北师大版八年级数学上第六章《数据的分析》单元检测.docx

合集下载

北师大版八年级数学上册 第六章 数据的分析 单元检测试题(有答案)

北师大版八年级数学上册  第六章 数据的分析  单元检测试题(有答案)

第六章数据的分析单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 若一组数据1,2,3,7,x的平均数是3,则这组数的众数是()A.1B.2C.3D.72. 有一组数据:3,0,3,1,−1,则这组数据的中位数、众数分别是()A.1,3B.3,3C.3,1D.1,13. 在“新冠肺炎”疫情中,某班15名同学积极捐款,捐款情况如下表,下列说法正确的是()20元 D.平均数是30元4. 一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):则被遮盖的两个数据依次是()A.80,80B.81,80C.80,2D.81,25. 十名射箭运动员进行训练,每人射箭一次,成绩如下表:A.9B.8C.6D.10或96. 某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为()A.89B.90C.92D.937. 在篮球比赛中,某队员连续10场比赛中每场的得分情况如下所示:则这10场比赛中该队员得分的中位数和众数分别是()A.10,4B.10,13C.11,4D.12.5,138. 学校4个绿化小组一天植树的棵数如下:20,20,x,16.已知这组数据的平均数与众数相等,那么这组数据的中位数是()A.16B.18C.20D.249. 某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:)A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册10. 某校对全校2560名学生的上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计表,被调查学生中骑车的有21人.则下列四种说法:(1)被调查的学生有60人;(2)被调查的学生中,步行的有27人;(3)估计全校骑车上学的学生有896人;(4)扇形图中,乘车部分所对应的圆心角为54∘.正确的个数有( )A.1个B.2个C.3个D.4个二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 , )11. 数据:2,5,4,2,2的中位数是_____,众数是______,方差是________.12. 联合国最近公布的一份报告表明,20世纪90年代以来,全球的森林消失状况非常严重.绿色环保组织收集整理了过去20年来全球森林面积的相关数据,为了预测未来20年全球森林面积的变化趋势,应该选用________(填“条形”、“折线”或“扇形”)统计图来表示收集到的数据.13. 从甲、乙两种玉米种子中选择一种合适的推荐给某地.考虑到庄稼人对玉米的产量和产量的稳定性十分的关心.选择之前,为了解甲、乙两种玉米种子的情况,某单位各用了10块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t )的数据,这两组数据的平均数分别是x ¯甲≈7.5,x ¯乙≈7.5,方差分别是S 甲2=0.010,S 乙2=0.002,你认为应该选择的玉米种子是________.14. 为筹备班级里的新年晚会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果,该由调查数据的________ 决定(在横线上填写:平均数或中位数或众数).15. 某日的最高气温是15∘C ,气温的极差为10∘C ,则该日的最低气温是________∘C .16. 某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如表所示:则这50名学生一周的平均课外阅读时间是________小时.17. 农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm )进行了测量.根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为________,图①中m 的值为________;(Ⅰ)求统计的这组苗高数据的平均数、众数和中位数.18. 为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数x ¯及其方差s 2如下表所示:如果选拔一名学生去参赛,应派________去.三、 解答题 (本题共计 7 小题 ,共计66分 , )19. 下图反映了被调查用户对甲、乙两种品牌空调售后服务的满意程(以下称:用户满意程度),分为很不满意、不满意、较满意、很满意四个等级,并依次记为1分、2分、3分、4分.(1)分别求甲、乙两种品牌用户满意程度分数的平均值(计算结果精确到0.01);(2)根据条形统计图及上述结果说明哪个品牌用户满意程度较高?20. 要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差s 甲2,s 乙2哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选________参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选________参赛更合适.21. 以下是根据某手机店销售的相关数据绘制的统计图的一部分.请根据图1、图2解答下列问题:(1)来自该店财务部的数据报告表明,该手机店1∼4月的手机销售总额一共是290万元,请将图1中的统计图补充完整;(2)该店1月份音乐手机的销售额约为多少万元(结果保留三个有效数字)?(3)小刚观察图2后认为,4月份音乐手机的销售额比3月份减少了,你同意他的看法吗?请你说明理由.22. 某商场家电销售部有营业员20名,为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售额目标,根据目标完成情况对营业员进行适当的奖惩.为此,商场统计了这20名营业员在某月的销售额,数据如下:(单位:万元)2526211728262025263020212026302521192826某商场家电销售部有营业员20名,为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售额目标,根据目标完成情况对营业员进行适当的奖惩.为此,商场统计了这20名营业员在某月的销售额,数据如下:(单位:万元)2526211728262025263020212026302521192826(1)上述数据中,众数是________万元,中位数是________万元,平均数是________万元;(2)如果将众数作为月销售额目标,能否让至少一半的营业员都能达到目标?请说明理由.23. 某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下表:(1)请你计算这两组数据的平均数;(2)现要从中选派一人参加操作技能比赛,从方差的角度考虑,你认为选派那名工人参加合适,通过计算加以说明.24. 为了从甲、乙两名同学中选拔一个参加比赛,对他们的射击水平进行了测验,两个在相同条件下各射靶10次,命中的环数如下(单位:环)甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,6,8,7,6,7,7(1)求x ¯甲,x ¯乙,S 甲2,S 乙2; (2)你认为该选拔哪名同学参加射击比赛?为什么?25. 八(1)班同学分成甲、乙两组,开展“社会主义核心价值观”知识竞赛,满分5分,得分均为整数,小马虎根据竞赛成绩,绘制了分组成绩条形统计图和全班成绩扇形统计图,经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.(1)甲组同学成绩的平均数是________,中位数是________,众数是________;(2)指出条形统计图中存在的错误,并求出正确值.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】根据平均数的概念可知,x=3×5−1−2−3−7=2,故数据中2的出现次数最多,所以众数是2.2.【答案】A【解答】解:从小到大排列:−1,0,1,3,3,中位数是1,五个数中,出现最多的数是3,所以这组数据的众数为3,故选A.3.【答案】B【解答】A.该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;B.该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;C.该组数据的极差是100−10=90,故极差是90不是20,所以选项C不正确;D.该组数据的平均数是10×2+20×4+30×5+50×3+1002+4+5+3+1=1003,不是30,所以选项D不正确.4.