坐标为(5102,-353)时,tan ∠A 1P A 2=-45. 故tan ∠A 1P A 2=-45.(3)由题设知,抛物线方程为y 2=8x .设M (x 1,y 1)、N (x 2,y 2),MN 的中点Q (x ,y ), 当x 1≠x 2时,有y 12=8x 1, ① y 22=8x 2, ②x =221x x +, ③ y =221y y +, ④2121x x y y --=1-x y. ⑤①-②,得2121x x y y --(y 1+y 2)=8,将④⑤代入上式,有1-x y·2y =8,即y 2=4(x -1)(x ≠1).当x 1=x 2时,MN 的中点为(1,0),仍满足上式.故所求点Q 的轨迹方程为y 2=4(x -1).由题设有解得 ∴b 2=3.则解得。

浅谈轨迹方程的求解

浅谈轨迹方程的求解

浅谈轨迹方程的求解轨迹方程是描述一个物体在运动过程中所留下的轨迹的数学方程,是研究运动问题时的重要工具。

在物理学、工程学、地理学等领域都有广泛的应用。

轨迹方程的求解可以通过数学方法进行,下面我们将就浅谈轨迹方程的求解进行介绍。

我们先来了解一下什么是轨迹方程。

当一个物体在空间中运动时,我们可以用其位置的坐标来描述它的运动轨迹。

而轨迹方程就是描述这个物体在运动中坐标关系的数学方程。

在求解轨迹方程时,我们需要了解物体的运动规律。

如果是一维运动,则轨迹方程可以表示为y=f(x),其中x和y分别表示物体在运动中的位置坐标。

如果是二维或三维运动,则轨迹方程可以表示为(x(t), y(t), z(t)),其中t是描述时间的参数。

通过对物体运动规律的了解,我们可以通过数学方法找到描述其轨迹的方程。

接下来,我们来介绍一些常见的方法来求解轨迹方程。

首先是基于运动规律的解析方法。

在物理学中,常见的运动规律有匀速直线运动、变速直线运动、抛体运动等。

对于这些运动规律,我们可以通过数学方法推导出描述其轨迹的方程。

比如在匀速直线运动中,我们可以根据速度和时间的关系来得到物体在运动中的轨迹方程。

对于其他类型的运动也可以采用类似的方法来求解轨迹方程。

其次是基于数值模拟的方法。

有些情况下,物体的运动规律可能比较复杂,不能通过解析方法来求解轨迹方程。

这时候可以采用数值模拟的方法,通过计算机软件来模拟物体的运动,得到其轨迹方程。

这种方法在工程学、计算机图形学等领域有广泛的应用。

还有一些特殊的方法来求解轨迹方程,比如泛函分析方法、变分法等。

这些方法在特定的物理问题中会有用武之地。

我想强调一下,求解轨迹方程不仅仅是数学问题,更重要的是要深入理解运动规律、物理规律。

在实际应用中,我们可以根据具体的情况选择合适的方法来求解轨迹方程,以便更好地描述物体的运动轨迹。

轨迹方程的求解是一个涉及数学、物理等多学科知识的问题。

通过数学方法、数值模拟等手段可以求解出物体在运动中的轨迹方程,从而更好地理解和描述物体的运动规律。

求轨迹方程的常用方法及例题

求轨迹方程的常用方法及例题

求解轨迹方程的常用方法主要有以下几种:
参数方程法:通过引入参数,将轨迹上的点的坐标表示为参数的函数形式,然后通过给定参数的取值范围,确定轨迹上的点的位置关系。

隐式方程法:将轨迹方程中的自变量与因变量通过一个方程联系起来,形成一个隐式方程,然后通过对方程进行求解和化简,得到轨迹的几何性质。

极坐标方程法:对于某些曲线,使用极坐标系可以更方便地描述其轨迹。

通过将轨迹上的点的极坐标表示,可以得到轨迹的极坐标方程。

下面是一个例题:
例题:求解椭圆的轨迹方程。

解答:椭圆是一个平面上的闭合曲线,其定义特点是到两个焦点的距离之和恒定。

我们可以使用参数方程法来求解椭圆的轨迹方程。

假设椭圆的焦点为F1和F2,长轴长度为2a,短轴长度为2b。

取参数θ,定义点P在椭圆上的坐标为(x, y)。

那么根据椭圆的定义,可以得到以下参数方程:
x = a * cos(θ) y = b * sin(θ)
其中,θ的取值范围为0到2π。

通过给定θ的取值范围,我们可以得到椭圆上的点的坐标关系。

进一步化简参数方程,可以得到椭圆的隐式方程:
(x^2 / a^2) + (y^2 / b^2) = 1
这就是椭圆的轨迹方程,其中a和b分别为椭圆的长轴和短轴长度。

