最新公考数字推理攻略.pdf

合集下载

《公务员复习资料》1数字推理秘籍x.doc

《公务员复习资料》1数字推理秘籍x.doc

答案思路:第一,看题目有多少项,是少项还是多项,多项利用多项规则(分组)、(间隔)、(首尾)做题;第二,少项(也有可能使用多项规则,但限于偶数项)吋,看是否是分数数列或小数数列。

若是分数数列通分,使分子/分母相同,或者分子分母之间有联系或等差或等比;反约分数列是其重点。

若是小数数列,可化为分数数列的化,不可化的小数有规律,整数有规律。

第三,商约有规律先相除,为隐藏等比;可以因式分解的依照五常用子数列先行分解,再做下一步。

常用子数列1: -2, -1, 0, 1, 2, 3……(数列中间有0,或者有正有负的)常用子数列2:0, 1, 2, 3, 4……(数列端点是0)常用子数列3:2, 3, 5, 7, 11……(数列中有数字明显存在7或11因子的)常用子数列4:1, 2, 3, 4, 5……(也可以是2, 3等其他数开头的自然数数列)常用子数列5:1, 3, 5, 7, 9……(也可以是3开头的奇数数列)第四,无明显特征,则两两做差然后做和。

多级等差(和)数列变式是其常规武器。

一般一次至最多三次。

【1】合数。

出现三个连续自然数,则要考虑相加数列变种的可能;【2】加数。

每三项/ 二项相加,是否有规律;【3】平均数。

旁边两项(如al,a3)与中间项(如£)的关系;第五,熟记常用幕次数,利用数字敏感性解题。

底数质数或从小到大到小,指数或与序数自然数负数等有关(注意儿个整数里夹杂一两个分数可能是负幕次数列,转换成底数指数形式),再结合加减。

[1]数字从小到大到小,则可能与指数有关;【2】一个数反复出现可能是次方关系,也可能是差值关系;笫六,用前面的项通过加减乘除以后的项(和方积倍、修正项:1简单数列2与前项相关)。

单项推单项,双项推单项。

前推后,后推前,两边推中间,中间推两边,首尾相推。

【1】C=A"2—B及变形;C 二(B-A)乘2 (看到前面都是正数,突然一个负数,可以试试);[2] C=A"2+B及变形(数字变化较大较快);[3]B项等于A项乘一个数后加减一个常数数跳得大,与次方(不是特别大), 乘法(跳得很大);C=A乘2+B【4】有关突然出现非正常的数,考虑C项等于A项和B项之间加减乘除,或者与常数/数列的变形;D二A乘B+C【5】如果出现从大排到小的数,可能是A项等于B 项与C项之间加减乘除;第七,【自拆】每项数位都很均匀或很规律,差距也不是太大,每个数自拆数字,然后或交叉或分组或相连;【取尾】题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。

公务员数字推理全方技巧

公务员数字推理全方技巧

数字推理全方法介绍+卡卡个人原创(绝对经典)写在前面的话1、希望能给数字推理比较弱的同学帮助2、做数推,重点不是怎么做,而是:“你怎么会想到这种做法?思路在哪?突破口呢?”3、只要你认真看完这个帖子,你的数字推理一定会有进步4、例子来源于真题5、觉得好一定要顶,让更多的人能来交流言归正传(一)等差、倍数关系介绍要学会观察变化趋势(1)数变化很大,一般和乘法和次方有关。

如:2,5,13, 35,97 ()-------------A*2+1 3 9 27 81=B又如:1,1,3,15,323,()---------------数跳很大,考虑是次方和乘法。

此题-------------(A+B)^2-1 =c再如:1 ,2 ,3 ,35 ()------------(a*b)^2-1=c0.4 1.6 8 56 560 ()--------4 5 7 10倍,倍数成二级等差A、2240B、3136C、4480D、784009国考真题14 20 54 76 ()A.104 B.116 C.126 D1449+525-549+5…(2)数差(数跳不大,考虑是做差)等差数列我就不说了,很简单下面说下数字变化不大,但是做差没规律怎么办?一般三种可以尝试的办法(1)隔项相加、相减(2)递推数列(3)自残(一般用得很少,真题里我好像没见过?也许是我忘了吧)09江苏真题1,1,3,5,11,()A.8 B.13 C.21 D.32满足C-A=2 4 8 16-3,7,14,15,19,29,()A 35B 36C 40D 42------------------------------满足A+C=11 22 33 44 5521,37,42,45,62,()A 57B 69C 74D 8721+3*7=4237+4*2=4542+4*5=6245+6*2=57(3)倍数问题(二)三位数的数字推理的思路(1)数和数之间的差不是很大的时候考虑做差(2)很多三位数的数字推理题都用“自残法”如:252,261,270,279,297,()252+2+5+2=261261+2+6+1=270270+2+7+0=27909国考真题153, 179, 227, 321, 533, ( )A.789B.919C.1079D.1229150+3170+9200+27….左边等差,右边等比(三)多项项数的数字推理多项项数的数推”比如:5,24,6,20,(),15,10,()上面个数列有8项,我习惯把项数多余6项的数列叫做“多项数列”。

