金属材料与热加工工艺3.pptx
合集下载
金属材料及其热处理PPT课件
![金属材料及其热处理PPT课件](https://img.taocdn.com/s3/m/ebdc971cd5bbfd0a795673fc.png)
第13页/共31页
(1)金属锻压加工的特点
① 锻压加工后,可使金属获得较细密的晶粒,能合理控制金属纤 维方向,使纤维方向与应力方向一致,提高零件的性能。
② 锻压加工后,坯料的形状和尺寸发生改变而其体积基本不变, 与切削加工相比,可节约金属材料和加工工时。
③ 除自由锻造外,其他锻压方法如模锻、冲压等,都具有较高的 劳动生产率。
第7页/共31页
(2)合金钢的牌号 我国合金钢的编号是按照合金钢中的含碳量,以及所含合金元素 的种类(元素符号)、含量来编制的。一般牌号的首位是表示 碳的平均质量分数的数字,表示方法与优质碳素钢的编号是一 致的。对于结构钢,平均质量分数以万分数计,对于工具钢, 以千分数计。
第8页/共31页
(3)铸钢的牌号及用途 ① 工程用铸造碳钢的牌号前面是ZG(“铸钢”二字汉语拼音字 首),后面第一组数字表示屈服点,第二组数字表示抗拉强度, 若牌号末尾标字母H(焊),则表示该钢是焊接结构用碳素铸钢。 ② GB/T5613—1995《铸钢牌号表示方法》规定,以化学成分表 示的铸钢牌号中“ZG”后面一组数字表示铸钢的名义万分碳含量, 其后排列各主要合金元素符号及其名义百分含量。
第10页/共31页
铸造、锻压和焊接是机械制造中最常用的三种金属热 加工方法。其产品大多是零件的毛坯。
1. 铸造
铸造:熔炼金属,制造铸型,并将熔融金属浇入铸型,凝 固后获得具有一定形状与性能的铸件的成形方法。
铸件:用铸造方法得到的金属件。铸件一般作为毛坯使用 ,需要进行切削后才能成为零件。
第11页/共31页
第17页/共31页
焊接有连接性能好,省工省料,成本低,重量轻,可 简化工艺等优点,所以应用广泛。但同时它也存在一些不 足之处,如结构不可拆,更换修理不方便;焊接接头组织 性能变坏;存在焊接应力,容易产生焊接变形;容易出现 焊接缺陷等。有时焊接质量成为突出问题,焊接接头往往 是锅炉压力容器的薄弱环节,实际生产中应特别注意。
(1)金属锻压加工的特点
① 锻压加工后,可使金属获得较细密的晶粒,能合理控制金属纤 维方向,使纤维方向与应力方向一致,提高零件的性能。
② 锻压加工后,坯料的形状和尺寸发生改变而其体积基本不变, 与切削加工相比,可节约金属材料和加工工时。
③ 除自由锻造外,其他锻压方法如模锻、冲压等,都具有较高的 劳动生产率。
第7页/共31页
(2)合金钢的牌号 我国合金钢的编号是按照合金钢中的含碳量,以及所含合金元素 的种类(元素符号)、含量来编制的。一般牌号的首位是表示 碳的平均质量分数的数字,表示方法与优质碳素钢的编号是一 致的。对于结构钢,平均质量分数以万分数计,对于工具钢, 以千分数计。
第8页/共31页
(3)铸钢的牌号及用途 ① 工程用铸造碳钢的牌号前面是ZG(“铸钢”二字汉语拼音字 首),后面第一组数字表示屈服点,第二组数字表示抗拉强度, 若牌号末尾标字母H(焊),则表示该钢是焊接结构用碳素铸钢。 ② GB/T5613—1995《铸钢牌号表示方法》规定,以化学成分表 示的铸钢牌号中“ZG”后面一组数字表示铸钢的名义万分碳含量, 其后排列各主要合金元素符号及其名义百分含量。
第10页/共31页
铸造、锻压和焊接是机械制造中最常用的三种金属热 加工方法。其产品大多是零件的毛坯。
1. 铸造
铸造:熔炼金属,制造铸型,并将熔融金属浇入铸型,凝 固后获得具有一定形状与性能的铸件的成形方法。
铸件:用铸造方法得到的金属件。铸件一般作为毛坯使用 ,需要进行切削后才能成为零件。
第11页/共31页
第17页/共31页
焊接有连接性能好,省工省料,成本低,重量轻,可 简化工艺等优点,所以应用广泛。但同时它也存在一些不 足之处,如结构不可拆,更换修理不方便;焊接接头组织 性能变坏;存在焊接应力,容易产生焊接变形;容易出现 焊接缺陷等。有时焊接质量成为突出问题,焊接接头往往 是锅炉压力容器的薄弱环节,实际生产中应特别注意。
金属热处理工艺.pptx
![金属热处理工艺.pptx](https://img.taocdn.com/s3/m/558cb6b4a6c30c2258019e41.png)