以上是求解轨迹方程的常用方法和一个椭圆轨迹方程的例题。

根据具体的问题和曲线类型,选择合适的方法进行求解和推导。

求轨迹方程的五种方法

求轨迹方程的五种方法

求轨迹方程的五种方法1.直线轨迹方程的求解方法:直线的轨迹方程可以通过以下五种方法求解。

1.1斜率截距法:当直线已知斜率m和截距b时,可以使用斜率截距法求解。

直线的轨迹方程为:y = mx + b。

1.2点斜式方法:当直线已知斜率m和通过的一点(x1,y1)时,可以使用点斜式方法求解。

直线的轨迹方程为:(y-y1)=m(x-x1)。

1.3两点式方法:当直线已知通过的两点(x1,y1)和(x2,y2)时,可以使用两点式方法求解。

直线的轨迹方程为:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)。

1.4截距式方法:当直线已知x轴和y轴上的截距时,可以使用截距式方法求解。

直线的轨迹方程为:x/a+y/b=1,其中a和b分别为x轴和y轴上的截距。

1.5法向量法:当直线已知法向量n和通过的一点(x1,y1)时,可以使用法向量法求解。

直线的轨迹方程为:n·(r-r1)=0,其中n为法向量,r为直线上的任意一点的位置矢量,r1为通过的一点的位置矢量。

2.圆轨迹方程的求解方法:圆的轨迹方程可以通过以下五种方法求解。

2.1一般式方法:当圆的圆心为(h,k)且半径为r时,可以使用一般式方法求解。

圆的轨迹方程为:(x-h)²+(y-k)²=r²。

2.2标准式方法:当圆的圆心为(h,k)且半径为r时,可以使用标准式方法求解。

圆的轨迹方程为:(x-h)²+(y-k)²=r²。

2.3参数方程方法:当圆的圆心为(h,k)且半径为r时,可以使用参数方程方法求解。

圆的轨迹方程为:x = h + rcosθ,y = k + rsinθ,其中θ为参数。

2.4三点定圆方法:当圆已知经过三点(x1,y1),(x2,y2)和(x3,y3)时,可以使用三点定圆方法求解。

圆的轨迹方程为:(x-x1)(x-x2)(x-x3)+(y-y1)(y-y2)(y-y3)-r²(x+y+h)=0,其中h为x平方项和y平方项的系数之和。

求轨迹方程的五种方法

求轨迹方程的五种方法

求轨迹方程的五种方法有五种方法可以求解轨迹方程,分别是:1.参数方程法2.一般方程法3.极坐标方程法4.隐函数方程法5.线性方程组法接下来将对这五种方法进行详细解释。

