动点运动路径长问题

合集下载

动点问题中的最值、最短路径问题解析版

动点问题中的最值、最短路径问题解析版

专题01 动点问题中的最值、最短路径问题动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中.其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法.一、基础知识点综述1. 两点之间,线段最短;2. 垂线段最短;3. 若A 、B 是平面直角坐标系两定点,P 是某直线上一动点,当P 、A 、B 在一条直线上时,PA PB 最大,最大值为线段AB 的长(如下图所示);(1)单动点模型作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P 是x 轴上一动点,求PA +PB 的最小值的作图.(2)双动点模型P是∠AOB一点,M、N分别是边OA、OB上动点,求作△PMN周长最小值.作图方法:作已知点P关于动点所在直线OA、OB的对称点P’、P’’,连接P’P’’与动点所在直线的交点M、N即为所求.OBPP'P''MN5. 二次函数的最大(小)值()2y a x h k=-+,当a>0时,y有最小值k;当a<0时,y有最大值k.二、主要思想方法利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析)三、精品例题解析例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为例2.(2019·凉山州)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD=()x y A B C F D EO x=-5A .817B . 717C . 49D . 59例3.(2019·)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是(填写序号).例4.(2019·XX )已知抛物线2y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点,若点Q (1,2Q b y +22AM QM +332时,求b 的值.例5. (2019·)如图,一副含30°和45°角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,12AC cm .当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为cm ;连接BD ,则△ABD 的面积最大值为2cm .例6. (2019·)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .(1)求证:DC 是圆O 的切线;(2)若AC =4MC ,且AC =8,求图中阴影部分面积;(3)在(2)的前提下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小值. ABC DH O M N专题01 动点问题中的最值、最短路径问题(解析)例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为【答案】4.【解析】解:∵PQ⊥EP,∴∠EPQ=90°,即∠EPB+∠QPC=90°,∵四边形ABCD是正方形,∴∠B=∠C=90°,∠EPB+∠BEP=90°,∴∠BEP=∠QPC,∴△BEP∽△CPQ,∴BE BP CP CQ=,∵AB=12,AE=3,∴BE=9,设CQ=y,BP=x,CP=12-x,(0<x<12)∴912xx y=-,即()()21216499x xy x-==--+,∴当x=6时,y有最大值为4,即CQ的最大值为4.【点睛】此题为“一线三直角模型”,解题方法为相似三角形性质求解,综合利用二次函数的性质求解最值问题.例2.(2019·)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD=()A . 817B . 717C . 49D . 59【答案】B .【解析】解:S △ABE =142BE OA BE ⨯⨯=,当BE 取最小值时,△ABE 面积为最小值.设x =-5与x 轴交于点G ,连接DG ,因为D 为CF 中点,△CFG 为直角三角形,所以DG =152CD =,∴D 点的运动轨迹为以G 为圆心,以5半径的圆上,如图所示 xyABD E O x=-5G由图可知:当AD 与圆G 相切时,BE 的长度最小,如下图,xyABD E O x=-5G H过点E 作EH ⊥AB 于H ,∵OG =5,OA =8,DG =5,在Rt △ADG 中,由勾股定理得:AD =12,△AOE ∽△ADG , ∴AO AD OE DG =, 求得:OE =103, 由OB =OA=8,得:BE =143,∠B =45°,AB =82 ∴EH =BH =27223BE =,AH =AB -BH =1723, ∴tan ∠BAD =727317172EH AH ==, 故答案为B .【点睛】此题解题的关键是找到△ABE 面积最小时即是AD 与D 的远动轨迹圆相切的时刻. 进而构造以∠BAD 为角的直角三角形,利用勾股定理求出边长,代入三角函数定义求解.例3.(2019·)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是(填写序号).【答案】②③.【解析】解:根据题意可知:OE =12AB =12,即E 的轨迹为以O 为圆心以12为半径的四分之一圆(第一象限的部分),根据弧长公式,得点E 的路径长为:9012180π⨯⨯=6π,故①错误; 因为AB =24,当斜边AB 上的高取最大值时,△OAB 的面积取最大值,点O 在以AB 为直径的圆上(圆心为E ),当OE ⊥AB 时,斜边AB 上的高最大, 所以△OAB 的面积取最大值为:124122⨯⨯=144,故②正确;连接OE 、DE ,得:OD ≤OE +DE ,当O 、E 、D 三点共线时取等号,即OD 的最大值为25,如图,过点D 作DF ⊥y 轴于F ,过点E 作EG ⊥y 轴于G ,25DF OD 即:1225EG DF =,512AF AD EG AE ==, 即:51125AF EG DF ==,设DF =x ,在Rt △ADF 中,由勾股定理得:221255x x ⎛⎫+= ⎪⎝⎭,解得:x =26,在Rt △ODF 中,由勾股定理得:OF =26,即点D 的坐标为)2626125,262625(,故③正确.综上所述,答案为:②③. 例4.(2019·XX )已知抛物线2y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点.若点Q (1,2Q b y +)在抛物线上,当22AM QM +的最小值为3324时,求b 的值. 【答案】见解析. 【解析】解:∵2y x bx c =-+经过点A (-1,0),∴1+b +c =0,即21y x bx b =--- ∵点Q (1,2Q b y +)在抛物线2y x bx c =-+上, ∴324Q b y =--, 即13,224b Q b ⎛⎫+-- ⎪⎝⎭, ∵b >0,∴Q 点在第四象限,2222AM QM AM QM ⎛⎫+=+ ⎪⎝⎭所以只要构造出22AM QM ⎛⎫+ ⎪⎝⎭即可得到22AM QM +的最小值取N (1,0),连接AN ,过M 作MG ⊥AN 于G ,连接QM ,如图所示,△AGM 为等腰直角三角形,GM =22AM ,即当G 、M 、Q 三点共线时,GM +MQ 22QM +取最小值, 此时△MQH 为等腰直角三角形,∴QM=2QH=3224b⎛⎫+⎪⎝⎭,GM=22AM=()212m+∴()223332222=21222244bAM QM AM QM m⎛⎫⎡⎤⎛⎫+=++++=⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦①∵QH=MH,∴324b+=12b m+-,解得:m=124b-②联立①②得:m=74,b=4.即当22AM QM+的最小值为3324时,b=4.【点睛】此题需要利用等腰直角三角形将22AM QM+转化为222AM QM⎛⎫+⎪⎝⎭,进而根据两点之间线段最短及等腰三角形性质求解.例5. (2019·)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,12AC cm=.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为cm;连接BD,则△ABD的面积最大值为2cm.【答案】24-1223623126;【解析】解:如图1所示,当E运动至E’,F滑动到F’时,DD'E'G图1过D ’作D ’G ⊥AC 于G ,D ’H ⊥BC 交BC 延长线于点H ,可得∠E ’D ’G =∠F ’D ’H ,D ’E ’=D ’F ’,∴Rt △E ’D ’G ≌Rt △F ’D ’H ,∴D ’G =G ’H ,∴D ’在∠ACH 的角平分线上,即C ,D ,D ’三点共线.通过分析可知,当D ’E ’⊥AC 时,DD ’的长度最大,随后返回初始D 点,如图2所示,D 点的运动路径为D →D ’→D ,行走路线长度为2DD ’;BD'图2∵∠BAC =30°,AC =12,DE =CD∴BC =CD =DE=由图知:四边形E ’CF ’D ’为正方形,CD ’=EF =12,∴DD ’=CD ’-CD =12-D 点运动路程为2DD ’=24-D'图3如图3所示,当点D 运动至D ’时,△ABD ’的面积最大,最大面积为:'''''''ABC AE D BD F E CF D S S S S ++-△△△正方形=(((211112222⨯+⨯--⨯+⨯=【点睛】准确利用全等、角平分线判定得到D 点的运动轨迹是关键,利用三角函数及勾股定理求解,计算较为繁琐,尤其是利用割补法求解三角形的面积时对学生计算能力要求较高,此题难度较大,新颖不失难度.例6. (2019·)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .(1)求证:DC 是圆O 的切线;(2)若AC =4MC ,且AC =8,求图中阴影部分面积;(3)在(2)的前提下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小值.BD【答案】见解析.【解析】(1)证明:过点O 作ON ⊥CD 于N , AC 是菱形ABCD 的对角线,∴AC 平分∠BCD ,∵OH ⊥BC ,ON ⊥CD ,∴OH =ON ,又OH 为圆O 的半径,∴ON 为圆O 的半径,即CD 是圆O 的切线.(2)由题意知:OC =2MC =4,MC =OM =2,即OH =2,在Rt △OHC 中,OC =2OH ,可得:∠OCH =30°,∠COH =60°,由勾股定理得:CH==23OCH OMHS S S π-=-△阴影扇形(3)作点M 关于直线BD 的对称点M ’,连接M ’H 交BD 于点P , 可知:PM =PM ’即PH +PM =PH +PM ’=HM ’,由两点之间线段最短,知此时PH +PM 最小, ∵OM ’=OM =OH ,∠MOH =60°,∴∠MM ’H =30°=∠HCM ,∴HM ’=HC=即PH +PM的最小值为在Rt △M ’PO 及Rt △COD 中,OP =OM ’ tan 30°=3,OD =OCtan 30°=3, 即PD =OP +OD=B D。

矩形的动点问题 含答案

矩形的动点问题 含答案

专题1.20矩形的动点问题(专项练习)一、解答题1.已知,在矩形ABCD 中,AB a =,BC b =,动点M 从点A 出发沿边AD 向点D 运动.如图,当2b a =,点M 运动到边AD 的中点时,请证明90BMC ∠=︒.2.如图,在矩形ABCD 中,20AB cm =,动点P 从点A 开始沿AB 边以4/cm s 的速度运动,动点Q 从点C 开始沿CD 边以1/cm s 的速度运动,点P 和点Q 同时出发,当其中一点到达终点时,另一点也随之停止运动,运动点的运动时间为ts ,则当t 为何值时,四边形APQD 时矩形?3.如图,在矩形ABCD 中,AB=3,AD=4,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足为点E ,F ,求PE+PF 的值。