【答案】A【解答】解:根据题意得:80×5−(81+77+80+82)=80(分),则丙的得分是80分;众数是80分.故选A.5.【答案】A【解答】解:将十名射箭运动员进行训练的成绩按照从小到大的顺序排列为6,6,7,7,9,9,9,10,10,10,Ⅰ 十名运动员射箭成绩的中位数(环)为(9+9)÷2=9.故选A.6.【答案】B【解答】解:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选B.7.【答案】A【解答】解:Ⅰ 10场比赛得分按照从少到多排列为4、4、4、6、7、13、13、16、18、19,第5、6分别为7、13分,=10,Ⅰ 这10场比赛中该队员得分的中位数是7+132Ⅰ 有三场得分为4分,场数最多,Ⅰ 这10场比赛中该队员得分的众数为4.故选A.8.【答案】C【解答】解:因为20,20,x,16,已知这组数据的平均数与众数相等,所以这组数据的众数与平均数都是20,四个数的和:20×4=80,x的数值:80−(20+20+16)=24,将四个数据按照从大到小的顺序排列为:24,20,20,16,所以中位数是20.故选:C.9.【答案】B【解答】A 、众数是1册,结论错误,故A 不符合题意;B 、中位数是2册,结论正确,故B 符合题意;C 、极差=3−0=3册,结论错误,故C 不符合题意;D 、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,故D 不符合题意.10.【答案】D【解答】解:(1)21÷35%=60人,所以命题正确;(2)60×(1−0.35−0.15−0.05)=27人,所以命题正确;(3)2560×0.35=896人,所以命题正确;(4)360∘×15%=54∘,所以命题正确;故选D .二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11.【答案】【解答】此题暂无解答12.【答案】折线【解答】解:为了预测未来20年全球森林面积的变化趋势,应该选用折线统计图来表示收集到的数据.故答案为:折线.13.【答案】乙【解答】Ⅰ x ¯甲=x ¯乙≈7.5,S 甲2=0.010,S 乙2=0.002,Ⅰ S 甲2>S 乙2, Ⅰ 乙玉米种子的产量比较稳定,Ⅰ 应该选择的玉米种子是乙,14.【答案】众数【解答】解:平均数、中位数、众数是描述一组数据集中程度的统计量;既然是为筹备班级的初中毕业联欢会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数. 故答案为:众数.15.【答案】5【解答】解:该日的最低气温=15−10=5(∘C).故填5.16.【答案】5.3【解答】解:(4×10+5×20+6×15+7×5)÷50=(40+100+90+35)÷50=265÷50=5.3(小时)答:这50名学生一周的平均课外阅读时间是5.3小时.故答案为:5.3.17.【答案】25,24【解答】(2)平均数是:x ¯=13×2+14×3+15×4+16×10+17×625=15.6,众数是16,中位数是(16)18.【答案】乙【解答】Ⅰ x ¯>x ¯>x ¯=x ¯,Ⅰ 从乙和丙中选择一人参加比赛,Ⅰ S 2<S 2,Ⅰ 选择乙参赛,三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )19.【答案】解:(1)甲:50×1+100×2+200×3+100×450+100+200+100≈2.78, 乙:10×1+90×2+220×3+130×410+90+220+130≈3.04;(2)乙的满意度较高.【解答】解:(1)甲:50×1+100×2+200×3+100×450+100+200+100≈2.78, 乙:10×1+90×2+220×3+130×410+90+220+130≈3.04;(2)乙的满意度较高.20.【答案】解:(1)乙的平均成绩为6×8+2×9+2×710=8.(2)由图可知,甲的成绩波动较大,所以s 甲2比s 乙2大.乙,甲【解答】解:(1)乙的平均成绩为6×8+2×9+2×710=8.(2)由图可知,甲的成绩波动较大,所以s 甲2比s 乙2大.(3)其他班级参赛选手的射击成绩都在7环左右时,应派平均成绩为8环,且较为稳定的乙去;其他班级参赛选手的射击成绩都在9环左右时,应派最好成绩为两次10环的甲去. 故答案为:乙;甲.21.【答案】290−(85+80+65)=60 (万元).补图如图所示;85×23%=19.55≈19.6 (万元).所以该店1月份音乐手机的销售额约为19.6万元.不同意,理由如下:3月份音乐手机的销售额是60×18%=10.8(万元),4月份音乐手机的销售额是65×17%=11.05(万元).而10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.【解答】290−(85+80+65)=60 (万元).补图如图所示;85×23%=19.55≈19.6 (万元).所以该店1月份音乐手机的销售额约为19.6万元.不同意,理由如下:3月份音乐手机的销售额是60×18%=10.8(万元),4月份音乐手机的销售额是65×17%=11.05(万元).而10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.22.【答案】26,25,24【解答】解:Ⅰ A(−1,)、B(3, n)两点在反比例−3x 的图象,Ⅰ C(,0),Ⅰ A(−1, 3, B3−1),Ⅰ B(3−1,Ⅰ B′(3,),解得:{a =1b =2, 在作B 点关于x 轴称点B′,连AB′,直线Bx 交点即为P 点此时|PA −PB|大,=3,n =−1,Ⅰ {3=−+b 1=3kb, Ⅰ D(2,0,Ⅰ {k =−12b =52把A(−1, 3),31)代入yax +b 得{=−a +b −1=3+b, 当=时,x =5,在=−x +2中,令=0,x2,设直线AB′的析式为ykx +,Ⅰ P(,0).23.【答案】解:(1)甲的平均数为:(95+82+88+81+93+79+84+78)÷8=85, 乙的平均数为:(83+92+80+95+90+80+85+75)÷8=85;(2)甲的方差为:(100+9+9+16+64+36+1+9)÷8=30.5,乙的方差为:(4+49+25+100+25+25+0+100)÷8=39.375,Ⅰ 乙的方差为大于甲的方差,Ⅰ 选甲参加合适.【解答】解:(1)甲的平均数为:(95+82+88+81+93+79+84+78)÷8=85, 乙的平均数为:(83+92+80+95+90+80+85+75)÷8=85;(2)甲的方差为:(100+9+9+16+64+36+1+9)÷8=30.5,乙的方差为:(4+49+25+100+25+25+0+100)÷8=39.375,Ⅰ 乙的方差为大于甲的方差,Ⅰ 选甲参加合适.24.【答案】解:(1)x ¯甲=(7+8+6+8+6+5+9+10+7+4)÷10=7;x ¯乙=(9+5+7+8+6+8+7+6+7+7)÷10=7;S 甲2=110[2(7−7)2+2(8−7)2+2(6−7)2+(5−7)2+(9−7)2+(10−7)2+(4−7)2]=3;S 乙2=110[4(7−7)2+2(8−7)2+2(6−7)2+(5−7)2+(9−7)2]=1.2;(2)Ⅰ x ¯甲=x ¯乙,S 甲2>S 乙2, Ⅰ 乙较稳定,Ⅰ 该选拔乙同学参加射击比赛.【解答】解:(1)x ¯甲=(7+8+6+8+6+5+9+10+7+4)÷10=7;x ¯乙=(9+5+7+8+6+8+7+6+7+7)÷10=7;S 甲2=110[2(7−7)2+2(8−7)2+2(6−7)2+(5−7)2+(9−7)2+(10−7)2+(4−7)2]=3;S 乙2=110[4(7−7)2+2(8−7)2+2(6−7)2+(5−7)2+(9−7)2]=1.2;(2)Ⅰ x ¯甲=x ¯乙,S 甲2>S 乙2, Ⅰ 乙较稳定,Ⅰ 该选拔乙同学参加射击比赛.25.【答案】3.55分,3.5分,3分(2)乙组得分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得,2÷5%=40,(3+2)÷12.5%=40,(7+5)÷30%=40,(6+8)÷35%=40,(4+4)÷17.5%≠40,故乙组得5分的人数统计有误,正确人数应为:40×17.5%−4=3.【解答】解:(1)甲组同学成绩的平均数是:(3×2+3×7+6×4+5×4)÷20=3.55(分), 中位数是:(3+4)÷2=3.5(分),众数是3分;(2)乙组得分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得,2÷5%=40,(3+2)÷12.5%=40,(7+5)÷30%=40,(6+8)÷35%=40,(4+4)÷17.5%≠40,故乙组得5分的人数统计有误,正确人数应为:40×17.5%−4=3.。