1.参数方程法:参数方程法是指将坐标轴上的点的位置用一个参数表示,通过参数的变化来表示轨迹。

例如,一个点在x轴上运动,其速度为v,经过时间t后的位置可以用参数方程表示为x = vt。

参数方程法可以很方便地描述物体的运动轨迹,特别适用于描述曲线的参数方程。

2.一般方程法:一般方程法是指将轨迹上的点的位置用一般方程表示。

例如,对于一个圆形轨迹x^2+y^2=r^2,其中r为半径,可以通过该一般方程来描述圆的轨迹。

一般方程法可以描述各种曲线轨迹,但是求解过程可能较为繁琐。

3.极坐标方程法:极坐标方程法是指将轨迹上的点的位置用极坐标系表示。

极坐标系由极径和极角两个参数组成,其中极径表示点到原点的距离,极角表示点在极坐标系中的方向角度。

通过给定极径和极角的值可以唯一确定一个点的位置。

例如,对于一个以原点为中心的圆形轨迹,可以用极坐标方程表示为r=R,其中R为圆的半径。

极坐标方程法适用于描述具有对称性的轨迹,如圆形、椭圆形等。

4.隐函数方程法:隐函数方程法是指将轨迹上的点的位置用隐函数方程表示。

隐函数方程是一个含有多个变量的方程,其中至少有一个变量无法用其他变量表示。

通过给定其他变量的值,可以计算出不能用其他变量表示的变量的值,从而确定轨迹上的点的位置。

例如,对于一个抛物线轨迹y = ax^2 + bx + c,其中a、b、c为常数,可以根据给定的x的值求解出y的值,从而确定轨迹上的点的位置。

5.线性方程组法:线性方程组法是指将轨迹上的点的位置用线性方程组表示。

线性方程组是由多个线性方程组成的方程组,其中每个方程的未知数是轨迹上的点的坐标。

通过求解线性方程组可以得到轨迹上的点的坐标。

线性方程组法适用于描述由多个轨迹组成的复杂图形,如多边形等。

以上就是求解轨迹方程的五种方法,分别是参数方程法、一般方程法、极坐标方程法、隐函数方程法和线性方程组法。

轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题(含答案) 轨迹方程是描述一条曲线在平面上的运动轨迹的方程。

在二维平面上,轨迹方程通常由一元二次方程、三角函数方程等形式表示。

在三维空间中,轨迹方程可能会更加复杂,可以由参数方程或参数化表示。

一、轨迹方程的求解方法:1. 根据题目给出的条件,确定轨迹上的点的特点或特殊性质。

2. 将轨迹上的点的坐标表示为一般形式。

3. 将坐标表示代入到方程中,消去多余的变量,得到轨迹方程。

二、典型例题及其解答:【例题1】已知点P(x,y)到坐标原点O的距离为定值d,求点P的轨迹方程。

解答:1. 设点P(x,y)的坐标表示为一般形式。

2. 根据题目给出的条件,根据勾股定理,可以得到点P到原点O的距离公式:d = √(x^2 + y^2)3. 将坐标表示代入到距离公式中,得到轨迹方程:d^2 = x^2 + y^2【例题2】已知点P(x,y)到直线Ax+By+C=0的距离为定值d,求点P的轨迹方程。

解答:1. 设点P(x,y)的坐标表示为一般形式。

2. 根据题目给出的条件,点P到直线Ax+By+C=0的距离公式为:d = |Ax+By+C| / √(A^2 + B^2)3. 将点P的坐标表示代入到距离公式中,得到轨迹方程:(Ax+By+C)^2 = d^2(A^2 + B^2)【例题3】已知点P(x,y)满足|x|+|y|=a,求点P的轨迹方程。

解答:1. 设点P(x,y)的坐标表示为一般形式。

2. 根据题目给出的条件,可以得到两种情况下的轨迹方程:当x≥0,y≥0时,有x+y=a,即y=a-x;当x≥0,y<0时,有x-y=a,即y=x-a;当x<0,y≥0时,有-x+y=a,即y=a+x;当x<0,y<0时,有-x-y=a,即y=-a-x。

3. 将上述四种情况合并,得到轨迹方程:|x|+|y|=a【例题4】已知点P(x,y)满足y = a(x^2 + b),求点P的轨迹方程。

浅谈轨迹问题的五种有效解法

浅谈轨迹问题的五种有效解法

课例研究一、定义法如果能够确定动点的轨迹满足某种已知曲线的定义,则可以用曲线写出方程,这种方法称为定义法。

例1:1F 、2F 是椭圆22221(0)x y a b a b +=>>的两焦点,P 是椭圆上任一点,从任一焦点引一焦点12F PF ∠的外角平分线的垂线,垂足为Q ,求Q 的轨迹。

解:设(,)Q x y ,延长垂线1FQ 交2F P 延长线于点A ,则1APF ∆是等腰三角形1PF AP ∴=,从而有22122AF AP PF PF PF a =+=+=O 是12F F 的中点,O 是1AF 的中点。

212OQ AF a==即222x y a +=故Q 点的轨迹是以原点O 为圆心半径为a 的圆。

二、直译法如果题目中的条件有明显的等量关系或者可以利用平面几何知识推出等量关系,这种解题方法叫直译法。

例2:已知点(2,0)Q 和圆22:1C x y +=。

动点M 到圆的切线长m与MQ 的比等于常数λ,求点M 的轨迹方程。

思路分析:用M 的坐标去替换m 。

MQ =λ即可。

为此有m 22222(1)()4410x y x λ−+−λ+λ+=为所求评述:上述过程实质上就是将动点的几何形式直接化规为代数形式(方程),它是求动点轨迹方程的最基本方法。