4.如图,点M 是矩形ABCD 边AD 的中点,2AB AD =,点P 是BC 边上一动点,PE MC ⊥,PF BM ⊥,垂足分别为E 、F ,求点P 运动到什么位置时,四边形PEMF 为正方形,并证明.5.如图,在矩形ABCD 中,点P 是BC 边上一动点,连接AP ,过点D 作DE AP ⊥于点E.设AP x =,DE y =,若6AB =,8BC =,试求y 与x 之间的函数关系式.6.如图,A 、B 、C 、D 是矩形的四个顶点,AB =32cm ,BC =12cm ,动点P 从点A 出发,以6cm/s 的速度向点B 运动,直到点B 为止;动点Q 向时从点C 出发,以4cm/s 的速度向点D 运动,何时点P 和点Q 之间的距离是20cm ?7.如图,在矩形ABCD 中,AB =3,BC =4,点E 是AD 上一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A 1恰好落在∠BCD 的平分线上时,求CA 1的长.8.如图,点M 是矩形ABCD 的边AD 的中点,点P 是BC 边上一动点,PE ⊥MC ,PF ⊥BM ,垂足为E 、F .(1)当矩形ABCD 的长与宽满足什么条件时,四边形PEMF 为矩形?猜想并证明你的结论.(2)在(1)中,当点P 运动到什么位置时,矩形PEMF 变为正方形,为什么?9.如图,矩形ABCD 中,5AD =,7AB =,点E 为DC 上一个动点,把ADE ∆沿AE 折叠,当点D 的对应点D ¢落在ABC ∠的平分线上时,求DE 的长.10.已知矩形ABCD 中,E 是AD 边上的一个动点,点F 、G 、H 分别是BC 、BE 、CE 的中点.(1)求证:BGF FHC ∆≅∆.(2)若4=AD ,当四边形EGFH 是正方形时,求矩形ABCD 的面积.11.如图,在矩形ABCD 中,AB=5,BC=7,点E 是AD 上一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A '恰好落在∠BCD 的平分线上时,C A '的长为多少?12.已知矩形ABCD 中,E 是AD 边上的一个动点,点F ,G ,H 分别是BC ,BE ,CE 的中点.求证:BGF FHC ∆≅∆;13.如图1,矩形ABCD 中,点E 是边AD 上动点,点F 是边BC 上动点,连接EF ,把矩形ABCD 沿直线EF 折叠,点B 恰好落在边AD 上,记为点G ;如图2,把矩形展开铺平,连接BE ,FG.(1)判断四边形BEGF 的形状一定是,请证明你的结论;(2)若矩形边AB =4,BC =8,直接写出四边形BEGF 面积的最大值为.14.如图,E 是矩形ABCD 的边BC 的中点,P 是AD 边上一动点,PF AE ⊥,PH DE ⊥,垂足分别为F H ,.(1)当矩形ABCD 的边AD 与AB 满足什么条件时,四边形PHEF 是矩形?请予以证明;(2)在(1)中,动点P 运动到什么位置时,矩形PHEF 为正方形?为什么?15.如图,在矩形ABCD 中,M 是AD 的中点,连接BM 、CM ,点P 是BC 边上的动点,作PE MC ⊥于E 点,PF MB ⊥于F 点,当矩形的长与宽是什么关系时,四边形PEMF 是矩形?并证明.16.在矩形ABCD 中,1AB =,BC a =,点E 是边BC 上一动点,连接AE ,将ABE △沿AE 翻折,点B 的对应点为点B '.(1)如图,设BE x =,3BC =,在点E 从B 点运动到C 点的过程中.①AB CB ''+最小值是______,此时x =______;②点B '的运动路径长为______.(2)如图,设35BE a =,当点B 的对应点B '落在矩形ABCD 的边上时,求a 的值.17.如图,在矩形ABCD 中,AB =8cm ,BC =6cm .动点P 、Q 分别从点A 、C 以2cm/s 的速度同时出发.动点P 沿AB 向终点B 运动,动点Q 沿CD 向终点D 运动,连结PQ 交对角线AC 于点O .设点P 的运动时间为t (s ).(1)求OC 的长.(2)当四边形APQD 是矩形时,直接写出t 的值.(3)当四边形APCQ 是菱形时,求t 的值.(4)当△APO 是等腰三角形时,直接写出t 的值.18.有一张矩形纸片ABCD ,其中10,6AB AD ==,现将矩形折叠,点D 的对应点记为点P ,折痕为EF (点E 、F 是折痕与矩形的边的交点),再将纸片还原.(1)若点P 落在矩形ABCD 的边AB 上(如图1).①当点P 与点A 重合时,DEF ∠=__________︒,当点E 与点A 重合时,DEF ∠=__________︒,当点F 与C 重合时,AP =__________;②若P 为AB 的中点时,求AE 的长;(2)若点P 落在矩形的外部(如图2),点F 与点C 重合,点E 在AD 上,线段BA 与线段FP 交于点M ,当AM DE =时,请求出线段AE 的长度.(3)若点E 为动点,点F 与点DC 的中点,直接写出线段AP 的最小值=__________.参考答案1.见解析.【分析】由b =2a ,点M 是AD 的中点,可得AB =AM =MD =DC =a ,又由四边形ABCD 是矩形,即可求得∠AMB =∠DMC =45°,则可求得∠BMC =90°.【详解】证明:∵b =2a ,点M 是AD 的中点,∴AB =AM =MD =DC =a ,又∵在矩形ABCD 中,∠A =∠D =90°,∴∠AMB =∠DMC =45°,∴∠BMC =90°.【点拨】本题考查了矩形的性质以及等腰直角三角形的性质,求出∠AMB =∠DMC =45°是解题的关键.2.当4t s =时,四边形APQD 是矩形【分析】根据题意表示出AP=4t,DQ=20-t;根据菱形的对边相等,求出的值,即可解决问题.【详解】由题意得:4AP t =,20DQ t =-;∵四边形APQD 是矩形,∴AP DQ =,即420t t =-,解得:()4t s =.即当4t s =时,四边形APQD 是矩形.【点拨】本题主要考查矩形的判定与性质.3.PE+PF=125【解析】【分析】连接OP ,过点A 作AG ⊥BD 于G ,利用勾股定理列式求出BD ,再利用三角形的面积求出AG ,然后根据△AOD 的面积求出PE+PF=AG 即可.【详解】解:如图所示,连接OP ,过点A 作AG ⊥BD 于G ,∵AB=3,AD=4,∴BD=22345+=,S △ABD =12AB•AD=12BD•AG ,即12×3×4=12×5×AG ,解得:AG=125,在矩形ABCD 中,OA=OD ,∵S △AOD =12OA•PE+12OD•PF=12OD•AG ,∴PE+PF=AG=125.故PE+PF=125【点拨】本题考查了矩形的性质,勾股定理,三角形的面积;熟练掌握各性质并利用三角形的面积列出方程是解题的关键.4.当P 是BC 的中点时,矩形PEMF 为正方形.【解析】【分析】根据矩形的相知和已知条件推出∠A=∠D=90°,AB=CD ,AM=DM ,求出∠ABM=∠AMB=45°,∠DCM=∠DMC=45°,求出∠BMC=90°,即可求出矩形PEMF.根据AAS 证△BFP ≌△CEP ,推出PE=PF 即可.【详解】解:当P 是BC 的中点时,四边形PEMF 为正方形.理由如下:∵四边形ABCD 为矩形,∴90A D ∠=∠= ,∵22AD AB CD ==,12AM DM AD ==,∴AB AM DM CD ===,∴45ABM AMB ∠=∠= ,45DCM DMC ∠=∠= ,∴180454590BMC ∠=--= ,∵PE MC ⊥,PF BM ⊥,∴90MEP FPE ∠=∠= ,∴四边形PEMF 为矩形,∴90PFM PFB PEC ∠=∠=∠= .在BFP 和CEP 中FBP ECP PFB PEC BP CP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()BFP CEP AAS ≅ ,∴PE PF =,∵四边形PEMF 是矩形,∴矩形PEMF 是正方形,即当P 是BC 的中点时,矩形PEMF 为正方形.【点拨】本题主要考察对矩形的判定和性质,正方形的判定,等腰三角形的性质,全等三角形的性质和判定等知识点的理解和掌握,熟练地运用性质进行推理是解此题的关键.5.48(610)y x x= .【解析】【分析】根据2APD ABCD AP DE S S ⋅==矩形△列出关系式,整理即可.【详解】连接PD ,则26848APD ABCD AP DE S S ⋅===⨯=矩形△,所以48xy =,故y 与x 之间的函数关系式为:48(610)y x x= .【点拨】本题考查了反比例函数的定义,根据2APD ABCD S S =矩形△列出关系式是解题关键.6.85s 或245s 【分析】设当t 秒时PQ =20cm ,利用勾股定理得出即可.【详解】设当时间为ts 时,点P 和点Q 之间的距离是20cm ,过点Q 作ON ⊥AB 于点N ,则QC =2tcm ,PN =(32﹣10t )cm ,故122+(32﹣10t )2=400,解得:t 1=85,t 2=245.故当时间为85s 或245s 时,点P 和点Q 之间的距离是20cm .【点拨】本题考查了一元二次方程的应用,勾股定理和矩形的性质,能构造直角三角形是解此题的关键,用了方程思想.7.±1【分析】过点A 1作A 1M ⊥BC ,A 1N ⊥CD ,证明MA 1=MC ,在△BMA 1中,运用勾股定理列出关于x的方程,求出x ,根据CA 1x ,即可解决问题.【详解】解:如图,过点A1作A1M⊥BC,A1N⊥CD;∵四边形ABCD为矩形,且CA1平分∠BCD,∴∠BCD=90°,∠MCA1=∠MA1C=45°,∴△MA1C是等腰直角三角形,∴MA1=MC,设MA1=MC=x,则BM=4﹣x;由折叠的性质得:BA1=BA=3;在△BMA1中,由勾股定理得:x2+(4﹣x)2=32,解得:x=2±2 2,∴CA1x=±1,∴CA1的长为±1.【点拨】本题考查矩形的翻折变换(折叠问题)、矩形的性质、角平分线的性质等,灵活根据题意构造直角三角形运用勾股定理求解是解题关键.8.(1)当AD=2AB时,四边形PEMF为矩形,理由见解析;(2)当P是BC的中点时,矩形PEMF为正方形,理由见解析【分析】(1)根据矩形的性质推出∠A=∠D=90°,AB=CD,AM=DM,求出∠ABM=∠AMB=45°,∠DCM=∠DMC=45°,求出∠BMC,即可求出矩形PEMF.(2)根据AAS证△BFP≌△CEP,推出PE=PF即可.【详解】(1)当AD=2AB时,四边形PEMF为矩形.证明:∵四边形ABCD为矩形,∴∠A=∠D=90°,∵AD=2AB=2CD ,AM=DM=12AD ,∴AB=AM=DM=CD ,∴∠ABM=∠AMB=45°,∠DCM=∠DMC=45°,∴∠BMC=180°-45°-45°=90°,∵PE ⊥MC ,PF ⊥BM ,∴∠MEP=∠FPE=90°,∴四边形PEMF 为矩形,即当AD=2AB 时,四边形PEMF 为矩形;(2)当P 是BC 的中点时,矩形PEMF 为正方形.理由是:∵四边形PEMF 为矩形,∴∠PFM=∠PFB=∠PEC=90°,在△BFP 和△CEP 中9045PFB PEC FBP ECP BP CP ∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩,∴△BFP ≌△CEP(AAS),∴PE=PF ,∵四边形PEMF 是矩形,∴矩形PEMF 是正方形,即当P 是BC 的中点时,矩形PEMF 为正方形.【点拨】本题主要考查了矩形的判定和性质,正方形的判定,等腰三角形的性质,全等三角形的性质和判定等知识点的理解和掌握,熟练地运用性质进行推理是解此题的关键.9.52或53【分析】过点D ¢作MN AB ⊥,交CD 于点N ,交AB 于点M ,连接BD ',先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE .【详解】如图,过点D ¢作MN AB ⊥,交CD 于点N ,交AB 于点M ,连接BD '.∵点D 的对应点D ¢恰落在ABC ∠的平分线上,∴D M BM '=,设BM D M x '==,则7AM x =-.由折叠知,5DA D A '==.在Rt D AM '∆中,222D M D A AM ''=-,∴2225(7)x x --=,∴3x =或4x =,即3D M '=或4D M '=.设DE m =,则D E m '=,分两种情况讨论:(1)当3D M '=时,3BM NC ==,2D N '=,734EN CD DE NC m m =--=--=-.在Rt D NE '∆中,222(4)2m m =-+,∴52m =,即52DE =.(2)当4D M '=时,4BM NC ==,1D N '=,743EN CD DE NC m m =--=--=-,在Rt D NE '∆中,222(3)1m m =-+,∴53m =,即53DE =.综上,DE 的长为52或53.【点拨】此题考查翻折变换(折叠问题),矩形的性质,解题关键在于作辅助线和分情况讨论.10.(1)见解析;(2)8.【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可.【详解】解:(1)连接EF ,∵点F ,G ,H 分别是BC ,BE ,CE 的中点,∴FH ∥BE ,FH=12BE ,FH=BG ,∴∠CFH=∠CBG ,∵BF=CF ,∴△BGF ≌△FHC (SAS ),(2)当四边形EGFH 是正方形时,连接GH ,可得:EF ⊥GH 且EF=GH ,∵在△BEC 中,点,H 分别是BE ,CE 的中点,∴GH=12BC =12AD =2,且GH ∥BC ,∴EF ⊥BC ,∵AD ∥BC ,AB ⊥BC ,∴AB=EF=GH=2,∴矩形ABCD 的面积=AB•AD =2×4=8.【点拨】此题考查正方形的性质,全等三角形的判定与性质,解题关键是根据全等三角形的判定和正方形的性质解答.11.23或24【解析】试题分析:过点A’作A’M ⊥BC ,,A’N ⊥CM ,然后证得四边形A’MCN 是正方形,然后根据正方形的性质及勾股定理可求解.试题解析:解:过点A’作A’M ⊥BC ,,A’N ⊥CM ,∵∠BCD=90°,∴四边形A’MCN 是矩形,∵CA’平分∠BCD∴矩形A’MCN 是正方形∴A’M=CM ,A’M∴BM=BC-CM=7-A’M∵BA’=BA=5,∠BMA’=90°∴A’B²=BM²+A’M²即5²=(7-A’M)²+A’M²∴A’M=3或A’M=4∴A’C=32或A’C=42考点:折叠问题,矩形与正方形的性质12.详见解析【分析】根据三角形中位线定理和全等三角形的判定证明即可;【详解】证明:解:连接EF,(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=12BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,【点拨】本题考查三角形中位线定理和全等三角形的判定,解题关键是熟练掌握三角形中位线的性质定理.13.(1)四边形BEGF是菱形,证明见解析;(2)四边形BEGF面积的最大值为20.【分析】(1)由折叠的性质可得∠BFE=∠EFG,BF=FG,由平行线的性质可得∠DEF=∠GFE=∠EFB,可得EG=FG=BF,AD∥BC,可证四边形BEGF是菱形;(2)当EG最大时,四边形BEGF面积有最大值,由勾股定理可求EG的长,即可求解.【详解】(1)四边形BEGF 是菱形,∵四边形ABCD 是矩形∴AD ∥BC ,∴∠DEF =∠EFB ,∵把矩形ABCD 沿直线EF 折叠,点B 恰好落在边AD 上,∴∠BFE =∠EFG ,BF =FG ,∴∠DEF =∠GFE ,∴EG =FG ,∴EG =BF ,且AD ∥BC ,∴四边形BEGF 是平行四边形,且BF =FG ,∴四边形BEGF 是菱形,(2)∵四边形BEGF 是菱形,∴BE =EG ,∵S 四边形BEGF =EG ×AB =4EG ,∴当EG 最大时,四边形BEGF 面积有最大值,当AE +EG =AD 时,EG 最大,∵AB 2+AE 2=BE 2,∴2216()AD ED BE +=﹣,∴2216(8)BE BE +=﹣,∴BE =5=EG ,∴四边形BEGF 面积的最大值=4×5=20.【点拨】本题考查了翻折变换,矩形的性质,由勾股定理求EG 的长是正确解答本题的关键.14.(1)当2=AD AB 时,四边形PHEF 是矩形;(2)点P 运动到AD 的中点时,矩形PHEF 为正方形.理由见解析.【解析】【分析】(1)当四边形PFEH 是矩形时,∠FEH=90°;易证得△ABE ≌△DCE ,则∠AEB=∠DEC=45°;那么△ABE 、△DCE 是等腰直角三角形,此时AB=BE=EC=CD ,故矩形ABCD 满足长是宽的2倍时,四边形PFEH 是矩形;(2)若矩形PHEF 是正方形,则PF=PH ,此时可证得△PAF ≌△PDH ,则AP=PD ,所以当P 为AD 中点时,矩形PHEF 变为正方形.【详解】(1)当2=AD AB 时,四边形PHEF 是矩形.证明如下:∵四边形ABCD 是矩形,∴AD BC =,AB CD =.∵E 是BC 的中点,2=AD AB ,∴AB BE EC CD ===,∴ABE ∆,DCE ∆是等腰直角三角形,∴45AEB DEC ︒∠=∠=,90AED ︒=∠.在四边形PHEF 中,∵90PFE FEH EHP ︒∠=∠=∠=,∵四边形PHEF 是矩形.(2)点P 运动到AD 的中点时,矩形PHEF 为正方形.理由如下:由(1)可得45BAE CDE ︒∠=∠=,∴45FAP HDP ︒∠=∠=,又∵90AFP PHD ︒∠=∠=,AP PD =,∴AFP DHP ∆∆≌,∴PF PH =,∴矩形PHEF 是正方形.【点拨】此题考查矩形的判定与性质,正方形的判定,解题关键在于证明△ABE 、△DCE 是等腰直角三角形.15.证明见解析【分析】当长=宽的2倍的时候,根据4个角为直角即可证明四边形PEMF 是矩形.【详解】∵M 是AD 的中点,2AD AB=∴AM MD AB CD ===,∵矩形ABCD 中,90A D ∠=∠= ,∴45AMB DMC ∠=∠= ,∴180454590BMC ∠=--= ,∴36090909090EPF ∠=---=∴四边形PEMF 是矩形.【点拨】本题考查了矩形的判定与性质,解题的关键是熟练的掌握矩形的判定与性质.16.(1)①2,3;②23π;(2)53a =或3a =【分析】(1)①由题意,当点B '恰好在直线AC 上时,AB CB ''+有最小值,然后求出答案即可;②先证明点B '在以A 为圆心,1为半径的圆上,再求出2120BAB BAC '∠=∠=︒,然后根据弧长公式,即可求出答案;(2)分两种情况,①当点B '落在AD 边上时,四边形ABEB '为正方形,然后求出答案;②当点B '落在CD 边上时,证明CEB DB A '' △△,利用相似三角形的性质,即可求出答案.【详解】解:(1)①连接B C ',如图1,,由折叠的性质得:1AB AB '==,AB E B '∠=∠,∵四边形ABCD 是矩形,∴90AB E B '∠=∠=︒,∴B E AB ''⊥;当点B '恰好在直线AC 上时,AB CB ''+有最小值,∵2AB B C AC ''+====,∴12AB AC =,1B C '=,∴30ACB ∠=︒,AB B C ''=,∴903060BAC ∠=︒-︒=︒,AE CE =,∴30EAC ACB ∠=∠=︒,∴30BAE ∠=︒,∴3333BE AB ==;故答案为:2,3;②当点E 从B 到点C 的过程中,1AB '=,∴点B '在以A 为圆心,1为半径的圆上,由①知,60BAC ∠=︒,∴2120BAB BAC '∠=∠=︒,∴点B '的运动路径长为:120121803p p ´=;故答案为:23π;(2)当点B '落在AD 边上时(如图),四边形ABEB '为正方形,∴1BE AB ==,∴315a =,解得53a =;当点B '落在CD 边上时(如图),由折叠得'B E BE a ==,1AB AB '==∴25CE a =,21BD a '=-由CEB DB A '' △△得,∴CE DB B E AB '='',2215315a a a -=,解得53a =±,∵0a >,∴53a =,∴53a =或53a =;【点拨】本题是四边形综合题目,考查了矩形的性质、折叠的性质、正方形的判定和性质、含30度直角三角形的性质、勾股定理、相似三角形的判定和性质、弧长公式等知识,熟练掌握所学的知识,正确进行分析题意是解题的关键.17.(1)5;(2)t =2;(3)258t =;(4)2516t =或52t =或4t =【分析】(1)根据矩形的性质以及勾股定理判定AOP ∆≌COQ ∆,即可得解;(2)根据题意判定当四边形APQD 是矩形时,P 、Q 分别为AB 、CD 的中点,即可得解;(3)根据菱形的性质以及勾股定理的运用,构建一元二次方程,即可得解;(4)分情况:当AO=OP 时,当AO=AP 时,当AP=OP 时,求解即可.【详解】(1)∵四边形ABCD 是矩形,∴AB CD ∥.∴CQO APO ∠=∠,QCO PAO ∠=∠.在Rt △ABC 中,∠B =90°,由勾股定理,得10AC ==.∵2AP CQ t ==,∴AOP ∆≌COQ ∆.∴152CO AC ==.(2)当四边形APQD 是矩形时,P 、Q 分别为AB 、CD 的中点即2AP CQ t ===4t =2.(3)如图,当四边形APCQ 是菱形时,AP =CP =2t .∴PB =8-2t .在Rt △BCP 中,∠B =90°,由勾股定理,得222CP BP BC =+.∴222(2)(82)6t t =-+.解得258t =.当258t =时,四边形APCQ 是菱形.(4)当AO=OP 时,如图所示:∵AO=5∴P 运动到点B∴4t =;当AO=AP 时,∵AO=AP=5∴52t =;当AP=OP 时,由(2),得OH=3,AH=4∴PH=4-2t,OP=2t∴222OP OH PH =+,即()()2224342t t =+-∴2516t =综上所述,2516t =或52t =或4t =.【点拨】此题主要考查四边形动点综合问题,熟练掌握,即可解题.18.(1)①90°,45°,2;②1112;(2)127;(35【分析】(1)①分别根据图形,利用折叠的性质计算即可;②设AE =x ,利用折叠的性质表示出EP ,求出AP ,利用勾股定理列出方程,解之即可;(2)设AE =x ,证明Rt △AEM ≌Rt △PME ,得到AE =PM =x ,在Rt △B CM 中,利用勾股定理得到方程,求出x 值即可;(3)根据折叠的性质得到PF 为定值,得到当A ,P ,F 三点共线时,AP 最小,再求解即可.解:(1)①当点P 与点A 重合时,∴EF 是AD 的中垂线,∴∠DEF =90°,当点E 与点A 重合时,此时∠DEF =12∠DAB =45°,当点F 与C 重合时,CD =CP =AB =10,∵AD =BC =6,∴BP =8,∴AP =AB -BP =2;②如图,点P 为AB 中点,则AP =BP =5,由折叠可知:DE =EP ,DF =PF ,设AE =x ,则DE =EP =6-x ,在△AEP 中,222AE AP EP +=,即()22256x x +=-,解得:x =1112,即AE =1112;(2)连接EM,设AE=x,由折叠知PE=DE,∠CDB=∠EPM=90°,CD=CP=10,∵AM=DE,∠A=90°,EM=EM,∴Rt△AEM≌Rt△PME(HL),∴AE=PM=x,∴CM=10-x,BM=AB-AM=AB-DE=10-(6-x)=4+x,在Rt△B CM中,BM2+BC2=CM2,∴(4+x)2+62=(10-x)2,解得x=12 7.∴AE=12 7.(3)如图,∵F为CD中点,∴DF=CF=5,由折叠可知:DF=PF=5,即PF的长度不变,∴当A,P,F三点共线时,AP最小,∵AF,∴AP=AF-PF5,即AP5-.【点拨】本题是四边形综合题,考查了折叠的性质,矩形的性质,勾股定理,全等三角形的判定和性质,熟练掌握折叠的性质是关键,本题难度适中,注意运用数形结合的思想.。