●正火具有以下几方面的应用:
① 含碳量≤0.25%经正火后硬度提高,改善了切削 加工性能。
② 消除过共析钢中的二次渗碳体。 ③ 作为普通结构零件的最终热处理。
●正火的冷却速度稍快于退火,由C曲线可知,二
者的组织是不一样的。正火后的组织比退火细,如图 所示。
图3 正火与退火后组织的比较
2) 钢的淬火
为●马氏亚体温加淬铁火素:体加,热如温图度所在示Ac。1~亚A温c3之淬间火,也淬是火一组种织强
韧化处理方法。
图5 马氏体
图6 马氏体加铁素体
● 对共析钢和过共析钢
组淬织火为温细度马为氏Ac体1+加30颗~粒50状℃, 渗碳体和少量残余奥氏体, 如图所示。
图7
●对合金钢,一般淬火温度为临界点以上50~100℃。
将亚共析钢加热到
Ac3 +30~50℃、过共析
钢加热到Ac1+30~50℃,
保温后快冷到Ar1以下
某一温度保温,然后出
炉空冷。如图是高速钢
等温退火与普通退火的
比较
图3 高速钢等温退火与普通退火的比较
● 球化退火 将共析钢或过共析钢加热到 Ac1 +20~30℃,保温
适当时间后缓慢冷却的热处理工艺称为球化退火。
● 单液淬火法
将加热的工件放入一 种淬火介质中连续冷却 至室温的操作方法,如 水淬、油淬等。
● 双液淬火法
图9 各种淬火方法示意图
将加热的工件放入一种冷却能力较强的介质中冷却, 然后转入另一种冷却能力较弱的介质冷却的淬火方法。 如水淬油冷或油淬空冷。双液淬火主要用于形状复杂 的高碳钢工件及大型合金钢工件。
1. 金属热处理工艺基本知识
●都应包括 四个重要因素:
① 含碳量≤0.25%经正火后硬度提高,改善了切削 加工性能。
② 消除过共析钢中的二次渗碳体。 ③ 作为普通结构零件的最终热处理。
●正火的冷却速度稍快于退火,由C曲线可知,二
者的组织是不一样的。正火后的组织比退火细,如图 所示。
图3 正火与退火后组织的比较
2) 钢的淬火
为●马氏亚体温加淬铁火素:体加,热如温图度所在示Ac。1~亚A温c3之淬间火,也淬是火一组种织强
韧化处理方法。
图5 马氏体
图6 马氏体加铁素体
● 对共析钢和过共析钢
组淬织火为温细度马为氏Ac体1+加30颗~粒50状℃, 渗碳体和少量残余奥氏体, 如图所示。
图7
●对合金钢,一般淬火温度为临界点以上50~100℃。
将亚共析钢加热到
Ac3 +30~50℃、过共析
钢加热到Ac1+30~50℃,
保温后快冷到Ar1以下
某一温度保温,然后出
炉空冷。如图是高速钢
等温退火与普通退火的
比较
图3 高速钢等温退火与普通退火的比较
● 球化退火 将共析钢或过共析钢加热到 Ac1 +20~30℃,保温
适当时间后缓慢冷却的热处理工艺称为球化退火。
● 单液淬火法
将加热的工件放入一 种淬火介质中连续冷却 至室温的操作方法,如 水淬、油淬等。
● 双液淬火法
图9 各种淬火方法示意图
将加热的工件放入一种冷却能力较强的介质中冷却, 然后转入另一种冷却能力较弱的介质冷却的淬火方法。 如水淬油冷或油淬空冷。双液淬火主要用于形状复杂 的高碳钢工件及大型合金钢工件。
1. 金属热处理工艺基本知识
●都应包括 四个重要因素:
金属材料及其热处理ppt课件
![金属材料及其热处理ppt课件](https://img.taocdn.com/s3/m/d8e6c15328ea81c758f578ed.png)
1. 体心立方晶格(BCC):
晶胞是一个立方体,原子位于立方体的八个顶点和立方体的中心。
具有体心立方晶格结构的金属有α-Fe、W、Mo、V、β-Ti等。 晶胞所包含原子数为: 8×1/8+. 1=2 个。
金属的晶格类型
2. 面心立方晶格(FCC) :
晶胞是一个立方体,原子位于立方体的八个顶点和立方体六个面的 中心。
表面热处理 (表面淬火和化学热处 理等);
特殊热处理 (形变热处理、磁场热 处理等)。
根据热处理在零件生产工艺流程 中的位置和作用,热处理又可分 为预备热处理和最终热处理。
A1、A3、Acm为钢在平衡条件下的临界点。在实际热处理会产生不同程度的滞 后。实际转变温度与平衡临界温度之差称为过热度(加热时)或过冷度(冷却时)。 通常把加热时的临界温度加注下标“c. ” 。
4. 在热处理工艺上的应用。
了解加热、冷却时相变的规律,确 定合适的热处理制度。
.
