27章相似知识点总结
初三数学下册知识点总结
初三数学下册重要知识点总结第26章二次函数1. 二次函数的一般形式:y=ax2+bx+c (a≠0)。
2.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值, 从而求出解析式---待定系数法。
3.二次函数的顶点式:y=a(x-h)2+k (a≠0);由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程x=h和函数的最值y最值= k。
4.求二次函数的解析式:已知二次函数的顶点坐标(h,k)和图象上的另一点的坐标,可设解析式为y=a(x -h)2+ k,再代入另一点的坐标求a,从而求出解析式。
5. 二次函数y=ax2+bx+c (a≠0)的图象及几个重要点的公式:6. 二次函数y=ax2+bx+c (a≠0)中,a、b、c与Δ的符号与图象的关系:(1) a>0 <=> 抛物线开口向上;a<0 <=> 抛物线开口向下。
(2) c>0 <=> 抛物线从原点上方通过;c=0 <=> 抛物线从原点通过;c<0 <=> 抛物线从原点下方通过。
(3) a, b异号<=> 对称轴在y轴的右侧;a, b同号<=> 对称轴在y轴的左侧;b=0 <=> 对称轴是y轴。
(4) b2-4ac>0 <=> 抛物线与x轴有两个交点;b2-4ac =0 <=> 抛物线与x轴有一个交点(即相切);b2-4ac<0 <=> 抛物线与x轴无交点。
7.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上。
初三数学下册重要知识点总结第27章 相似形2.比例的基本性质: a:b=c:ddcb a = ad=bc ;ABC cba 初三数学下册重要知识点总结第28章 解三角形1.三角函数的定义:在Rt ΔABC 中,如∠C=90°,那么sinA=c a =斜对; cosA=c b =斜对;tanA=ba=邻对; cotA=a b =对邻. 2.余角三角函数关系 ------ “正余互化公式” 如∠A+∠B=90°, 那么:sinA=cosB ; cosA=sinB ; tanA=cotB ;cotA=tanB. 3. 同角三角函数关系:sin 2A+cos 2A =1; tanA·co tA =1. tanA=Acos A sin 4. 函数的增减性:在锐角的条件下,正弦,正切函数随角的增大,函数值增大;余弦,余切函数随角的增大,函数值反而减小.5.特殊角的三角函数值:如图:这是两个特殊的直角三角形,通过设k, 它可以推出特殊角的直角三角函数值,要熟练记忆它们.6.解直角三角形:对于直角三角形中的五个元素,可以“知二可求三”,但“知二”中至少应该有一个是边.7.坡度: i = 1:m = h/l = tan α; 坡角: α.8. 方位角:9.仰角与俯角:北东北偏西30南偏东70仰角俯角水平线铅垂线lha i=1:mK3 KKKK2 K230°45°60°ABC ABC。
人教版第27章相似全章导学案2
课题27.1 图形的相似1九年级备课人:洪双桥审核:审批:班级:____________ 姓名:____________ 使用时间:2012年2月日导学目标知识点:从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.了解成比例线段的概念,会确定线段的比.课时:1课时导学方法:整理、分析、归纳法导学过程:一、自主探究(课前导学)1 、同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?(课本图27.1-1)( 课本图27.1-2)2 、小组讨论、交流.得到相似图形的概念.相似图形3 、思考:如图,是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?观察思考,小组讨论回答:二、合作探究(课堂导学)实验探究:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB 和CD ,那么这两条线段的比是多少?归纳:两条线段的比,就是两条线段长度的比. 成比例线段:对于四条线段,,,a b c d ,如果其中两条线段的比与另两条线段的比相等,如a cb d=(即ad bc =),我们就说这四条线段是成比例线段,简称比例线段. 【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;线段的比是一个没有单位的正数; (2)四条线段,,,a b c d 成比例,记作a cb d=或::a b c d =; (3)若四条线段满足a cb d=,则有ad bc =. 例1如图,下面右边的四个图形中,与左边的图形相似的是( )例2一张桌面的长 1.25a m =,宽0.75b m =,那么长与宽的比是多少?(1)如果125a cm =,75b cm =,那么长与宽的比是多少? (2)如果1250a mm =,750b mm =,那么长与宽的比是多少?小结:上面分别采用,,m cm mm 三种不同的长度单位,求得的ab的值是________的,所以说,两条线段的比与所采用的长度单位______,但求比时两条线段的长度单位必须____.三、讨论交流(展示点评)四、课堂检测(当堂训练)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm ,求北京到上海的实际距离大约是多少km ?分析:根据比例尺=实际距离图上距离,可求出北京到上海的实际距离.拓展延伸(课外练习):1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?2.如图,图形a ~f 中,哪些是与图形(1)或(2)相似的?3、下列说法正确的是( )A .小明上幼儿园时的照片和初中毕业时的照片相似.B .商店新买来的一副三角板是相似的.C .所有的课本都是相似的.D .国旗的五角星都是相似的. 4、填空题形状 的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的 或 而得到的。
九年级下册数学第27章相似图形知识点归纳
知识点1.概念
把形状相同的图形叫做相似图形。
(即对应⾓相等、对应边的⽐也相等的图形)
解读:(1)两个图形相似,其中⼀个图形可以看做由另⼀个图形放⼤或缩⼩得到.
(2)全等形可以看成是⼀种特殊的相似,即不仅形状相同,⼤⼩也相同.