中考数学:点动产生路径长问题

中考数学:点动产生路径长问题

点动产生的路径长问题近几年中考,和我们同学做的中考模拟试卷中,不断的出现了因动点计算路径长问题,这种题型因为隐藏的比较深,从而难以发现,计算比较繁琐。

在填空题选择题中比较多。

只要同学们在做题的过程中发现是这种题型,那么点所经过的路径一般就是就是两种结果。

一是线段。

二是圆弧。

为什么呢?因为只有这两图形是可以计算路径长的。

其它图形我们目前能计算路径长吗。

哈哈,这样解释印象有没有很深。

下面我们来看看我们会碰到的几种题型。

题型1:简单的图形翻转问题。

解法:这种题型比较简单。

只要找出旋转圆心,旋转时圆的半径,还有圆心角就可以了,然后利用扇形的弧长计算公式来计算。

注意,如果是圆弧旋转的话,圆心的路径是直线。

例题1:一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为___________试题分析:现将木板沿水平线翻滚, B点从开始至结束走过了4条弧,每条弧是一等边三角形的边为半径的扇形,圆心角为等边三角形的内角,所以 B点从开始至结束所走过的路程长度=4l=点评:本题考查扇形的弧长公式,关键是找出扇形的圆心角和半径,考查学生的空间想象能力例题2:矩形ABCD的边AB=8,AD=6,现将矩形ABCD放在直线l上且沿着l向右作无滑动地翻滚,当它翻滚至类似开始的位置A1B1C1D1时(如图所示),则顶点A所经过的路线长是例题3:将半径为1、圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A’O’B’处,则顶点O经过的路线长为。

例题4:如图,一个圆心角为270°,半径为2m的扇形工件,未搬动前如图所示,A,B两点触地放置,搬动时,先将扇形以B为圆心,作如图所示的无滑动翻转,再使它紧贴地面滚动,当A,B两点再次触地时停止,则圆心O所经过的路线长是m.(结果保留π)例题5:已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m,半圆的直径为4m,则圆心O所经过的路线长是 m。

初中数学动点问题归纳

初中数学动点问题归纳

初中数学动点问题归纳动点问题是数学中常见的问题类型之一,它涉及到点在一定规律下的运动轨迹及相关的计算。

在初中数学学习过程中,学生们大多会接触到动点问题,并掌握解决此类问题的方法和技巧。

本文将对初中数学动点问题进行归纳总结,帮助初中学生更好地理解和解决这类问题。

1. 直线运动问题直线运动问题是最基本的动点问题之一。

在这类问题中,点按照直线路径运动,常涉及到时间、距离和速度的关系。

解决直线运动问题时,可以使用速度等于位移除以时间的公式来计算,即 v = s/t。

例子1:小明从家里骑自行车到学校,全程15公里,用时1小时。

求小明的平均速度。

解析:根据公式,平均速度 v = s/t = 15/1 = 15 km/h例子2:小红开车从A市到B市,全程200公里,平均时速60km/h。

求小红从A市到B市的行驶时间。

解析:根据公式,时间 t = s/v = 200/60 = 3.33 小时≈ 3小时20分2. 圆周运动问题圆周运动问题中,点按照圆形轨迹运动。

这类问题通常涉及到半径、圆周长和角度的计算与关系。

解决圆周运动问题时,需要掌握圆周长的计算公式,即 c = 2πr,其中 r 为半径。

例子1:一个半径为5米的圆,它的周长是多少?解析:根据公式,周长c = 2πr = 2 × 3.14 × 5 ≈ 31.4米例子2:一辆汽车在圆形赛道上行驶,赛道半径为100米,驾驶员开车一圈需要用时50秒。

求汽车的平均速度。

解析:首先计算圆周长c = 2πr = 2 × 3.14 × 100 = 628米然后计算平均速度v = c/t = 628/50 ≈ 12.56 m/s3. 直角三角形运动问题直角三角形运动问题是指点在直角三角形内运动,涉及到时间、速度和直角三角形边长的关系。

解决直角三角形运动问题时,可以利用勾股定理或三角函数来计算相关的未知量。

例子1:一个直角三角形的两条边长分别为3米和4米,角度为90度。

初中数学重点模型14 动点在四边形中的分类讨论(基础)

初中数学重点模型14 动点在四边形中的分类讨论(基础)

专题14 动点在四边形中的分类讨论【专题说明】动点问题是中考中非常重要的一类问题,也是中考中的热点问题。

动点问题体现了数学中变化的思想,分类讨论的思想,对学生综合运用知识的能力要求非常高。

四边形中的动点问题是一类非常重要的问题,它将三角形和平行四边形、矩形、菱形、正方形结合在一起进行考察。

一、解题基本思路解决动点问题的思路,要注意以下几点:1、设出未知数动点问题一般都是求点的运动时间,通常设运动时间为t2、动点的运动路径就是线段长度题目通常会给动点的运动速度例如每秒两个单位,那么运动路程就是2t个单位。

而2t也就是这个点所运动的线段长。

进而能表示其他相关线段的长度。

所以我们在做动点问题的时候,第一步就是把图形中的线段都用含t的代数式来表示。

3、方程思想求出时间动点问题通常都是用方程来解决,根据题目找到线段之间的等量关系,然后用含有t的代数式表示出来,列出方程求解出t的值。

4、难点是找等量关系这种题的难点是找到等量关系。

这个等量关系往往不是题目中用语言叙述出来的,而是同学们根据题型自己挖掘出来的等量关系,所以对同学们图形分解的能力以及灵活运用知识的能力要求非常高。

5、注意分类讨论因为点的运动的位置不同,形成的图形就不同,符合结论的情况可能就不止一种,所以做动点问题要注意分类讨论。

【精典例题】1、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,x ),则AP=2x cm,CM=3x cm,DN=x2cm.若BQ=x cm(0(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x 为何值时,以P ,Q ,M ,N 为顶点的四边形是平行四边形;(3)以P ,Q ,M ,N 为顶点的四边形能否为等腰梯形?如果能,求x 的值;如果不能,请说明理由.【解析】(1)当点P 与点N 重合或点Q 与点M 重合时,以PQ ,MN 为两边,以矩形的边(AD 或BC )的一部分为第三边可能构成一个三角形. ①当点P 与点N 重合时,(舍去).因为BQ +CM =,此时点Q 与点M 不重合.所以符合题意. ①当点Q 与点M 重合时,.此时,不符合题意.故点Q 与点M 不能重合.所以所求x 的值为.(2)由(1)知,点Q 只能在点M 的左侧,①当点P 在点N 的左侧时,由,解得. 当x =2时四边形PQMN 是平行四边形.①当点P 在点N 的右侧时,由, 解得.当x =4时四边形NQMP 是平行四边形.所以当时,以P ,Q ,M ,N 为顶点的四边形是平行四边形.(3)过点Q ,M 分别作AD 的垂线,垂足分别为点E ,F .由于2x >x ,所以点E 一定在点P 的左侧. 若以P ,Q ,M ,N 为顶点的四边形是等腰梯形, 则点F 一定在点N 的右侧,且PE =NF , 即.解得.由于当x =4时, 以P ,Q ,M ,N 为顶点的四边形是平行四边形,所以,以P ,Q ,M ,N 为顶点的四边形不能为等腰梯形2、如图1,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1, 0)、C (3, 0)、D (3, 4).以A 为顶点的抛212220211211x x x x +==-=--由,得,34(211)20x x +=-<211x =-320,5x x x +==由得22520DN x ==>211-220(3)20(2)x x x x -+=-+120()2x x ==舍去,220(3)(2)20x x x x -+=+-1210()4x x =-=舍去,24x x ==或223x x x x -=-120()4x x ==舍去,ABDCPQ MN物线y =ax 2+bx +c 过点C .动点P 从点A 出发,沿线段AB 向点B 运动,同时动点Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ①AB 交AC 于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF ①AD 于F ,交抛物线于点G ,当t 为何值时,①ACG 的面积最大?最大值为多少? (3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使以C 、Q 、E 、H 为顶点的四边形为菱形?请直接写出t 的值.图1 思路点拨1.把①ACG 分割成以GE 为公共底边的两个三角形,高的和等于AD . 2.用含有t 的式子把图形中能够表示的线段和点的坐标都表示出来.3.构造以C 、Q 、E 、H 为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在. 满分解答(1)A (1, 4).因为抛物线的顶点为A ,设抛物线的解析式为y =a (x -1)2+4,代入点C (3, 0),可得a =-1.所以抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3. (2)因为PE //BC ,所以2AP AB PE BC ==.因此1122PE AP t ==.所以点E 的横坐标为112t +. 将112x t =+代入抛物线的解析式,y =-(x -1)2+4=2144t -.所以点G 的纵坐标为2144t -.于是得到2211(4)(4)44GE t t t t =---=-+.因此22111()(2)1244ACG AGE CGE S S S GE AF DF t t t ∆∆∆=+=+=-+=--+. 所以当t =1时,①ACG 面积的最大值为1.(3)2013t =或20t =-考点伸展第(3)题的解题思路是这样的:因为FE //QC ,FE =QC ,所以四边形FECQ 是平行四边形.再构造点F 关于PE 轴对称的点H ′,那么四边形EH ′CQ 也是平行四边形.再根据FQ =CQ 列关于t 的方程,检验四边形FECQ 是否为菱形,根据EQ =CQ 列关于t 的方程,检验四边形EH ′CQ 是否为菱形.1(1,4)2E t t +-,1(1,4)2F t +,(3,)Q t ,(3,0)C .如图2,当FQ =CQ 时,FQ 2=CQ 2,因此2221(2)(4)2t t t -+-=.整理,得240800t t -+=.解得120t =-220t =+. 如图3,当EQ =CQ 时,EQ 2=CQ 2,因此2221(2)(42)2t t t -+-=.整理,得213728000t t -+=.(1320)(40)0t t --=.所以12013t =,240t =(舍去).图2 图33、如图1,在Rt①ABC 中,①C =90°,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD //BC ,交AB 于点D ,联结PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t 秒(t ≥0).(1)直接用含t 的代数式分别表示:QB =_______,PD =_______;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由,并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度; (3)如图2,在整个运动过程中,求出线段PQ 的中点M 所经过的路径长.图1 图2思路点拨1.菱形PDBQ 必须符合两个条件,点P 在①ABC 的平分线上,PQ //AB .先求出点P 运动的时间t ,再根据PQ //AB ,对应线段成比例求CQ 的长,从而求出点Q 的速度.2.探究点M 的路径,可以先取两个极端值画线段,再验证这条线段是不是点M 的路径. 满分解答(1)QB =8-2t ,PD =43t .(2)如图3,作①ABC 的平分线交CA 于P ,过点P 作PQ //AB 交BC 于Q ,那么四边形PDBQ 是菱形.过点P 作PE ①AB ,垂足为E ,那么BE =BC =8.在Rt①ABC 中,AC =6,BC =8,所以AB =10. 在Rt①APE 中,23cos 5AE A AP t ===,所以103t =.当PQ //AB 时,CQ CP CB CA =,即106386CQ-=.解得329CQ =.所以点Q 的运动速度为3210169315÷=.(3)以C 为原点建立直角坐标系.如图4,当t =0时,PQ 的中点就是AC 的中点E (3,0). 如图5,当t =4时,PQ 的中点就是PB 的中点F (1,4). 直线EF 的解析式是y =-2x +6.如图6,PQ 的中点M 的坐标可以表示为(62t -,t ).经验证,点M (62t -,t )在直线EF 上.所以PQ 的中点M 的运动路径长就是线段EF 的长,EF =25.图3图4 图5 图6考点伸展第(3)题求点M 的运动路径还有一种通用的方法是设二次函数: 当t =2时,PQ 的中点为(2,2).设点M 的运动路径的解析式为y =ax 2+bx +c ,代入E (3,0)、F (1,4)和(2,2),得930,4,42 2.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解得a =0,b =-2,c =6. 所以点M 的运动路径的解析式为y =-2x +6.4、如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示); (2)点E 是直线l 上方的抛物线上的动点,若①ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.图1 备用图 思路点拨1.过点E 作x 轴的垂线交AD 于F ,那么①AEF 与①CEF 是共底的两个三角形.2.以AD 为分类标准讨论矩形,当AD 为边时,AD 与QP 平行且相等,对角线AP =QD ;当AD 为对角线时,AD 与PQ 互相平分且相等.满分解答(1)由y=ax2-2ax-3a=a(x+1)(x-3),得A(-1, 0).由CD=4AC,得x D=4.所以D(4, 5a).由A(-1, 0)、D(4, 5a),得直线l的函数表达式为y=ax+a.(2)如图1,过点E作x轴的垂线交AD于F.设E(x, ax2-2ax-3a),F(x, ax+a),那么EF=y E-y F=ax2-3ax-4a.由S①ACE=S①AEF-S①CEF=11()() 22E A E C EF x x EF x x---=1()2C AEF x x-=21(34)2ax ax a--=21325()228a x a--,得①ACE的面积的最大值为258a-.解方程25584a-=,得25a=-.(3)已知A(-1, 0)、D(4, 5a),x P=1,以AD为分类标准,分两种情况讨论:①如图2,如果AD为矩形的边,那么AD//QP,AD=QP,对角线AP=QD.由x D-x A=x P-x Q,得x Q=-4.当x=-4时,y=a(x+1)(x-3)=21a.所以Q(-4, 21a).由y D-y A=y P-y Q,得y P=26a.所以P(1, 26a).由AP2=QD2,得22+(26a)2=82+(16a)2.整理,得7a2=1.所以a=P(1,.①如图3,如果AD为矩形的对角线,那么AD与PQ互相平分且相等.由x D+x A=x P+x Q,得x Q=2.所以Q(2,-3a).由y D+y A=y P+y Q,得y P=8a.所以P(1, 8a).由AD2=PQ2,得52+(5a)2=12+(11a)2.整理,得4a2=1.所以12a=-.此时P(14)-,.图1 图2 图3考点伸展第(3)题也可以这样解.设P(1,n).①如图2,当AD时矩形的边时,①QPD=90°,所以AM DNMD NP=,即5553a na-=-.解得235ana+=.所以P235(1,)aa+.所以Q3(4,)a-.将Q3(4,)a-代入y=a(x+1)(x-3),得321aa=.所以a=.①如图3,当AD为矩形的对角线时,先求得Q(2,-3a).由①AQD=90°,得AG QKGQ KD=,即32335aa a-=--.解得12a=-.5、如图1,已知抛物线C:y=-x2+bx+c经过A(-3,0)和B(0, 3)两点.将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?图1思路点拨1.抛物线在平移的过程中,M′N′与MN保持平行,当M′N′=MN=4时,以点M、N、M′、N′为顶点的四边形就是平行四边形.2.平行四边形的面积为16,底边MN=4,那么高NN′=4.3.M′N′=4分两种情况:点M′在点N′的上方和下方.4.NN′=4分两种情况:点N′在点N的右侧和左侧.满分解答(1)将A (-3,0)、B (0, 3)分别代入y =-x 2+bx +c ,得 930,3.b c c --+=⎧⎨=⎩解得b =-2,c =3. 所以抛物线C 的表达式为y =-x 2-2x +3.(2)由y =-x 2-2x +3=-(x +1)2+4,得顶点M 的坐标为(-1,4).(3)抛物线在平移过程中,M′N′与MN 保持平行,当M′N′=MN =4时,以点M 、N 、M ′、N ′为顶点的四边形就是平行四边形.因为平行四边形的面积为16,所以MN 边对应的高NN′=4.那么以点M 、N 、M ′、N ′为顶点的平行四边形有4种情况:抛物线C 直接向右平移4个单位得到平行四边形MNN ′M ′(如图2); 抛物线C 直接向左平移4个单位得到平行四边形MNN ′M ′(如图2);抛物线C 先向右平移4个单位,再向下平移8个单位得到平行四边形MNM ′N ′(如图3); 抛物线C 先向左平移4个单位,再向下平移8个单位得到平行四边形MNM ′N ′(如图3).图2 图3考点伸展本题的抛物线C 向右平移m 个单位,两条抛物线的交点为D ,那么①MM ′D 的面积S 关于m 有怎样的函数关系?如图4,①MM ′D 是等腰三角形,由M (-1,4)、M ′(-1+m , 4),可得点D 的横坐标为22m -. 将22m x -=代入y =-(x +1)2+4,得244m y =-+.所以DH =244m -.所以S =2311(4)2248m m m m -=-.图4。