三、参数法如果轨迹动点(,)P x y 的坐标之间的关系不易找到,也不有相关点可用时,可以先考虑将x 、y 用一个或几个参数来表示,消去参数得出轨迹方程,此法称为参数法。

例:设有一动直线过定点(2,0)A 且与抛物线22y x =+交于两点B 和C ,点B 、C 在x 轴上的射影分别为B ′、C ′,P 是线段BC 上的点,适合关系BP BB BC CC ′=′,求POA ∆的重心Q 的轨迹方程。

思路分析:此题主要从求交点,即解方程组入手,然后进行参数转移,但需要注意,只要在直线和抛物线相交的条件下,就可求得轨迹方程。

解:设点001122(,),(,),(,)P x y B x y C x y POA ∆的重心(,)Q x y 则0x 、1y 、2y 均大于0,设12y y =λ,则121201221y y y y y y y +λ==+λ+设L 方程为(2)y k x =−0,)k k R ≠∈(1)2(2)2y k x y x =− =+消去x 得222(4)60y k k y k +−+= (2)21221246y y k k y y k+=− ∴ = 则120122124y y ky y y k ==+− (3)又002y k x =− 0044x y ∴−=(4)又00233x x y y +==所以00323x x y y =− = (5)将(5)代入(4)12340x y −−=得 (6)由条件(2)有两异实根,故0∆>即44k k <−>+(7)由(3)、(4)、(5)、(6)、(7)知1644y k =+−而y在(,4(4)k ∈−∞−+∞及上均为单调递减44y 0y ∴<≠所以POA ∆的重心Q 的轨迹为直线12340x y −−=介于(44间的一段,除去3(,4)4点。

数学轨迹方程的求法

数学轨迹方程的求法

数学轨迹方程的求法在数学中,轨迹可以看做是一个物体在运动过程中留下的路径。

而轨迹方程则是描述这个路径的方程。

求解轨迹方程是数学中常见的问题之一,本文将介绍一些常用的求解轨迹方程的方法。

一、直接解轨迹方程如果轨迹已知,那么可以直接解轨迹方程。

比如,一个运动物体在平面直角坐标系中的轨迹为一个圆形。

我们可以通过圆的标准方程x²+y²=r²求得轨迹方程。

二、利用参数方程求解轨迹方程如果轨迹无法用一般函数形式表示,那么我们可以用参数方程来描述它的轨迹。

参数方程表示成x=f(t),y=g(t),t为参数。

例如,一个点沿着单位圆按逆时针方向绕圈运动,可用参数方程 x=cos(t),y=sin(t),(0≤t≤2π)来描述它运动的轨迹,则轨迹方程为 x²+y²=1。

三、使用极坐标系求解轨迹方程在一些问题中,极坐标系比直角坐标系更加有用。

例如,极坐标系对于表示圆形更加简单。

若有圆心在原点处,半径为 R 的圆,圆上点的极坐标为(R,θ),则其方程为 r=R。

四、使用微积分求解轨迹方程微积分是解决轨迹方程问题的重要工具。

通过微积分的方法,我们可以求出运动物体的速度、加速度和位移,从而得出轨迹方程。

例如,若已知一个点做匀加速直线运动的位移和速度随时间的关系为s=at²/2+vt+s₀,则通过微积分可求出物体的轨迹方程s=a*t²/2+v*t+s₀。

总之,轨迹方程的求解方法多种多样,要根据不同的问题选择合适的方法。

熟练掌握这些方法,能够让我们更好地应对解决实际问题。

求轨迹方程的几种方法

求轨迹方程的几种方法

求轨迹方程的几种方法
求轨迹方程是力学研究中一个重要而复杂的问题,在物理学和航空工程中也得到了广泛的应用。

求轨迹方程的方法主要有四种,分别是绝对运动方程法、局部运动方程法、递归法和坐标变换法。

(1)绝对运动方程法
绝对运动方程法是在任意时刻求解物体运动参数的一种方法,它根据给定物体运动学模型,由物体在某时刻的力学状态参数和动力学参数,通过解绝对运动方程组,来确定物体在任一时刻的动力学状态参数,从而求出物体的轨迹方程。