(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素⽆关.
知识点2.⽐例线段
对于四条线段a,b,c,d ,如果其中两条线段的长度的⽐与另两条线段的长度的⽐相等,即(或a:b=c:d)那么这四条线段叫做成⽐例线段,简称⽐例线段.
知识点3.相似多边形的性质
相似多边形的性质:相似多边形的'对应⾓相等,对应边的⽐相等.
解读:(1)正确理解相似多边形的定义,明确“对应”关系.
(2)明确相似多边形的“对应”来⾃于书写,且要明确相似⽐具有顺序性.
知识点4.相似三⾓形的概念
对应⾓相等,对应边之⽐相等的三⾓形叫做相似三⾓形.
解读:(1)相似三⾓形是相似多边形中的⼀种;
(2)应结合相似多边形的性质来理解相似三⾓形;
(3)相似三⾓形应满⾜形状⼀样,但⼤⼩可以不同;
(4)相似⽤“∽”表⽰,读作“相似于”;
(5)相似三⾓形的对应边之⽐叫做相似⽐.
【九年级下册数学第27章相似图形知识点归纳】。
27.1相似多边形(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似多边形的定义、性质和在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对相似多边形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似多边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-解决实际问题中相似多边形的计算和应用。
举例解释:
a.理解相似多边形的性质:教师需要引导学生通过实际操作、观察和推导,理解并掌握相似多边形的性质。例如,通过比较相似多边形的对应边长、对应角度、周长和面积等,让学生深刻理解相似多边形的性质。
b.判断相似性:针对不规则多边形的相似性判断,教师可以引导学生运用对应角和对应边成比例的原则,通过画图、测量和计算等方法,进行相似性判断。同时,可以举例说明如何将不规则多边形转化为规则多边形,以便更容易地进行相似性判断。
3.增强学生的几何直观和几何建模能力:让学生在实际问题中运用相似多边形知识,培养几何直观,提高解决几何问题的建模能力。
三、教学难点与重点
1.教学重点
-理解相似多边形的定义:对应角相等,对应边成比例。
-掌握相似多边形的性质:包括对应角相等、对应边成比例、对应周长比相等、对应面积比相等。
人教版九年级数学下册 第27章 相 似 相似三角形 相似三角形的判定 第3课时 由两角判定三角形相似
第二十七章 相 似
27.2 相似三角形
27.2.1 相似三角形的判定
第3课时 由两角判定三角形相似
知识点❶:两角对应相等的两个三角形相似
1.在△ABC和△A′B′C′中,∠A=68°,∠B=40°,∠A′=68°,∠C′=72°,
则这两个三角形( )
B
A.全等 B.相似
C.不相似 D.无法确定
14.如图,等边三角形 ABC 的边长为 6,在 AC,BC 边上各取一点 E,F, 使 AE=CF,连接 AF,BE 相交于点 P.
(1)求证:AF=BE,并求∠APB 的度数; (2)若 AE=2,试求 AP·AF 的值.
解:(1)∵△ABC 为等边三角形,∴AB=AC,∠C=∠CAB=60°,在△ABE 和
4.(南京中考)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分 ∠ACB.若AD=2,BD=3,则AC的长为__1_0_.
5.(通辽中考)如图,⊙O的直径AB交弦(不是直径)CD于点P,且PC2=PB·PA, 求证:AB⊥CD.
证 明 : 连 接 AC , BD , ∵ ∠ A = ∠ D , ∠ C = ∠ B , ∴ △ APC∽△DPB , ∴ PC∶PB = PA∶PD , ∴ PC·PD = PA·PB , ∵ PC2 = PB·PA , ∴ PC = PD , ∵ AB 为 直 径 , ∴AB⊥CD
解:(1)在△AOF 和△EOF 中,
பைடு நூலகம்
OA=OE, ∠AOD=∠EOD, ∴△AOF≌△EOF(SAS),∴∠OAF=∠OEF,∵BC 与⊙O 相 OF=OF,
切,∴OE⊥FC,即∠OEF=90°,∴∠OAF=90°,即 OA⊥AF,又∵OA 是⊙O 的半径,
27.2相似三角形1相似三角形的判定用三边比例关系判定三角形相似(教案)
在总结回顾环节,学生们对今天所学的知识有了整体的认识,但仍有个别学生表示对某些部分理解不够透彻。这提醒我,在后续的教学中,要关注学生的个体差异,尽量让每个学生都能跟上教学进度。
3.重点难点解析:在讲授过程中,我会特别强调三边比例关系判定相似的两个重点:三组对应边的比例相等和两组对应边的比例相等且夹角相等。对于难点部分,我会通过具体的图形和例子来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过测量边长和角度来判断两个三角形是否相似。
b.如果两个三角形中有两组对应边的比例相等,并且夹角相等,即a/ b = c/ d,且∠A = ∠C或∠B = ∠D,则这两个三角形相似。
二、核心素养标
本节课的核心素养目标旨在培养学生的以下能力:
1.空间观念:通过探究相似三角形的判定,使学生能够理解和运用空间图形的性质,发展空间想象力和直觉思维能力。
2.抽象概括能力:引导学生从具体实例中抽象出相似三角形的判定方法,提高他们的逻辑推理和概括能力。