七年级运动距离、线段上的动点问题

七年级运动距离、线段上的动点问题

七年级运动距离、线段上的动点问题介绍本文档将讨论七年级数学中的运动距离以及线段上的动点问题。

运动距离是指物体从一个位置到另一个位置所经过的距离,线段上的动点问题是指在给定的线段上,动点从一个位置移动到另一个位置的问题。

运动距离在数学中,我们常常需要计算物体的运动距离。

运动距离的计算可以使用数学公式或几何图形来解决。

例如,当物体做匀速直线运动时,我们可以使用速度和时间的关系来计算运动距离。

运动距离的计算方法包括计算直线距离、曲线距离和路径长度等。

我们可以使用直线距离公式来计算物体从一个点到另一个点的直线距离,曲线距离可以通过近似曲线为线段来计算,路径长度则是指物体在路径上的实际行进距离。

线段上的动点问题线段上的动点问题是指在给定的线段上,动点从一个位置移动到另一个位置的问题。

这种问题常常涉及到计算动点的速度、时间以及距离等。

例如,在一个数轴上,动点从一个位置移动到另一个位置,我们可以使用数轴上的单位长度和时间的关系来计算动点的速度和距离。

线段上的动点问题也可以与运动距离有关。

当动点在线段上做匀速运动时,我们可以使用速度和时间的关系来计算动点的运动距离。

总结七年级数学中的运动距离和线段上的动点问题是数学中常见的问题。

在解决这类问题时,我们可以使用数学公式、几何图形和实际情境等工具来进行计算和分析。

通过掌握运动距离和线段上的动点问题的解决方法,我们可以更好地理解物体的运动规律和线段上动点的特性。

参考文献:- 张开芳,(2008),《数学七年级上册》,人民教育出版社。

- 华东师范大学出版社,(2009),《数学七年级下册》,华东师范大学出版社。

动点问题相关题目

动点问题相关题目

动态问题动态问题1.如图,在梯形ABCD 中,AD∥BC,中,AD∥BC,AD=6AD=6AD=6,,BC=16BC=16,,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t 何值时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形?形?2.如图,Rt△ABC 中,∠A=30°,中,∠A=30°,BC=10cm BC=10cm BC=10cm,点,点Q 在线段BC 上从B 向C 运动,点P 在线段BA 上从B 向A 运动.运动.Q Q 、P 两点同时出发,运动的速度相同,当点Q 到达点C 时,两点都停止运动.作PM⊥PQ 交CA 于点M ,过点P 分别作BC BC、、CA 的垂线,垂足分别为E 、F .(1)求证:△PQE∽△PMF;)求证:△PQE∽△PMF;(2)当点P 、Q 运动时,请猜想线段PM 与MA 的大小有怎样的关系?并证明你的猜想;关系?并证明你的猜想;(3)设BP=x ,△PEM 的面积为y ,求y 关于x 的函数关系式,当x 为何值时,y 有最大值,并将这个值求出来.值求出来.3.如图①,在△ABC 中,AB AB==AC AC,, BC BC==a cm cm,,∠B=∠B=30300。

动点P 以1cm/s 的速度从点B 出发出发,,沿折线B-A-C运动到点C 时停止运动。

设点P 出发xs 时,△PBC 的面积为ycm2ycm2。

已知y 和x 的函数图象如图②所示。

请根据图中信息,解答下列问题:的函数图象如图②所示。

请根据图中信息,解答下列问题:试判断△DOE 的形状的形状, , , 并说明理由;并说明理由;并说明理由; 当a 为何值时,△DOE 和△ABC 相似?相似?A B C P 图①4.如图,在边长为2的正方形ABCD 中,中,P P 为AB 的中点,的中点,Q Q 为边CD 上一动点,设DQ DQ==t (0≤t≤2),线段PQ 的垂直平分线分别交边AD AD、、BC 于点M 、N ,过Q作QE⊥AB 于点E ,过M 作MF⊥BC 于点F .((1)当t≠1时,求证:△PEQ≌△NFM;时,求证:△PEQ≌△NFM;((2)顺次连接P 、M 、Q 、N ,设四边形PMQN 的面积为S ,求出S 与自变量t之间的函数关系式,并求S 的最小值.的最小值.5.如图,在Rt△ABC 中,∠B=90°,中,∠B=90°,BC=BC=35,∠C=30°.点D 从点C 出发沿CA 方向以每秒2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(t >0).过点D 作DF⊥BC 于点F ,连接DE DE、、EF EF..(1)求证:)求证:AE=DF AE=DF AE=DF;;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由.值;如果不能,说明理由.(3)当t 为何值时,△DEF 为直角三角形?请说明理由.为直角三角形?请说明理由.6.如图,将—矩形OABC 放在直角坐际系中,放在直角坐际系中,O O 为坐标原点.点A 在x 轴正半轴上.点E 是边AB 上的—个动点个动点((不与点A 、N 重合重合)),过点E 的反比例函数)0(>=x x k y 的图象与边BC 交于点F 。

动点运动路径长问题

动点运动路径长问题

乘胜 追击
例 2(2017 宁波考纲)在矩形 ABCD 中, AD=6,AB=
6 2 3 ,E 是 AB 边上的一点,且 AE=AD,P 是线段 CD 上
一点,连接 PE,将矩形沿着 PE 折叠,点 B、C 分别落在 G、
F 处,当点 P 从点 C 移动到点 D 时,点 G 经过的路径长为
________。
例 3(2016 武汉)如图,在等腰 Rt△ABC 中,AC=BC=2 2 , 点 P 在以斜边 AB 为直径的半圆 O 上,M 为 PC 的中点.当
点 P 沿半圆从点 A 运动至点 B 时,点 M 运动的路径长是( B )
A. 2
B. C. 2 2
D. 2
本节课学习了哪些内容
课后 拓展
(2014 义乌)如图,等边三角形 ABC 的边长为 6,点 E,F 分别
在 AC,BC 上,连结 AF,BE 相交于点 P, 若 AE=CF,当点
E 从点 A 运动到点 C 时,求点 P 经过的路径长。
D(P)
C
A
E
B
F G
攻坚 克难
例 3(2016 武汉)如图,在等腰 Rt△ABC 中,AC=BC=2 2 , 点 P 在以斜边 AB 为直径的半圆 O 上,M 为 PC 的中点.当
点 P 沿半圆从点 A 运动至点 B 时,点 M 运动的路径长是( B )
A. 2Biblioteka B. C. 2 2D. 2
攻坚 克难
∵∠ADO=90°
∴点 D 在以 AO 为直径的圆上
当点C与A重合;D与A重合;
当点C运动90°时;
∴点 D 的运动路线是以 AO 为直径的 1 圆弧
∴ l n R 90 2

2020年中考数学专题突破二十:连锁轨迹— —动点在直线上产生的动点轨迹问题

2020年中考数学专题突破二十:连锁轨迹— —动点在直线上产生的动点轨迹问题

专题二十:连锁轨迹——动点在直线上产生的动点轨迹问题【导例引入】导例:如图:A是定点,动点B从O(0,0)运动到C(8,0). 点M为线段AB的中点,①画出线段AB的中点M运动的路径②M运动的路径的长是.分析:求解动点运动问题的关键是把握运动规律,寻求运动中的特殊位置,在“动”中求“静”,在“静”中探求“动”.首先要分清运动的轨迹是线段还是弧,然后确定起始点和终止点,再作出相应的草图就能解决问题动点B和M的关系可定义为:B叫做主动点,M叫做从动点.如果:①动点的初始位置②动点的中途位置③动点的终止位置三点在一条直线上,那么可以初步判断动点的运动路径是.【方法指引】注意画图分析:第一步:画出△BDE的初始位置和终止位置第二步:标出①点的初始位置②点的中途位置③点的终止位置第三步:判断动点的运动路径,计算其长度导例答案:(1)线段M1M2即为点M的运动路径;【例题精讲】类型一:动点产生的路径与最值问题例1.如图,在△ABC中,∠CAB=90°,AB=AC=4,P为AC中点,点D在直线BC上运动,以为边向AD的右侧作正方形ADEF,连接PF,则在点D的运动过程中,线段PF的最小值为.【分析】连接CF,由“SAS”可证△ABD≌△ACF,可得∠ABD=∠ACF=45°,可得CF⊥BC,即点F在过点C且垂直BC的直线上,则当PF⊥CF时,PF的值最小,即可求PF的最小值.类型二:动点产生的路径长问题例2.如图,在△ABC中,已知AB=AC=10cm,∠BAC=90°,点D在AB边上且BD=4cm,过点D作DE⊥AB交BC于点E.(1)求DE的长;(2)若动点P从点B出发沿BA方向以2cm/s的速度向终点A运动,连结PE,设点P运动的时间为t秒.当S△PDE=6cm2时,求t的值;(3)若动点P从点D出发沿着DA方向向终点A运动,连结PE,以PE为腰,在PE右侧按如图方式作等腰直角△PEF,且∠PEF=90°.当点P从点D运动到点A时,求点F运动的路径长(直接写出答案).【分析】(1)根据等腰直角三角形的性质解答;(2)分点P 在线段BD 上和点P 在线段AD 上两种情况,根据三角形的面积公式计算;(3)证明△PDE ≌△EHF ,根据全等三角形的性质、结合图形解答即可.【专题过关】1.如图,在△ABC 中,BC =8,M 是边边 BC 上一动点,连接 AM ,取 AM的中点 P ,随着 点 M 从点 B 运动到点 C ,求动点 P 的路径长为 .2. 已知线段AB =6,C 、D 是AB 上两点,且AC =DB =1,P 是线段CD 上一动点,在AB 同侧分别作等边三角形APE 和等边三角形PBF ,G 为线段EF 的中点,点P 由点C 移动到点D 时,G 点移动的路径长度为_______.3. 如图在Rt △ABC 中,∠C=90°,AC=8,BC=6,动点P 从点A 开始沿边AC 向点C 以1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,当其中一点到达端点时,另一点也随之停止运动.连结PQ ,M 为线段PQ 的中点,则在整个运动过程中,M 点所经过的路径长为 .4.如图,在Rt ABC ∆中,6,8AC BC ==,90C ∠=︒.点P 是边AB 上一动点,点D 是AC延长线上的一个定点,连接PD ,过点D 作DE PD ⊥,连接PE ,且2tan 5DPE ∠=,当点P 从点A 运动到点B 时,点E 运动的路径长为 .5.如图,矩形ABCD 中,AB=6,AD=8,点E 在边AD 上,且AE :ED=1:3.动点P 从点A 出发,沿AB 运动到点B 停止.过点E 作EF ⊥PE 交射线BC 于点F ,设M 是线段EF 的中点,则在点P 运动的整个过程中,点M 运动路线的长为 .6.如图,已知AB=9,点E 是线段AB 上的动点,分别以AE ,EB 为底边在线段AB 的同侧作等腰直角△AME 和△BNE ,连接MN ,设MN 的中点为F ,当点E 从点A 运动到点B 时,则点F 移动路径的长是7.如图所示,点E 坐标为(﹣1,0),点B 坐标为(0,2),等腰直角△BDC 的直角端点D 从D(0,0)运动到D(2,0)时,(1)画出线段EC 的中点M 运动的路径;(2)EC 的中点M 运动的路径的长是多少?8.如图,已知正方形ABCD 的边长为4,点P 是AB 边上的一个动点,连接CP ,过点P 作PC 的垂线交AD 于点E ,以PE 为边作正方形PEFG ,顶点G 在线段PC 上,对角线EG ,PF 相交于点O .(1)若AP=1,则AE= ;(2)①求证:点O 一定在△APE 的外接圆上;②当点P 从点A 运动到点B 时,点O 也随之运动,求点O 经过的路径长;(3)当点P 运动至AB 中点时,求线段CO 的长.9.正方形ABCD 的边长为2,动点E 在边AB ,AD 上运动,连接CE ,以CE 为边作正方形CEFG (点C 、E ,F ,G 按顺时针方向排列),连接DG .问题解决:(1)如图(1),当点E 在AB 上运动时,求证:△BEC ≌△DGC ;(2)如图(2),当点E 在AD 上运动时,点M 是FG 的中点,连接CM .若DG=CM ,则AE 的长为 ;(3)如图(1),点E 沿边AB 由点B 运动到点A 时,求点F 的运动路径的长.10.如图,平面直角坐标系中,直线AB :y=-31x+b 交y 轴于点A (0,2),交X 轴于点B .过点E (2,0)作X 轴的垂线EF 交AB 于点D ,P 是射线DF 上一动点,设P (2,n ).(1)B点坐标为;(2)求△ABP的面积(用含n的代数式表示);(3)以PB为斜边作等腰直角△BPC,且点C始终在第一象限.①若S△AEP=2,求点C的坐标.②若点P从(2,2)运动到(2,4),则点C运动的路径长为11.如图,在矩形ABCD中,AB=2,BC=4,M是AD的中点,动点E在线段AB上,连接EM并延长交射线CD于点F,过点M作EF的垂线交BC于点G,连结EG、FG.(1)求证:△AME≌△DMF;(2)在点E的运动过程中,探究:①△EGF的形状是否发生变化,若不变,请判断△EGF的形状,并说明理由;②线段MG的中点H运动的路程最长为多少(直接写出结果)?(3)设AE=x,△EGF的面积为S,求当S=6时,求x的值.12.如图,正方形ABCD的边长是2,M是AD的中点,点E从点A出发,沿AB运动到点B停止,连接EM并延长交射线CD于点F,过点M作EF的垂线交射线BC于点G,连接EG,FG.(1)试判断△EGF的形状,并说明理由;(2)设AE=x,△EGF的面积为y,求y关于x的函数解析式,并写出自变量x的取值范围;(3)若P是MG的中点,请直接写出点P运动路线的长.13.在平面直角坐标系中,A(2,0),B(0,3),过点B作直线∥x轴,点P(a,3)是直线上的动点,以AP为边在AP右侧作等腰Rt△APQ,∠APQ=Rt∠,直线AQ交y轴于点C.(1)当a=1时,则点Q的坐标为多少;(2)当点P在直线上运动时,点Q也随之运动.当a为多少时,AQ+BQ的值最小,最小值为多少?例题答案:例1.连接CF.∵∠CAB=90°,AB=AC=4,P为AC中点,∴∠ABC=∠ACB=45°,AP=PC=2.∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°.∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,且AB=AC,AD=AF.∴△ABD≌△ACF(SAS).∴∠ABD=∠ACF=45°.∴∠BCF=∠ACB+∠ACF=90°.∴CF⊥BC.∴点F在过点C且垂直BC的直线上运动.∴当PF⊥CF时,PF的值最小.∴PF的最小值==.例2.(1)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°.∵DE⊥AB,∴∠B=∠BED=45°.∴DE=BD=4cm;(2)当点P在线段BD上时,S△PDE=×DP×DE=×4×(4-2t)=6,整理得4-2t=3,解得t=0.5.当点P在线段AD上时,S△PDE=×DP×DE=×4×(2t-4)=6,整理得2t-4=3,解得t=3.5.综上所述,t=0.5或3.5;(3)点F运动的路径长为10-4.理由如下:如图,连接AE,过点E作EF1⊥DE,且使EF1=ED,过点E作EF2⊥DE,且使EF2=AE,∴∠DEF1F=90°,∠AEF2=90°∴∠DEA=∠F1EF2.∴△DEA≌△F1EF2.∴AD=F1F2=10-4.∴当P从点D运动到点A时,点F运动的路径为线段F1F2,该线段的长度=AD=10-4.【专题过关】1.4.2.如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF.∵∠B=∠EPA=60°,∴BH∥PE.∴四边形EPFH为平行四边形.∴EF与HP互相平分.∵G为EF的中点,∴G为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=6-1-1=4,∴MN=2,即G的移动路径长为2.3. 以C为原点,以AC所在直线为x轴,建立平面直角坐标系,依题意,可知0≤t≤3,当t=0时,点M1的坐标为(4,0);当t=3时,点M2的坐标为(,3).设直线M1M2的解析式为y=kx+b,则解得∴直线M1M2的解析式为y=-2x+8.∵点Q(0,2t),P(8-t,0),∴在运动过程中,线段PQ中点M3的坐标为(,t).把x=,代入y=-2x+8,得y=-2×+8=t.∴点M3在M1M2直线上.过点M2作M2N⊥x轴于点N,则M2N=3,M1N=.∴M1M2=.∴线段PQ中点M所经过的路径长为单位长度.4.分析:点E的运动路径是一条线段,点E运动的路径长就是线段E1E2的长度.于是提出猜想一“在三点图中,从动点的起点,终点,过程点三点共线时,从动点的运动路径为线段”.∵1190E DE PDE ∠+∠=︒,1190PDP PDE ∠+∠=︒, ∴11PDP E DE ∠=∠.又∵1125DE DE DP DP ==, ∴11E DE PDP ∆∆.∴11DEE DPP ∠=∠.同理22E DEP DP ∆∆,可得22DEE DPP ∠=∠. 又∵12180DPP DPP ∠+∠=︒,∴12180DEE DEE ∠+∠=︒.∴点1E ,点E ,点2E 三点共线.∵121290E DE PDE ∠+∠=︒,121290PDP PDE ∠+∠=︒,∴1212PDP E DE ∠=∠.∵121225DE DE DP DP ==,∴1212E DE PDP ∆∆.∴121225E E PP =.∵1210PP =,∴124E E =.5.如图所示:过点M 作GH ⊥AD .∵AD ∥CB ,GH ⊥AD ,∴GH ⊥BC .在△EGM 和△FHM 中,∴△EGM ≌△FHM .∴MG=MH .∴点M 的轨迹是一条平行于BC 的线段.当点P 与A 重合时,BF 1=AE=2;当点P 与点B 重合时,∠F 2+∠EBF 1=90°,∠BEF 1+∠EBF 1=90°,∴∠F 2=∠EBF 1.∵∠EF 1B=∠EF 1F 2,∴△EF 1B ∽△∠EF 1F 2. ∴21111F F EF EF BF =.∴21662F F =.∴F 1F 2=18.∵M 1M 2是△EF 1F 2的中位线,∴M 1M 2=21F 1F 2=9.6.如图,分别延长AM 、BN 交于点C .∵∠A=∠BEN=45°,∴AC ∥EN .同理可得,BC ∥EM .∴四边形MENC 为平行四边形,∴CE 与MN 互相平分.∵F 为MN 的中点,∴F 为CE 中点.当点E 从点A 运动到点B 时,F 始终为CE 的中点.故F 的运行轨迹为△CAB 的中位线,点F 移动路径的长等于AB 的一半.∴F 的移动路径长为21×9=29.7.设OD=t,作CH ⊥OA 于H,可得△BOD ≌DHC ,∴CH=OD=t ,DH=BO=2。