最新北师大版八年级数学上册《数据的分析》综合测评及答案(精品试卷).docx

最新北师大版八年级数学上册《数据的分析》综合测评及答案(精品试卷).docx

第六章 数据的分析综合测评一、选择题(每小题3分,共30分)1. 小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2∶3∶5的比例确定成绩,则小王的成绩是( )A .255分B .84分C .84.5分D .86分 2. 在数据75,80,80,85,90中,众数、中位数分别是( ) A .75,80 B .80,80 C .80,85 D .80,903. 某射击小组有20人,教练根据他们某次射击的数据绘制了如图1所示的统计图,则这组数据的众数和中位数分别是( ) A .7环,7环 B .8环,7.5环 C .7环,7.5环 D .8环,6环4. 甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x 与方差s 2如下表所示:根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( ) A .甲 B .乙 C .丙 D .丁甲 乙 丙 丁 平均数x (cm )561 560 561 560 方差s 23.53.515.516.55. 某班七个兴趣小组人数分别为4,4,5,x ,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是( )A .7B .6C .5D .46. 如果一组数据x 1,x 2,…,x n 的方差是4,则另一组数据x 1+3,x 2+3,…,x n +3的方差是( )A .4B .7C .8D .197. 李东同学参加校团委组织的演讲赛,共21名选手参赛,预赛成绩各不相同,按成绩取前10名的选手参加复赛,李东在知道自己成绩的情况下,要判断自己能否进入复赛,还需要知道这21名选手成绩的( )A .平均数B .方差C .众数D .中位数8. 某校2015年九年级(1)班全体学生初中毕业体育考试的成绩统计如下表所示:根据上表中的信息判断,下列结论中错误的是( )A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分 9. 10名同学分成甲、乙两队进行篮球比赛,他们身高(单位:cm )如下表所示:队员1 队员2 队员3 队员4 队员5 甲队 177 176 175 172 175 乙队170175173174183设两队队员身高的平均数依次为x 甲,x 乙,身高的方差依次为22,s s 乙甲,则下列关系中完全正确成绩(分) 35 39 42 44 45 48 50 人数(人) 2566876的是( )A .x 甲=x 乙,22s s >乙甲 B .x 甲=x 乙,22s s <乙甲 C .x 甲>x 乙,22s s >乙甲 D .x 甲<x 乙,22s s <乙甲 10. 某单位若干名职工参加普法知识竞赛,将成绩制成如图2所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( ) A .94分,96分 B .96分,96分 C . 94分,96.4分 D .96分,96.4分二、填空题(每小题4分,共32分)11. 某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是 分.12. 两组数据:3,a ,2b ,5与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为 .13. 某校运动会前夕,要选择256名身高基本相同的女同学组成表演方阵,在这个问题中,最值得关注的是该校所有女生身高的________(填“平均数”、“中位数”或“众数”).14. 在射击比赛中,某运动员的6次射击成绩(单位:环)为7,8,10,8,9,6,这组数据的方差为 .15. 甲、乙两班各有45人,某次数学考试成绩的中位数分别是88分和90分,若90分及90分以上为优秀,则优秀人数多的班级是________. 16. 甲、乙两人各射击5次,成绩统计如下表所示:环数678910图2甲(次数) 1 1 1 1 1 乙(次数)221那么射击成绩比较稳定的是 (填“甲”或“乙”).17. 跳远运动员李刚对训练效果进行测试,6次跳远的成绩(单位:m )如下:7.6,7.8,7.7,7.8,8.0,7.9.这6次成绩的平均数为7.8,方差为601.如果李刚再跳两次,成绩分别为7.7,7.9,则李刚这8次跳远成绩的方差_____(填“变大”、“不变”或“变小”).18. 若x 1,x 2,…,x 9这9个数的平均数x =10,方差s 2=2,则x 1,x 2,…,x 9,x 这10个数的平均数为___,方差为___.三、解答题(共58分)19. (8分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示:应聘者 面试 笔试 甲 87 90 乙9182若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录用?20. (9分)在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图3所示的统计图.请根据相关信息,解答下列问题:(直接填写结果)(1)这次调查获取的样本数据的众数是 ;(2)这次调查获取的样本数据的中位数12108642010080503020人数费用/元是 ;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.21. (9分)学校准备从甲、乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:选手 表达能力 阅读理解 综合素质 汉字听写 甲 85 78 85 73 乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁?(2)如果表达能力、阅读理解、综合素质、汉字听写分别赋予它们2、1、3、4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁?22. (10分)在学校组织的社会实践活动中,甲、乙两人参加了射击比赛,每人射击七次,命中的环数如下表所示: 甲(环) 7 8 8 6 9 8 10 乙(环)5106781010根据以上信息,解决下列问题: (1)写出甲、乙两人命中环数的众数;(2)已知通过计算求得甲x =8,2甲s ≈1.43,试比较甲、乙两人谁的成绩更稳定?23. (10分)我市某中学举行“中国梦•校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图4所示.(1)根据图示填写下表:平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.24. (12分)某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达6分以上(含6分)为合格,达9分以上(含9分)为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如图5所示.(1)补充完成下列的成绩统计分析表:组别平均分中位数方差合格率优秀率甲 6.7 3.41 90% 20%乙7.5 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.参考答案第六章数据的分析综合测评一、1.D 2.B 3.C 4.A 5.C 6.A 7.D 8.D 9.B 10.D二、11.90 12.6 13.众数14.15.乙班16.乙17.变小18.10 1.8三、19.解:甲的平均成绩为(87×6+90×4)÷10=88.2(分),乙的平均成绩为(91×6+82×4)÷10=87.4(分).因为甲的平均分数较高,所以甲将被录用.20.(1)30元(2)50元(3)250 提示:调查的总人数是:6+12+10+8+4=40(人),则估计本学期计划购买课外书花费50元的学生有×1000=250(人).21.解:(1)乙的平均成绩为73+80+82+834=79.5.因为80.25 >79.5,所以应选派甲.(2)甲的平均成绩为85×2+78×1+85×3+73×410= 79.5,乙的平均成绩为73×2+80×1+82×3+83×410 = 80.4.因为79.5<80.4,所以应选派乙.22.解:(1)甲、乙两人命中环数的众数分别为8环、10环. (2)乙x ==8,2乙s =[(5﹣8)2+(10﹣8)2+…+(10﹣8)2]=≈3.71.因为甲x =8,2甲s ≈1.43,所以甲x =乙x ,2甲s <2乙s ,甲的成绩更稳定.23.解:(1)初中部:平均数为85分,众数为85分;高中部:中位数为80分.(2)因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下,中位数高的初中部成绩好些.(3)因为2初s =51[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,2高s =51[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160,所以2初s <2高s ,因此,初中代表队选手成绩较为稳定.24.解:(1)甲组:3,6,6,6,6,6,7,8,9,10,中位数为6; 乙组:5,5,6,7,7,8,8,8,8,9,平均数为7.1,方差为1.69. (2)因为甲组的中位数为6,所以7分在甲组排名属中游略偏上,故填甲.(3)答案不唯一,合理即可.如:乙组的平均数高于甲组;乙组的中位数高于甲组,所以乙组的成绩要好于甲组.。