3.数据分析观念:培养学生通过观察、分析三角形边长数据,运用三边比例关系解决问题的能力,增强数据分析观念。
4.数学应用意识:将相似三角形的判定应用于解决实际问题,让学生体会数学与现实生活的联系,提高数学应用意识。
-重点知识点举例:
a.如果两个三角形的三组对应边的比例相等,即a/ b = c/ d = e/ f,则这两个三角形相似。
九年级数学下册第27章《相似》复习课教学设计
(3)采用小组合作学习,培养学生的团队协作能力和沟通能力。
2.教学步骤:
第一步:复习相似图形的基本概念,引导学生总结相似图形的性质;
第二步:通过典型例题,讲解相似三角形的判定方法,并让学生进行练习;
第三步:引入实际问题,让学生运用相似三角形解决高度、角度等问题;
4.引导学生关注相似在实际生活中的应用,培养学生的应用意识和创新精神,使其认识到数学在现实生活中的重要性。
总字数:1005字
本教学设计针对九年级数学下册第27章《相似》复习课,围绕相似图形的概念、性质、判定及应用展开,旨在帮助学生巩固相似知识,提高解决问题的能力,培养学生的数学素养。在教学过程中,注重理论与实践相结合,充分调动学生的积极性,引导学生在合作探究中提高数学思维能力。
(3)小组合作:评价学生在小组合作中的表现,包括团队协作、沟通交流等;
(4)课后反馈:了解学生对本节课知识的掌握情况,针对学生反馈进行教学调整。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中常见的相似图形,如建筑物的立面、摄影作品中的景物等,引导学生观察并思考这些图形之间的关系。
2.提问:“同学们,你们知道这些图形有什么共同特点吗?”通过这个问题,激发学生的好奇心,为新课的学习做好铺垫。
三、教学重难点和教学设想
(一)教学重难点
1.重点:相似图形的性质、判定方法及其在实际问题中的应用。
2.难点:
(1)相似三角形的性质和判定在实际问题中的灵活运用;
(2)相似多边形的性质和应用;
(3)相似关系在函数图像中的应用。
(二)教学设想
1.教学方法:
(1)采用启发式教学,引导学生自主探索相似图形的性质和判定方法,培养学生的自主学习能力;
第27章相似三角形-相似三角形中怎样找对应边教案
此外,学生小组讨论的环节让我感到欣慰。他们能够围绕相似三角形在实际生活中的应用提出自己的观点,并进行深入的交流。但在引导讨论的过程中,我发现有些学生对于开放性问题的回答不够自信,这可能是因为他们在批判性思维和创造性思维方面还有待提高。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的基本概念、判定方法以及在实际问题中的应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
第27章相似三角形-相似三角形中怎样找对应边教案
一、教学内容
第27章相似三角形-相似三角形中怎样找对应边教案:
1.知识点一:相似三角形的定义及性质
-列举相似三角形的定义及性质,如对应角相等、对应边成比例等。
2.知识点二:相似三角形的判定方法
第27章《相似》导学案
第1课时 相似图形学习目标1.通过对事物的图形的观察、思考和分析,认识理解相似的图形.2.经历动手操作的活动过程,增强学生的观察、动手能力.3.体会图形的相似在现实生活中的存在与应用,进一步提高学生的数学应用意识. 自学引导理解相似图形的概念,能正确判断两个图形是否相似; 学生独立完成后集体订正①把 图形叫做相似图形.②两个图形相似,其中一个图形可以看作是由另一个图形 和 得到的.③从放大镜里看到的三角板和原来的三角板相似吗? ④哈哈镜中人的形象与本人相似吗? ⑤全等三角形相似吗?⑥生活中哪些地方会见到相似图形? 当堂练习1.下列各组图形相似的是()2.将左下图中的箭头缩小到原来的21,得到的图形是()3.用一个10倍的放大镜看一个15°的角,看到的角的度数为( )A.150°B.105°C.15°D.无法确定大小第1课时 相似图形学习目标1.通过对事物的图形的观察、思考和分析,认识理解相似的图形.2.经历动手操作的活动过程,增强学生的观察、动手能力.3.体会图形的相似在现实生活中的存在与应用,进一步提高学生的数学应用意识. 自学引导理解相似图形的概念,能正确判断两个图形是否相似; 学生独立完成后集体订正①把 图形叫做相似图形.②两个图形相似,其中一个图形可以看作是由另一个图形 和 得到的.③从放大镜里看到的三角板和原来的三角板相似吗? ④哈哈镜中人的形象与本人相似吗? ⑤全等三角形相似吗?⑥生活中哪些地方会见到相似图形? 当堂练习1.下列各组图形相似的是()2.将左下图中的箭头缩小到原来的21,得到的图形是()3.用一个10倍的放大镜看一个15°的角,看到的角的度数为( )A.150°B.105°C.15°D.无法确定大小第2课时 相似多边形与比例线段学习目标1.结合现实情境了解成比例线段,并能运用比例线段进行计算求值,理解并掌握相似多边形的性质以及运用相似多边形的性质解决实际问题.2.在探索过程中激发学生的求知欲,发展学生的交流合作精神. 自学引导掌握相似多边形的概念及性质,理解并掌握“相似比”的概念,能运用相似多边形的性质进行相关的计算.①对于四条线段a 、b 、c 、d,如果其中两条线段的比等于 ,如a b =cd(即ad=bc),那么我们就说这四条线段是 .②相似多边形的 相等,对应边 .