八年级上册数学动点问题

八年级上册数学动点问题

八年级上册数学动点问题
第一种,已知路径求速度。

这种问题需要先明确动点的起始和终止位置,然后计算路径的长度或者距离。

接着,通过已知的运动时间,可以求出动点的速度。

第二种,已知速度求路径。

这种问题需要先明确动点的速度和运动的时间,然后计算动点的运动路程。

接着,结合起始位置,可以确定动点的终止位置,从而得到路径。

解决动点问题的关键在于理解速度、时间和距离之间的关系,即速度等于距离除以时间。

同时,要根据问题的具体情况,灵活运用代数、几何等数学知识进行求解。

对于八年级上册的学生来说,解决动点问题需要注意以下几点:
1. 仔细审题:在动点问题中,往往需要根据题意去分析动点的运动过程,如果题意理解错误,就很难得到正确的答案。

2. 画图分析:在解决动点问题时,画图是一个很好的辅助工具。

通过画图可以更直观地了解动点的运动过程,从而更容易找到解题思路。

3. 灵活运用知识:动点问题往往涉及到多个知识点,如代数、几何等。

在解决问题时,需要灵活运用这些知识,根据问题的具体情况选择合适的方法进行求解。

4. 检查答案:在解决动点问题后,一定要检查答案是否正确。

可以通过代入原题、重新计算等方法进行验证,确保答案的准确性。

九年级数学几何路径长问题(二)(含答案)

九年级数学几何路径长问题(二)(含答案)

学生做题前请先回答以下问题问题1:解决路径长问题的思路为:①分析_______、________,寻找__________;②确定运动路径;通过“________、__________、________”猜测运动路径,并结合_______进行验证,在做的过程中要大胆猜测,小心验证.③设计方案,求出路径长.几何路径长问题(二)一、单选题(共6道,每道16分)1.如图,在以O为圆心,2为半径的圆上任取一点A,过点A作AM⊥y轴于点M,AN⊥x 轴于点N,点P为MN的中点,当点A沿着圆圈在第一象限内顺时针方向走完45°弧长时,点P走过的路径长( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:路径长问题2.如图,已知AB=8,点P为线段AB上的一个动点,分别以AP,BP为边在同侧作正方形APDC 与正方形PBFE.若点M,N是线段AB上的两点,且AM=BN=1,点G,H分别是边CD,EF 的中点.则在点P从M到N的运动过程中,GH的中点O所经过的路径长为( )A. B.C.3D.5答案:C解题思路:试题难度:三颗星知识点:路径长问题3.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记点Q的位置为B,则当点P从(-2,0)运动到(2,0)时,点Q运动的路径长为( )(提示:等边三角形共用一个顶点,出现等线段共端点)A.2B.2πC.4D.4π答案:C解题思路:试题难度:三颗星知识点:路径长问题4.如图,△ABC内接于⊙O,∠A=60°,,当点P在劣弧BC上由B点运动到C点时,弦AP的中点E运动的路径长为( )(提示:圆中遇弦AP的中点,考虑垂径定理)A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:直角三角形斜边上中线5.如图,在平面直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的⊙P 周长为1.点M从A开始沿⊙P按逆时针方向转动,射线AM交x轴于点N(n,0),设点M转过的路程为m(0<m<1),当m=时,n=( )A.1B.-1C. D.答案:B解题思路:试题难度:三颗星知识点:三角函数6.(接第5题)随着点M的转动,当m从变化到时,点N相应移动的路径长为( )A. B.1C. D.答案:A解题思路:试题难度:三颗星知识点:三角函数第11页共11页。

圆中动点路径类问题解析版

圆中动点路径类问题解析版

考点08 圆中动点路径类问题1.(2020•河北模拟)如图,⊙O内切于正方形ABCD,O为圆心,作∠MON=90°,其两边分别交BC,CD于点N,M,若CM+CN=4,则⊙O的面积为()A.πB.2πC.4πD.0.5π【解答】解:设⊙O于正方形ABCD的边CD切于E,与BC切于F,连接OE,OF,则四边形OECF是正方形,∴CF=CE=OE=OF,∠OEM=∠OFN=∠EOF=90°,∵∠MON=90°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=NF,∴CM+CN=CE+CF=4,∴OE=2,∴⊙O的面积为4π,故选:C.【知识点】正方形的性质、圆心角、弧、弦的关系、切线长定理2.(2020•武汉模拟)如图,BC为⊙O直径,弦AC=2,弦AB=4,D为⊙O上一点,I为AD上一点,且DC=DB=Dl,AI长为()A.B.C.D.【解答】解:如图,连接IC,作IE⊥AC于E,IF⊥AB于F,IG⊥BC于G.∵DB=DC,∴=,∠DBC=∠DCB,∴∠BAD=∠CAD,∵DI=DC,∴∠DIC=∠DCI,∵∠DIC=∠DAC+∠ACI,∠DCI=∠DCB+∠ICB,∠DBC=∠DAC,∴∠ICA=∠ICB,∴点I为△ABC内心,∴IE=IF=IG,∵BC是直径,∴∠BAC=90°,∴BC===2,∵S△ABC=•AB•AC=•IE•(AB+AC+BC),∴IE=3﹣,∵∠IAE=∠AIE=45°,∴AI=IE=3﹣,故选:D.【知识点】圆周角定理3.(2020•高邮市期末)如图,矩形ABCD中,AB=3,BC=8,点P为矩形内一动点,且满足∠PBC=∠PCD,则线段PD的最小值为()A.5B.1C.2D.3【解答】解:∵四边形ABCD为矩形,∴∠BCD=90°,∵∠PBC=∠PCD,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的⊙O上,连接OD交⊙O于P′,连接OP、PD,如图,∵PD≥OD﹣OP(当且仅当O、P、D共线时,取等号),即P点运动到P′位置时,PD的值最小,最小值为DP′,在Rt△OCD中,OC=BC=4,CD=AB=3,∴OD==5,∴DP′=OD﹣OP′=5﹣4=1,∴线段PD的最小值为1.故选:B.【知识点】矩形的性质、圆周角定理4.(2020•朝阳区校级月考)如图,OA是⊙O的半径,B为OA上一点(且不与点O、A重合),过点B作OA的垂线交⊙O于点C.以OB、BC为边作矩形OBCD,连结BD.若BD=10,BC=8,则AB的长为()A.8B.6C.4D.2【解答】解:如图,连接OC.∵四边形OBCD是矩形,∴∠OBC=90°,BD=OC=OA=10,∴OB===6,∴AB=OA﹣OB=4,故选:C.【知识点】圆的认识、矩形的性质、勾股定理5.(2020•镇海区期末)如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点P是△ABC内部的一个动点,且满足∠PBC=∠PCA,则线段AP长的最小值为()A.0.5B.﹣1C.2﹣D.【解答】解:∵△ABC为等腰直角三角形,∴∠ACB=45°,即∠PCB+∠PCA=45°,∵∠PBC=∠PCA,∴∠PBC+∠PCB=45°,∴∠BPC=135°,∴点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,则∠BCQ=180°﹣∠BPC=45°,∴∠BOC=2∠BQC=90°,∴△OBC为等腰直角三角形,∴四边形ABOC为正方形,∴OA=BC=2,∴OB=BC=,∵AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),∴AP的最小值为2﹣.故选:C.【知识点】旋转的性质、勾股定理、三角形三边关系、全等三角形的判定与性质、等腰直角三角形、圆周角定理6.(2020•海珠区期末)已知:AB是⊙O的直径,AD,BC是⊙O的切线,P是⊙O上一动点,若AD=10,OA=4,BC=16,则△PCD的面积的最小值是()A.36B.32C.24D.10.4【解答】解:∵CD是定值,所以当P到CD的距离最小时△PCD的面积最小,过P作EF∥CD,交AD于点E,交BC于点F,当EF与⊙O相切时,P到CD的距离最短,连接OP并延长交CD于点Q,过O作OH∥BC,交EF于点G,交CD于点H,则可知OH为梯形ABCD的中位线,OG为梯形ABFE的中位线,∴OH=(AD+BC)=13,过D作DM⊥BC于点M,则DM=AB=8,MC=BC﹣AD=6,∴CD=EF=10,由切线长定理可知AE=EP,BF=PF,∴AE+BF=EF=10,∴OG=(AE+BF)=5,∴GH=OH﹣OG=8,又∵OP=4,且=,∴=,∴PQ=,∴S△PCD=PQ•CD=××10=32.故选:B.【知识点】切线的性质7.(2020•黄埔区期末)如图,⊙O的半径为2,点C是圆上的一个动点,CA⊥x轴,CB⊥y轴,垂足分别为A、B,D是B的中点,如果点C在圆上运动一周,那么点D运动过的路程长为()A.B.C.πD.2π【解答】解:如图,连接OC,∵CA⊥x轴,CB⊥y轴,∴四边形OACB是矩形,∵D为AB中点,∴点D在AC上,且OD=OC,∵⊙O的半径为2,∴如果点C在圆上运动一周,那么点D运动轨迹是一个半径为1圆,∴点D运动过的路程长为2π•1=2π,故选:D.【知识点】轨迹、坐标与图形性质、圆周角定理8.(2020•江阴市期末)如图,⊙O的半径为2,弦AB=2,点P为优弧AB上一动点,∠P AC=60°,交直线PB于点C,则△ABC的最大面积是()A.B.1C.2D.【解答】解:连接OA、OB,如图1,∵OA=OB=2,AB=2,∴△OAB为等边三角形,∴∠AOB=60°,∴∠APB=∠AOB=30°,∵∠P AC=60°∴∠ACP=90°∵AB=2,要使△ABC的最大面积,则点C到AB的距离最大,作△ABC的外接圆D,如图2,连接CD,∵∠ACB=90°,点C在⊙D上,AB是⊙D的直径,当点C半圆的中点时,点C到AB的距离最大,此时△ABC等腰直角三角形,∴CD⊥AB,CD=1,∴S△ABC===1,∴△ABC的最大面积为1.故选:B.【知识点】圆周角定理、等边三角形的判定与性质、垂径定理、勾股定理9.(2020•海曙区期末)如图,三角形纸片ABC的周长为22cm,BC=6cm,⊙O是△ABC的内切圆,玲玲用剪刀在⊙O的左侧沿着与⊙O相切的任意一条直线MN剪下一个△AMN,则△AMN的周长是()A.10cm B.12cmC.14cm D.根据MN位置不同而变化【解答】解:设E,F,G,H分别是直线AC,AB,MN,BC与⊙O的切点.由切线长定理可知:CE=CH,BH=BF.ME=MG,NG=NF,∵AC+AB+BC=22cm,BC=6cm,∴AC+AB=16cm,AE+AF=10cm,∴△AMN的周长=AM+AN+MG+NF=AM+ME+AN+NF=AE+AF=10cm,故选:A.【知识点】三角形的内切圆与内心10.(2020•铁锋区期末)如图,AB是⊙O的直径,AB=6,点C在⊙O上,∠CAB=30°,D为的中点,P是直径AB上一动点,则PC+PD的最小值为.【解答】解:作出D关于AB的对称点D′,连接OC,OD′,CD′.又∵点C在⊙O上,∠CAB=30°,D为的中点,∴∠BAD′=∠CAB=15°.∴∠CAD′=45°.∴∠COD′=90°.则△COD′是等腰直角三角形.∵OC=OD′=AB=3,∴CD′=3,故答案为3.【知识点】圆周角定理、圆心角、弧、弦的关系、垂径定理、轴对称-最短路线问题11.(2020•潜山市期末)如图,AB是圆O的弦,AB=40,点C是圆O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN的最大值是.【解答】解:连接OA、OB,如图,∴∠AOB=2∠ACB=2×45°=90°,∴△OAB为等腰直角三角形,∴OA=AB=×40=40.∵点M、N分别是AB、BC的中点,∴MN=AC,当AC为直径时,AC的值最大,∴MN的最大值为40.故答案为40.【知识点】圆周角定理、三角形中位线定理12.(2020•潮南区一模)如图,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角线坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴正半轴上的A′处,则图中阴影部分面积为.【解答】解:∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∴AB=2OA=2OB=AC=2,∵△ABC绕点B顺时针旋转点A在A′处,∴BA′=AB,∴BA′=2OB,∴∠OA′B=30°,∴∠A′BA=60°,即旋转角为60°,S阴影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′=S扇形ABA′﹣S扇形CBC′=﹣=π﹣π=π.故答案为π.【知识点】坐标与图形性质、扇形面积的计算、旋转的性质13.(2020•伊通县期末)已知矩形ABCD中,AB=4,BC=3,以点B为圆心r为半径作圆,且⊙B与边CD有唯一公共点,则r的取值范围是.【解答】解:∵矩形ABCD中,AB=4,BC=3,∴BD=AC==5,AD=BC=3,CD=AB=4,∵以点B为圆心作圆,⊙B与边CD有唯一公共点,∴⊙B的半径r的取值范围是:3≤r≤5;故答案为:3≤r≤5【知识点】矩形的性质、直线与圆的位置关系14.(2020•西城区期末)如图,矩形ABCD中,AB=4,BC=6,E是边BC的中点,点P在边AD上,设DP=x,若以点D为圆心,DP为半径的⊙D与线段AE只有一个公共点,则所有满足条件的x的取值范围是.【解答】解:如图,当⊙D与AE相切时,设切点为G,连接DG,∵PD=DG=x,∴AP=6﹣x,∵∠DAG=∠AEB,∠AGD=∠B=90°,∴△AGD∽△EBA,∴=,∴=,x=,当⊙D过点E时,如图4,⊙D与线段有两个公共点,连接DE,此时PD=DE=5,∴当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,x满足的条件:x=或5<x≤6;故答案为:x=或5<x≤6.【知识点】直线与圆的位置关系、矩形的性质15.(2020•连江县期中)在△ABC中,AB=2,∠ACB=45°,则△ABC面积的最大值为.【解答】解:作△ABC的外接圆⊙O,过C作CM⊥AB于M,∵弦AB已确定,∴要使△ABC的面积最大,只要CM取最大值即可,如图所示,当CM过圆心O时,CM最大,∵CM⊥AB,CM过O,∴AM=BM(垂径定理),∴AC=BC,∵∠AOB=2∠ACB=2×45°=90°,∴OM=AM=AB=×2=1,∴OA==,∴CM=OC+OM=+1,∴S△ABC=AB•CM=×2×(+1)=+1.故答案为:+1.【知识点】垂径定理、三角形的外接圆与外心、勾股定理、圆周角定理16.(2020•杏花岭区校级三模)如图,矩形ABCD中,AB=,BC=AB2,E为射线BA上一动点,连接CE交以BE为直径的圆于点H,则线段DH长度的最小值为.【解答】解:取BC的中点G,连接BH,HG,DG.∵四边形ABCD是矩形,∴AB=CD=,BC=AB2=,∠DCG=90°,∵CG=BG=,∴DG===,∵BE是直径,∴∠BHE=∠BHC=90°,∵BG=GC,∴HG=BC=,∵DH≥DG﹣HG,∴DH≥﹣=,∴DH的最小值为.故答案为.【知识点】矩形的性质、圆周角定理、三角形三边关系、勾股定理17.(2020春•资中县期末)如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是线段BC上的一个动点,以AD为直径作⊙O分别交AB、AC于E、F,连结EF,则线段EF长度的最小值为.【解答】解:由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,如图,连接OE,OF,过O点作OH⊥EF,垂足为H,∵在Rt△ADB中,∠ABC=45°,AB=4,∴AD=BD=2,即此时圆的直径为2,由圆周角定理可知∠EOH=∠EOF=∠BAC=60°,∴在Rt△EOH中,EH=OE•sin∠EOH=×=,由垂径定理可知EF=2EH=,故答案为:.【知识点】垂线段最短、勾股定理、圆周角定理、垂径定理18.(2020•青羊区期末)△ABC中,AB=CB,AC=10,S△ABC=60,E为AB上一动点,连结CE,过A作AF⊥CE于F,连结BF,则BF的最小值是.【解答】解:过B作BD⊥AC于D,∵AB=BC,∴AD=CD=AC=5,∵S△ABC=60,∴,即,BD=12,∵AF⊥CE,∴∠AFC=90°,∴F在以AC为直径的圆上,∵BF+DF>BD,且DF=DF',∴当F在BD上时,BF的值最小,此时BF'=12﹣5=7,则BF的最小值是7,故答案为:7.【知识点】点与圆的位置关系、等腰三角形的性质、圆周角定理19.(2020春•富阳区期末)如图,在矩形ABCD中,AB=4,BC=6,点P是线段AD上的一动点,点E是AB边上一动点,连结PC,PE.(1)当E是边AB的中点时,是否存在点P,使∠EPC=90°?若存在,求AP的长,若不存在,请说明理由;(2)设BE=a,若存在点P,使∠EPC=90°,求a的取值范围.【解答】解:(1)∵PE⊥PC,∴∠APE+∠DPC=90°,∵∠D=90°,∴∠DCP+∠DPC=90°,∴∠APE=∠DCP,又∠A=∠D=90°,∴△APE∽△DCP,∴=,设AP=x,则DP=6﹣x,又AE=BE=2,∴x(6﹣x)=2×4,整理得x2﹣6x+8=0,解得,x1=2,x2=4,∴P A=2或4.(2)设AP=x,AE=y,∵△APE∽△DCP,∴=,即x(6﹣x)=4y,∴y=x(6﹣x)=﹣x2+x=﹣(x﹣3)2+,∴当x=3时,y的最大值为,∵AE=y取最大值时,BE取最小值为4﹣=,∴a的取值范围为≤BE<4.【知识点】矩形的性质、圆周角定理20.(2020•常熟市期中)如图,在矩形ABCD中,AB=8cm,AD=6cm,点P从点A出发沿AB以2cm/s的速度向终点B匀速运动,同时点Q从点B出发沿BC以1cm/s的速度向终点C匀速运动,P、Q中有一点到达终点时,另一点随之停止运动.(1)几秒后,点P、D的距离是点P、Q的距离的2倍;(2)几秒后,△DPQ是直角三角形;(3)在运动过程中,经过秒,以P为圆心,AP为半径的⊙P与对角线BD相切.【解答】解:(1)设t秒后点P、D的距离是点P、Q距离的2倍,∴PD=2PQ,∴PD2=4 PQ2,∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,∴PD2=AP2+AD2,PQ2=BP2+BQ2,∵PD2=4 PQ2,∴62+(2t)2=4[(8﹣2t)2+t2],解得:t1=,t2=;∵0≤t≤4,∴t=,答:秒后,点P、D的距离是点P、Q的距离的2倍;(2)∵△DPQ是直角三角形,∴∠DPQ=90°或∠DQP=90°.当∠DPQ=90°时,∠ADP=∠BPQ,∴tan∠ADP=tan∠BPQ,∴=,即=,解得:t=,或t=0(舍去);当∠DQP=90°时,∠CDQ=∠BQP,∴tan∠CDQ=tan∠BQP,∴=,即=,解得:t=11﹣,或t=11+(舍去),综上所述,当运动时间为秒或(11﹣)秒时,△DPQ是直角三角形.(3)设经过x,秒以P为圆心,AP为半径的⊙P与对角线BD相切于点E,连接PE、PD,如图所示:则PE⊥BD,PE=AP,在Rt△APD和Rt△EPD中,,∴Rt△APD≌Rt△EPD(HL),∴AD=ED=6,∵BD===10,∴BE=BD﹣ED=4,∵PE=P A=2x,则BP=8﹣2x,在Rt△BPE中,由勾股定理得:(2x)2+42=(8﹣2x)2,解得:x=,即经过秒,以P为圆心,AP为半径的⊙P与对角线BD相切,故答案为:.【知识点】一元二次方程的应用、切线的判定、勾股定理21.(2020•镇江期中)在矩形ABCD中,AB=5cm,BC=10cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动,P、Q两点在分别到达B、C两点时就停止移动,设两点移动的时间为秒,解答下列问题:(1)如图1,当t为几秒时,△PBQ的面积等于4cm2?(2)如图2,以Q为圆心,PQ为半径作⊙Q.在运动过程中,是否存在这样的t值,使⊙Q正好与四边形DPQC的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由.【解答】解:(1)∵当运动时间为t秒时,P A=t,BQ=2t,∴PB=5﹣t,BQ=2t.∵△PBQ的面积等于4cm2,∴PB•BQ=(5﹣t)•2t.∴(5﹣t)•2t=4.解得:t1=1,t2=4.答:当t为1秒或4秒时,△PBQ的面积等于4cm2;(2)(Ⅰ)由题意可知圆Q与AB、BC不相切.(Ⅱ)如图1所示:当t=0时,点P与点A重合时,点B与点Q重合.∵∠DAB=90°,∴∠DPQ=90°.∴DP⊥PQ.∴DP为圆Q的切线.(Ⅲ)当⊙Q正好与四边形DPQC的DC边相切时,如图2所示.由题意可知:PB=5﹣t,BQ=2t,PQ=CQ=10﹣2t.在Rt△PQB中,由勾股定理可知:PQ2=PB2+QB2,即(5﹣t)2+(2t)2=(10﹣2t)2.解得:t1=﹣15+10,t2=﹣15﹣10(舍去).综上所述可知当t=0或t=﹣15+10时,⊙Q与四边形DPQC的一边相切.【知识点】切线的判定、一元二次方程的应用22.(2020•润州区期中)如图,△ABC中,∠ACB=90°,BC=3,∠A=30°,D是AB的中点,点O为AC上一点,以O为圆心,半径为lcm的圆与AB相切,点E为切点.(1)求线段CO的长;(2)若将⊙O以1cm/s的速度移动,移动中的圆心记为P,点P沿O→C→B→A的路径运动,设移动的时间为t(s),则当t为何值时,⊙P与直线CD相切?【解答】解:(1)∵BA切⊙O于E,∴∠OEA=90°,∵OE=1,∴AO=2OE=2,∵∠ACB=90°,BC=3,∠A=30°,∴AC=BC=3,∴OC=AC﹣OA=3﹣2;(2)如图;①当P位于线段OC上时,设⊙P与CD的切点为G,则P1G⊥CD;由于D是AB的中点,所以CD=DA,即∠DCA=∠A,因此P1C=OA=2cm,OP1=AC﹣2OA=3﹣4,∴t=(3﹣4)s;②当P位于线段CB上时,设⊙P与CD的切点为H,则P2H⊥CD;同①可得:P2C=cm,因此P点运动的距离为:OC+P2C=3﹣2+=﹣2,即t=(﹣2)s;③当P位于线段BD上时,P3M⊥CD,过B作BQ⊥CN于Q;易知:S△ABC=,由于D是AB中点,则S△BCD=;而CD=AB=3,可求得CD边上的高为:BQ=cm;∵△PDM∽△BDQ,则=,即=,P3D=;因此P3B+BC+OC=3﹣+3+3﹣2=+4,即t=(+4)s;④当P位于线段AD上时,同③可求得t=(+1)s;综上可知:当t分别为(3﹣4)s、(﹣2)s、(+4)s、(+1)s时,⊙P与直线CD相切.【知识点】含30度角的直角三角形、直角三角形斜边上的中线、切线的判定与性质23.(2020•新吴区期中)如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的速度,沿AC向C作匀速运动:与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动,当P运动到C点时,P、Q都停止运动.设点P运动的时间为ts(1)当P异于A,C时,请说明PQ∥BC;(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,⊙P与边BC公共点的个数有几种可能的情况?并求出相应的t所取的值.【解答】解:(1)∵四边形ABCD是菱形,且菱形ABCD的边长为2cm,∴AB=BC=2,∠BAC=∠DAB,又∵∠DAB=60°(已知),∴∠BAC=∠BCA=30°;当点P运动到点C,即t=2时P与C重合,Q与B重合,也只有一个交点,此时,⊙P与边BC 有一个公共点,综上所述:当0≤t<4﹣6或3﹣<t<2时,⊙P与边BC有0个公共点;当t=4﹣6或1<t≤3﹣或t=2时,⊙P与菱形ABCD的边BC有1个公共点;当4﹣6<t≤1时,⊙P与边BC有2个公共点;【知识点】直线与圆的位置关系、菱形的性质附赠材料:怎样提高做题效率做题有方,考试才能游刃有余提到考试,映入我眼帘的就是一大批同学在题海里埋头苦干的情景。