行测数字推理之解题技巧(精华版)

行测数字推理之解题技巧(精华版)

数字推理之解题技巧(精华版)(1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b(注:a、b为前后数)(2)深一层次的,①各数之间的差有规律,如 1、2、5、10、17。

它们之间的差为1、3、5、7,成等差数列。

这些规律还有差之间成等比之类。

②各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

(注:前一就是高中数学常说的差后等差数列或等比数列)(3)看各数的大小组合规律,作出合理的分组。

如 7,9,40,74,1526,5436,可以划分为7和9,40和74,1526和5436三组,这三组各自是大致处于同一大小和位数级别,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个小组。

而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。

所以7*7-9=40 , 9*9-7=74 ,40*40-74=1526 ,74*74-40=5436,这就是规律。

(4)如根据大小不能分组的,①,看首尾关系,如7,10,9,12,11,14,这组数 7+14=10+11=9+12。

首尾关系经常被忽略,但又是很简单的规律。

②,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

(5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这里就要看各位对数字敏感程度如何了。

如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。

(注意,这组数比较巧的是都是6的倍数,大家容易导入歧途。

)6)看大小不能看出来的,就要看数的特征了。

如21、31、47、56、69、72,它们的十位数就是递增关系;如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3;如论坛上fjjngs所解答的一道题:256,269,286,302,(),2+5+6=132+6+9=17 2+8+6=16 3+0+2=5,∵256+13=269 269+17=286 286+16=302 ∴下一个数为302+5=307。

(完整版)公务员考试1000道数字推理题详解

(完整版)公务员考试1000道数字推理题详解

【1】7,9,-1,5,( )A、4;B、2;C、-1;D、-3分析:选D,7+9=16;9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比【2】3,2,5/3,3/2,( )A、1/4;B、7/5;C、3/4;D、2/5分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5【3】1,2,5,29,()A、34;B、841;C、866;D、37分析:选C,5=12+22;29=52+22;( )=292+52=866【4】2,12,30,()A、50;B、65;C、75;D、56;分析:选D,1×2=2;3×4=12;5×6=30;7×8=()=56【5】2,1,2/3,1/2,()A、3/4;B、1/4;C、2/5;D、5/6;分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】4,2,2,3,6,()A、6;B、8;C、10;D、15;分析:选D,2/4=0.5;2/2=1;3/2=1.5;6/3=2;0.5,1,1.5, 2等比,所以后项为2.5×6=15【7】1,7,8,57,()A、123;B、122;C、121;D、120;分析:选C,12+7=8;72+8=57;82+57=121;【8】4,12,8,10,()A、6;B、8;C、9;D、24;分析:选C,(4+12)/2=8;(12+8)/2=10;(8+10)/2=9【9】1/2,1,1,(),9/11,11/13A、2;B、3;C、1;D、7/9;分析:选C,化成1/2,3/3,5/5 ( ),9/11,11/13这下就看出来了只能是(7/7)注意分母是质数列,分子是奇数列。

【10】95,88,71,61,50,()A、40;B、39;C、38;D、37;分析:选A,思路一:它们的十位是一个递减数字9、8、7、6、5 只是少开始的4 所以选择A。

公考数字推理攻略

公考数字推理攻略

公务员数字推理技巧总结精华版数字推理技巧总结备考规律一:等差数列及其变式(后一项与前一项的差d为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)(1)后面的数字与前面数字之间的差等于一个常数。

如7,11,15,(19)(2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。

如7,11,16,22,(29)(3)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。

如7,11,13,14,()(4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。

【例题】7,11,6,12,(5)(5)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。

【例题】7,11,16,10,3,11,(20)备考规律二:等比数列及其变式(后一项与除以前一项的倍数q为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)(1)“后面的数字”除以“前面数字”所得的值等于一个常数。

【例题】4,8,16,32,(64)(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。

【例题】4,8,24,96,(480)(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘2【例题】4,8,32,256,(4096)(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为3的n次方。

【例题】2,6,54,1428,(118098)(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。

【例题】2,-4,-12,48,(240)备考规律三:“平方数”数列及其变式(an=n2+d,其中d为常数或存在一定规律)(1)“平方数”的数列【例题】1,4,9,16,25,36,49,64,81,100,121,144,169,196(2)每一个平方数减去或加上一个常数【例题】0,3,8,15,24,(35)【例题变形】2,5,10,17,26,(37)(3)每一个平方数加去一个数值,而这个数值本身就是有一定规律的。

公务员考试数量关系解题技巧—数字推理题 (1)

公务员考试数量关系解题技巧—数字推理题 (1)