③相似多边形 的比称为相似比,当相似比为1,这两个多边形 .④用一个放大镜看一个四边形ABCD ,若该四边形的边长放大5倍,下列说法正确的是( )A.角A 是原来的5倍B.周长是原来的5倍C.每一个内角都发生了变化D.以上说法都不对⑤五边形ABCDE 的五边长分别为5 cm 、20 cm 、30 cm 、35 cm 、40 cm.另一个和它相似的五边形的最短边长是10 cm ,则这个五边形的最长边为 .点拨:第④题注意相似多边形的角的度数相等,对应边成比例;第⑤题注意对对应的理解. 当堂练习1.下列各线段的长度成比例的是( )A.2 cm ,5 cm ,6 cm ,8 cmB.1 cm ,2 cm ,3 cm ,4 cmC.3 cm ,6 cm ,7 cm ,9 cmD.3 cm ,6 cm ,9 cm ,18 cm2.在比例尺为1∶200的地图上,测得A ,B 两地间的图上距离为4.5 cm ,则A ,B 两地间的实际距离为 m.3.两个相似多边形一组对应边分别为3 cm ,4.5 cm ,那么它们的相似比为( )A.32B.23C.94D.494.一个多边形的边长分别为2,3,4,5,6,另一个和它相似的多边形的最长边为24,则这个多边形的最短边长为( )A.6B.8C.12D.10 5.(2013·莆田)下列四组图形中,一定相似的是( )A.正方形与矩形B.正方形与菱形C.菱形与菱形D.正五边形与正五边形6.已知菱形ABCD 与菱形A ′B ′C ′D ′,添加一个条件,使菱形ABCD 与菱形A ′B ′C ′D ′相似,这个条件是 .(写出一个即可)拓展提升7.(2014·重庆)如图,△ABC 与△DEF 相似,相似比为 1∶2,BC 的对应边是EF ,若BC=1,则EF 的长是( ) A.1 B.2 C.3 D.48.某机器零件在图纸上的长度是21 mm ,它的实际长度是630 mm ,则图纸的比例尺是( )A.1∶20B.1∶30C.1∶40D.1∶509如图,正五边形FGHMN 与正五边形ABCDE 相似, 若AB ∶FG=2∶3,则下列结论正确的是( ) A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F10.已知两地的实际距离是1 800 m ,在地图上量得这两地的距离为2 cm ,则这个地图的比例尺为( )A.1∶900B.1∶9 000C.1∶90 000D.1∶36 00011.已知如图,在△ABC 中,AB=20,BC=14,AC=12,△ADE 与△ACB 相似,∠AED=∠B,DE=5,求AD ,AE 的长.第3课时相似三角形的判定定理1,2学习目标掌握三边成比例的两个三角形相似和两边成比例且夹角相等的两个三角形相似这两个判定三角形相似的定理.自学指导要点感知1三边的两个三角形相似.预习练习1-1已知△ABC中,AB=4,BC=5,CA=6.如果DE=8,那么当EF= ,FD=时,△DEF∽△ABC.要点感知2 两边且夹角的两个三角形相似.预习练习2-1 在△ABC和△A′B′C′,若∠B=∠B′,AB=6,BC=8,B′C′=4,则当A′B′= 时,△ABC∽△A′B′C′.当堂训练1.有甲、乙两个三角形木框,甲三角形木框的三边长分别为1,2,5,乙三角形木框的三边长分别为5,5,10,则甲、乙两个三角形( )A.一定相似B.一定不相似C.不一定相似D.无法判断2.如图,在△ABC中,AB=25,BC=40,AC=20.在△ADE中,AE=12,AD=15,DE=24,试判断这两个三角形是否相似,并说明理由.3.在等边三角形ABC中,D、E分别在AC、AB上,且AD∶AC=1∶3,AE=BE,则有( )A.△AED∽△BEDB.△AED∽△CBDC.△AED∽△ABDD.△BAD∽△BCD4.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是( )5.一个钢筋三脚架三边长分别是20 cm、50 cm、60 cm.现在再做一个与其相似的钢筋三脚架,而只有长为30 cm和50 cm的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则下列截法:①将30 cm截出5 cm和25 cm;②将50 cm截出10 cm和25 cm;③将50 cm截出12 cm和36 cm;④将50 cm截出20 cm和30 cm.其中正确的有( )A.1个B.2个C.3个D.4个6.如图,△ABC中,点P在AB上,在下列四个条件中:①AP∶AC=AC∶AB;②AC2=AP·AB;③AB·CP=AP·CB.能满足△APC和△ACB相似的条件有( )A.1个B.2个C.3个D.0个7.如图,已知∠DAB=∠CAE,请补充一个条件:,使△ABC∽△ADE.8.已知如图,正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点。
2022年人教版九年级下册数学同步培优第27章相似第2节第1课时 平行线分线段成比例
第1课时 平行线分线段成比例
基础巩固
能力提升
拓展突破
-4-
一组平行线夹两条相交直线,交点在平行线外→交点在平行 线上→交点在平行线内 (1)如图,l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,过点B的直线 DE分别交l1,l3于点D,E.若AB=2,BC=4,BD=3,则线段BE的 长为 6.