初中数学动点问题解题技巧,动点题解题三步骤,初三数学动点解题思路

初中数学动点问题解题技巧,动点题解题三步骤,初三数学动点解题思路

双动点问题动点问题是初中数学中的热门问题,也是让人欢喜让人忧的一类问题.其中的数学模型隐藏在变化的运动背后,很多同学容易被这类问题的已知条件迷惑,虽练习很多仍然“闻动色变”,实在爱不起来.但如果会透过现象看本质,找到运动过程中不变的规律,这一类问题又会让人感觉精彩绝伦,回味无穷。

本文就动点问题中如何找到双动点类型中的运动轨迹与大家分享.动点题有时不止一个点在动,如果有两个动点,其中一个随着另一个的运动而运动,题目往往研究第二个动点的一些规律,比如最大最小值,经过的路径长等.解决问题的关键是找到第二个动点的运动轨迹.一、直线型运动1.如图,等边△ABC的边长为4cm,动点D从点B出发,沿射线BC方向移动,以AD为边作等边△ADE。

如图①,在点D从点B开始移动至点C的过程中,求点E移动的路径长.分析:要求点E移动的路径长,首先要确定点E的运动轨迹。

连结CE,如图②,易证△ABD≌△ACE,得∠B=∠ACE=60°,因为∠ACB=60°,所以∠ECF=60°=∠B,所以EC∥AB,故在点D从点B开始移动至点C的过程中,点E的运动轨迹是过点C且平行于AB的一条线段,确定了轨迹,再确定起始与终止位置就可求出路径长.答案:42.已知AB=10,P是线段AB上的动点,分别以AP、PB为边在线段AB的同侧作等边△ACP和△PDB,连接CD,设CD的中点为G,当点P从点A运动到点B时,点G移动的路径长是_____.分析:延长AC、BD相交于点E,因为∠A=∠DPB=60°,所以PD∥EA,同理PC∥EB,所以四边形CPDE是平行四边形,连结EP,所以EP、CD互相平分,因为点G为CD的中点,所以EG=PG,所以点G是EP的中点,当点P从点A运动到点B时,点G的运动轨迹是△EAB的中位线MN.答案:5双动点的运动问题中,第二动点的运动轨迹如果是直线型,通常可以找到第二动点所在直线与已知直线的位置关系如平行、垂直等,或者是某一条特殊的直线(或直线上的一部分)如中位线、角平分线等.试一试:1.如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB-BC向终点C 运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E 运动的速度为每秒1个单位,运动的时间为x秒.(1)如图,当点E在AB上时,求证:点G在直线BC上;(2)直接写出整个运动过程中,点F经过的路径长.答案:C在数学中,静中找动,实现从特殊到一般的转化。

动点产生的几何最值问题大全

动点产生的几何最值问题大全

动点产生的几何最值问题大全
动点产生的几何最值问题是数学中一类比较有挑战性的问题,通常涉及到几何图形中的动点以及与之相关的最值情况。

以下是一些常见的动点产生的几何最值问题类型:
1. 最短路径问题:在给定的几何图形中,寻找动点到某个点或线段的最短路径。

这可以涉及到直线、圆、多边形等图形。

2. 最大面积问题:确定动点在几何图形中移动时,如何使形成的图形面积最大。

例如,求动点构成的三角形、矩形等的最大面积。

3. 最长线段问题:找到在特定条件下,动点所形成的最长线段。

4. 最短时间问题:考虑动点在移动过程中,如何以最短时间到达目标点。

5. 最优位置问题:确定动点在几何图形中的最优位置,使得某个目标函数达到最大或最小值。

6. 角度最值问题:探究动点在运动过程中,相关角度的最大或最小值。

7. 对称问题:利用对称性质来解决与动点相关的最值问题。

这些只是一些常见的类型,实际问题可能更加复杂和多样化。

解决动点产生的几何最值问题通常需要结合几何学的知识、定理和方法,以及对运动轨迹和约束条件的分析。

具体的解决方法会根据问题的具体情况而有所不同。

动点在线段上的运动问题

动点在线段上的运动问题

动点在线段上的运动问题概述本文将探讨动点在线段上的运动问题。

我们将讨论动点在一条给定线段上的运动方式,并提供解决这类问题的简单策略。

问题描述我们假设有一条线段,起点为A,终点为B。

动点P从A出发,在线段上运动,最终到达终点B。

我们需要解决以下问题:1. 动点P的运动路径如何?2. 如果给定动点P的起始位置和终点位置,该如何确定运动路径?3. 如何计算动点P的运动时间?4. 如果考虑其他因素,如速度变化或加速度,是否会对问题的解决产生影响?解决策略为了解决动点在线段上的运动问题,我们可以采取以下简单策略:1. 确定运动路径:根据线段的起点A和终点B,我们可以直接将线段画出来,从而确定动点P的运动路径。