最新北师大版八年级数学上册《第六章数据的分析》单元检测试题(含答案)

最新北师大版八年级数学上册《第六章数据的分析》单元检测试题(含答案)

北师大版八年级数学上册第六章《数据的分析》单元检测试题一.选择题(共12小题)1.一组数据﹣3,2,2, 0,2,1的众数是()A.﹣3 B.2 C.0 D.12.在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、x、90、70,若这四个同学得分的众数与平均数恰好相等,则他们得分的中位数是()A.100 B.90 C.80 D.703.801班的全体同学为本校一贫困生共揖款125元,根据下表(不完整)中该班的捐款数和捐款人数,可以知道该班捐款数的平均数和中位数依次是()A.2.5元,2元B.2.5元,2.5元C.2元,2.5元D.2元,2元4.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民用电量(单位:度),下列说法错误的是()4A.中位数是55 B.众数是60 C.平均数是54 D.方差是29 5.已知5个数a1、a2、a3、a4、a5的平均数是a,则数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数为()A.a B.a+3 C. a D.a+156.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.11.6 B.2.32 C.23.2 D.11.57.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大8.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是()A.8 B.10C.21 D.229.甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克()A.7元B.6.8元C.7.5元D.8.6元10.一组数据3,5,7,m,n的平均数是6,则m,n的平均数是()A.6 B.7 C.7.5 D.1511.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h.根据上述信息,你认为本次调查数据的中位数落在()A.B组B.C组C.D组D.A组12.如果数据x1,x2,…,x n的方差是3,则另一组数据2x1,2x2,…,2x n的方差是()A.3 B.6 C.12 D.5二.填空题(共5小题)13.有一组数据:3,a,4,6,7,它们的平均数是5,则a= ,这组数据的方差是.14.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是元.15.某单位要招聘1名英语翻译,张明参加招聘考试的成绩如下表所示若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则张明的平均成绩为16.某学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了如图所示的条形统计图,则30名学生参加活动的次数的中位数是次.17.一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是分.三.解答题(共4小题)18.某农业科学研究所用新技术种植了一块棉花试验田,又在试验田旁边用老方法种植了一块面积相等的棉花田作比较,科研人员在棉花生长期间分别从两块地里各取了10株棉苗,测得它们的苗高如下:(单位:mm)(1)分别计算两块田里棉苗高度的平均数;(2)分别计算两块田里棉苗高度的方差,并指出哪块田里的棉苗长得整齐些.19.小明和小红5次数学单元测试成绩如下:(单位:分)小明:89、67、89、92、96;小红:86、62、89、92、92.他们都认为自己的成绩比另一位同学好.(1)分别计算小明和小红5次数学单元测试成绩的平均数、中位数和众数,并分析他们各自认为自己的成绩比另一位同学好的理由;(2)你认为谁的成绩更好些?说一说你的理由.20.小明的爸爸为了解小明这学期在家的作息时间,随机挑选了某个星期对小明进行了观察,并记录了他娱乐的时间:(1)小明这周内娱乐时间的平均数是分,中位数是分.(2)应选中位数和平均数中的哪一个表示小明这一周的一般娱乐时间更好?(3)是否可以用(2)的数据表示本学期小明在家娱乐的一般时间?(请填“可以”或“不可以”).21.为了从甲、乙两名选手中选拔一人参加射击比赛,对他们的射击水平做了一次测验,两人在相同条件下各射靶10次,命中的环数如下:甲:9 6 7 6 2 7 7 9 8 9乙:2 4 6 8 7 7 8 9 9 10为了比较两人的成绩,制作了如下的统计图表:1我们可以制定不同的规则来评判甲、乙两人的成绩.如:①平均数与方差相结合.平均数大的胜,平均数相同时,方差小的胜;②从射击命中的趋势来看,即看射击成绩发展趋势,有发展潜力的胜.在规则①下:甲胜,因为甲、乙两人平均数相等,甲的方差小;在规则②下:乙胜,因为从图中可以看出,乙的成绩处于上升趋势,有发展潜力.现在,请你制定两种不同的评判规则,并根据你的规则对甲、乙两人的成绩作出评判.参考答案一.选择题(共12小题)1.B;2.B;3.A;4.D;5.B;6.A;7.A;8.D;9.B;10.C;11.B;12.C;二.填空题(共5小题)13.5;2;14.15.3;15.84;16.2;17.100;三.解答题(共4小题)18.略 19.略 20.130;65;中位数;可以;21.略。

北师大版八年级数学上册第六章 数据的分析综合测评(Word版 含答案)

北师大版八年级数学上册第六章 数据的分析综合测评(Word版 含答案)