相图的应用
综上所述,相图是材料状态与成分、温度之间关系的图解, 是研究合金的重要工具:
1. 作为选材的依据。
2. 在铸造生产中的应用。
不同成分合金的熔点,确定合适的 冶炼和浇注温度。
3. 在锻造工艺上的应用。
.
合金及其组织结构
2. 相
合金中成分、结构及性能相同的组成部分称为相。相与相之间有明显的 界面-相界。
3. 组织
所谓合金的组织,是指合金中不同相之间相互组合配置的状态。数量、 大小和分布方式不同的相构成了合金不. 同的组织。单相组织、多相组织。
合金的晶体结构
根据合金中各组元之间结合方式的不同,合金的组织可分 为固溶体、金属化合物和混合物三类。
单晶体与多晶体
金属是由很多大小、外形和晶格排列方向均不相同的 小晶体组成,小晶体称为晶粒,晶粒之间交界的地方称为 晶界。
晶胞是一个立方体,原子位于立方体的八个顶点和立方体的中心。
具有体心立方晶格结构的金属有α-Fe、W、Mo、V、β-Ti等。 晶胞所包含原子数为: 8×1/8+. 1=2 个。
金属的晶格类型
2. 面心立方晶格(FCC) :
晶胞是一个立方体,原子位于立方体的八个顶点和立方体六个面的 中心。
表面热处理 (表面淬火和化学热处 理等);
特殊热处理 (形变热处理、磁场热 处理等)。
根据热处理在零件生产工艺流程 中的位置和作用,热处理又可分 为预备热处理和最终热处理。
A1、A3、Acm为钢在平衡条件下的临界点。在实际热处理会产生不同程度的滞 后。实际转变温度与平衡临界温度之差称为过热度(加热时)或过冷度(冷却时)。 通常把加热时的临界温度加注下标“c. ” 。
4. 在热处理工艺上的应用。
了解加热、冷却时相变的规律,确 定合适的热处理制度。
.
相图的应用
综上所述,相图是材料状态与成分、温度之间关系的图解, 是研究合金的重要工具:
1. 作为选材的依据。
2. 在铸造生产中的应用。
不同成分合金的熔点,确定合适的 冶炼和浇注温度。
3. 在锻造工艺上的应用。
.
合金及其组织结构
2. 相
合金中成分、结构及性能相同的组成部分称为相。相与相之间有明显的 界面-相界。
3. 组织
所谓合金的组织,是指合金中不同相之间相互组合配置的状态。数量、 大小和分布方式不同的相构成了合金不. 同的组织。单相组织、多相组织。
合金的晶体结构
根据合金中各组元之间结合方式的不同,合金的组织可分 为固溶体、金属化合物和混合物三类。
单晶体与多晶体
金属是由很多大小、外形和晶格排列方向均不相同的 小晶体组成,小晶体称为晶粒,晶粒之间交界的地方称为 晶界。
金属材料与热处理完整ppt课件
![金属材料与热处理完整ppt课件](https://img.taocdn.com/s3/m/d7081f4add3383c4ba4cd24a.png)
晶界:
小角度晶界─相邻晶粒的位向差小于10°的晶 界。基本上由位错构成。
大角度晶界─相邻晶粒的位向差大于10°的晶 界。原子排列比较混乱,结构比较复杂。
精选课件
55
亚晶界: 晶粒内部位向差小于 1° 的亚结构,也称为亚晶
粒,亚晶之间的界面,称为亚晶界。通常由位错构成。
亚晶界
精选课件
56
相界:不同结构的晶粒之间的界面 界面结构类型: 共格界面, 半共格, 非共格
同晶向上的原子排列方式和排列 紧密程度是不一样的。下页的两 个表给出了体心立方晶格和面心 立方晶格中各主要晶面、晶向上 的原子排列方式和紧密程度。
精选课件
41
精选课件
42
精选课件
43
五、晶体的 同素异构转变(多晶型性转变) 金属由一种晶体结构转变为另一种晶体结构的现
象称之为同素异构转变。(温度、压力)
α-Fe单晶体,密排方向 [111] 的弹性模量 E=290,000MN/m2,而非密排方向100的 E=135,000MN/m2。
精选课件
45