A.1个 C.3个
B.2个 D.4个
第1课时 平行线分线段成比例
基础巩固
能力提升
拓展突破
-8-
6.如图,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AD与BC相交 于点E,EF⊥BD,垂足为F.试回答:图中 △DEF∽ △DAB,△BEF∽ △BCD,△ABE∽ △DCE.
第1课时 平行线分线段成比例
第1课时 平行线分线段成比例
基础巩固
能力提升
拓展突破
-19-
解:(1)∵CE∥AD,∴AB = BD,∠2=∠ACE,∠1=∠E.
AE CD
∵AD 平分∠BAC,∴∠1=∠2,∴∠ACE=∠E, ∴AE=AC,∴AB = BD.
AC CD
第1课时 平行线分线段成比例
基础巩固
能力提升
拓展突破
-20-
A.8∶7 B.8∶5 C.3∶2 D.6∶5
第1课时 平行线分线段成比例
基础巩固
能力提升
拓展突破
-12-
10.如图,在△ABC中,若DE∥BC,EF∥CD,AE=2EC,则 AF∶FD∶DB= 4∶2∶3 .
第1课时 平行线分线段成比例
基础巩固
能力提升
拓展突破
-13-
11.如图,已知 AC∥FE∥BD,求证:AE + BE=1.
人教版九年级数学下册《第二十七章 相似》教案
人教版九年级数学下册《第二十七章相似》教案一. 教材分析人教版九年级数学下册《第二十七章相似》主要讲述了相似图形的性质和判定方法。
本章内容包括相似图形的定义、相似比、相似多边形的性质、相似三角形的性质和判定、相似圆的性质和判定等。
这些内容是学生学习几何学的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形有了一定的认识。
但是,对于相似图形的定义和性质,学生可能还比较陌生,需要通过具体的例子和实践活动来加深理解。
此外,学生对于图形的变换和判定方法可能还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.理解相似图形的定义和性质,能够判断两个图形是否相似。
2.掌握相似三角形的性质和判定方法,能够应用到实际问题中。
3.培养学生的空间想象能力和逻辑思维能力,提高解决问题的能力。
四. 教学重难点1.相似图形的定义和性质的理解。
2.相似三角形的性质和判定方法的掌握。
3.图形变换的熟练运用。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,激发学生的学习兴趣和积极性。
2.利用多媒体和实物模型,进行直观演示和操作,帮助学生建立直观的空间想象能力。
3.提供丰富的练习题,进行巩固和拓展,提高学生的解题能力。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过展示一些相似的图形,如字母“A”和“a”,让学生观察和思考,引出相似图形的概念。
2.呈现(10分钟)讲解相似图形的定义和性质,通过具体的例子和实物模型进行演示,让学生理解和掌握相似图形的特征。
3.操练(10分钟)让学生进行一些类似的练习题,巩固对相似图形的理解和判断能力。
可以提供一些提示和指导,帮助学生解决问题。
4.巩固(10分钟)通过一些综合性的练习题,让学生应用相似图形的性质和判定方法,解决实际问题。
教师可以给予一些帮助和指导,鼓励学生独立思考和解决问题。
部编人教版九年级数学上册第27章 相似【说课稿】 图形的相似
图形的相似各位老师:大家好!我说课的内容是:人教版九年义务教育课程标准实验教科书九年级下册第二十七章第一节《图形的相似》。
我将从教学设计、教学过程、两个方面予以说明:一、教学设计:(一)教材分析在义务教育阶段,让学生接触相对完整的图形变换,是义务教育的性质所决定的。
本章是继“图形全等、轴对称、平移、旋转”之后集中研究图形形状的内容,不仅是对图形全等内容的进一步深化和发展,而且是对图形研究方法的综合运用。
本节课是本章的第一课时,力图通过观察现实生活中的各种相似图形,归纳抽象出数学概念,呈现出有关内容,体现了数学与现实之间的必然联系。
教材从生活中形状相同的图形出发,引出相似图形的概念,进而研究相似多边形的特征并进行运用,另外,学习了本节内容,可以使学生更好地认识、描述物体的形状,同时也为下一步《相似三角形》以及高中段“图形与空间”的学习起着铺垫作用。
(二)学习目标根据新课标的要求及九年级学生的认知水平,我确定了本节课的学习目标:1、能从生活中形状相同的图形的实例中认识图形的相似,记住相似图形概念。
2、记住成比例线段的概念,会确定线段的比。
3、记住相似多边形的性质,会辨别两个多边形是否相似。
(三)学习重点和难点新课标强调要重视知识的发生过程,培养学生的探究习惯,所以相似图形的概念和性质的探索是本节的学习重点。
九年级学生虽已具备了一定的逻辑思维能力,但学生的知识结构还不完善,数学思想方法的掌握和运用还不熟练,所以类比全等图形性质的运用,相似多边形性质的初步应用是本节课的教学难点。
二、教学过程:根据课标要求,结合学生实际,学生的学习过程分五个环节:复习旧知,引入新课;尝试学习,探索新知;巩固运用,拓展提高;回顾小结,整体感知;当堂测试,自我评价。
(一)复习旧知,引入新课新课标指出,数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,根据九年级课程内容设置,为了让学生能从代数到几何进行快速的思维转换,首先我特意展示了全等图形,让学生回顾全等图形的相关内容,明确图形之间的的关系。
第27章相似三角形知识点总结及典型题目精选全文完整版
可编辑修改精选全文完整版相似三角形知识点总结1. 比例线段的有关概念:b、d叫后项,d叫第四比例项,如果b=c,那么b叫做a、d的比例中项。
把线段AB分成两条线段AC和BC,使AC2=AB·BC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。
2. 比例性质:3. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1∥l2∥l3。
②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