第六章 数据的分析综合测评(时间: 分钟 满分:100分)(班级: 姓名: 得分: )一、选择题(每小题4分,共32分)1. 数据-1,0,1,2,3的平均数是( ) A .-1 B .0 C .1 D .52. 在一次体操比赛中,六位评委对某位选手的打分分别为(单位:分):9.2,9.4,9.1,9.3,9.2,9.6,这组数据的众数为( )A .9.3B .9.2C .9.1D .9.63. 在《学习方法报》社举办的一次3D 打印“青少年创新大赛”中,有13名同学成绩优异,现取前6名进入决赛.小尚同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .众数C .平均数D .中位数4. 在一次训练中,甲、乙、丙三人各射击10次的成绩如图1所示,在这三人中,此次射击成绩最稳定的是( )A .甲B .乙C .丙D .无法判断图1 图25. 若x 个数的平均数为a ,y 个数的平均数为b ,则这(x+y )个数的平均数是( ) A .2a b + B .a y x b ++ C .xa yb x y ++ D .xa yba b++6. 甲、乙两地去年12月前5天的日平均气温如图2所示,下列描述错误的是( )A .甲地气温的中位数是6 ℃B .两地气温的平均数相同C .乙地气温的众数是8 ℃D .乙地气温相对比较稳定7. 甲、乙两班举行电脑汉字输入比赛,每班参赛学生成绩(每分钟输入汉字的个数)统计后结果如下表所示:参加人数 中位数 平均数 方 差甲 班 45 148 135 190 乙 班45151135110某同学根据表中数据分析得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀人数多于甲班优秀人数(规定每分钟输入汉字大于或等于150个为优秀);③乙班成绩比较稳定.其中结论正确的有( )A .0个B .1个C .2个D .3个 8. 某射击运动员练习射击,5次成绩分别为(单位:环):8,9,7,8,x .下列说法中正确的是( ) A .若这5次成绩的中位数为8,则x=8 B .若这5次成绩的众数是8,则x=8 C .若这5次成绩的方差为8,则x=8D .若这5次成绩的平均成绩是8,则x=8 二、填空题(每小题5分,共30分)9. 某生产小组6名工人某天加工零件的个数分别是10,10,11,12,8,10,则这组数据的中位数是 .10. 若甲.乙两个街舞团的人数相同,平均身高相同,通过计算身高的方差发现身高更整齐的街舞团是甲,那么s甲2s乙2(填“>”或“<”).11.(2019年盘锦)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数239853这些男生跳远成绩的众数、中位数分别是.12. 学完方差的知识后,小明了解了他最要好的四个朋友的身高分别是(单位:cm):176,174,177,173,那么小明四个好朋友身高的方差是.13. 某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如下表所示(单位:分):教学能力科研能力组织能力甲81 85 86乙92 80 74如果根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2的比例计算两人的总成绩,得分高者被录用,那么将被录用.14. 若10个数的平均数是3,方差是4,现将这10个数都扩大2倍,则这组新数据的方差是.三、解答题(共38分)15. (12分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 16 24 1每人月工资(元)21 000 8400 2025 2200 1800 1600 950 请你根据上述内容,解答下列问题:(1)所有员工月工资的中位数为元,众数为元;(2)所有员工的月平均工资为2500元,这样的工资能否反映该公司员工的月工资实际水平?若不合理,则选择哪个数据更合理?16. (12分)某校为了分析九年级学生艺术考试的成绩,随机抽查了两个班各5名学生的成绩,它们分别为:九(1)班:96,92,94,97,96;九(2)班:90,98,97,98,92.通过数据分析,列表如下:(1)补全表格;(2)计算两个班所抽取的学生艺术成绩的方差,判断哪个班的艺术成绩比较稳定.17. (14分)某校拟派一名跳高运动员参加校际比赛,对甲、乙两名同学进行了8次跳高选拔比赛,他们的原始成绩(单位:cm)如下表:第1次第2次第3次第4次第5次第6次第7次第8次甲169 165 168 169 172 173 169 167乙161 174 172 162 163 172 172 176两名同学的8次跳高成绩数据分析如下表:平均数中位数众数方差甲 a b c 5.75乙169 172 172 31.25根据图表信息回答下列问题:(1)a=,b=,c=;(2)这两名同学中,的成绩更为稳定(填甲或乙);(3)若跳高165 cm就可能获得冠军,该校为了获取跳高比赛冠军,你认为应该选择同学参赛,理由是:;(4)若跳高170 cm方可夺得冠军,该校为了获取跳高比赛冠军,你认为应该选择同学参赛,班由是:.第六章数据的分析综合测评一、1. C 2. B 3. D 4. B 5. C 6. C 7. D 8. D二、9. 10 10. < 11. 2.05,2.10 12. 5213. 乙14. 16三、15. 解:(1)1700 1600(2)不能.因为将近一半的员工工资为1600元,所以平均工资不能反映该公司员工月工资的平均水平.选择中位数或众数更为合理.16. 解:(1)表格数据从上到下从左到右依次为96,95,98;(2)九(1)班的方差为15×[(96-95)2+(92-95)2+(94-95)2+(97-95)2+(96-95)2]=3.2,九(2)班的方差为15×[(90-95)2+(98-95)2+(97-95)2+(98-95)2+(92-95)2]=11.2,因为两班平均成绩相等,且3.2<11.2,所以九(1)班学生的艺术成绩比较稳定.17. 解:(1)a=18(169+165+168+169+172+173+169+167)=169;b=1691692=169;因为169出现了3次,出现次数最多,所以c的值为169.(2)因为甲、乙两名同学成绩的平均数相同,但甲的方差小于乙的方差,所以甲的成绩更稳定. (3)若跳高1.65米就获得冠军,那么成绩在1.65或1.65米以上的次数甲多,所以选择甲. (4)若跳高1.70米就获得冠军,那么成绩在1.70或1.70米以上的次数乙多,所以选择乙.。

北师大版八年级数学上册第6章《数据的分析》单元复习测试题(含答案)

北师大版八年级数学上册第6章《数据的分析》单元复习测试题(含答案)

北师大版八年级数学上册第6章《数据的分析》单元复习测试题一、选择题(共8小题,4*8=32)1. 有一组数据:1,3,3,4,5,这组数据的众数为( )A.1B.3C.4D.52. 小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是( )A.平均数B.中位数C.方差D.众数3. 在2016年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是( )A.18,18,1 B.18,17.5,3 C.18,18,3 D.18,17.5,14. 小明在统计某市6月1日到10日每一天最高气温的变化情况时制作的折线图如图所示,则这10天最高气温的中位数和众数分别是()A.33℃,33℃B.33℃,32℃C.34℃,33℃D.35℃,33℃5. 某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.1小时B.2小时C.3小时D.4小时6. 丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,则表中数据不发生变化的是( )A.平均数B.众数C.方差D.中位数7. 某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差(环2)两个因素进行分析,甲、乙、丙的成绩分析如下表所示,丁的成绩如图所示.甲乙丙平均数7.9 7.9 8.0方差 3.29 0.49 1.8根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁8. 如果一组数据a1,a2,a3,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n的方差是()A.2 B.4 C.8 D.16二.填空题(共6小题,4*6=24)9.已知某一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是__ __.10. 某项目六名礼仪小姐的身高(单位:cm)如下:168,166,168,167,169,168,则她们身高的众数是_____________________.11. 一组数据:1,2,3,4,x,其中位数与平均数相同,则x的值为______________________.12. 为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为_______小时.13. 甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是________.14. 某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进几个球的人数分布情况,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均每人投进2.5个球,则投进3个球的有__ __人,投进4个球的有__ __人.进球数n(个) 0 1 2 3 4 5投进n个球的人数 1 2 7 2三.解答题(共5小题,44分)15.(6分) 在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调本获取的样本数据的众数是__ __;(2)这次调查获取的样本数据的中位数是__ __;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有多少人?16.(8分) )某乡镇外出务工人员共40名,为了了解他们在一个月内的收入情况,随机抽取10名外出务工人员在某月的收入(单位:元)情况为:2500,2100,3000,2500,3000,4000,3000,2400,2400,3000.(1)求这10名务工人员在这一个月内收入的众数、中位数;(2)求这10名务工人员在这一个月内收入的平均数,并根据计算结果估计该乡镇所有务工人员在这一个月的总收入.17.(8分) 八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.18.(10分) 我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表文章阅读的篇数(篇) 3 4 5 6 7及以上人数(人) 20 28 m 16 12请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.19.(12分) 我校准备挑选一名跳高运动员参加江东区中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛,他们的成绩(单位:cm)如下:甲:170165168169172173168167乙:160173172161162171170175(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪名运动员的成绩更为稳定?为什么?(3)若预测,跳过165cm(包括165cm)就很可能获得冠军.该校为了获得冠军,可能选哪位运动员参赛?若预测跳过170cm(包括170cm)才能获得冠军呢?参考答案1-4BCAA 5-8CBDC 9.4 10.168 cm 11.0或2.5或5 12.1.15 13.乙 14.9,3 15.解:(1)30元 (2)50元 (3)250人16.解:(1)众数为3000,中位数是2750 (2)平均数是2790,该乡镇所有务工人员在这一个月的总收入为111600元 17.解:(1)9.5 10(2)乙队的平均成绩是110(10×4+8×2+7+9×3)=9,则方差是110[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1. (3)乙18.解:(1)被调查的总人数为16÷16%=100(人),m =100-(20+28+16+12)=24 (2)由于共有100个数据,其中位数为第50,51个数据的平均数,而第50,51个数据均为5篇,所以中位数为5篇,出现次数最多的是4篇,所以众数为4篇(3)估计该校学生在这一周内文章阅读的篇数为4篇的人数为800×28100=224(人)19.解:(1)甲的平均成绩为18(170+165+168+169+172+173+168+167)=169(cm),乙的平均成绩为18(160+173+172+161+162+171+170+175)=168(cm).(2)s 2甲=18×[(170-169)2+(165-169)2+…+(168-169)2+(167-169)2]=6(cm 2),s 2乙=18×[(160-168)2+(173-168)2+…+(170-168)2+(175-168)2]=31.5(cm 2).∵s 2甲<s 2乙,∴甲运动员的成绩更稳定.(3)若跳过165cm(包括165cm)就很可能获得冠军,则在8次成绩中,甲8次都跳过了165cm ,而乙只有5次,所以应选甲运动员参赛;若跳过170cm(包括170cm)才能获得冠军,则在8次成绩中,甲只有3次都跳过了170cm ,而乙有5次,所以应选乙运动员参赛。