七、多晶体的伪各向同性 如Fe,不同方向上E均为210000MN/m2左右。 原因:实际材料为多晶体,各单晶粒分布的方向
不同,各向异性相互抵消,而呈现无向性。 ——伪各向异性。
如 Fe晶体,室温~912℃,体心立方,α- Fe,
912 ℃~1394 ℃,面心立方,γ-Fe, 1394 ℃ ~熔点1538 ℃ ,体心立方,δ-Fe。 Fe, Mn, Ti , Co 等少数金属具有同素异构转变。 性能随之变化。
精选课件
44
六、晶体的各向异性
不同晶面和晶向上原子密度不同, 原子间距离 不同, 结合力不同--晶体在不同方向上的力学、 物理和化学性能有所差异--各向异性。
小角度晶界─相邻晶粒的位向差小于10°的晶 界。基本上由位错构成。
大角度晶界─相邻晶粒的位向差大于10°的晶 界。原子排列比较混乱,结构比较复杂。
精选课件
55
亚晶界: 晶粒内部位向差小于 1° 的亚结构,也称为亚晶
粒,亚晶之间的界面,称为亚晶界。通常由位错构成。
亚晶界
精选课件
56
相界:不同结构的晶粒之间的界面 界面结构类型: 共格界面, 半共格, 非共格
同晶向上的原子排列方式和排列 紧密程度是不一样的。下页的两 个表给出了体心立方晶格和面心 立方晶格中各主要晶面、晶向上 的原子排列方式和紧密程度。
精选课件
41
精选课件
42
精选课件
43
五、晶体的 同素异构转变(多晶型性转变) 金属由一种晶体结构转变为另一种晶体结构的现
象称之为同素异构转变。(温度、压力)
α-Fe单晶体,密排方向 [111] 的弹性模量 E=290,000MN/m2,而非密排方向100的 E=135,000MN/m2。
精选课件
45
七、多晶体的伪各向同性 如Fe,不同方向上E均为210000MN/m2左右。 原因:实际材料为多晶体,各单晶粒分布的方向
不同,各向异性相互抵消,而呈现无向性。 ——伪各向异性。
如 Fe晶体,室温~912℃,体心立方,α- Fe,
912 ℃~1394 ℃,面心立方,γ-Fe, 1394 ℃ ~熔点1538 ℃ ,体心立方,δ-Fe。 Fe, Mn, Ti , Co 等少数金属具有同素异构转变。 性能随之变化。
精选课件
44
六、晶体的各向异性
不同晶面和晶向上原子密度不同, 原子间距离 不同, 结合力不同--晶体在不同方向上的力学、 物理和化学性能有所差异--各向异性。
金属制品热加工工艺技术.pptx
![金属制品热加工工艺技术.pptx](https://img.taocdn.com/s3/m/928bb13a102de2bd97058890.png)
定向凝固原则解决缩孔的方法演示
液态成形内应力、变形与裂纹
内应力
热应力 机械应力
铸件在凝固和冷却的过程中,由于铸件 的壁厚不均匀,导致不同部位不均衡的 收缩而引起的应力。
铸件在固态收缩时,因受到铸型、型 芯、浇冒口、砂箱等外力阻碍而产生 的应力。
变形
残余热应力的存在,使铸件处在一种非稳定 状态,将自发地通过铸件的变形来缓解其应 力,以回到稳定的平衡状态。
是某些塑性很差的材料 (如铸铁等)制造其毛坯或 零件的唯一成型工艺
液态成型的优点
液态成型 缺点
工艺过程比较复杂,一些工艺 过程还难以控制
液态成形零件内部组织的均匀性、 致密性一般较差
液态成形零件易出现缩孔、缩松、 气孔、砂眼、夹渣、夹砂、裂纹等 缺陷,产品 质量不够稳定
由于铸件内部晶粒粗大,组织不均 匀,且常伴 有缺陷,其力学性能 比同类材料的塑性成形低
铸件的变形的消除方法
防止变形的方法:与防止应力的方法基本相同。带有
残余应力的铸件,变形使残余应力减小而趋于稳定。
问题 铸造时所受的应力与变形情况。 分析有长、短不一的两根弹簧,将
其固定,使其达到同等长度,即其中一 弹簧被拉长,另一弹簧被压缩,此时所 受的应力状态?然后将其固定约束去掉, 试分析其变形趋势?
