小学鸡兔同笼系列经典例题讲解
最新人教版四年级数学下册重点,鸡兔同笼问题讲解及习题(含答案)
鸡兔同笼问题讲解及习题例1:小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只)有鸡16-6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16-44)÷(4-2)=10(只),有兔16-10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2:100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3-1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
在下面的例题中,我们只给出一种假设方法。
例3:彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
小学数学鸡兔同笼问题典型例题
小学数学鸡兔同笼问题典型例题例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?分析如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2=56÷2=28(只)②免有多少只?46-28=18(只)答:鸡有28只,免有18只。
我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?分析这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
小学数学鸡兔同笼问题例题题解完整版
小学数学鸡兔同笼问题例题题解HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】十、鸡兔问题。
例1 .鸡兔同笼共有32只,共有腿100条,有几只鸡?几只兔?分析与解答:解法一:题上告诉我们:鸡兔一共32只,我们可以先假设这32只都是鸡,这样应该有腿2×32=64(条),这比题上告诉的腿数100条少了100-64=36(条)。
这36条腿是怎样少出来的呢?显然是因为把兔子算成了鸡,把一只兔子算成鸡便会少两条腿,把两只兔子算成鸡便会少2个两条腿……据此推想:少了几个两条腿,就是把几只兔子算成了鸡,因此兔子的只数一定是:36÷2=18(只);鸡的只数也就是:32-18= 14(只)综合列式:(100-2×32)÷(4-2)=36÷2=18(只)(兔)32-18=14(只)(鸡)解法二:假设32只全部是兔子,这样就应该有腿4×32=128(条),这比题目已知的100条腿多了128-100=28(条)。
为什么会多出28条腿呢?显然是把其中的鸡当作兔子计算了,把一只鸡当兔子计算就多出两条腿,把两只鸡当兔子计算便会多出2个两条腿,推而广之:把几只鸡当兔子计算,便会多出几个两条腿,因此鸡的只数一定是:28÷2=14(只);兔子的只数自然是32-14= 18(只)。
综合列式:(4×32)-100)÷(4-2)=28÷2=14(只)32-14=18(只)答:有鸡14只,兔18只。
类似例1这样的题目被称为鸡兔问题,可以用假设的方法思考解答,这一类题目的一般解法是:兔数=(原有腿数-每只鸡腿数×鸡兔总数)÷(每只兔腿数-每只鸡腿数)或者是:鸡数=(每只兔腿数×鸡兔总数-原有腿数)÷(每只兔腿数-每只鸡腿数)例2 哥哥领回工资131元,全部是贰元和伍元的票面,一共有40张。
鸡兔同笼问题讲解及习题(含答案)
鸡兔同笼问题讲解及习题鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。
许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44—32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
‘解:有兔(44—2×16)÷(4—2)=6(只),有鸡16—6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64—44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4—2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16—44)÷(4—2)=10(只),有兔16—10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300—140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100—80=20(人)。
鸡兔同笼经典试题解析
鸡兔同笼经典试题【例一】小芳家养了一些鸡和兔子,同时养在一个笼子里,小芳数了数,它们共有35个头,94只脚.问:小芳家养的鸡和兔各有多少只(基本假设法)【解析】方法一:抬腿法。
每只动物都抬起2条腿,剩下94-35×2=24.剩下的每只兔子两条腿,所以共有12只兔子。