北师大版八年级上册数学第六章 数据的分析 单元测试卷(含答案解析)

北师大版八年级上册数学第六章 数据的分析 单元测试卷(含答案解析)

北师大版八年级上册数学第六章数据的分析单元测试卷一、单选题1.一组数据6,7,8,9,10,这组数据的平均数是()A.6B.7C.8D.92.“魅力凉都”六盘水某周连续7天的最高气温(单位℃)是18,22,22,23,24,25,26,则这组数据的中位数是()A.18B.22C.23D.243.小张五次数学考试成绩分别为:86分、78分、80分、85分、92分,李老师想了解小张数学成绩波动情况,则李老师最关注小张数学成绩的()A.方差B.众数C.中位数D.平均数4.一组数据1,2,3,5,3,4,10的极差、众数分别是()A.3,3B.9,3C.5,4D.6,10 5.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁6.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分7.一组数据的算术平均数是40,将这组数据中的每一个数据都减去5后,所得的新的一组数据的平均数是()A.40B.35C.25D.58.某电脑公司销售部为了定制下个月的销售计划,对20位销售人员本月的销售量(单位:台)进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的中位数、众数分别是()A.20台,14台B.19台,20台C.20台,20台D.25台,20台9.某青年排球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数是()A.19,19B.19,20C.19,20.5D.20,1910.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为().A.1B.6C.1或6D.5或611.如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量描述不正确的是()A.众数为30B.中位数为30C.平均数为24D.方差为84 12.某次期中考试,小明、小亮的语文、数学、英语三科的分数如下:如果将语文、数学、英语这三科的权重比由3:5:2变成5:3:2,那么分数变化情况是()A.小明增加的分数多B.小亮增加的分数多C .两人增加的分数一样多D .两人的分数都减少了13.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C .中位数是24℃D .平均数是26℃14.若一组数据1a ,2a ,3a 的平均数为4,方差为3,那么数据12a +,22a +,32a +的平均数和方差分别是( ) A .4, 3B .6, 3C .3, 4D .6 515.A 、B 、C 、D 、E 五名射击运动员在一次比赛中的平均成绩是80环,而A 、B 、C 三人的平均成绩是78环,那么下列说法中一定正确的是( ) A .D 、E 的成绩比其他三人好 B .B 、E 两人的平均成绩是83环 C .最高分得主不是A 、B 、CD .D 、E 中至少有1人的成绩不少于83环。

北师大版八年级数学上第六章《数据的分析》单元测试题.docx

北师大版八年级数学上第六章《数据的分析》单元测试题.docx

初中数学试卷马鸣风萧萧第六章《数据的分析》单元测试题班级_________姓名_____________学号________ 得分______一、选择题:(每题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.一组数据9.5,9,8.5,8,7.5的极差是( ).A .0.5B .8.5C .2.5D .22.为筹备班级的联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( )A .中位数B .平均数C .众数D .加权平均数3. 某电视台举办的青年歌手电视大奖赛上,六位评委给3号选手的评分如下:90、96、91、96、95、94,这组数据的中位数是( )A. 95B. 94C. 94.5D. 964.三个旅游团游客年龄的方差分别是:2S 甲=1.4,2S 乙=18.8,2S 丙=2.5,导游小方喜欢带游客年龄相近的团队,则他应该选择( )A .甲团B .乙团C .丙团D .哪一个都可以 5. 数学老师布置10道选择题作为课堂练习,课代表将全班同学的答题情况绘制成条形统计图.根据此图可知,每位同学 答对的题数所组成样本的中位数和众数为( ). A.9, 9B.8, 9C.9, 8D.8, 8 6.某班在一次数学测试后,成绩统计如下表:分数 100 90 80 70 60 50 人数71417822该班这次数学测试的平均成绩是( ).A .82B .75C .65D .627.一组数据如下:2、4、a 、6、5,它们的平均数是4,那么这组数据的方差是( )A .3B .10C .2D .28.如果方程组⎩⎨⎧=-+=+5)1(21073y a ax y x 的解中的x 与y 的值相等,那么a 的值是( )A .1B .2C .3D .4 9.如果a 、b 、c 的中位数与众数都是5,平均数是4,那么a 可能是( )A. 2B. 3C. 4D. 610.若样本x 1+1,x 2+1,…,x n +1的平均数为10,方差为2,则对于样本x 1+2,x 2+2,…,x n +2,下列结论正确的是( )A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为411.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺流用18小时,逆流用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,在下列方程组中正确的是 ( )A.⎩⎨⎧=-=+360)(24360)(18y x y xB.⎩⎨⎧=+=+360)(24360)(18y x y xC.⎩⎨⎧=-=-360)(24360)(18y x y xD.⎩⎨⎧=+=-360)(24360)(18y x y x 12.实数p 在数轴上的位置如图所示,化简=-+-22)2()1(p p ( ) A. 1 B. -1C. 2p-3D. 3-2p 二、填空题(每题4分,共16分) 13. 一组数据的方差是,22221231[(4)(4)(4)10s x x x =-+-+-+…210(4)]x +-,则这组数据 共有 个,平均数是 ;14. 右图是一组数据的折线统计图,这组数据的极差是 ,中位数是 .15.若已知8个数的平均数12,4个数的平均为18,则这12个数的平均数为 ; 若已知数据a 、b 、c 的平均数为8,那么数据a+l ,b+2,c+3的平均数是 ; 16. 一段山路长5千米,小明上山用了1.5小时,下山用了1小时,则小明上山、下山的平均速度为 千米/小时。