线段的长度可以表示为AB的距离。

2. 确定起始位置和终点位置:如果已知动点P的起始位置和终点位置,我们可以直接在线段上标记这两个点,并连接它们,从而确定运动路径。

3. 计算运动时间:根据动点P在线段上的运动速度,我们可以通过线段的长度和速度来计算运动时间。

时间可以表示为距离除以速度。

4. 考虑其他因素:如果考虑速度变化或加速度,我们需要额外的信息来确定动点P在线段上的具体运动方式。

可以通过给定的速度-时间图表或加速度数据来解决这类问题。

结论动点在线段上的运动问题可以通过简单的策略来解决。

我们可以确定运动路径,计算运动时间,并且可以考虑其他因素以获得更准确的运动解决方案。

希望本文对您有所帮助!> 注:本文的内容为简化的描述,仅用于提供解决问题的思路和方法,并不涉及具体的法律细节或复杂情况。

在实际应用中,请根据具体情况采取相应的措施和考虑法律因素。

巧用瓜豆原理,破解初中数学路径问题

巧用瓜豆原理,破解初中数学路径问题

解题研究2023年10月下半月㊀㊀㊀巧用瓜豆原理,破解初中数学路径问题◉甘肃省天水市清水县第三中学㊀许志强1瓜豆原理我们所说的 瓜豆原理 是数学问题中的一个动态问题 主从联动.这类问题涉及到路径问题,因此利用本模型解题,首先要明确 主动点 的路径,再结合具体的问题分析 主动点 和 从动点 之间的关系,之后确定 从动点 运动路径的形状,最终达到顺利解题的目的.1.1模型特征瓜豆原理实际上就是数学中的轨迹问题,它所涉及到的动点有两个,一个看作是 瓜 ,一个看作是豆 , 主动点 是 瓜 , 从动点 是 豆 ,根据瓜运动的情况来判断豆的变化轨迹,从而根据主动点运动过程中的特殊位置变化,突破从动点运动的路线,将动态问题转化为静态问题进行解答.1.2模型思路利用瓜豆原理解题,一般要做好以下五步:第一,根据问题情境确定主动点,并简单作出主动点的运动轨迹;第二,确定从动点,判断其与主动点之间的变化关系;第三,根据运动情况确定主动点的特殊位置,一般是起点或者终点位置;第四,根据问题要求确定主动点的变化特点,从而明确从动点的运动情况,再确定从动点的轨迹;第五,根据从动点运动的轨迹利用相关知识进行解答,往往涉及长度㊁最值等问题.2原理应用这类模型在应用过程中往往涉及到全等㊁位似及其旋转的知识,故笔者从这三种模型分析瓜豆原理在初中数学压轴问题中的破解方法.2.1全等模型图1模型探究:如图1,P 为әA B C边A C 上的一点,以B P 为边长向一侧作特殊三角形B P E (一般为等边三角形或等腰直角三角形等),当点P 由点A 运动到点C 时,判断点E 的运动路径.结论:根据上述图示2,首先确图2定点P 运动的起点和终点,确定好相对应的点E 的位置,分别记为点M ,N ,则MN 即为点E 的运动轨迹.连接B M 和B N ,根据特殊三角形的性质,可以判定әA B C 与әB MN 全等,进而得到MN =A C .典型例题1㊀如图3,在等边三角形A B C 中,A B =10,B D =4,B E =2,点P 从点E 出发沿E A 方向运动,连接P D ,以P D 为边,在P D 的右侧按如图所示的方式作等边三角形D P F ,当点P 从点E 运动到点A 时,试求点F 运动的路径长.图3㊀㊀图4分析:如图4,连接D E ,作F H ʅB C 于点H ,根据等边三角形的性质得øB =60ʎ.过点D 作D E ᶄʅA B ,则B E ᶄ=12B D =2,则点E ᶄ与点E 重合,所以øB D E =30ʎ,D E =3B E =23.接着证明әD P E ɸәF DH ,得到F H =D E =23,于是可判断点F 运动的路径为一条线段,此线段到B C 的距离为23.当点P 在E 点时,作等边三角形D E F 1,则D F 1ʅB C ;当点P 在A 点时,作等边三角形D A F 2,作F 2Q ʅB C 于点Q ,则әD F 2Q ɸәA D E .所以D Q =A E =8,从而F 1F 2=D Q =8.于是得到,当点P 从点E 运动到点A 时,点F 运动的路径长为8.2.2位似模型模型探究:如图5,P 为线段B C 上一动点,A 为定点,连接A P ,取A P 上一点Q ,当点P 在B C 上运动时,如图6,线段E F 即为点Q 的运动路径.图5㊀㊀图6结论:根据上述图示6,可以进一步得到E F ʊ45Copyright ©博看网. All Rights Reserved.2023年10月下半月㊀解题研究㊀㊀㊀㊀B C ,从而可以确定әA E F 与әA B C 相似,进而得到A Q A P =E FB C.拓展探究:点P 若在一圆(或弧线)上运动时,点Q 的运动轨迹也是成为圆(或弧线).典型例题2㊀如图7,矩形A B C D 中,A B =4,A D =2,E 为AB 的中点,F 为EC 上一动点,P 为D F 中点,连接P B ,求P B 的最小值.图7㊀㊀图8分析:如图8,根据中位线定理可得点P 的运动轨迹是线段P 1P 2,再根据垂线段最短可知当B P ʅP 1P 2时,P B 取得最小值.由矩形的性质及已知数据即可知B P 1ʅP 1P 2,故B P 的最小值为线段B P 1的长,由勾股定理求解即可.典型例题3㊀如图9,在平面直角坐标系中,点P(3,4),☉P 的半径为2,A (2.6,0),B (5.2,0),M 是☉P 上的动点,C 是M B 的中点,试求A C 的最小值.图9㊀㊀㊀图10分析:如图10,连接O P 交☉P 于M ᶄ,连接O M .因为O A =A B ,C M =C B ,所以A C ʊO M ,于是A C =12O M .故当O M 最小时,A C 最小.因此当点M 运动到点M ᶄ时,O M 最小.由此即可解决问题.2.3旋转模型模型探究:如图11所示,A 为定点,øP A Q 为定值,A PA Q为定值,当点P 在直线B C 上运动时,则点Q 的运动路径也是直线.图11㊀㊀㊀图12结论:如图12,当øP A Q <90ʎ时,直线B C 与MN 的夹角等于øP A Q .拓展探究:如图13,A 为定点,øP A Q 为定值,A PA Q为定值,当点P 在☉O 上运动时,则点Q 的运动路径也是圆(如图14虚线所画☉M ).图13㊀㊀㊀图14结论:øP A Q =øO AM ;A P A Q =A O AM =O PM Q.典型例题4㊀如图15,已知扇形A O B 中,O A =3,øA O B =120ʎ,C 是A B ︵上的动点.以B C 为边作正方形B C D E ,当点C 从点A 移动至点B 时,求点D 经过的路径长.图15㊀㊀㊀图16分析:如图16,延长B O 交☉O 于点F ,取B F ︵的中点H ,连接F H ,H B ,B D .易知әF H B 是等腰直角三角形,则H F =H B ,øF H B =90ʎ.由øF D B =45ʎ=12øF H B ,推出点D 在☉H 上的运动路径是G B ︵,易知øH F G =øH G F =15ʎ,推出øF H G =150ʎ,进而得到øG H B =120ʎ,易知H B =32,利用弧长公式即可解决问题.3模型反思上述模型问题的研究,实际上考查了学生对问题的操作经历的体验,既考查了学生的观察力和思考力,更重要的是对学生应用能力的检验,又要结合问题情景,对号入座,灵活应用.根据问题所展示的相关内容,对瓜豆原理进行如下总结:其一,两动点之间的变化关系一致;其二,两动点运动路径的比例关系一致;其三,运动过程中路径的形状与大小的变化及其特殊位置的确定.综上所述,瓜豆原理在形式上和解法上给我们提供了简单而又易操作的解题方法,可谓是 种瓜得瓜,种豆得豆 .但是,仅仅掌握这些还不够的,还需要我们在数学学习中深入研究,不断积累数学经验,能从问题情境中获得直观感受,从而构建数学认知结构,获得模型意识和模型思想,并在解题训练过程中不断进行迁移拓展,形成数学思维,提升数学综合素养.Z55Copyright ©博看网. All Rights Reserved.。

专题29动点综合问题【原卷版】

专题29动点综合问题【原卷版】

专题29动点综合问题一、单选题1.(2022·山东潍坊·中考真题)如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是()A.B.C.D.2.(2022·湖北鄂州·中考真题)如图,定直线MN∥PQ,点B、C分别为MN、PQ上的动点,且BC=12,BC 在两直线间运动过程中始终有∠BCQ=60°.点A是MN上方一定点,点D是PQ下方一定点,且AE∥BC∥DF,AE=4,DF=8,AD=243,当线段BC在平移过程中,AB+CD的最小值为()A.2413B.2415C.1213D.1215BC.点3.(2022·四川乐山·中考真题)如图,等腰△ABC的面积为23,AB=AC,BC=2.作AE∥BC且AE=12P是线段AB上一动点,连接PE,过点E作PE的垂线交BC的延长线于点F,M是线段EF的中点.那么,当点P从A点运动到B点时,点M的运动路径长为()A .3B .3C .23D .44.(2022·湖北恩施·中考真题)如图,在四边形ABCD 中,∠A =∠B =90°,AD =10cm ,BC =8cm ,点P 从点D 出发,以1cm/s 的速度向点A 运动,点M 从点B 同时出发,以相同的速度向点C 运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P 的运动时间为t (单位:s ),下列结论正确的是( )A .当t =4s 时,四边形ABMP 为矩形B .当t =5s 时,四边形CDPM 为平行四边形C .当CD =PM 时,t =4sD .当CD =PM 时,t =4s 或6s5.(2022·黑龙江·中考真题)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点F 是CD 上一点,OE ⊥OF 交BC 于点E ,连接AE ,BF 交于点P ,连接OP .则下列结论:①AE ⊥BF ;②∠OPA =45°;③AP ―BP =2OP ;④若BE :CE =2:3,则tan ∠CAE =47;⑤四边形OECF 的面积是正方形ABCD 面积的14.其中正确的结论是( )A .①②④⑤B .①②③⑤C .①②③④D .①③④⑤6.(2022·广西玉林·中考真题)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A 处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是( )A .4B .23C .2D .07.(2022·广西·中考真题)如图,在△ABC 中,CA =CB =4,∠BAC =α,将△ABC 绕点A 逆时针旋转2α,得到△AB′C′,连接B′C 并延长交AB 于点D ,当B′D ⊥AB 时,BB′的长是( )A .233πB .433πC .839πD .1039π8.(2022·江苏苏州·中考真题)如图,点A 的坐标为(0,2),点B 是x 轴正半轴上的一点,将线段AB 绕点A 按逆时针方向旋转60°得到线段AC .若点C 的坐标为(m ,3),则m 的值为( )A.433B.2213C.533D.42139.(2022·辽宁·中考真题)如图,在Rt△ABC中,∠ABC=90°,AB=2BC=4,动点P从点A出发,以每秒1个单位长度的速度沿线段AB匀速运动,当点P运动到点B时,停止运动,过点P作PQ⊥AB交AC于点Q,将△APQ沿直线PQ折叠得到△A′PQ,设动点P的运动时间为t秒,△A′PQ与△ABC重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.10.(2022·贵州遵义·中考真题)遵义市某天的气温y1(单位:℃)随时间t(单位:h)的变化如图所示,设y2表示0时到t时气温的值的极差(即0时到t时范围气温的最大值与最小值的差),则y2与t的函数图象大致是()A.B.C.D.11.(2022·黑龙江齐齐哈尔·中考真题)如图①所示(图中各角均为直角),动点Р从点A出发,以每秒1个单位长度的速度沿A→B→C→D→路线匀速运动,△AFP的面积y随点Р运动的时间x(秒)之间的函数关系图象如图②所示,下列说法正确的是()A.AF=5B.AB=4C.DE=3D.EF=812.(2022·湖北武汉·中考真题)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为S1,小正方形与大正方形重叠部分的面积为S2,若S=S1―S2,则S随t变化的函数图象大致为()A.B.C.D.13.(2022·甘肃武威·中考真题)如图1,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC→CB 方向匀速运动,运动到点B P的运动路程为x,△APB的面积为y,y与x的函数图象如图2所示,则AB的长为()A.3B.23C.33D.43二、填空题14.(2022·山东烟台·中考真题)如图1,△ABC中,∠ABC=60°,D是BC边上的一个动点(不与点B,C重合),DE∥AB,交AC于点E,EF∥BC,交AB于点F.设BD的长为x,四边形BDEF的面积为y,y与x的函数图象是如图2所示的一段抛物线,其顶点P的坐标为(2,3),则AB的长为_____.15.(2022·湖北黄冈·中考真题)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.16.(2022·广西·中考真题)如图,在正方形ABCD中,AB=42,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F、G,连接BF,交AC于点H,将△EFH 沿EF翻折,点H的对应点H′BD上,得到△EFH′若点F为CD的中点,则△EGH′的周长是_________.17.(2022·四川广元·中考真题)如图,直尺AB垂直竖立在水平面上,将一个含45°角的直角三角板CDE的斜边DE靠在直尺的一边AB上,使点E与点A重合,DE=12cm.当点D沿DA方向滑动时,点E同时从点A出发沿射线AF方向滑动.当点D滑动到点A时,点C运动的路径长为_____cm.18.(2022·湖北随州·中考真题)如图1,在矩形ABCD 中,AB =8,AD =6,E ,F 分别为AB ,AD 的中点,连接EF .如图2,将△AEF 绕点A 逆时针旋转角θ(0<θ<90°),使EF ⊥AD ,连接BE 并延长交DF 于点H ,则∠BHD 的度数为______,DH 的长为______.19.(2022·江苏苏州·中考真题)如图,在矩形ABCD 中AB BC =23.动点M 从点A 出发,沿边AD 向点D 匀速运动,动点N 从点B 出发,沿边向点C 匀速运动,连接MN .动点M ,N 同时出发,点M 运动的速度为v 1,点N 运动的速度为v 2,且v 1<v 2.当点N 到达点C 时,M ,N 两点同时停止运动.在运动过程中,将四边形MABN 沿MN 翻折,得到四边形M A ′B ′N .若在某一时刻,点B 的对应点B ′恰好在CD 的中点重合,则v 1v 2的值为______.20.(2022·四川自贡·中考真题)如图,矩形ABCD 中,AB =4,BC =2,G 是AD 的中点,线段EF 在边AB 上左右滑动;若EF =1,则GE +CF 的最小值为____________.21.(2022·内蒙古通辽·中考真题)如图,⊙O是△ABC的外接圆,AC为直径,若AB=23,BC=3,点P 从B点出发,在△ABC内运动且始终保持∠CBP=∠BAP,当C,P两点距离最小时,动点P的运动路径长为______.22.(2022·河南·中考真题)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为______.三、解答题23.(2022·贵州铜仁·中考真题)如图,等边△ABC、等边△DEF的边长分别为3和2.开始时点A与点D重合,DE在AB上,DF在AC上,△DEF沿AB向右平移,当点D到达点B时停止.在此过程中,设△ABC、△DEF重合部分的面积为y,△DEF移动的距离为x,则y与x的函数图象大致为()A.B.C.D.24.(2022·山东临沂·中考真题)已知△ABC是等边三角形,点B,D关于直线AC对称,连接AD,CD.(1)求证:四边形ABCD是菱形;(2)在线段AC上任取一点Р(端点除外),连接PD.将线段PD绕点Р逆时针旋转,使点D落在BA延长线上的点Q处.请探究:当点Р在线段AC上的位置发生变化时,∠DPQ的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ与CP之间的数量关系,并加以证明.25.(2022·山东潍坊·中考真题)【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处,将甲绕点O 顺时针旋转一个锐角到图②位置.小莹用作图软件Geogebra按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.26.(2022·广西梧州·中考真题)如图,在平面直角坐标系中,直线y=―4x―4分别与x,y轴交于点A,3B,抛物线y=5x2+bx+c恰好经过这两点.18(1)求此抛物线的解析式;(2)若点C的坐标是(0,6),将△ACO绕着点C逆时针旋转90°得到△ECF,点A的对应点是点E.①写出点E的坐标,并判断点E是否在此抛物线上;BP+EP取最小值时,点P的坐标.②若点P是y轴上的任一点,求3527.(2022·山东青岛·中考真题)如图,在Rt△ABC中,∠ACB=90°,AB=5cm,BC=3cm,将△ABC绕点A按逆时针方向旋转90°得到△ADE,连接CD.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点A出发,沿AD方向匀速运动,速度为1cm/s.PQ交AC于点F,连接CP,EQ.设运动时间为t(s)(0<t<5).解答下列问题:(1)当EQ⊥AD时,求t的值;(2)设四边形PCDQ的面积为S(cm2),求S与t之间的函数关系式;(3)是否存在某一时刻t,使PQ∥CD?若存在,求出t的值;若不存在,请说明理由.28.(2022·山西·中考真题)综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.29.(2022·吉林长春·中考真题)如图,在▱ABCD中,AB=4,AD=BD=13,点M为边AB的中点,动点P从点A出发,沿折线AD―DB以每秒13个单位长度的速度向终点B运动,连结PM.作点A关于直线PM的对称点A′,连结A′P、A′M.设点P的运动时间为t秒.(1)点D到边AB的距离为__________;(2)用含t的代数式表示线段DP的长;(3)连结A′D,当线段A′D最短时,求△DPA′的面积;(4)当M、A′、C三点共线时,直接写出t的值.30.(2022·山东潍坊·中考真题)筒车是我国古代利用水力驱动的灌溉工具,车轮缚以竹简,旋转时低则舀水,高则泻水.如图,水力驱动筒车按逆时针方向转动,竹筒把水引至A处,水沿射线AD方向泻至水渠DE,水渠DE所在直线与水面PQ平行;设筒车为⊙O,⊙O与直线PQ交于P,Q两点,与直线DE交于B,C两点,恰有AD2=BD⋅CD,连接AB,AC.(1)求证:AD为⊙O的切线;(2)筒车的半径为3m,AC=BC,∠C=30°.当水面上升,A,O,Q三点恰好共线时,求筒车在水面下的最大深度(精确到0.1m,参考值:2≈1.4,3≈1.7).31.(2022·山东聊城·中考真题)如图,在直角坐标系中,二次函数y=―x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x=―1,顶点为点D.(1)求二次函数的表达式;(2)连接DA ,DC ,CB ,CA ,如图①所示,求证:∠DAC =∠BCO ;(3)如图②,延长DC 交x 轴于点M ,平移二次函数y =―x 2+bx +c 的图象,使顶点D 沿着射线DM 方向平移到点D 1且CD 1=2CD ,得到新抛物线y 1,y 1交y 轴于点N .如果在y 1的对称轴和y 1上分别取点P ,Q ,使以MN 为一边,点M ,N ,P ,Q 为顶点的四边形是平行四边形,求此时点Q 的坐标.32.(2022·山东烟台·中考真题)(1)【问题呈现】如图1,△ABC 和△ADE 都是等边三角形,连接BD ,CE .求证:BD =CE .(2)【类比探究】如图2,△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°.连接BD ,CE .请直接写出BD CE 的值.(3)【拓展提升】如图3,△ABC 和△ADE 都是直角三角形,∠ABC =∠ADE =90°,且AB BC =AD DE =34.连接BD ,CE .①求BD CE 的值;②延长CE 交BD 于点F ,交AB 于点G .求sin ∠BFC 的值.33.(2022·湖南湘潭·中考真题)在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=2,分别求出线段BD、CE和DE的长;(2)规律探究:①如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;②如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC.34.(2022·江苏宿迁·中考真题)如图,二次函数y=1x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点2为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.(1)求二次函数的表达式;(2)①求证:△OCD∽△A′BD;②求DB的最小值;BA(3)当S△OCD=8S△A时,求直线A′B与二次函数的交点横坐标.′BD35.(2022·湖北恩施·中考真题)在平面直角坐标系中,O为坐标原点,抛物线y=―x2+c与y轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=―x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x 轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=―x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=―x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出拋物线y=―x2+c平移的最短距离并求出此时抛物线的顶点坐标.36.(2022·贵州毕节·中考真题)如图,在平面直角坐标系中,抛物线y=―x2+bx+c与x轴交于A,B两点,与y轴交于点C,顶点为D(2,1),抛物线的对称轴交直线BC于点E.(1)求抛物线y=―x2+bx+c的表达式;(2)把上述抛物线沿它的对称轴向下平移,平移的距离为ℎ(ℎ>0),在平移过程中,该抛物线与直线BC始终有交点,求h的最大值;(3)M是(1)中抛物线上一点,N是直线BC上一点.是否存在以点D,E,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.37.(2022·湖北武汉·中考真题)如图,在平面直角坐标系中,已知抛物线y=x2―2x―3的顶点为A,与y 轴交于点C,线段CB∥x轴,交该抛物线于另一点B.(1)求点B的坐标及直线AC的解析式:(2)当二次函数y=x2―2x―3的自变量x满足m⩽x⩽m+2时,此函数的最大值为p,最小值为q,且p―q =2.求m的值:(3)平移抛物线y=x2―2x―3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.38.(2022·湖南岳阳·中考真题)如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(―3,0)和点B(1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN 面积的最大值.39.(2022·河北·中考真题)如图,点P(a,3)在抛物线C:y=4―(6―x)2上,且在C的对称轴右侧.(1)写出C的对称轴和y的最大值,并求a的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为P′,C′.平移该胶片,使C′所在抛物线对应的函数恰为y=―x2+6x―9.求点P′移动的最短路程.40.(2022·江苏连云港·中考真题)已知二次函数y=x2+(m―2)x+m―4,其中m>2.(1)当该函数的图像经过原点O(0,0),求此时函数图像的顶点A的坐标;(2)求证:二次函数y=x2+(m―2)x+m―4的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线y=―x―2上运动,平移后所得函数的图像与y轴的负半轴的交点为B,求△AOB面积的最大值.。