方法二:假设35只都是兔子,那么就有35×4=140(只)脚,假设的比实际的多了140-94=46(只).多46只的原因是35只里不全是兔子,现在我们得把鸡给换回来,一只兔子换一只鸡会少2条腿,所以得换46÷2=23只鸡回来。
方法三:还可以假设35只都是鸡,那么共有脚2×35=70(只),比94只脚少了94-70=24(只)脚,每只鸡比兔子少2只脚,那么共有兔子24÷2=12(只).要点:“抬腿”法简单易操作,但适用范围较小;“假设法“稍有难度,但必须掌握,因为假设法在以后很多题目中都会用到,比如工程问题和行程问题等。
一般假设法总结:假设兔子,得出鸡;假设鸡,得出兔子。
(方便孩子做题,但千万不能单纯记忆)【例题2】动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只(变型假设法)【解析】方法一:假设鸵鸟数跟梅花鹿一样多,那么总脚数就得减去多出来20只鸵鸟的40 只脚,新的总脚数就是168只。
鸵鸟和梅花鹿一样多,所以梅花鹿的腿数是鸵鸟的两倍。
那么168只就是3倍,所以梅花鹿的腿数是112条,就由28只,鸵鸟是48只。
方法二:假设梅花鹿数跟鸵鸟一样多,那么总脚数就得增加80只脚,新的总脚数就是288只。
梅花鹿和鸵鸟一样多,所以梅花鹿的腿数是鸵鸟的两倍。
那么288只就是3倍,所以鸵鸟有96条腿,就有48只,梅花鹿有28只。
要点:和倍问题与鸡兔同笼【例题3】在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆(变型题)【解析】假设都是三轮摩托车,应有3×41=123轮子,少了127-123=4(个)轮子.每把一辆汽车假设为三轮摩托车,会减少4-3=1(个)轮子.汽车有4÷1=4(辆);从而求出三轮摩托车有37辆.同理,可假设都是汽车。
小学数学鸡兔同笼问题典型例题
小学数学鸡兔同笼问题典型例题例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?分析如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2=56÷2=28(只)②免有多少只?46-28=18(只)答:鸡有28只,免有18只。
我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?分析这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
鸡兔同笼问题讲解及鸡兔同笼问题练习题
鸡兔同笼问题一、通用法解题思路(一)思路讲解鸡兔同笼问题本质是假设问题,其解题方法有两种,一种是在未学习方程式之前常用得假设方法。
一种是一元一次方程解法。
其实一元一次方程得方法更为简单,直至本质。
小学常用的方法反而更考校孩子得思维能力。
在小学常用解法中,有四个量:鸡兔的总数、鸡兔脚得总数、每只鸡的脚数、每只兔得脚数。
找到这四个量后。
就能解决鸡兔同笼问题。
(之所以把每只兔子、鸡的脚数作为需要寻找的量是因为在有些问题中,是需要判断的。
后面举例说明。
)假设都是兔子:那么因为兔子的脚是4只,鸡的脚是2只,在假设后,每只鸡也变成了4只脚,那么假设后总的脚数比实际的要多,多出来的是每只鸡多算的。
如此,可以得到计算方法:鸡的总数=(鸡兔的总数×每只兔子脚的个数-鸡兔脚得总数)÷(每只兔子脚的个数-每只鸡脚的个数)同理,如果假设都是鸡,那么可以得到兔子数量的计算方法:兔子的总数=(鸡兔脚得总数-鸡兔的总数×每只鸡脚的个数)÷(每只兔子脚的个数-每只鸡脚的个数)(二)例题讲解例题一:鸡兔同笼,共有头30只,脚88只,求鸡和兔子各多少只?在这个题目中,我们寻找四个量:鸡兔的总数:30鸡兔脚的总数88每只鸡的脚数2每只兔子的脚数4公式:鸡的总数=(鸡兔的总数×每只兔子脚的个数-鸡兔脚得总数)÷(每只兔子脚的个数-每只鸡脚的个数)带入公式:鸡的总数:(30×4-88)÷(4-2)=16(只)兔子的总数:30-16=14(只)例题二:一次数学竞赛共有20道题目。
做对一题得5分,做错一题倒扣3分,小明考了52分,问小明作对了几道题目?在这个题目中,我们寻找四个量,作对的题目看做兔子,做错的题目看成鸡:鸡兔的总数:题目的总数20鸡兔脚的总数;总分数20×5=100每只鸡的脚数:做错一题所得分数-3每只兔子的脚数:作对一题所得分数5分带入公式:兔子的总数=(鸡兔脚得总数-鸡兔的总数×每只鸡脚的个数)÷(每只兔子脚的个数-每只鸡脚的个数)作对题目的总数=(实际总分数-题目总数×做错题目得分)÷(作对题目得分-做错题目得分)作对题目的总数:(52+20×3)÷(5+3)=14(题)做错题目的总数:20-14=6(题)二、鸡兔同笼问题其他解法思路(一)解法思路一在只是计算鸡、兔的题目中,因为鸡的腿数是2只,兔子的腿数是4只,都是偶数,因此我们可以想象让鸡把腿都收起来,这个时候站着的都是兔子了,每只兔子有2只腿站着,因此把剩下的腿除以2,就是兔子的数量。
四年级数学上册 《鸡兔同笼》经典例题解析
四年级数学上册 《鸡兔同笼》经典例题解析
例题:笼子里有若干只鸡和兔。
从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有几只?