数字推理题主要有以下几种题型:1. 等差数列及其变式例题:1,4,7,10,13,()A.14B.15C.16D.17答案为C。

我们很容易从中发现相邻两个数字之间的差是一个常数3,所以括号中的数字应为16。

等差数列是数字推理测验中排列数字的常见规律之一。

例题:3,4,6,9,(),18A.11B.12C.13D.14答案为C。

仔细观察,本题中的相邻两项之差构成一个等差数列1,2,3,4,5.……,因此很快可以推算出括号内的数字应为13,象这种相邻项之差虽不是一个常数,但有着明显的规律性,可以把它看作等差数列的变式。

2.“两项之和等于第三项”型例题:34,35,69,104,()A.138B.139C.173D.179答案为C。

观察数字的前三项,发现第一项与第二项相加等于第三项,3435=69,在把这假设在下一数字中检验,3569=104,得到验证,因此类推,得出答案为173。

前几项或后几项的和等于后一项是数字排列的又一重要规律。

3.等比数列及其变式例题:3,9,27,81,()A.243B.342C.433D.135答案为A。

这是最一种基本的排列方式,等比数列。

其特点为相邻两项数字之间的商是一个常数。

例题:8,8,12,24,60,()A.90B.120C.180D.240答案为C。

虽然此题中相邻项的商并不是一个常数,但它们是按照一定规律排列的:1,1.5,2,2.5,3,因此答案应为60×3=180,象这种题可视作等比数列的变式。

转自中国教育热线公务员考试数量关系测验题型及解题技巧—数字推理题(下)4.平方型及其变式例题:1,4,9,(),25,36A.10B.14C.20D.16答案为D。

这道试题考生一眼就可以看出第一项是1的平方,第二项是2的平方,依此类推,得出第四项为4的平方16。

对于这种题,考生应熟练掌握一些数字的平方得数。

如:10的平方=10011的平方=12112的平方=14413的平方=16914的平方=19615的平方=225例题:66,83,102,123,()A.144B.145C.146D.147答案为C。

行政职业能力测试中数字推理的答题技巧

行政职业能力测试中数字推理的答题技巧

行 政 管理职 能领 域 中成功 可 能性 的

种 考试 手段 。这种 考试 测试 的 是 个 人在 多年 生 活 、学 习和实 践 中
2 数 列分 类及 分析
2 . 1 基 础 数 列

积 累而形 成 的稳定 的能 力 其性 质 是 一种 基本 潜在 能力 的考试 ,其 功 能 是 通 过测 量 一 系列 的心 里 潜 能 . 进 而预 测考 生在 行政管 理 职业领 域 里 多种 职位 上成 功 的可 能性 。因此 行 测 的备考 显得 格外 重要 .与此 同 时 .随 着 国家公务 员考 试 的不 断深 入 .行 政职 业 能力测 验科 目的试题 类 型 和考 试 难 度越 来 越 趋 于 稳定 。 所 以 .通过 备考 掌握 行测 考试 的答 题技 巧 和方法 显得 尤为 重要 这不
2 . 3 三 级 数 列
减乘 除 .或 者每 两项 相减 与项 数 之
间 具 有 某 种 关 系 .或 者 是 前 两 项 相
理、 资料 分析 和常 识判 断五 大部 分 。 每一 部分 都有 自己的题 型特点 和应 试技 巧 。下 面 以数 字推 理部分 举例 逐个 熟 悉相关 数列 近 年来数 字推
近几年 的考 试题 中三 级数 列逐
作 为二级 数列 的演 变数 列而存 在 于
考试 题 中。例 如 : 3 2 2 7 2 3 ・ 2 0 1 8此 数列 相邻 两项 差是公 差 为 1的等 差
数 列 。 例 如 : 1 3 1 8 ( ) 5 1 8 4
2 4 8 8 2 1 . 此 数列 增 长速 度很 快 . 因此
பைடு நூலகம்推数列 , 例如 : 2 3 5 1 0 2 0为前 面 两项 、 三项 、 四项 之 和 为后 一 项 . 例

行测指导:公务员考试的数字推理技巧

行测指导:公务员考试的数字推理技巧

数字推理是国家公务员考试行政职业能力测验科目中的固定题型,主要用来测查应试者对数量关系的理解和判断推理的能力。

在历年国家公务员录用考试中,数字推理考查的题型都在不断变化,但如果考生仔细观察,不难发现无论怎么变化都是万变不离其宗,下面就是国家公务员考试网的专家为广大高声总结的几条解题技巧,希望能够给广大考生带来帮助。

一、看特征,做试探。

①首先观察数列的项数,如果项数比较长,或有两项是括号项,可考虑虑奇、偶项数列和两两分组数列。

例如:25,23,27,25,29,27(奇、偶项数列)②其次观察数列的数字特点,注意各项数字是否为整数的平方或立方,或是与它们左右相邻或相近的数字,如果是,则可考虑平方数列或立方数列。

例如:2,5,10,17,26(数列各项减1得一平方数列)③再次观察数列数字间的变化幅度的大小,如果前几项较小,末项却突然增大数倍,则此是可考虑等比数列;如果数列的起伏不大,变化幅度小且逐渐递增或递减,则可考虑等差数列。