灰口铸铁的孕育处理
选用碳、硅量低的铁水:原铁水含碳量越低,石墨越细 小,铸铁 的强度、硬度就越高。 冷却速度:对其组织和性能影响较小。如下面的图:
球墨铸铁件的生产
向高温铁水中加入一 定量的球化剂和孕育剂, 直接得到球状石墨的铸造 合金。
球化剂:金属镁或稀土镁 孕育剂:含Si量为75%或95%的硅铁
灰口铸铁的孕育处理是提高和改善灰口铸铁的性能的途径行之 有效的方法。常用的孕育剂是含Si量为75%的硅铁。
金属材料与热处理(最全)PPT课件
![金属材料与热处理(最全)PPT课件](https://img.taocdn.com/s3/m/3d5cb7e443323968001c927a.png)
铁碳合金和铁碳相图
3.1 铁碳合金中的组元和基本相 3.2 Fe-Fe3C相图 3.3 典型铁碳合金的平衡结晶过程及组织 3.4 铁碳合金的成分-组织-性能关系 3.5 铁碳相图在工业中的应用
• 工业纯铁:塑性较好 ,强度较低,具有铁 磁性,在一般的机器 制造中很少应用,常 用的是铁碳合金
• 铁素体(F):碳溶 于 -Fe中的一种间 隙固溶体,体心立方 晶体结构,组织和性 能与工业纯铁相同
珠光体(P):铁 素体和渗碳体 的机械混合物 ,是两者呈层 片相间的组织 ,即层片状组 织特征,可以 通过热处理得 到另一种珠光 体的组织形态
五个单相区: ABCD 以上-液相区(L) ;AHNA- 固溶体 区( ); NJESGN- 奥 氏 体 区 ( A);GPQ 以 上-铁素体区(F) ;DFKL-渗碳体区 (Fe-Fe3C)
• 奥氏体(A):碳溶 于 -Fe中的一种间隙 固溶体,具有面心立 方晶体结构,塑性好 ,变形抗力小,易于 锻造成型
铁碳合金中的组元和基本相
渗碳体:铁和碳 的金属化合物 ( 即 Fe3C) 属 于复杂结构的 间隙化合物, 硬而脆,强度 很低,耐磨性 好,是一个亚 稳定的化合物 ,在一定温度 下可分解为铁 和石墨
七个两相区(两相邻 的单相区之间) :
L+,L+A,L+Fe3C, +A,F+A,A+Fe3C,F +Fe3C
Fe-Fe3C相图
包晶反应: HJB水平线
LB+H(1495°) AJ
包晶反应仅可能在含碳 量0.09~0.53%的铁 碳合金中,其结果 生成生成奥氏体
恒温转变线
共晶反应: ECF水平线
Ae+Fe3C (1148°) Lc
金属热处理原理与工艺课件第一章金属热处理3
![金属热处理原理与工艺课件第一章金属热处理3](https://img.taocdn.com/s3/m/bb594b46f7ec4afe04a1dfad.png)
2. 正火
正火是将金属制件加热到高于或低于这种金属 的临界温度,经保温一定时间,随后在空气中冷 却,以获得更细组织的一种热处理工艺。 正火的作用与退火相似,与退火不同之处是:
a. 正火是在空气中冷却,冷却速度快,所获 得的组织更细。 b. 正火后的强度、硬度较退火后的稍高,而 塑性、韧性则稍低。 c. 不占用设备;生产率高。
1.4.5高碳钢
特点: 具有高硬度和高耐磨性,焊接性能差。
热处理: 1.预先热处理采用球化退火; 2.采用不完全(加热到两相区得到奥氏体加 未溶碳化物)淬火加低温回火的热处理工艺。
(1)低温回火:回火温度为150~250℃。低温回火能消 除一定的内应力,适当地降低钢的脆性,提高韧性,同时工 件仍保持高硬度、高耐磨性,应用于各种量具和刃具。 (2)中温回火:回火温度为350~500℃。中温回火可大 大减小钢的内应力,提高了弹性、韧性,但硬度有所降低, 应用于弹簧和热锻模等。 (3)高温回火:回火温度为500~650℃。高温回火可以 消除内应力,硬度有显著的下降,可获得具有强度、塑性、 韧性等综合机械性能,应用于齿轮、连杆、曲轴等。
1.4.3低碳钢
特点: 塑性好、韧性好、硬度强度低(软刚)、耐 磨性差。 热处理: 通常情况下将其进行渗碳,然后淬:
1.提高心部强度(加入Mn、Cr、Ni等) 2.提高淬透性 3.细化奥氏体晶粒(加入Ti、Mo、W等)
1.4.4中碳钢
特点: 热加工及切削性能良好,强度硬度比低碳钢 高,韧性塑性低于低碳钢,焊接性能较差。 热处理: 通常采用完全(加热到单相奥氏体区得到单 相均匀奥氏体)淬火加中温或高温回火的热 处理工艺。
2、S和P的影响(热脆、冷脆)
合金元素在钢中的作用
合金元素在钢中的存在形式 两种形式存在:一是溶解于碳钢原有的相中(固溶 体),另一种是形成某些碳钢中所没有的新相(化合 物) 按与碳亲合力的大小,可将合金元素分为弱碳化物形 成元素、强碳化物形成元素与非碳化物形成元素三大 类 非碳化物形成元素:Ni、Co、Cu、Si、Al、N、B; 弱碳化物形成元素:Mn; 强碳化物形成元素:Cr、Mo、W、V、Ti、 Nb、Zr。