方法一:列表法
方法二:假设法
假设笼子里全是鸡 笼子里脚的数量是8×2=16
(只) 与实际相差26-16=10(只)
每只免子少算了2只, 10÷2=5(只)就是兔子的数量。
方法三:抬脚法——鸡抬起一只脚,兔子抬起两只脚。
①假如让鸡抬起一只脚,兔子抬起两只脚, 还有26÷2= 13只脚。
②脚的总数-头的总数=兔子的只数,有13-8=5只兔子, 有8-5=3只鸡。
答:5只兔子,3只鸡。
规范解答: (26-8×2)÷(4-2) =(26-16)÷2 =10÷2 =5(只)
鸡的数量:
8-5=3(只) 答:5只兔子,3只鸡。
小学奥数趣味学习《鸡兔同笼问题》典型例题及解答
小学奥数趣味学习《鸡兔同笼问题》典型例题及解答兔同笼问题是古典的算术问题。
已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
数量关系:第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)解题思路和方法:解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
例题1:鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?解:假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。
例题2:动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?解:假设全部都是鸵鸟,则一共有70×2=140(只)脚,此时长颈鹿的脚数是0,鸵鸟脚比长颈鹿脚多140只,而实际上鸵鸟的脚比长颈鹿多80只,因此鸵鸟脚与长颈鹿脚的差数多了140-80=60(只),这是因为把其中的长颈鹿换成了鸵鸟。
把每一只长颈鹿换成鸵鸟,鸵鸟的脚数将增加2只,长颈鹿的脚数减少4只,那么鸵鸟脚数与长颈鹿脚数的差就增加了6只,所以换成鸵鸟的长颈鹿有60÷6=10(只),鸵鸟有70-10=60(只)。
鸡兔同笼典型例题及详细讲解
鸡兔同笼问题与假设法鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的;它是一类有名的中国古算题..许多小学算术应用题;都可以转化为鸡兔同笼问题来加以计算..例1小梅数她家的鸡与兔;数头有16个;数脚有44只..问:小梅家的鸡与兔各有多少只分析:假设16只都是鸡;那么就应该有2×16=32只脚;但实际上有44只脚;比假设的情况多了44-32=12只脚;出现这种情况的原因是把兔当作鸡了..如果我们以同样数量的兔去换同样数量的鸡;那么每换一只;头的数目不变;脚数增加了2只..因此只要算出12里面有几个2;就可以求出兔的只数..解:有兔44-2×16÷4-2=6只;有鸡16-6=10只..答:有6只兔;10只鸡..当然;我们也可以假设16只都是兔子;那么就应该有4×16=64只脚;但实际上有44只脚;比假设的情况少了64-44=20只脚;这是因为把鸡当作兔了..我们以鸡去换兔;每换一只;头的数目不变;脚数减少了4-2=2只..因此只要算出20里面有几个2;就可以求出鸡的只数..有鸡4×16-44÷4-2=10只;有兔16—10=6只..由例1看出;解答鸡兔同笼问题通常采用假设法;可以先假设都是鸡;然后以兔换鸡;也可以先假设都是兔;然后以鸡换兔..因此这类问题也叫置换问题..例2100个和尚140个馍;大和尚1人分3个馍;小和尚1人分1个馍..问:大、小和尚各有多少人分析与解:本题由中国古算名题“百僧分馍问题”演变而得..如果将大和尚、小和尚分别看作鸡和兔;馍看作腿;那么就成了鸡兔同笼问题;可以用假设法来解..假设100人全是大和尚;那么共需馍300个;比实际多300-140=160个..现在以小和尚去换大和尚;每换一个总人数不变;而馍就要减少3—1=2个;因为160÷2=80;故小和尚有80人;大和尚有100-80=20人..答:大和尚有20人;小和尚有80人..同样;也可以假设100人都是小和尚;大家不妨自己试试..