例谈如何解一类_动点运动路径长_问题_马先龙

例谈如何解一类_动点运动路径长_问题_马先龙

槡 2 1 1 1例谈如何解一类“动点运动路径长”问题■ 马先龙摘要: 解答中考题时,经常会碰到解“动点运动路径长”问题. 实际解题时,若能先灵活运用“等距法”探究动点轨迹,确定路径,然后通过计算求其长,则能比较顺利地解决问题,本文通过举例说明.关键词:动点; 等距法; 路径长 解答中考题时,经常会碰到一类以动三角形为载 体的“动点运动路径长”问题. 此类问题因综合性较强,考查的知识点较多,加上动点的运动路径又不明 显,因而解答时颇有难度,常常让答题者望而生畏. 实际解题时,若能先灵活运用“等距法”探究动点轨迹, 确定路径,然后再通过计算求其长,则能比较顺利地解决问题. 现举例说明,供读者参考.⊥ C A 交 C A 的延长线于点 M ,作 O N ⊥ B C 于点 N ,则易证 O M = O N ,所以点 O 在∠A C B 的平分线 C O 上运动,从而,点 O 的运动路径为线段,接下来通过计算易求其长.解: 如图 1,因为 △A O P 是等腰直角三角形,所以 O A = O P ,∠A O P = 90°. 连接 C O ,过点 O 作 O M ⊥ C A 交 C A 的延长线于点 M ,作 O N ⊥ B C 于点 N ,则 ∠O MC = ∠O N C = ∠O N P = 90°,又因为∠MC N = 90°,所以 ∠O MC = ∠O N C = ∠MC N = 90°,所以四边形 CM O N 是矩形,所以 ∠M O N = 90°,所以 ∠A O M + ∠A O N =∠P O N + ∠A O N = 90° ,所以 ∠A O M = ∠P O N . 在∠O M A = ∠O N P = 90° 一、动点的运动路径为一条线段 例 1( 2018 年四川达州市中考) 如图 1,△AOM 和 △PON 中 , ∠AOM = ∠PON OA = OP,所以Rt △A B C 中,∠C = 90°,A C = 2 ,B C = 5,点 D 是 B C 边上一点且 C D = 1,点 P 是线段 DB 上一动点,连接 A P ,以 A P 为斜边在 A P 的下方作等腰 Rt △A O P . 当 P 从点 D 出发运动至点 B 停止时,点 O 的运动路径长为.△A O M ≌ △P O N ( AA S ) ,所以 O M = O N ,所以点 O 在 ∠A C B 的平分线C O 上运动. 如图2,分别作出动点O 的始末位置点 O 1、O 2,则线段 O 1O 2 就是动点 O 的运动路径. 过点 O 1 作 O 1M 1 ⊥ A C 于点 M 1,作 O 1N 1 ⊥ B C 于点 N 1,过点 O 2 作 O 2M 2 ⊥ C A 交 C A 的延长线于点 M 2,作 O 2N 2 ⊥ B C 于点 N 2,由上,易知四边形 CM 2O 2N 2 是矩 形,△A O 2M 2 ≌ △BO 2N 2( AA S ) ,所以 O 2M 2 = O 2N 2, A M 2 = B N 2,所以四边形 CM 2O 2N 2 是正方形,所以 CM 2 = C N 2,所以 CM 2 - A C = B C - CM 2,所以 CM 2 = 1 ( AC + BC ) = 1 × ( 2 + 5) = 7 ,所 以 CO =2 2 2 2图 1图 22 CM = 7 槡2. 同理,可得四边形 CM O N 是正方形, 2 CM = 1 ( A C + C D ) = 1 × ( 2 + 1) = 3,C O = 分析:本题中等腰Rt △AOP 的顶点 A 固定,顶点 P在线段 DB 上运动,顶点 O 随之运动. 依题意,可先用 1 2 CM 2 = 3 槡2 ,所以 O O 2 = CO - CO 2= 7 槡2 1-3 槡2 “等距法”探究动点 O 轨迹,确定路径,后求其长. 如图 槡 1 2 1 2 2 1 2 2 1,由条件,易知 O A = O P ,∠A O P = 90°,过点 O 作 O M= 2 槡2 ,所以点 O 的运动路径长为 2 槡2 .作者简介: 马先龙( 1966 - ) ,男,江苏淮阴人,本科,中学高级教师,主要从事初中数学教学研究·30·评注: 本题考查了动点的运动轨迹,考查了等腰直角三角形的性质,考查了全等三角形的判定和性质,考查了矩形、正方形的判定和性质,考查了角平分线的判定,考查了构造图形法、等距法等数学思想方法的运用[1]. 在探究动点轨迹时,充分抓住等腰 Rt △A O P 两腰相等且夹角为直角等重要条件,通过作垂线段构造全等三角形,得到动点 O 到定角 ∠ACB 两边的距离相等这一事实,从而由数量关系引发位置关系,推得动点 O 一定在 ∠ACB 的平分线上运动,进而获得动点的运动路径为一条线段. 接下来,作出动点的始末位置点, 根据图形和已知条件计算路径长则比较容易了.例 2 ( 2018 年湖北荆门市中考) 如图 3,等腰Rt △A B C 中,斜边A B 的长为2,O 为A B 的中点,P 为A C 边上的动点,OQ ⊥ O P 交 B C 于点 Q ,M 为 P Q 的中点, 当点 P 从点 A 运动到点 C 时,点 M 所经过的路径长为( )( A) 槡2 π ( B) 槡2 πBC 的中点,则 M 1、M 2 也分别是动点 M 的始末位置点, 所以线段 M 1M 2 就是动点 M 的运动路径. 在△ABC 中, 因为 M 1M 2 是 △A B C 的中位线,A B = 2,所以 M 1M 2 =1A B = 1,所以动点 M 所经过的路径长为 1,所以选 2( C) .评注: 本题考查了动点的运动轨迹,考查了等腰直角三角形的性质,考查了“直角三角形斜边上的中线等于斜边的一半”这一重要定理,考查了线段垂直平分线的判定,考查了三角形的中位线定理,考查了构造图 形法、等距法等数学思想方法的运用. 在探究动点轨迹时,充分抓住了点 M 既为Rt △OPQ 斜边 PQ 的中点,又为 Rt △PCQ 斜边 PQ 的中点这一重要条件,通过运用直角三角形关于斜边上中线的性质定理,得到动点 M 到定线段OC 两端的距离相等这一事实,从而由数量关系引发位置关系,推得动点 M 一定在线段 CO 的垂直平分线上运动,进而获得动点的运动路径为一条线段. 接下来,根据动点的始末位置,计算路径长唾手可得.4 2 ( C) 1 ( D) 2图 3 图 4分析: 本题中Rt △POQ 的顶点O 固定,顶点P 在线段 A C 上运动,P Q 的中点 M 随之运动. 依题意,可先用 “等距法”探究动点 M 轨迹,确定路径,后求其长. 如图 3,连接C O ,M O ,MC ,由题意,易证M O = MC ,所以点M 一定在线段 CO 的垂直平分线上运动,从而推得点 M 的运动路径为线段,接下来通过计算易求路径长.解: 如图 3,连接 C O ,M O ,MC . 因为 △A B C 是等腰直角三角形,所以 A C = B C ,∠A C B = 90°. 因为 OQ ⊥ O P ,所以∠P OQ = 90°. 在Rt △P OQ 与Rt △P C Q 中,因为 ∠P OQ = ∠A C B = 90°,M 为 P Q 的中点,所以 M O= MC = 1P Q ,所以点 M 在线段 C O 的垂直平分线 E F2 上运动. 如图 4,在等腰 Rt △A B C 中,因为 A C = B C ,O 为 A B 的中点,所以 C O ⊥ A B ,设 M 1、M 2 分别是边 A C 、 二、动点的运动路径为两条( 往返) 线段 例3 ( 2019 年浙江嘉兴市中考) 如图 5,一副含 30° 和45° 的直角三角板 ABC 和 EDF 拼合在一个平面上,边 A C 与 E F 重合,A C = 12 c m . 当点 E 从点 A 出发沿 AC 方向滑动时,点 F 同时从点 C 出发沿射线 BC 方向滑动. 当点 E 从点 A 滑动到点 C 时,点 D 运动的路径长为c m .槡 分析: 本题中等腰 Rt △DEF 的三个顶点都在运动,其中顶点 E 、F 限制在两条互相垂直的线段上滑动, 等腰 Rt △DEF 在运动中形状、大小都保持不变. 依题意,可先用“等距法”探究动点 D 轨迹,分类讨论,确定路径,后求其长. 如图 6,由条件,易知 DE = DF , ∠E D F = 90°,过点 D 作 D G ⊥ A C 于点 G ,作 D H ⊥ B C 交直线 B C 于点 H ,则易证 D G = D H ,所以动点 D 在 △ABC 的外角∠ACH 的平分线上运动. 依题意,动点 D的运动路径为两条( 往返) 线段,接下来通过计算易求路径长.解: 如图 6,过点 D 作 D G ⊥ A C 于点 G ,作 D H ⊥ B C 交直线 B C 于点H ,则∠D G E = ∠D G C = ∠D H C = 90°,又因为 ∠A C B = 90°,所以 ∠G C H = 90°,所以 ∠D G C = ∠G C H = ∠D H C = 90°,所以四边形 C G D H 是矩形,所以∠G D H = 90°,又因为△E D F 是等腰直角三角形,所以 D E = D F ,∠E D F = 90°,所以 ∠E D G + ∠GDF = ∠FDH + ∠GDF = 90°, 所 以 ∠EDG = ∠F D H . 在 △E D G 和 △F D H 中,∠D G E = ∠D H F = 90°, 6槡2,所以点 D 运动的路径长为2D 1D 2 = ( 24 - 12槡2) c m . 评注: 本题考查了动点的运动轨迹,考查了等腰直角三角形的性质,考查了全等三角形的判定和性质,考查了矩形、正方形的判定和性质,考查了角平分线的判定,考查了构造图形法、等距法、特殊位置法、分类讨论 法等数学思想方法的运用. 在探究动点轨迹时,充分抓住等腰 Rt △DEF 两腰相等且夹角为直角等重要条件, 通过作垂线段构造全等三角形,得到动点 D 到定角( ∠ACB 的外角) 两边的距离相等这一事实,从而由数量关系引发位置关系,推得动点 O 一定在 △ABC 的外角∠ACH ( 如图7) 的平分线上运动. 对于本题,由于等腰 Rt △DEF 的顶点 E 、F 限制在两条互相垂直的线段上滑动,而等腰 Rt △DEF 在运动中形状、大小都保持不变,因而导致动点 O 的运动路径为两条( 往返) 线段. 一旦弄清动点 O 的运动路径,计算路径长则立刻变得简单了. 本题对动点 O 运动路径的确定是难点,突破难点的关键是运用动中求静,静中求动的思想,多画几 种动点在不同状态下的图形,从而易获得特殊位置图形,对路径作出正确的判断和分类.∠EDG = ∠FDH DE = DF,所 以 △EDG ≌“解题,就好像游泳一样,是一种实际技能. 当你学习游泳时,你模仿其他人的手足动作使头部保持在水 △F D H ( AA S ) ,所以 D G = D H ,所以动点 D 在 △A B C 的外角 ∠A C H 的平分线上运动. 如图 7,当点 E 沿 A C 方向滑动,使等腰直角三角的板的边DE ⊥ AC 时,作出动点 D 从开始到此时的始末位置点 D 2、D 1,则在这一过程中动点 D 沿线段 D 1D 2 向斜上方方向运动,运动路径为线段 D 1D 2; 如图 8,当点 E 接上一过程沿 A C 方向继续滑动,使等腰直角三角板的斜边 EF 正好落在直线BC 上时,作出动点 D 的始末位置点 D 1、D 2 则在这一过程中动点 D 沿线段 D 2D 1 向斜下方方向运动,运动路径为线段D 2D 1. 如图5,因为等腰直角三角板E D F 的斜边E F = A C = 12 c m ,所以 D E = D F = 槡2E F = 6 2 c m .2 如图7,易知C D 1 = 6槡2 ,四边形 C E 2D 2F 2 是正方形,从而 C D 2 = E 2F 2 = 12,所以 D 1D 2 = C D 2 - C D 1 = 12 -面上,并最后通过实践来学会游泳. 当试图解题时,你也必须观察并模仿其他人在解题时的行为,并且最后通过实践来学会解题[2]”. 对典型的中考题进行归类解析,可以帮助学生学会模仿、探究、思考,不断感受基 本的数学思想和方法,积累解题经验,从而领会数学的精髓、奥妙,增强解题信心,学会“游泳”,学会解题. 参考文献:[1] 罗增儒. 数学解题学引论[M ]. 西安: 陕西师范大学出版社,2001. [2] 波利亚. 怎样解题[M ]. 上海: 上海科技教育出版社,2007. [江苏省淮安市淮阴区开明中学( 223300) ]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C E
D
(P)AB来自乘胜 追击例 2(2017 宁波考纲)在矩形 ABCD 中, AD=6,AB= 6 2 3 ,E 是 AB 边上的一点,且 AE=AD,P 是线段 CD 上 一点,连接 PE,将矩形沿着 PE 折叠,点 B、C 分别落在 G、 F 处,当点 P 从点 C 移动到点 D 时,点 G 经过的路径长为 ________。
∵∠ADO=90°
∴点 D 在以 AO 为直径的圆上
当点C与A重合,D与A重合;
当点C运动90°时,
∴点 D 的运动路线是以 AO 为直径的 1 圆弧
∴ l n R 90 2
4
180 180
初露 锋芒
例 1 如图,在 Rt △ABC 中,∠ACB=90 ° , BC=3,AC=3 3 ,点 D 是 AC 边上的一点,且 CD= 3 ,点 P 在 AB 边上,过点 A 作直线 DP 的垂线 AE,垂足为点 E,当点 P 由点 A 运动 到 B,点 E 运动的路径长为________.
在 AC,BC 上,连结 AF,BE 相交于点 P, 若 AE=CF,当点
E 从点 A 运动到点 C 时,求点 P 经过的路径长。
例 3(2016 武汉)如图,在等腰 Rt△ABC 中,AC=BC=2 2 , 点 P 在以斜边 AB 为直径的半圆 O 上,M 为 PC 的中点.当
点 P 沿半圆从点 A 运动至点 B 时,点 M 运动的路径长是( B )
A. 2
B. C. 2 2
D. 2
本节课学习了哪些内容?
课后 拓展
(2014 义乌)如图,等边三角形 ABC 的边长为 6,点 E,F 分别
∴点 C 的运动路线是以 O 为圆心,2 为半径的 1 圆弧 4
∴ l n R 90 2
180 180
问题 2:如图,AB 为⊙O 的直径,AB=8,点 C 为圆上 任意一点,OD⊥AC 于 D,当点 C 在⊙O 上从点 A 出
发,顺时针运动 90°,则点 D 运动的路径长为_______.
乘胜 追击
例 2(2017 宁波考纲)在矩形 ABCD 中, AD=6,AB=
6 2 3 ,E 是 AB 边上的一点,且 AE=AD,P 是线段 CD 上
一点,连接 PE,将矩形沿着 PE 折叠,点 B、C 分别落在 G、
F 处,当点 P 从点 C 移动到点 D 时,点 G 经过的路径长为
________。
有迹可循,变与不变
---动点运动路径长问题
问题 1:如图,OA⊥OB,垂足为 O,P、Q 分别是射线
OA、OB 上两个动点,点 C 是线段 PQ 的中点,且 PQ=4.则
动点 C 运动路径长为_____. ∵OC= 1 PQ=2 2
∴点 C 在以 O 为圆心,2 为半径的圆上
当点Q与O重合时,C在OA上; 当点P与O重合时,C在OB上。
D(P)
C
A
E
B
F G
攻坚 克难
例 3(2016 武汉)如图,在等腰 Rt△ABC 中,AC=BC=2 2 , 点 P 在以斜边 AB 为直径的半圆 O 上,M 为 PC 的中点.当
点 P 沿半圆从点 A 运动至点 B 时,点 M 运动的路径长是( B )
A. 2
B. C. 2 2
D. 2
攻坚 克难
相关文档
最新文档