【可编辑全文】常用金属材料及热处理-图文
![【可编辑全文】常用金属材料及热处理-图文](https://img.taocdn.com/s3/m/1618477c6ad97f192279168884868762caaebb28.png)
工艺性能
工艺性能:指材料承受各种加工、处理的能力的那些性能 。
1. 铸造性能:指金属或合金是否适合铸造的一些工艺性能 ,主要包括流动性能、充满铸模能力;收缩性、铸件 凝固时体积收缩的能力;偏析指化学成分不均性。
2. 焊接性能:指金属材料通过加热或加热和加压焊接方 法,把两个或两个以上金属材料焊接到一起,接口处 能满足使用目的的特性。
)钢的分类:
低碳钢 ( ωc≤0.25%)
1)以含碳量分
( 中碳钢(0.25% ≤ ωc ≤ 0.6%)
按碳的质量分数ωC%) 高碳钢(0.6% < ωc ≤ 2.11%)
2)以化学成份分
(按合金成份)
碳素钢(以Fe、C成份为主) 合金钢(除Fe、C外,还有其它合
金元素)
普通钢(ωs≤0.05% ;ωp≤0.045%)
如:GCr15SiMn(表示ωCr=1.5% 的滚动轴承 钢成)份: ωC=1∼1.15%, 加入了Mn、Si等合金元素,热处 理后使用。
(二)工具钢
1、碳素工具钢
牌号:
字母T + 数字+ 质量级别
表示工 具钢
表示碳的平均千 分含量(7∼13)
末尾标,表示 是高级优质
如T7(表示含碳量为ωC≈0.7%的碳素工具钢); 如T10(表示含碳量为ωC≈1.0%的碳素工具钢) ;
铁碳合金相图
铁碳合金相图:表示在平衡状态下铁碳合 金。的化学成分、相、组织与温度的关系图。 利用它可以研究钢和铸铁的内部组织及其变 化规律,从而为更好的利用它们,并为制定 热处理、压力加工等工艺规程打下基础。在 工程中一般研究的铁碳合金状态图实际上都 是铁与渗碳体两组元构成的状态图。
铁碳合金的相图及组织转变
金属材料与热加工工艺课件
![金属材料与热加工工艺课件](https://img.taocdn.com/s3/m/80dddb82a32d7375a51780b5.png)
材料及热加工工艺—第三章 铁碳合金相图
⒊ 相区
⑴ 五个单相区:
L、、、、Fe3C ⑵ 七个两相区: L+、
L+、L+Fe3C、 +、 +Fe3C、+ 、 +Fe3C
⑶ 三个三相区:即HJB (L++)、ECF(L++ Fe3C)、 PSK(++ Fe3C)三条水平线
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
1
材料及热加工工艺—第三章 铁碳合金相图
1)共析钢的结晶过程
珠光体
室温组织为:P(F+Fe3C)
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
1
材料及热加工工艺—第三章 铁碳合金相图
2)亚共析钢的 结晶过程
L→L+A →A→A+F先共析
第一节 铁碳合金的组元及基本相 第二节 Fe-Fe3C
第三节 含碳量对碳钢组织与性能的影响
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
第一节 铁碳合金的组元及基本相
一、纯铁及其同素异构转变 (重结晶) 磁性转变:
材料及热加工工艺—第三章 铁碳合金相图
二、铁碳合金状态图的分析
1. 特性点
⇄
⇄ ⇄
⇄ ⇄
J
N
L+
G
+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特点:含碳量为6.69%,晶 格构造十分复杂。性能很 硬很脆,而塑性和韧性极 低,伸长率和冲击韧性几 乎为零,在钢中主要起强 化作用,不能单独应用。
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
science
and
engineering
of
C
XAUT
材料及热加工工艺—第三章 铁碳合金相图
一、Fe - Fe3C 相图的建立
1.配制不同成分的铁碳合金,加热后缓慢 地冷却,记录数据,绘制它们的冷却曲线 (时间、温度);
2.从冷却曲线上 找出临界点,并 画到成分—温度 坐标中;
3.相同意义的点连 接起来。
材料及热加工工艺—第三章 铁碳合金相图
二、铁碳合金状态图的分析
1. 特性点
⇄
⇄ ⇄
⇄ ⇄
J
N
L+
G
+
L
L+Fe3C
+Fe3C
+Fe3C
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
材料及热加工工艺—第三章 铁碳合金相图
第三章 铁碳合金相图