在下面的例题中;我们只给出一种假设方法..例3彩色文化用品每套19元;普通文化用品每套11元;这两种文化用品共买了16套;用钱280元..问:两种文化用品各买了多少套分析与解:我们设想有一只“怪鸡”有1个头11只脚;一种“怪兔”有1个头19只脚;它们共有16个头;280只脚..这样;就将买文化用品问题转换成鸡兔同笼问题了..假设买了16套彩色文化用品;则共需19×16=304元;比实际多304—280=24元;现在用普通文化用品去换彩色文化用品;每换一套少用19—11=8元;所以买普通文化用品24÷8=3套;买彩色文化用品16-3=13套..答:买普通文化用品3套;买彩色文化用品13套..例4鸡、兔共100只;鸡脚比兔脚多20只..问:鸡、兔各多少只分析:假设100只都是鸡;没有兔;那么就有鸡脚200只;而兔的脚数为零..这样鸡脚比兔脚多200只;而实际上只多20只;这说明假设的鸡脚比兔脚多的数比实际上多200—20=180只..现在以兔换鸡;每换一只;鸡脚减少2只;兔脚增加4只;即鸡脚比兔脚多的脚数中就会减少4+2=6只;而180÷6=30;因此有兔子30只;鸡100——30=70只..解:有兔2×100—20÷2+4=30只;有鸡100—30=70只..答:有鸡70只;兔30只..例5现有大、小油瓶共50个;每个大瓶可装油4千克;每个小瓶可装油2千克;大瓶比小瓶共多装20千克..问:大、小瓶各有多少个分析:本题与例4非常类似;仿照例4的解法即可..解:小瓶有4×50-20÷4+2=30个;大瓶有50-30=20个..答:有大瓶20个;小瓶30个..例6一批钢材;用小卡车装载要45辆;用大卡车装载只要36辆..已知每辆大卡车比每辆小卡车多装4吨;那么这批钢材有多少吨分析:要算出这批钢材有多少吨;需要知道每辆大卡车或小卡车能装多少吨..利用假设法;假设只用36辆小卡车来装载这批钢材;因为每辆大卡车比每辆小卡车多装4吨;所以要剩下4×36=144吨..根据条件;要装完这144吨钢材还需要45-36=9辆小卡车..这样每辆小卡车能装144÷9=16吨..由此可求出这批钢材有多少吨..解:4×36÷45-36×45=720吨..答:这批钢材有720吨..例7乐乐百货商店委托搬运站运送500只花瓶;双方商定每只运费0.24元;但如果发生损坏;那么每打破一只不仅不给运费;而且还要赔偿1.26元;结果搬运站共得运费115.5元..问:搬运过程中共打破了几只花瓶分析:假设500只花瓶在搬运过程中一只也没有打破;那么应得运费0.24×500=120元..实际上只得到115.5元;少得120-115.5=4.5元..搬运站每打破一只花瓶要损失0.24+1.26=1.5元..因此共打破花瓶4.5÷1.5=3只..解:0.24×500-115.5÷0.24+1.26=3只..答:共打破3只花瓶..例8小乐与小喜一起跳绳;小喜先跳了2分钟;然后两人各跳了3分钟;一共跳了780下..已知小喜比小乐每分钟多跳12下;那么小喜比小乐共多跳了多少下分析与解:利用假设法;假设小喜的跳绳速度减少到与小乐一样;那么两人跳的总数减少了12×2+3=60下..可求出小乐每分钟跳780——60÷2+3+3=90下;小乐一共跳了90×3=270下;因此小喜比小乐共多跳780——270×2=240下..答:小喜比小乐共多跳了240下..。
小学奥数“鸡兔同笼”例题13种讲解方法
题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)腿5650464238...根据上面的表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!『方法二:最快乐的画图法』画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。
14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。
『方法三:最酷的金鸡独立法』分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