例如:4,8,16,32,64,128(等比数列)3,5,8,12,17(二级等差数列)④如果数列内有多项分数或者根式,则一般需要将其余项均化为分数或者根式。

二、单数字发散。

即从题目中所给出的某一个数字出发,寻找与之相关的各个特征数字,从而找到解析试题的“灵感”的思维方式。

①分解发散。

针对某个数,联系其各个因子(即约数)及其因子的表示形式(包括幂次形式、阶乘形式等),牢记典型质数与“典型形似质数”的分解方式。

②相邻发散。

针对某个数,联系与其相邻的各个具有典型特征的数字(即“基准数字”),将题干中数字与这些“基准数字”联系起来,从而洞悉解题的思想。

例如:题目中出现了数字26,则从26出发我们可以联想到:三、多数字联系。

即从题目中所给的某些数字组合出发,寻找之间的联系,从而找到解析例题的“灵感的思维方式”。

多数字联系的基本思路:把握数字之间的共性;把握数字之间的递推关系。

例如:题目出现了数字1、4、9,则从1、4、9出发我们可以联想到:。

公务员考试1000道数字推理题详解

公务员考试1000道数字推理题详解

,【1】7,9,-1,5,( )A、4;B、2;C、-1;D、-3分析:选D,7+9=16; 9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比【2】3,2,5/3,3/2,( )A、1/4;B、7/5;C、3/4;D、2/5分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5—【3】1,2,5,29,()A、34;B、841;C、866;D、37分析:选C,5=12+22;29=52+22;( )=292+52=866【4】2,12,30,()A、50;B、65;C、75;D、56;分析:选D,1×2=2; 3×4=12; 5×6=30; 7×8=()=56—【5】2,1,2/3,1/2,()A、3/4;B、1/4;C、2/5;D、5/6;分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】 4,2,2,3,6,()A、6;B、8;C、10;D、15;分析:选D,2/4=;2/2=1;3/2=; 6/3=2;,1,, 2等比,所以后项为×6=15;【7】1,7,8,57,()A、123;B、122;C、121;D、120;分析:选C,12+7=8; 72+8=57; 82+57=121;【8】 4,12,8,10,()A、6;B、8;C、9;D、24;分析:选C,(4+12)/2=8;(12+8)/2=10; (8+10)/2=9,【9】1/2,1,1,(),9/11,11/13A、2;B、3;C、1;D、7/9;分析:选C,化成 1/2,3/3,5/5 ( ),9/11,11/13这下就看出来了只能是(7/7)注意分母是质数列,分子是奇数列。

【10】95,88,71,61,50,()A、40;B、39;C、38;D、37;分析:选A,思路一:它们的十位是一个递减数字 9、8、7、6、5 只是少开始的4 所以选择A。

公考数字推理攻略

公考数字推理攻略

公考数字推理攻略公务员数字推理技巧总结精华版数字推理技巧总结备考规律一:等差数列及其变式(后一项与前一项的差d为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)(1)后面的数字与前面数字之间的差等于一个常数。

如7,11,15,(19)(2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。

如7,11,16,22,(29)(3)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。

如7,11,13,14,()(4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。

【例题】7,11,6,12,(5)(5)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。

【例题】7,11,16,10,3,11,(20)备考规律二:等比数列及其变式(后一项与除以前一项的倍数q为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)(1)“后面的数字”除以“前面数字”所得的值等于一个常数。

【例题】4,8,16,32,(64)(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。

【例题】4,8,24,96,(480)(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘2【例题】4,8,32,256,(4096)(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为3的n次方。

【例题】2,6,54,1428,(118098)(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。

【例题】2,-4,-12,48,(240)备考规律三:“平方数”数列及其变式(an=n2+d,其中d为常数或存在一定规律)(1)“平方数”的数列【例题】1,4,9,16,25,36,49,64,81,100,121,144,169,196(2)每一个平方数减去或加上一个常数【例题】0,3,8,15,24,(35)【例题变形】2,5,10,17,26,(37)(3)每一个平方数加去一个数值,而这个数值本身就是有一定规律的。