局部运动方程法是将物体分别在短时间间隔以及限定范围(敏感区域)内求解物体的运动参数。

近似地将本征方程的原始状态矢量化分割为N个有限子空间(子步空间),而在每个子步空间内以满足其局部特性的运动学方程进行求解,最后给出物体整个运动过程的轨迹方程。

(3)递归法
递归法是以递归定理为依据,从原始状态矢量的速度和加速度的代数形式出发,进行递归求解的运动学方法。

根据求轨迹方程的思路,它将复杂的原始状态矢量特性表达式逐步分解局部状态矢量,最终得到物体运动轨迹方程。

(4)坐标变换法
坐标变换法是求轨迹方程的一种新方法,它将物体运动学模型和坐标变换方法结合起来,以坐标变换统一计算附近各点的物体坐标及其速度矢量,从而求得物体在时变情况下的轨迹方程。

与传统的求轨迹运动的方法相比,坐标变换法更容易理解,更加准确,并能节约计算量。

以上就是求轨迹方程的几种方法,在实际工程中也会用到上述某种方法,从而分析对象在特定状态下的运动特性,为有效分析建立良好的基础。

高考数学重要知识点轨迹方程的求解

高考数学重要知识点轨迹方程的求解

高考数学重要知识点轨迹方程的求解高考数学中,轨迹方程是一个非常重要的知识点。

轨迹方程主要讲述了一个点随着一些条件的变化而形成的轨迹。

在解题过程中,我们常常需要根据给定的条件,确定点的坐标,并通过数学方法得出其轨迹方程。

下面我将详细介绍一下轨迹方程的求解方法。

轨迹方程的求解方法主要分为以下几种情况:1.直线轨迹:在数学中,直线是一种常见的轨迹形式。

当我们需要求解一些点在直线上的轨迹方程时,一般需要两个条件来限定点的坐标。

通过解方程可以得到轨迹方程。

例如,设点P(x,y)在直线l上,且满足条件2x-3y=6,那么可以通过解方程2x-3y=6得到轨迹方程。

2.抛物线轨迹:另一个常见的轨迹形式是抛物线。

对于求解抛物线上一点的轨迹方程,我们一般需要给出点的横坐标或纵坐标,并通过一定条件和关系推导出轨迹方程。

例如,设点P(x,y)在抛物线y = ax^2 + bx + c上,且满足条件P(1,2),那么可以通过代入条件,解出a、b、c,并得到轨迹方程。

3.圆轨迹:圆是另一种常见的轨迹形式。

当我们需要求解点在圆上的轨迹方程时,一般需要给出点到圆心的距离或者给出边缘点的坐标,通过数学关系来求解出轨迹方程。

例如,设点P(x,y)在圆上,且与圆心A(a,b)的距离等于r,那么可以通过点到圆心的距离公式,得到轨迹方程(x-a)^2+(y-b)^2=r^24.椭圆和双曲线轨迹:椭圆和双曲线也是常见的轨迹形式。