『方法四:最逗的吹哨法』分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。
(惊现跑男中包贝尔的抬脚法有木有!)『方法五:最常用的假设法』分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
『方法六:最常用的假设法』分析:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只兔子变成鸡,即鸡为9只,兔子为14 - 9=5只。
五年级经典奥数-鸡兔同笼(公式、例题讲解、习题)
鸡兔同笼问题“鸡兔同笼”问题小朋友们听说过吗?这是一类著名的数学问题。
比如:“鸡兔同笼,共有45个头,146只脚。
笼中各有多少只鸡兔?”鸡兔同笼问题的特点是:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。
解题时,首先要根据题目中所给出的两个未知数的关系,用一个未知数代替另一个未知数,从而将两个未知数装化为一个未知数,从而解出答案。
鸡兔问题公式】五种基本公式(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
鸡兔同笼问题讲解及习题(含答案)
鸡兔同笼问题讲解及习题(含答案)鸡兔同笼问题讲解及习题鸡兔同笼问题是根据题目的内容涉及到鸡与兔而命名的,它是一类出名的中国古算题。
许多学校算术应用题,都可以转化为鸡兔同笼问题来加以计算。
例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应当有2×16=32(只)脚,但实际上有44只脚,比假设的状况多了44—32=12(只)脚,浮现这种状况的缘由是把兔当作鸡了。
假如我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增强了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
‘解:有兔(44—2×16)÷(4—2)=6(只),有鸡16—6=10(只)。
答:有6只兔,10只鸡。
固然,我们也可以假设16只都是兔子,那么就应当有4×16=64(只)脚,但实际上有44只脚,比假设的状况少了64—44=20(只)脚,这是由于把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数削减了4—2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16—44)÷(4—2)=10(只),有兔16—10=6(只)。
由例1看出,解答鸡兔同笼问题通常采纳假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演化而得。
假如将大和尚、小和尚分离看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300—140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要削减3—1=2(个),由于160÷2=80,故小和尚有80人,大和尚有100—80=20(人)。
鸡兔同笼的题的解法
鸡兔同笼的题的解法
一、鸡兔同笼问题的解法
1. 假设法
- 题目示例:鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?
- 解析:
- 假设笼子里全是鸡,那么每只鸡有2只脚。
因为头共20个,所以脚的总数应该是20×2 = 40只。
- 但实际脚有62只,比假设的情况多了62 - 40=22只脚。
- 这是因为每把一只兔当成鸡就少算了4 - 2 = 2只脚。
- 所以兔的数量就是22÷2 = 11只。
- 鸡的数量就是20 - 11 = 9只。
2. 方程法
- 题目示例:鸡兔同笼,从上面数有35个头,从下面数有94只脚。
问鸡和兔各有多少只?