公务员考试行测数字推理必知的30个规律

公务员考试行测数字推理必知的30个规律

公务员考试行测数字推理必知的30个规律公务员考试中,数字推理是一个非常重要的考试科目。

数字推理是指通过对数字、图形、文字等信息的分析和推理,得出正确的结论。

在数字推理中,有很多规律需要掌握。

本文将介绍公务员考试行测数字推理必知的30个规律。

一、数字规律1. 数字序列规律数字序列规律是指在一组数字中,数字之间的关系所遵循的规律。

常见的数字序列规律有等差数列、等比数列、斐波那契数列等。

2. 数字排列规律数字排列规律是指在一组数字中,数字的排列顺序所遵循的规律。

常见的数字排列规律有逆序、顺序、交替等。

3. 数字替换规律数字替换规律是指在一组数字中,数字被替换成其他数字的规律。

常见的数字替换规律有加减乘除、平方、开方等。

4. 数字组合规律数字组合规律是指在一组数字中,数字之间的组合所遵循的规律。

常见的数字组合规律有排列组合、加减乘除等。

二、图形规律图形旋转规律是指在一组图形中,图形的旋转方向和角度所遵循的规律。

常见的图形旋转规律有顺时针旋转、逆时针旋转等。

6. 图形翻转规律图形翻转规律是指在一组图形中,图形的翻转方向和方式所遵循的规律。

常见的图形翻转规律有水平翻转、垂直翻转等。

7. 图形平移规律图形平移规律是指在一组图形中,图形的平移方向和距离所遵循的规律。

常见的图形平移规律有水平平移、垂直平移等。

8. 图形缩放规律图形缩放规律是指在一组图形中,图形的缩放比例所遵循的规律。

常见的图形缩放规律有放大、缩小等。

9. 图形填充规律图形填充规律是指在一组图形中,图形的填充方式和颜色所遵循的规律。

常见的图形填充规律有交替填充、渐变填充等。

三、文字规律10. 文字替换规律文字替换规律是指在一组文字中,文字被替换成其他文字的规律。

常见的文字替换规律有字母替换、数字替换等。

文字排列规律是指在一组文字中,文字的排列顺序所遵循的规律。

常见的文字排列规律有逆序、顺序、交替等。

12. 文字组合规律文字组合规律是指在一组文字中,文字之间的组合所遵循的规律。

公务员考试行测必考必会:数字推理

公务员考试行测必考必会:数字推理

公务员行测必考必会:数字推理华图教育孙兆宸字推理主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。

在实际解题过程中,根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:1、相邻两个数加、减、乘、除等于第三数2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数3、等差数列:数列中各个数字成等差数列4、二级等差:数列中相邻两个数相减后的差值成等差数列5、等比数列:数列中相邻两个数的比值相等6、二级等比:数列中相邻两个数相减后的差值成等比数列7、前一个数的平方等于第二个数8、前一个数的平方再加或者减一个常数等于第二个数;9、前一个数乘一个倍数加减一个常数等于第二个数;10、隔项数列:数列相隔两项呈现一定规律,11、全奇、全偶数列12、排序数列二、数列中每一个数字本身构成特点形成各个数字之间的规律1、数列中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成。

2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n。

3、数列中每一个数字都是n的倍数加减一个常数。

以上是数字推理的一些基本规律,必须掌握。

但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。

第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。

第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。

当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。

这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案。

公务员行政能力测试数字推理答题技巧(非常有用)

公务员行政能力测试数字推理答题技巧(非常有用)

公务员行政能力测试数字推理答题技巧(非常有用)数字推理一、基本要求熟记熟悉常见数列,保持数字的敏感性,同时要注意倒序。

自然数平方数列:4,1,0,1,4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,324,361,400……自然数立方数列:-8,-1,0,1,8,27,64,125,216,343,512,729,1000质数数列:2,3,5,7,11,13,17……(注意倒序,如17,13,11,7,5,3,2)合数数列:4,6,8,9,10,12,14…….(注意倒序)二、解题思路:1 基本思路:第一反应是两项间相减,相除,平方,立方。

所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列。

相减,是否二级等差。

8,15,24,35,(48)相除,如商约有规律,则为隐藏等比。

4,7,15,29,59,(59*2-1)初看相领项的商约为2,再看4*2-1=7,7*2+1=15……2 特殊观察:项很多,分组。

三个一组,两个一组4,3,1,12,9,3,17,5,(12)三个一组19,4,18,3,16,1,17,(2)2,-1,4,0,5,4,7,9,11,(14)两项和为平方数列。

400,200,380,190,350,170,300,(130)两项差为等差数列隔项,是否有规律0,12,24,14,120,16(7^3-7)数字从小到大到小,与指数有关1,32,81,64,25,6,1,1/8每个数都两个数以上,考虑拆分相加(相乘)法。

87,57,36,19,(1*9+1)256,269,286,302,(302+3+0+2)数跳得大,与次方(不是特别大),乘法(跳得很大)有关1,2,6,42,(42^2+42)3,7,16,107,(16*107-5)每三项/二项相加,是否有规律。

1,2,5,20,39,(125-20-39)21,15,34,30,51,(10^2-51)C=A^2-B及变形(看到前面都是正数,突然一个负数,可以试试)3,5,4,21,(4^2-21),4465,6,19,17,344,(-55)-1,0,1,2,9,(9^3+1)C=A^2+B及变形(数字变化较大)1,6,7,43,(49+43)1,2,5,27,(5+27^2)2/3,1/3,2/9,1/6,(2/15)3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。