第一节 铁碳合金的组元及基本相 第二节 Fe-Fe3C相图
第三节 含碳量对碳钢组织与性能的影响
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
塑性好,钢材热加工都在 区进行。
面心立方结构
奥氏体 西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
3、渗碳体(Fe3C) 定义:铁与碳形成的金属化合物,是钢铁中的强化
相,高温下可分解, Fe3C→3Fe+C(石墨) 。
材料及热加工工艺—第三章 铁碳合金相图
⒉ 特征线
⑴ 液相线—ABCD, 固相线—AHJECF
第 二 节 铁碳合金状态图
铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC,它们都可以作为纯组元看待。
含碳量大于Fe3C成分(6.69%)时,合金太脆, 已无实用价值。
实际所讨论的铁碳合金相图是Fe- Fe3C相图。
F西e 安理工大学材料F科e3C学与工Fe程2C学院
FeC
schoCo%l o(aftm%a)te→rial
体心立方结构
纯铁相同。
铁素体
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
2)奥氏体:
碳溶于 -Fe中的间隙固溶体;用A或 表示。
面心立方晶格,溶碳能力比铁素体大; 组织为不规则多面体晶粒,晶界较直。强度低、
第一节 铁碳合金的组元及基本相
一、纯铁及其同素异构转变 (重结晶) 磁性转变:
770 °C以上无磁性 770 °C以下有磁性
纯铁的力学性能 特点:强度、硬 度低,塑性、韧 性好,一般不用 于结构件。
δ - Fe 1394 °γ C- Fe
912 °αC- Fe
bcc
fcc
bcc
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
P
Q P&148℃
C
L+ Fe3CⅠ
F ( A+Fe3C )
Ld
Ld+Fe3CⅠ
A+Ld+Fe3CⅡ
727℃
K
P+Ld’+Fe3CⅡ Ld’ Ld’+Fe3CⅠ
( P+Fe3C )
0.0218%C 0.77%C 2.11%C Fe
4.3%C
6.69%C Fe3C
材料及热加工工艺—第三章 铁碳合金相图 西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
Fe - Fe3C 相图
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
Fe - Fe3C 相图
A T°
匀晶相图 L+A
共晶相图
L
D
E
A
G 共析相图
A+
A+F S Fe3CⅡ F P ( F+ Fe3C )
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
1)铁素体 ➢碳溶于a-Fe中形成的间隙固溶体,以F或α表示;
➢铁素体的溶碳能力很低,为体心立方晶格;
➢铁素体的组织为多边形晶粒,其力学性能几乎与
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
Cu-Ni合金相图的建立过程
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
二、铁碳合金中的基本相
铁碳合金中的组元:Fe、C
L相:液态下无限互溶、成分均匀
Fe和C
固溶体相:C溶于Fe中形成 F、A等
金属化合物相:Fe与C化合形成Fe3C
铁碳合金中的相:液相L、 α 、γ和 δ固溶体、 Fe3C金属化合物
在铁碳合金中碳既可溶入α – Fe、γ-Fe ,也可以 溶入δ-Fe ,形成不同的固溶体。
(1)共晶点C 1148℃, 4.3%C 共晶成分 反应式: Lc→(AE+Fe3C) 共晶体,即高温莱氏体Ld ;
(2)共析点S 727℃ 0.77% C 共析成分 反应式: As → (Fp + Fe3C共析) 共析体,即珠光体;
(3)钢、铁分界点E(2.11%C)
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
science
and
engineering
of
C
XAUT
材料及热加工工艺—第三章 铁碳合金相图
一、Fe - Fe3C 相图的建立
1.配制不同成分的铁碳合金,加热后缓慢 地冷却,记录数据,绘制它们的冷却曲线 (时间、温度);
2.从冷却曲线上 找出临界点,并 画到成分—温度 坐标中;
3.相同意义的点连 接起来。
材料及热加工工艺—第三章 铁碳合金相图