- 解析:
- 设鸡有x只,因为头共有35个,那么兔就有(35 - x)只。
- 根据鸡脚数加上兔脚数等于总脚数的关系,可以列出方程2x+4(35 -
x)=94。
- 展开方程得到2x + 140-4x=94。
- 移项可得2x - 4x=94 - 140,即- 2x=-46。
- 解得x = 23,所以鸡有23只。
- 兔的数量为35 - 23 = 12只。
鸡兔同笼题目训练与讲解
鸡兔同笼题目训练与讲解鸡兔同笼是中国古代著名的数学趣题,也是小学数学中常见的一类应用题。
这类问题看似简单,却能很好地锻炼我们的逻辑思维和解题能力。
下面,我们就来进行鸡兔同笼题目的训练,并详细讲解解题方法。
首先,我们来看一道典型的鸡兔同笼题目:“笼子里有若干只鸡和兔,从上面数,有 35 个头,从下面数,有 94 只脚。
问鸡和兔各有多少只?”在解决这类问题时,我们通常有以下几种方法。
方法一:假设法假设笼子里全部都是鸡,那么每只鸡有 2 只脚,35 只鸡总共就有35×2 = 70 只脚。
但实际上有 94 只脚,多出来的脚是因为把兔子也当成鸡来算了。
每只兔子有4 只脚,把一只兔子当成鸡就会少算2 只脚。
总共少算了 94 70 = 24 只脚,所以兔子的数量就是 24÷2 = 12 只。
鸡的数量就是 35 12 = 23 只。
我们再用假设全部是兔子来验证一下。
假设笼子里全部都是兔子,那么 35 只兔子总共就有 35×4 = 140 只脚。
但实际上只有 94 只脚,多算了 140 94 = 46 只脚。
每把一只鸡当成兔子就多算 2 只脚,所以鸡的数量就是 46÷2 = 23 只,兔子的数量就是 35 23 = 12 只。
两种假设方法都能得到相同的答案,说明我们的计算是正确的。
方法二:方程法我们设鸡的数量为 x 只,兔的数量为 y 只。
因为鸡和兔一共有 35个头,所以 x + y = 35。
又因为鸡有 2 只脚,兔有 4 只脚,总共 94 只脚,所以 2x + 4y = 94。
由第一个方程可以得到 x = 35 y,将其代入第二个方程中,得到2×(35 y) + 4y = 94,70 2y + 4y = 94,2y = 24,y = 12。
再将 y= 12 代入 x = 35 y 中,得到 x = 23。
接下来,我们再做一道稍微复杂一点的题目:“一个笼子里鸡兔共有 50 只,脚共有 160 只,鸡兔各有多少只?”我们先用假设法来解。
三四年级奥数-鸡兔同笼问题-简单版讲义[推荐五篇]
三四年级奥数-鸡兔同笼问题-简单版讲义[推荐五篇]第一篇:三四年级奥数-鸡兔同笼问题-简单版讲义基本的鸡兔同笼A知识结构一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只).显然,鸡的只数就是35-12=23(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:(1)如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数(2)如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法例题精讲【例 1】动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少?【巩固】鸡和兔共56只眼睛和92只脚,问:鸡和兔各有几只?【例2】动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?【巩固】一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?【例3】鸡兔同笼,鸡、兔共有107只,兔的脚数比鸡的脚数多56只,问鸡、兔各多少只?【巩固】鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【例4】鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?【巩固】鸡、兔共有27只,鸡的脚比兔的脚少18只。
鸡兔同笼问题讲解及习题(含答案)
鸡兔同笼问题讲解及习题鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。
许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44—32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
‘解:有兔(44—2×16)÷(4—2)=6(只),有鸡16—6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64—44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4—2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16—44)÷(4—2)=10(只),有兔16—10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300—140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100—80=20(人)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学鸡兔同笼系列经典例题讲解
例题1、鸡兔一共有110只腿,鸡是兔的3倍,求鸡兔各有多少只?方法一:方程法
解:设兔有x只,则鸡有3x只(一般设数量少的为x)
题目中的关系式:鸡腿+兔腿=110
2 ×3x+4 ×x=110
10x=110
x=11
即兔有11只,鸡有11×3=33只
方法二:打包法
则一个笼子里有1×4+3×2=10只腿(此处是将一只兔和三只鸡打包),现有110只腿,故110÷10=11个笼子。
所以:鸡:11×3=33(只)
兔:11×1=11(只)
例题2、鸡兔同笼,头共有35个,腿共有94条,求鸡兔各有多少?方法一:方程法
解:设鸡有x只,则兔有(35-x)只
题中数量关系式:鸡腿+兔腿=94
2x+4(35-x)=94
2x+140-4x=94
140-2x=94
2x=140-94
X=23
即鸡有23只,则兔有35-23=12只
方法二:假设法
假设鸡兔都是两条腿,则35只共有35×2=70条腿
实际少算了94-70=24条腿,少算的为兔腿,
一只兔少算4-2=2条腿
则兔为24÷2=12只,则鸡:35-12=23只
例题3、鸡兔同笼,鸡和兔共有40个头,鸡腿比兔腿多两条,求各有多少?