行政能力测试数字推理的规律及其解题过程

行政能力测试数字推理的规律及其解题过程

行政能力测试数字推理的规律及其解题过程数字推理的主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。

在实际解题过程中,根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:1、相邻两个数加、减、乘、除等于第三数2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数3、等差数列:数列中各个数字成等差数列4、二级等差:数列中相邻两个数相减后的差值成等差数列5、等比数列:数列中相邻两个数的比值相等6、二级等比:数列中相邻两个数相减后的差值成等比数列7、前一个数的平方等于第二个数8、前一个数的平方再加或者减一个常数等于第二个数;9、前一个数乘一个倍数加减一个常数等于第二个数;10、隔项数列:数列相隔两项呈现一定规律,11、全奇、全偶数列12、排序数列二、数列中每一个数字本身构成特点形成各个数字之间的规律。

1、数列中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n3、数列中每一个数字都是n的倍数加减一个常数以上是数字推理的一些基本规律,必须掌握。

但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。

第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。

第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。

当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。

这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案。

公务员考试十大数字推理规律详解

公务员考试十大数字推理规律详解

备考规律⼀:等差数列及其变式 【例题】7,11,15,( )A .19B .20C .22D. 25 【答案】A选项 【解析】这是⼀个典型的等差数列,即后⾯的数字与前⾯数字之间的差等于⼀个常数。

题中第⼆个数字为11,第⼀个数字为7,两者的差为4,由观察得知第三个与第⼆个数字之间也满⾜此规律,那么在此基础上对未知的⼀项进⾏推理,即15+4=19,第四项应该是19,即答案为A。

(⼀)等差数列的变形⼀: 【例题】7,11,16,22,( )A.28B.29C.32D.33 【答案】B选项 【解析】这是⼀个典型的等差数列的变形,即后⾯的数字与前⾯数字之间的差是存在⼀定的规律的,这个规律是⼀种等差的规律。

题中第⼆个数字为11,第⼀个数字为7,两者的差为4,由观察得知第三个与第⼆个数字之间的差值是5;第四个与第三个数字之间的差值是6。

假设第五个与第四个数字之间的差值是X, 我们发现数值之间的差值分别为4,5,6,X。

很明显数值之间的差值形成了⼀个新的等差数列,由此可以推出X=7,则第五个数为22+7=29。

即答案为B选项。

(⼆)等差数列的变形⼆: 【例题】7,11,13,14,( )A.15B.14.5C.16D.17 【答案】B选项 【解析】这也是⼀个典型的等差数列的变形,即后⾯的数字与前⾯数字之间的差是存在⼀定的规律的,但这个规律是⼀种等⽐的规律。

题中第⼆个数字为11,第⼀个数字为7,两者的差为4,由观察得知第三个与第⼆个数字之间的差值是2;第四个与第三个数字之间的差值是1。

假设第五个与第四个数字之间的差值是X。

我们发现数值之间的差值分别为4,2,1,X。

很明显数值之间的差值形成了⼀个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5。

即答案为B选项。

(三)等差数列的变形三: 【例题】7,11,6,12,( )A.5B.4C.16D.15 【答案】A选项 【解析】这也是⼀个典型的等差数列的变形,即后⾯的数字与前⾯数字之间的差是存在⼀定的规律的,但这个规律是⼀种正负号进⾏交叉变换的规律。