4. 相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似5. 相似三角形的性质①相似三角形的对应角相等②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方一.选择题:1、下列各组数中,成比例的是( )A .-7,-5,14,5B .-6,-8,3,4C .3,5,9,12D .2,3,6,122、如果x:(x+y)=3:5,那么x:y =( )A. B. C. D. 3、如图,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( ) A 、21 B 、31 C 、32 D 、41 4、下列说法中,错误的是( )(A )两个全等三角形一定是相似形 (B )两个等腰三角形一定相似 (C )两个等边三角形一定相似 (D )两个等腰直角三角形一定相似5、如图,RtΔABC 中,∠C=90°,D 是AC 边上一点,AB =5,AC =4,若ΔABC∽ΔBDC,则CD = . A .2 B .32 C .43 D .94二、填空题6、已知a =4,b =9,c 是a b 、的比例中项,则c = .7、如图,要使ΔABC∽ΔACD,需补充的条件是 .(只要写出一种)8、如图,小东设计两个直角,来测量河宽DE ,他量得AD =2m ,BD =3m ,CE =9m ,则河宽DE 为ABCD(第7题)238332589、一公园占地面积约为8000002m ,若按比例尺1∶2000缩小后,其面积约为 2m .10、如图,点P 是R tΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点P 作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条. 三、解答题11、如图18—95,AB 是斜靠在墙壁上的长梯,梯脚B 距墙80cm ,梯上点D 距墙70cm ,BD 长55cm .求梯子的长.12、如图,已知AC⊥AB,BD⊥AB,AO =78cm ,BO =42cm ,CD =159cm ,求CO 和DO .13、如图,在正方形网格上有111C B A ∆∽222A C B ∆,这两个三角形相似吗?如果相似,求出222111A C B A C B ∆∆和的面积比.CBAP(第10题)14、已知:如图,在△ABC 中,点D 、E 、F 分别在AC 、AB 、BC 边上,且四边形CDEF 是正方形,AC =3,BC =2,求△ADE、△EFB、△ACB 的周长之比和面积之比.15、如图所示,梯形ABCD 中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P 的位置,使得以P,A,D 为顶点的三角形与以P,B,C 为顶点的三角形相似.16、如图,□ABCD 中,:2:3AE EB =,DE 交AC 于F . (1)求AEF ∆与CDF ∆周长之比;(2)如果CDF ∆的面积为220cm ,求AEF ∆的面积.PAB DCABECDF。
华师大数学九年级下第27章圆的知识点总结
圆的知识点总结一、垂径定理1. 定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2. 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 二、弧、弦、圆心角定理1. 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.2. 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量分别相等. 三、圆周角定理定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径. 推论3:圆的内接四边形对角互补. 四、与圆相关的位置关系1.点和圆的位置关系:设O ⊙的半径为r ,点P 到圆心O 的距离为d ,则有: 点在圆外⇔d r >;点在圆上⇔d r =;点在圆内⇔d r <.2.直线和圆的位置关系:设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则有:d r >⇔直线l 与O ⊙相离;d r =⇔直线l 与O ⊙相切;d r <⇔直线l 与O ⊙相交切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心. 切线的判定:定义:和圆只有一个公共点的直线是圆的切线; 距离:和圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.3.圆和圆的位置关系:设12O O 、⊙⊙的半径分别为r R 、(其中R r >),两圆圆心距为d ,则有:d R r >+⇔两圆外离;d R r =+⇔两圆外切;R r d R r -<<+⇔两圆相交; d R r =-⇔两圆内切;0d R r <-⇔≤两圆内含.五、圆中的相关计算公式设O ⊙的半径为R ,n ︒圆心角所对弧长为l , 1. 弧长公式:π180n Rl =2. 扇形面积公式:21π3602n S R lR ==扇形 3. 圆柱体表面积公式:22π2πS R Rh =+4. 圆锥体表面积公式:2ππS R Rl =+(l 为母线)5. 圆锥侧面积公式:πrl六、圆中常见辅助线作法七、圆中常见倒角模型。
27.2.3相似三角形应用举例《视线遮挡问题》教案
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指具有相同形状但大小不同的三角形,它们的对应角相等,对应边成比例。相似三角形的性质在解决视线遮挡等实际问题中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用相似三角形的性质解决视线遮挡问题,以及它如何帮助我们计算建筑物的高度等。
4.增强学生的合作交流意识,通过小组讨论、合作探究等形式,培养学生与他人合作解决问题的能力。
本节课注重将核心素养的培养贯穿于教学过程,帮助学生形成数学学科的核心素养,提高学生的综合运用能力。
三、教学难点与重点
1.教学重点
-理解并掌握相似三角形的性质,特别是相似三角形的对应边比例相等、对应角相等的特点。
五、教学反思
在今天的教学中,我尝试通过生活实例引入相似三角形的应用,让学生感受到数学与生活的紧密联系。从课堂反应来看,大部分学生能够积极参与,对视线遮挡问题产生了一定的兴趣。但在教学过程中,我也发现了一些需要改进的地方。