方法一:方程法(此处不再细讲)
方法二:换算法
一只鸡有2条腿,2只鸡4条腿等于1只兔的腿,故2只鸡=1只兔
等同于以下图片关系
故多出的两条腿是一只鸡,40-1=39只,现将39只分成3份,则一份为39÷3=13,则兔有13只,兔有40-13=27只
例题4、有一群鸡兔,腿的总数比头的总数的2倍多18只,求兔有多少只?
解:设鸡有x只,兔有y只
题中关系式:鸡腿+兔腿=头×2+18
2x+4y=2(x+y)+18
2x+2y+2y=2x+2y+18
2y=18
y=9
故兔有9只
例题5、鸡兔同笼,鸡头比兔头多10只,鸡脚比兔脚多10只,求各有多少?
方法一:方程法(此处不再细讲)
方法二:换算法
2只鸡4只脚等于1只兔的脚,故2只鸡=1只兔
鸡脚=兔脚+10
2份兔+10 1份兔(此处红色部分的脚是一样多的)
多出的10只脚即为10÷2=5只鸡
题中鸡比兔多10只,故剩下的脚一样多的鸡和兔,鸡比兔多10-5=5只,鸡脚=兔脚,则鸡是兔的两倍,故2份兔-1份兔=5
兔为5只,则鸡为5×2+5=15只
例题6、蜘蛛有8条腿,蜻蜓6条腿和2对翅膀,蝉有6条腿和1对翅膀,现在这三种小鸟16只共有110条腿和14对翅膀,求各有多少?
遇到这种多种事物的,先找到有相同点的,然后排出不同的事物。
此题相同点都是蜻蜓和蝉都有6条腿,而蜘蛛有8条腿,所以我们想办法先把蜘蛛排除。
假设全是6条腿,则16× 6=96条腿,少算了110-96=14条,此少算为蜘蛛的,一只蜘蛛少算2条,则蜘蛛有14÷2=7只
则蜻蜓和蝉有16-7=9只
再用假设法,假设全是一队翅膀,则共有9对,少算了14-9=5对,少算的为蜻蜓的,一只蜻蜓少算1对
则蜻蜓有5÷1=5只,蝉有9-5=4只
例题7、小毛参加数学竞赛,共做20道题,得64分,已知做对一道题得5分,不做得0分,做错倒扣2分,又知道他做错的题和没有做的题一样多.问小毛做对几道题?
此类题,正确得5分,不做得0分,意味着损失5分,错误倒扣2分,意味着损失5+2=7分
此题损失100-64=36分
做错和不做得一样多,捆绑法这一组损失5+7=12分,合计36÷12=3组,即做错和没做合计6题,则做对20-6=14题。
例题8、有黑白棋子一堆,黑子的个数是白子的2倍,如果从这堆棋子中每次同时取出黑子4枚,白子3枚。
问:几次以后,白子余1枚,黑子余18枚?
方法一:方程法
解:设去了a次
题中关系式:黑子=白子×2
4a+18=3a×2
a=8
方法二:逆向思维
题中黑子的个数是白子的2倍,那么白子取3个,黑子应该取6个,并且白子余下1个,黑子应该余下2个
此题黑子余下18-2=16,则合计少取16,黑子每次少取6-4=2个,则次数为16÷2=8次。