行测数字推理题技巧

行测数字推理题技巧

行测数字推理题技巧数字推理题是公务员考试中常见的题型之一,包含数字序列、数字关系、数字分类等多种形式。

数字推理题不仅考察了考生的数学能力,更重要的是考察了考生的逻辑思维和推理能力。

本文将从四个方面为大家介绍数字推理题的技巧和方法。

一、数字序列题数字序列题是指给出一组数字序列,要求考生根据规律推断出下一个数字或者缺失的数字。

数字序列题考察的是考生的数学能力和逻辑推理能力。

下面介绍一些数字序列题的常见规律和解题方法。

1.等差数列等差数列是指每一项与前一项之差相等的数列,例如1、3、5、7、9……。

在等差数列中,每一项与前一项之差都相等,这个差值称为公差。

在数字序列题中,等差数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。

解题方法是求出公差,然后根据公差推断出下一项或者缺失的项。

2.等比数列等比数列是指每一项与前一项之比相等的数列,例如1、2、4、8、16……。

在等比数列中,每一项与前一项之比都相等,这个比值称为公比。

在数字序列题中,等比数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。

解题方法是求出公比,然后根据公比推断出下一项或者缺失的项。

3.斐波那契数列斐波那契数列是指第一项和第二项都为1,从第三项开始,每一项都是前两项之和的数列,例如1、1、2、3、5、8……。

在斐波那契数列中,每一项都是前两项之和,这个规律称为递推关系。

在数字序列题中,斐波那契数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。

解题方法是根据递推关系推断出下一项或者缺失的项。

二、数字关系题数字关系题是指给出一组数字之间的关系,要求考生根据这些关系推断出其他数字之间的关系。

数字关系题考察的是考生的逻辑推理能力和数学能力。

下面介绍一些数字关系题的常见关系和解题方法。

1.加减乘除加减乘除是数字关系题中最为常见的关系,例如1+2=3,2-1=1,2×3=6,6÷2=3等。

在数字关系题中,加减乘除的规律通常是给出部分数字和运算符号,要求考生推断出其他数字和运算符号。

(完整版)公务员考试1000道数字推理题详解

(完整版)公务员考试1000道数字推理题详解

【1】7,9,-1,5,( )A、4;B、2;C、-1;D、-3分析:选D,7+9=16;9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比【2】3,2,5/3,3/2,( )A、1/4;B、7/5;C、3/4;D、2/5分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5【3】1,2,5,29,()A、34;B、841;C、866;D、37分析:选C,5=12+22;29=52+22;( )=292+52=866【4】2,12,30,()A、50;B、65;C、75;D、56;分析:选D,1×2=2;3×4=12;5×6=30;7×8=()=56【5】2,1,2/3,1/2,()A、3/4;B、1/4;C、2/5;D、5/6;分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】4,2,2,3,6,()A、6;B、8;C、10;D、15;分析:选D,2/4=0.5;2/2=1;3/2=1.5;6/3=2;0.5,1,1.5, 2等比,所以后项为2.5×6=15【7】1,7,8,57,()A、123;B、122;C、121;D、120;分析:选C,12+7=8;72+8=57;82+57=121;【8】4,12,8,10,()A、6;B、8;C、9;D、24;分析:选C,(4+12)/2=8;(12+8)/2=10;(8+10)/2=9【9】1/2,1,1,(),9/11,11/13A、2;B、3;C、1;D、7/9;分析:选C,化成1/2,3/3,5/5 ( ),9/11,11/13这下就看出来了只能是(7/7)注意分母是质数列,分子是奇数列。

【10】95,88,71,61,50,()A、40;B、39;C、38;D、37;分析:选A,思路一:它们的十位是一个递减数字9、8、7、6、5 只是少开始的4 所以选择A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公务员数字推理技巧总结精华版数字推理技巧总结备考规律一:等差数列及其变式(后一项与前一项的差d为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)(1) 后面的数字与前面数字之间的差等于一个常数。

如7,11,15,( 19 )(2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。

如7,11,16,22,( 29 )(3) 后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。

如7,11,13,14,( 14.5 )(4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。

【例题】7,11,6,12,( 5 )(5) 后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。

【例题】7,11,16,10,3,11,(20 )备考规律二:等比数列及其变式(后一项与除以前一项的倍数q为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)(1)“后面的数字”除以“前面数字”所得的值等于一个常数。

【例题】4,8,16,32,( 64 )(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。

【例题】4,8,24,96,( 480 )(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘 2【例题】4,8,32,256,( 4096 )(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为3的n次方。

【例题】2,6,54,1428,( 118098 )(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。

【例题】2,-4,-12,48,(240 )备考规律三:“平方数”数列及其变式 (an=n2+d,其中d为常数或存在一定规律) (1)“平方数”的数列【例题】1,4,9,16,25,36 ,49,64,81,100,121,144,169,196(2)每一个平方数减去或加上一个常数【例题】0,3,8,15,24,(35 )【例题变形】2,5,10,17,26,(37 )(3) 每一个平方数加去一个数值,而这个数值本身就是有一定规律的。

【例题】2,6,12,20,30,(42 )备考规律四:“立方数”数列及其变式 (an=n3+d,其中d为常数或存在一定规律) (1)“立方数”的数列【例题】8,27,64, 125 ,216,343(2)“立方数”的数列,其规律是每一个立方数减去或加上一个常数【例题】7,26,63,(124 )【例题变形】9,28,65,( 126 )(3)每一个立方数加去一个数值,,而这个数值本身就是有一定规律的。

【例题】9,29,67,( 129 )备考规律五:求和相加、求差相减、求积相乘、求商相除式的数列(第三项等于第一项与第二项的运算结果,或者相差一个常量,或者相差一定的规律) 第一项与第二项相加等于第三项【例题】56,63,119,182,(301)第一项减去第二项等于第三项【例题】8,5,3,2,1,( 1 )第一项与第二项相乘等于第三项【例题】3,6,18,108,(1944)第一项除以第二项等于第三项【例题】800,40,20,2,(10)备考规律六:“隔项”数列(1) 相隔的一项成为一组数列,即原数列中是由两组数列结合而成的。

【例题】1,4,3,9,5,16,7,( 25 )备考规律七:混合式数列【例题】1,4,3,8,5,16,7,32,( 9 ),( 64 )将来数字推理的不断演变,有可能出现3个数列相结合的题型,即有可能出现要求考生填写3个未知数字的题型。

所以大家还是认真总结这类题型。

【例题变形】1,4,4,3,8,9,5,16,16,7,32,25,( 9 ),( 64 ),( 36 )1.数字推理数字推理题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个供选择的答案中选出自己认为最合适、合理的一个,来填补空缺项,使之符合原数列的排列规律。