首先,关于理论讲授部分,我发现在解释相似三角形性质时,部分学生对对应角和对应边的概念理解不够深刻。在今后的教学中,我需要更加注重对基础概念的讲解,通过丰富的例子和直观的图形,帮助学生更好地理解相似三角形的性质。
(2)提供不同角度的视线遮挡问题,引导学生发现相似三角形在解决问题中的关键作用。
2.ቤተ መጻሕፍቲ ባይዱ学难点
-理解视线遮挡问题中的“视线”概念,并将其与相似三角形的知识联系起来。
-在实际问题中,识别和构建相似三角形,特别是当观察点不在三角形内部时的情况。
-对比例关系的建立和求解过程中涉及的代数运算,如分数的运算、方程的求解等。
27.2.3相似三角形应用举例《视线遮挡问题》教案
人教版初中九年级数学下册第二十七章《相似》知识点总结(含答案解析)
一、选择题1.如图,已知点D ,E 是AB 的三等分点,DF ,EG 将ABC 分成三部分,且////DF EG BC ,图中三部分的面积分别为1S ,2S ,3S ,则123::S S S 的值为( )A .1:2:3B .1:2:4C .1:3:5D .2:3:4 2.如图所示,在矩形ABCD 中,AB =2,BC =2,对角线AC 、BD 相交于点O ,过点O 作OE 垂直AC 交AD 于点E ,则AE 的长是( )A .2B .3C .1D .1.5 3.如图,点D 、E 分别在CA 、BA 中的延长线上,若DE ∥BC ,AD =5,AC =10,DE =6,则BC的值为( )A .10B .11C .12D .134.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图一定相似的有( )A .1个B .2个C .3D .4个5.如图,已知////AB CD EF ,它们依次交直线1l 、2l 于点A 、D 、F 和点B 、C 、E ,如果:3:1AD DF =,10BE =,那么CE 等于( )A .103B .203C .52D .152 6.有下列四种说法:其中说法正确的有( ) ①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似. A .4个B .3个C .2个D .1个 7.如果两个相似三角形的对应高之比是1:2,那么它们的周长比是( )A .1:2B .1:4C .1:2D .2:1 8.如图,已知在ABC 中,D 为BC 上一点,//EG BC ,分别交AB ,AD ,AC 于点E ,F ,G ,则下列比例式正确的是( )A .AE EF BE BD = B .EF AF DC AD = C .AC FG CG DC = D .AE FG AB DC= 9.已知a 3b 4=,则下列变形错误的是( ) A .34a b = B .34a b = C .4a=3b D .43b a = 10.如图所示,一般书本的纸张是原纸张多次对开得到,矩形ABCD 沿EF 对开后,再把矩形EFCD 沿MN 对开,依次类推,若各种开本的矩形都相似,那么AD AB等于( )A .2B .22C .512-D .211.大自然巧夺天工,一片小心树叶也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点(AP >PB ),如果AP 的长度为8cm ,那么AB 的长度是( )A .45-4B .12-45C .12+45D .45+4 12.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:9,则S △BDE :S △CDE 的值是( ).A .1:2B .1:3C .1:4D .2:5 13.下列相似图形不是位似图形的是( )A .B .C .D . 14.如图,在ABC 中,点D 、E 分别在边AB 、AC 上,则在下列五个条件中:①AED B ∠=∠;②//DE BC ;③AD AE AC AB=;④AD BC DE AC ⋅=⋅,能满足ADE ACB 的条件有( )A .1个B .2个C .3个D .4个 15.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中△ABC 相似的是( )A .B .C .D .二、填空题16.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折 叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG = 1.5 S △FGH ;④AG+DF=FG ;其中正确的是______________.(填写正确结论的序号)17.如图,直线////AF BE CD ,直线AC 交BE 于B ,直线FD 交BE 于E ,2AB cm =,1BC cm =, 1.8EF cm =,求DE 的长为______cm .18.如图,矩形ABCD 中,2AB =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ =________.19.如图,在Rt ACB 中,90C ∠=︒,30ABC ∠=︒,4AC =,N 是斜边AB 上方一点,连接BN ,点D 是BC 的中点,DM 垂直平分BN ,交AB 于点E ,连接DN ,交AB 于点F ,当ANF 为直角三角形时,线段AE 的长为________.20.如图,身高1.6m 的小华站在距路灯5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AE 为________.21.如图,EF 是ABC 纸片的中位线,将AEF 沿EF 所在的直线折叠,点A 落在BC 边上的点D 处,已知AEF 的面积为7,则图中阴影部分的面积为______.22.下列五组图形中,①两个等腰三角形;②两个等边三形;③两个菱形;④两个矩形;⑤两个正方形.一定相似的有_______(填序号)23.已知13x y =,则x y y-的值为______ 24.如图,ED 为△ABC 的中位线,点G 是AD 和CE 的交点,过点G 作GF ∥BC 交AC 于点F,如果GF=4,那么线段BC的长是________.25.如图,Rt△ABC中,AC=5,BC=12,O为BC上一点,⊙O分别与边AB、AC切于E、C,则⊙O半径是________.26.