二、铁碳合金状态图的分析
1. 特性点
⇄
⇄ ⇄
⇄ ⇄
J
N
L+
G
+
L
L+Fe3C
+Fe3C
+Fe3C
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
材料及热加工工艺—第三章 铁碳合金相图
第三章 铁碳合金相图
第一节 铁碳合金的组元及基本相 第二节 Fe-Fe3C相图
第三节 含碳量对碳钢组织与性能的影响
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
塑性好,钢材热加工都在 区进行。
面心立方结构
奥氏体 西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
3、渗碳体(Fe3C) 定义:铁与碳形成的金属化合物,是钢铁中的强化
相,高温下可分解, Fe3C→3Fe+C(石墨) 。
材料及热加工工艺—第三章 铁碳合金相图
⒉ 特征线
⑴ 液相线—ABCD, 固相线—AHJECF
第 二 节 铁碳合金状态图
铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC,它们都可以作为纯组元看待。
含碳量大于Fe3C成分(6.69%)时,合金太脆, 已无实用价值。
实际所讨论的铁碳合金相图是Fe- Fe3C相图。
F西e 安理工大学材料F科e3C学与工Fe程2C学院
FeC
schoCo%l o(aftm%a)te→rial
体心立方结构
纯铁相同。
铁素体
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
2)奥氏体:
碳溶于 -Fe中的间隙固溶体;用A或 表示。
面心立方晶格,溶碳能力比铁素体大; 组织为不规则多面体晶粒,晶界较直。强度低、
第一节 铁碳合金的组元及基本相
一、纯铁及其同素异构转变 (重结晶) 磁性转变:
770 °C以上无磁性 770 °C以下有磁性
纯铁的力学性能 特点:强度、硬 度低,塑性、韧 性好,一般不用 于结构件。
δ - Fe 1394 °γ C- Fe
912 °αC- Fe
bcc
fcc
bcc
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
P
Q P&148℃
C
L+ Fe3CⅠ
F ( A+Fe3C )
Ld
Ld+Fe3CⅠ
A+Ld+Fe3CⅡ
727℃
K
P+Ld’+Fe3CⅡ Ld’ Ld’+Fe3CⅠ
( P+Fe3C )
0.0218%C 0.77%C 2.11%C Fe
4.3%C
6.69%C Fe3C
材料及热加工工艺—第三章 铁碳合金相图 西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
Fe - Fe3C 相图
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
Fe - Fe3C 相图
A T°
匀晶相图 L+A
共晶相图
L
D
E
A
G 共析相图
A+
A+F S Fe3CⅡ F P ( F+ Fe3C )
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
1)铁素体 ➢碳溶于a-Fe中形成的间隙固溶体,以F或α表示;
➢铁素体的溶碳能力很低,为体心立方晶格;
➢铁素体的组织为多边形晶粒,其力学性能几乎与
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
Cu-Ni合金相图的建立过程
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT
材料及热加工工艺—第三章 铁碳合金相图
二、铁碳合金中的基本相
铁碳合金中的组元:Fe、C
L相:液态下无限互溶、成分均匀
Fe和C
固溶体相:C溶于Fe中形成 F、A等
金属化合物相:Fe与C化合形成Fe3C
铁碳合金中的相:液相L、 α 、γ和 δ固溶体、 Fe3C金属化合物
在铁碳合金中碳既可溶入α – Fe、γ-Fe ,也可以 溶入δ-Fe ,形成不同的固溶体。
(1)共晶点C 1148℃, 4.3%C 共晶成分 反应式: Lc→(AE+Fe3C) 共晶体,即高温莱氏体Ld ;
(2)共析点S 727℃ 0.77% C 共析成分 反应式: As → (Fp + Fe3C共析) 共析体,即珠光体;
(3)钢、铁分界点E(2.11%C)
西安理工大学材料科学与工程学院 school of material science and engineering of XAUT