当我们需要求解点在椭圆或双曲线上的轨迹方程时,一般需要给出点到中心的距离或者给出边缘点的坐标,并通过数学关系来求解出轨迹方程。

例如,设点P(x,y)在椭圆上,且与中心O(0,0)之间的距离的和恒定为d,那么可以通过代入条件,解得轨迹方程。

在实际的解题过程中,我们需要根据题目给出的具体条件,选择合适的方法和数学工具来求解轨迹方程。

另外,我们还需要注意数学推导过程的准确性和严密性,避免漏解或者得出错误的轨迹方程。

除了上面介绍的常见情况,还有一些其他的轨迹形式,例如双曲线的渐近线、追踪问题等,都需要根据具体情况进行推导和求解。

轨迹方程问题—6大常用方法

轨迹方程问题—6大常用方法

轨迹方程问题—6大常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。

4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。

来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。

轨迹方程的求解方法

轨迹方程的求解方法

轨迹⽅程的求解⽅法求符合某种条件的动点轨迹⽅程,是解析⼏何的基本问题,其实质就是利⽤题设中的⼏何条件,通过“坐标化”将其转化为寻求动点的横坐标与纵坐标之间的关系.在求与圆锥曲线有关的轨迹⽅程时,要特别重视圆锥曲线的定义在求轨迹⽅程中的应⽤,只要动点满⾜已知曲线的定义,就可直接得出⽅程.⼀般⾼考的解析⼏何题第⼀问是求轨迹⽅程,第⼆问是研究直线和曲线的位置关系,所以很有必要牢固掌握轨迹⽅程的求法.求轨迹⽅程常⽤的⽅法有直接法、定义法、代⼊法、交轨法、待定系数法、参数法.⽽定义法,直接法,代⼊法是重点⽅法.求轨迹⽅程与求轨迹是有区别的,若求轨迹,则不仅要求出⽅程,⽽且还需要说明所求轨迹是什么曲线,即曲线的形状、位置、⼤⼩都需说明.⼀、直接法我们学过的圆,椭圆,双曲线的标准⽅程都是⽤直接法推导出来的,直接法求轨迹⽅程的步骤如下:注:步骤(5)可以省略不写,如有特殊情况,可以作适当说明,另外,也可以根据情况省略步骤(2).简单记为:①建系;②设点;③列式;④代换;⑤检验.点评如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满⾜的等量关系易于建⽴,则可以先表⽰出点P所满⾜的⼏何上的等量关系,再⽤点P的坐标(x,y)表⽰该等量关系式,即可得到轨迹⽅程.⼆、定义法点评定义法求轨迹⽅程是很常⽤的⽅程,我们要熟悉各种圆锥曲线的定义,只要动点满⾜圆锥曲线的定义,就可以写出它的轨迹⽅程.三、待定系数法如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹⽅程,再根据已知条件,待定⽅程中的常数,即可得到轨迹⽅程.点评已知所求的曲线类型,先根据条件设出曲线⽅程,再由条件确定其待定系数.四、交轨法交轨法主要解决动直线或曲线间的交点问题.动点P(x,y)是两动直线(或曲线)的交点,解决此类问题通常是通过解⽅程组得到交点(含参数)的坐标,再消去参数求出所求的轨迹⽅程.点评本题利⽤交轨法求轨迹⽅程,解题时要认真审题,仔细分析,注意挖掘题设中的隐含条件,合理地选取公式.五、代⼊法动点P(x,y)依赖于另⼀动点Q(x0,y0)的变化⽽变化,并且Q(x0,y0) ⼜在某已知曲线上,⾸先⽤x,y表⽰x0,y0,再将x0,y0代⼊已知曲线得到要求的轨迹⽅程.点评代⼊法的关键在于找到动点和其相关点坐标间的等量关系,有⼀个主动点,⼀个被动点,主动点的轨迹⽅程已知了,求被动点的轨迹⽅程⽤此⽅法.六、参数法当动点P(x,y)的坐标之间的关系不易找到,可考虑将x,y均⽤⼀中间变量(参数)表⽰,得参数⽅程,再消去参数得⽅程f(x,y)=0.点评如果采⽤直接法求轨迹⽅程难以奏效,则可寻求引发动点P运动的某个⼏何量t,以此量作为参变数,分别建⽴点P的坐标x,y与该参数t的函数关系x=f(t),y=g(t),进⽽通过消参化为轨迹的普通⽅程F(x,y).总结以上列举了六种求曲线轨迹⽅程的⽅法,在解题过程中,要仔细读题,认真审题,挖掘题⽬中的隐含条件,再对应各种⽅法求轨迹⽅程.相信同学们⼀定能够学好这部分知识.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轨迹方程问题的解决办法
方法一直接法
使用情景:可以直接列出等量关系式。

解题步骤:
第一步根据已知条件及一些基本公式(两点间距离公式、点到直线的距离公式、直线斜率公式等。


第二步根据公式直接列出动点满足的等量关系式,从而得到轨迹方程。

方法二定义法
使用情景:轨迹符合某一基本轨迹的定义。

解题步骤:
第一步根据已知条件判断动点轨迹的条件符合哪个基本轨迹(如圆、椭圆、双曲线、抛物线等)
第二步直接根据定义写出动点的轨迹方程
方法三相关点法(代入法)
使用情景:动点依赖于已知曲线上的另一个动点运动。

解题步骤:
第一步判断动点P(x,y)随着已知曲线上的一个动点Q(x ,y)的运动而运动
第二步求出关系式X=f(x,y),y=g(x,y)
第三步将Q点的坐标表达式代入已知曲线方程。

方法四参数法
使用情景:动点的运动受另一个变量的制约时。

解题步骤:
第一步引入参数,用此参数分别表示动点的横纵坐标x,y; 第二步消去参数,得到关于x,y的方程,即为轨迹方程。

相关文档
最新文档