如图,点A在反比例函数kyx=(k≠0)的图像上,点B在x轴的负半轴上,直线AB交y轴与点C,若12ACBC=,△AOB的面积为12,则k的值为_______.三、解答题27.已知:△ABC在坐标平面内,三个顶点的坐标为A(0,3)、B(3,4)、C(2,2).(正方形网格中,每个小正方形边长为1个单位长度)(1)画出△ABC向下平移4个单位得到的△A1B1C1;(2)以B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比2:1,直接写出C2点坐标是;(3)△A2BC2的面积是平方单位.28.已知ABC ,延长BC 到D ,使CD BC =.取AB 的中点F ,连结FD 交AC 于点E .(1)求AE AC的值; (2)若18AB =,FB EC =,求AC 的长. 29.如图,已知矩形ABCD 的顶点A ,D 分别落在x 轴、y 轴上,OD =2OA =6,AD :AB =3:1,CE 垂直y 轴于点E .(1)求证:CDE DAO ∽△△;(2)直接写出点B 和点C 的坐标.30.如图所示,在平行四边形ABCD 中,E 是CD 的延长线上一点,12DE CD =,连接BE 与AC ,AD ,FE 分别交于点O ,F .(1)若DEF ∆的面积为2,求平行四边形ABCD 的面积.(2)求证2·OB OE OF =.。
人教版数学九年级下册第27章《相似》课堂教学设计
人教版数学九年级下册第27章《相似》课堂教学设计一. 教材分析人教版数学九年级下册第27章《相似》主要介绍了相似图形的性质和判定。
本章内容是学生学习几何知识的重要环节,为后续学习函数、解析几何等知识点奠定基础。
本章内容涉及的概念和性质较多,学生需要通过实例理解和掌握相似图形的相关知识。
二. 学情分析九年级的学生已具备一定的几何知识基础,能理解并运用平行、相交、三角形、四边形等基本图形的性质。
但学生在学习过程中,对抽象概念的理解和运用仍有困难,需要通过具体实例和动手操作来加深理解。
此外,学生对数学语言的表达和逻辑推理能力有待提高。
三. 教学目标1.理解相似图形的概念,掌握相似图形的性质。
2.学会判定两个图形是否相似,并能运用相似性质解决实际问题。
3.培养学生的逻辑推理能力和数学语言表达能力。
四. 教学重难点1.相似图形的概念和性质。
2.判定两个图形相似的方法。
3.相似图形在实际问题中的应用。
五. 教学方法1.采用直观演示法,通过实物模型和几何画板软件展示相似图形的性质和判定。
2.运用案例分析法,让学生通过分析具体实例,理解和掌握相似图形的性质。
3.采用分组合作法,让学生在小组内讨论和探究相似图形的问题,培养学生的团队协作能力。
4.运用问答法,引导学生积极思考,提高学生的数学思维能力。
六. 教学准备1.准备相应的教案和教学课件。
2.准备实物模型和几何画板软件。
3.准备相关案例分析和练习题。
七. 教学过程1.导入(5分钟)通过展示实物模型和几何画板软件,引导学生观察和分析,提出问题:“这些图形有什么共同特点?”让学生思考和讨论,引出相似图形的概念。
2.呈现(10分钟)讲解相似图形的定义和性质,通过实例和几何画板软件展示相似图形的判定方法。
引导学生理解和掌握相似图形的性质。
3.操练(10分钟)让学生分组讨论,分析给定的图形,判断它们是否相似。
每组选取一个代表进行回答,教师点评并给予指导。
4.巩固(10分钟)让学生运用相似图形的性质解决实际问题,如计算图形面积、比例问题等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第27章相似形(要求深刻理解、熟练运用)
1.三角形中,作平行线构造相似形和已知中点构造中位线是常用辅助线.
2.相似形有传递性;即:∵Δ1∽Δ2Δ2∽Δ3∴Δ1∽Δ3
四、位似
1、位似图形:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,且每组对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.
2、掌握位似图形概念,需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的同一侧;④位似比就是相似比.利用位似图形的定义可判断两个图形是否位似.
3、位似图形首先是相似图形,所以它具有相似图形的一切性质.位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比).
4、利用位似,可以将一个图形放大或缩小.作图时要注意:①首先确定位似中心,位似中心的位置可随意选择;
②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;④符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形.
第29章投影和视图知识点总结
知识点一:三视图
1.三种视图的内在联系
主视图反映物体的_________;俯视图反映物体的________;左视图反映物体的
_____ __.因此,在画三种视图时,主、俯视图要长对______,主、左视图要高_____ __,俯、左视图要_______.
2.三种视图的位置关系
一般地,首先确定主视图的位置,画出主视图,然后在主视图的______画出俯视图,在主视图的________画出左视图.
3.三种视图的画法
首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成______线,看不见部分的轮廓线通常画成_______线.
知识点二:平行投影和中心投影
1.太阳光与影子
太阳光线可以看成平行光线,像这样的光线所形成的投影称为______ ___.
物体在太阳光照射的不同时刻,不仅影子的长短在_______,而且影子的方向也在改变.根据不同时刻影长的变换规律,以及太阳东____西______的自然规律,可以判断时间的先后顺序.
分别过每个物体的顶端及其影子的顶端作一条直线,若两直线______,则为平行投影;若两直线_______,则为中心投影,其交点就是光源的位置.
灯光的光线可以看成是从_______发出的(即为点光源),像这样的光线所形成的投影称为中心投影.
中心投影光源的确定:分别过每个物体的顶端及其影子的顶端作一条直线,这两条直线的___________即为光源的位置.
知识点三.视点与盲区
盲区即为视觉看_______的区域.。