在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。

一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。

另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。

两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。

只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。

由此可见,即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,具体来说,将相邻的两个数相加或相减,相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。

只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。

需要说明一点:近年来数字推理题的趋势是越来越难,即需综合利用两个或者两个以上的规律。

因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。

这样处理不但节省了时间,保证了容易题目的得分率,而且会对难题的解答有所帮助。

有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度思考问题。

此时,与其“卡”死在这里,不如抛开这道题先做别的题。

在做其他题的过程中也许就会有新的解题思路,从而有助于解答这些少量的难题。

在做这些难题时,有一个基本思路:“尝试错误”。

很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。

二、解题技巧及规律总结数字推理主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。

在实际解题过程中,根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:1、相邻两个数加、减、乘、除等于第三数2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数3、等差数列:数列中各个数字成等差数列4、二级等差:数列中相邻两个数相减后的差值成等差数列5、等比数列:数列中相邻两个数的比值相等6、二级等比:数列中相邻两个数相减后的差值成等比数列7、前一个数的平方等于第二个数8、前一个数的平方再加或者减一个常数等于第二个数9、前一个数乘一个倍数加减一个常数等于第二个数10、隔项数列:数列相隔两项呈现一定规律11、全奇、全偶数列12、排序数列二、数列中每一个数字本身构成特点形成各个数字之间的规律。

1、数列中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n 的平方加减n构成2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n3、数列中每一个数字都是n的倍数加减一个常数以上是数字推理的一些基本规律,必须掌握。

但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。

第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。

第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。

当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。

这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案一、看特征,做试探。

①首先观察数列的项数,如果项数比较长,或有两项是括号项,可考虑虑奇、偶项数列和两两分组数列。

例如:25,23,27,25,29,27(奇、偶项数列)②其次观察数列的数字特点,注意各项数字是否为整数的平方或立方,或是与它们左右相邻或相近的数字,如果是,则可考虑平方数列或立方数列。

例如:2,5,10,17,26(数列各项减1得一平方数列)③再次观察数列数字间的变化幅度的大小,如果前几项较小,末项却突然增大数倍,则此是可考虑等比数列;如果数列的起伏不大,变化幅度小且逐渐递增或递减,则可考虑等差数列。

例如:4,8,16,32,64,128(等比数列)3,5,8,12,17(二级等差数列)④如果数列内有多项分数或者根式,则一般需要将其余项均化为分数或者根式。

二、单数字发散。

即从题目中所给出的某一个数字出发,寻找与之相关的各个特征数字,从而找到解析试题的“灵感”的思维方式。

①分解发散。

针对某个数,联系其各个因子(即约数)及其因子的表示形式(包括幂次形式、阶乘形式等),牢记典型质数与“典型形似质数”的分解方式。

②相邻发散。

针对某个数,联系与其相邻的各个具有典型特征的数字(即“基准数字”),将题干中数字与这些“基准数字”联系起来,从而洞悉解题的思想。

例如:题目中出现了数字26,则从26出发我们可以联想到:三、多数字联系。

即从题目中所给的某些数字组合出发,寻找之间的联系,从而找到解析例题的“灵感的思维方式”。

多数字联系的基本思路:把握数字之间的共性;把握数字之间的递推关系。

例如:题目出现了数字1、4、9,则从1、4、9出发我们可以联想到:经典习题(1)2、3、10、15、(26)解析:1的平方+1=2、2的平方-1=3、3的平方+1=10、4的平方-1=15、5的平方+1=(26)(2)10、9、17、50、(199 )解析:10*1-1=9、9*2-1=17、17*3-1=50、50*4-1=(199)(3)2、8、24、64、(160)解析:2*2+4=8、8*2+8=24、24*2+16=64、64*2+32=(160)(4)0、4、18、48、100、()解析:这道题的关键是将每一项分解,0*1=0、2*2=4、6*3=18、12*4=48、20*5=100、30*6=(180)(5)4、5、11、14、22、()解析:前项与后项的和是到自然数平方数列。

4+5=9、5+11=16、11+14=25、14+22=36、22+(27)=49(6)2、3、4、9、12、15、22、()解析:每三项相加,得到自然数平方数列。

2+3+4=9、3+4+9=16、4+9+12=25、9+12+15=36、12+15+22=49、15+22+(27)=64(7) 1、2、3、7、46、()解析:后一项的平方减前一项得到第三项,2的平方-1=3、3的平方-2=7、7的平方-3=46、46的平方-7=(2109)(8)2、2、4、12、12、()、72这是一个组合数列2*1=2、2*2=4、4*3=12、12*1=12、12*2=(24)、24*3=72(9) 4、6、10、14、22、()每项除以2得到质数列 2、3、5、7、11、(26)/2=13(10)5、24、6、20、()、15、10、()5*24=120、6*20=120、(8)*15=120、10*(12)=120(11)763951、59367、7695、967、()本题并未研究计算关系,而只是研究项与项之间的数字规律。

相关文档
最新文档