北师大版八年级数学上册《第六章 数据的分析》单元检测卷-带答案

北师大版八年级数学上册《第六章 数据的分析》单元检测卷-带答案

北师大版八年级数学上册《第六章数据的分析》单元检测卷-带答案核心考点整合考点1 平均数1.下表是小红参加一次“阳光体育”活动比赛的得分情况:项目跑步花样跳绳跳绳得分90 80 70评总分时,按跑步占50%,花样跳绳占30%,跳绳占20%考评,则小红的最终得分为分.2. 某新能源车销售网点2023 年7月至12月的销售数量如图所示,则这半年来平均每月的销售量为辆(结果保留整数).考点2 中位数3.2024 年4 月24 日是我国第九个“中国航天日”,某校开展了一次航天知识竞赛,共选拔5名选手参加总决赛,他们的决赛成绩(单位:分)分别是92,93,94,90,96.则这5名选手决赛成绩的中位数是.4.已知一组数据:7,6,8,x,3,它们的平均数是6,则这组数据的中位数是( )A.2B.6C.8D.7考点3 众数5.为了解某班学生参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位;分钟)分别为65,60,75,60,80.这组数据的众数为( )A.65B.60C.75D.80考点4 方差,由公式提供的信息判断:①样本容量为3;②样本中6.某组数据的方差计算公式为s2=2(2−x̅)2+3(3−x̅)2+2(5−x̅)2n位数为3;③样本众数为3;④样本平均数为10₃.其说法正确的( )3A.①②④B.②④C.②③D.③④考点5 极差7.在杭州亚运会的跳水比赛中,对某运动员的第一个动作,8位裁判的打分如下(单位:分):9,8.5,7.5,8.5,8.5, 7.5,7,8,这组数据的极差是.考点6 标准差8.对于一次函数y=3x+4,自变量分别取值x₁,x₂,…,xₙ,若这组数据的方差为5,则对应的函数值为y ₁,y₂,…, yn 这组数据的标准差为.考点7 平均数、众数、中位数的应用9.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,满意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图是根据这20 份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改.(2)工作人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求工作人员抽取的问卷所评分数为几分? 与(1)相比,中位数是否发生变化?考点8 方差的应用10.超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为x,s²,i该顾客选购的鸡蛋的质量平均数和方差分别为x₁,s²,则下列结论一定成立的是( )A.x̅<x̅1B.x̅>x̅1C.s2>s12D.s2<s1211.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中投进球的个数统计如下表:(1)求甲、乙两名队员投进球个数的平均数;(2)如果从甲、乙两名队员中选出一人去参加定点投篮比赛,应选哪名队员? 请说明理由.思想方法整合思想1 整体思想12.已知一组数据a₁,a₂,a₃,a₄,a₅的平均数为8,则另一组数据a₁+10,a₂−10,a₃+10,a₄−10,a₅+10的平均数为( )A.6B.8C.10D.12思想2 方程思想13.8名学生在一次数学测试中的成绩(单位:分)为80,82,79,69,74,78,x,81,这组成绩的平均数是77 分,则x的值为( )A.76B.75C.74D.73参考答案1 832 470 3.93分4. B 5. B 6. C 7.28. √5【点拨】因为这组数据x₁,x₂,…,x₀的方差为5所以函数值y₁,y₁,…,yₙ这组数据的方差是:3²×5 =45,所以这组数据的标准差为√45=3√5,【解】(1)由统计图可知,第10个数据是3分,第11个数据是4分,所以中位数为3.5分,由统计图可得平均数为1×1+3×2+6×3+5×4+5×5=3.5(分),所以客户所评分数的平均数和中位数都不低于3.5分20所以该部门不需要整改.>3.55,解得x>4.55(2) 设工作人员抽取的问卷所评分数为x 分,则有 3.5×20+x20+1因为满意度从低到高为1分,2分,3分,4分,5分,共5档.所以工作人员抽取的问卷所评分数为5分所以加入这个数据,客户所评分数按从小到大排列后,第11 个数据是4 分,即加入这个数据后,中位数是4 分所以与(1)相比,中位数发生了变化,由3.5分变成4 分。

北师大八年级数学上册:第六章数据的分析单元测试题(含答案)

北师大八年级数学上册:第六章数据的分析单元测试题(含答案)

第六章数据的分析综合测评一、选择题(每小题3分,共30分)1.一组数据6,7,8,9,10,这组数据的平均数是()A.6 B.7 C.8 D.92.已知一组数据75,80,80,85,90,那么这组数据的众数和中位数分别为()A.75,80 B.80,85 C.80,90 D.80,803.九年级某班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(1 2 3 4 5 7个)人数(人) 1 1 4 2 3 1这12名同学进球数的众数是()A.3.75B.3C.3.5D.74. 教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在相同条件下各射出5发子弹,命中环数如下:甲:9,8,7,7,9;乙:10,8,9,7,6.应该选择参加比赛的是()A.甲B.乙C.甲、乙都可以D.无法确定5. (2021年临沂)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成图1所示的条形统计图,则这10名学生周末学习的平均时间是()A.1小时B.2小时C.3小时D.4小时图1 图26. 某电脑公司销售部为了定制下个月的销售计划,对20位销售人员本月的销售量(单位:台)进行了统计,绘制成图2所示的统计图,则这20位销售人员本月销售量的中位数、众数分别是()A.20台,14台B.19台,20台C.20台,20台D.25台,20台7. 若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或68.九年级体育素质测试,某小组5名同学成绩如下表所示,其中有两个数据被遮盖:那么被遮盖的两个数据依次是()A.35,2B.36,4C.35,3D.36,39. 某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.中位数B.最高分C.方差D.平均数10. 下表是某校合唱团成员的年龄分布情况:年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.中位数、方差C.平均数、方差D.众数、中位数二、填空题(每小题4分,共32分)11. 某学习小组有8人,在一次数学测验中的成绩分别是102,115,100,105,92,105,85,104,则他们成绩的平均数是_____________.12. 某超市决定招聘广告策划人员一名,一位应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩(分)70 80 92将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是_____________分.13某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___________岁.14.已知一组数据3,3,4,7,8,则这组数据的方差为____________.15.若干名同学制作卡通图片,他们制作的卡通图片张数的条形统计图如图3所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为________.图316. 一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.17.两组数据3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据,则这组新数据的众数为________,中位数为________.18. 下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择____________.三、解答题(共58分)19.(8分)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分)得到如下样本数据:140146143175125164134155152168162148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分,请你依据样本数据的中位数,推断他的成绩如何?20.(2021年盐城)(8分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分):(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3︰3︰2︰2计算,那么甲、乙的数学综合素质成绩分别为多少分?21. (8分)从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83;乙:88,79,90,81,72.请回答下列问题:(1)甲成绩的平均数是,乙成绩的平均数是;(2)经计算知2s甲=6,2s乙=42,你认为选谁参加比赛更合适,说明理由.22.(10分)八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲7 8 9 7 10 10 9 10 10 10 乙10 8 7 9 8 10 10 9 10 9 (1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.23.(12分)某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总成绩甲班100 98 110 89 103 500乙班89 100 95 119 97 500经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)求两班比赛数据的方差;(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.24.(12分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动.七、八、九三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:决赛成绩(单位:分)七年级80 86 88 80 88 99 80 74 91 89八年级85 85 87 97 85 76 88 77 87 88九年级82 80 78 78 81 96 97 88 89 86(1)请你填写下表:平均数众数中位数七年级85.5 87八年级85.5 85九年级84(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些).(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.附加题(15分,不计入总分)25. 小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,由于经营不善,经常导致牛奶滞销(没卖完)或脱销(量不够),为此细心的小红结合所学知识帮奶奶统计了一个星期牛奶的销售情况,并绘制成下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高;(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定;(3)假如你是小红,会给奶奶哪些建议?第六章数据的分析综合测评参考答案一、1. C 2. D 3. B 4. A 5. C 6. C 7. C 8. B 9. A 10. D二、11. 101 12. 77.413. 15 14. 4.415. c<a<b16. 3.2 17.12 6 18.甲三、19. 解:(1)将样本数据按从小到大的顺序排列,得到最中间两个数据是148,152,所以中位数为150分,平均数为112(140+146+143+…+148)=151(分).(2)由(1)知样本数据的中位数为150分,可以估计这次马拉松比赛有一半选手的成绩快于150分,这名选手的成绩为147分,快于中位数150分,可以推断他的成绩比一半以上选手的成绩好.20. 解:(1)将甲的成绩按从小到大的顺序排列为89,90,90,93,中位数为90;将乙的成绩按从小到大的顺序排列为86,92,94,94,中位数为(92+94)÷2=93.(2)甲的数学综合素质成绩为90×310+93×310+89×210+90×210=27+27.9+17.8+18=90.7(分);乙的数学综合素质成绩为94×310+92×310+94×210+86×210=28.2+27.6+18.8+17.2=91.8(分).21. 解:(1)83 82(2)选甲参加比赛更合适.理由如下:∵甲成绩的平均数>乙成绩的平均数,且2s甲<2s乙,∴甲的平均成绩高于乙,且甲的成绩更稳定,故选拔甲参加比赛更合适.22. 解:(1)9.5 10(2)乙队的平均成绩是110(10×4+8×2+7+9×3)=9,则方差是110[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1.(3)乙23.解:(1)甲班踢100个以上(含100个)的人数是3,则优秀率是60%;乙班踢100个以上(含100个)的人数是2,则优秀率是40%.(2)甲班比赛数据的中位数是100,乙班比赛数据的中位数是97.(3)因为两班的总分均为500,所以平均数都为100.2 s 甲=15[(100﹣100)2+(98﹣100)2+(110﹣100)2+(89﹣100)2+(103﹣100)2]=46.8;2 s 乙=15[(89﹣100)2+(100﹣100)2+(95﹣100)2+(119﹣100)2+(97﹣100)2]=103.2.(4)应把冠军奖状给甲班.理由:甲班的优秀率、中位数都高于乙班,甲班的方差小于乙班,说明甲班成绩更稳定.24.解:(1)表从上到下、从左到右依次填80,86,85.5,78(2)①八年级的成绩更好一些.②七年级的成绩好一些.(3)九年级的实力较强.理由:如果从三个年级中分别选出3人参加总决赛,可以看到九年级的高分较多,成绩更好一些.25.解:(1)金键学生奶的平均数是3,金键酸牛奶的平均数是80,金键原味奶的平均数是40,金键酸牛奶的销量最高.(2)学生奶的方差=17[(2﹣3)2+2×(1﹣3)2+2×(0﹣3)2+(9﹣3)2+(8﹣3)2]≈12.57;酸牛奶的方差=17[2×(70﹣80)2+(80﹣80)2+(75﹣80)2+(84﹣80)2+(81﹣80)2+(100﹣80)2]≈91.71;原味奶的方差=17[(40﹣40)2+2×(30﹣40)2+(35﹣40)2+(38﹣40)2+(47﹣40)2+(60﹣40)2]≈96.86.金键学生奶销量最稳定.(3)答案不唯一,合理即可.如建议学生奶平常尽量少进或不进,周末可以进几瓶.。

北师大新版八年级数学(上)《第6章 数据的分析》单元测试卷

北师大新版八年级数学(上)《第6章 数据的分析》单元测试卷


声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
日期:2019/3/6 1 5:03:48; 用户:qgjyus er106 54;邮箱:qg jyus er10654.2195 7750;学号: 21985664
第6页(共6页)
平均数 中位数 方差
甲组
乙组
21.(10 分)“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷 为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分 统计图如图所示: (1)求该班的总人数; (2)将条形图补充完整,并写出捐款总额的众数; (3)该班平均每人捐款多少元?
估计李好家六月份总月电量是
度.
14.(4 分)商店某天销售了 11 件衬衫,其领口尺寸统计如下表:
领口尺寸(单位:cm) 38 39 40 41 42
件数
14312
则这 11 件衬衫领口尺寸的众数是
cm,中位数是
cm.
15.(4 分)已知三个不相等的正整数的平均数,中位数都是 3,则这三个数分别为

第4页(共6页)
22.(12 分)市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测 试,测试成绩如下表(单位:环):
第一次 第二次 第三次 第四次 第五次 第六次

10
8
9
8
10
9

10
7
10
10
9
8
(1)根据表格中的数据,分别计算甲、乙的平均成绩.
(2)分别计算甲、乙六次测试成绩的方差;
北师大新版八年级数学上册《第 6 章 数据的分析》单元测试卷
一、选择题(每小题 3 分,共 30 分)

北师大版八年级数学上册 第六章 数据的分析 单元测试题

北师大版八年级数学上册 第六章 数据的分析 单元测试题

北师大版八年级数学上册第六章数据的分析单元测试题一、选择题(本大题共9小题,共27分)1.某校有31名同学参加某比赛,预赛成绩各不同,要取前16名参加决赛,小红已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这31名同学成绩的()A. 最高分B. 平均数C. 方差D. 中位数2.下表为九(1)班全部43名同学某次数学测验成绩的统计结果.则下列说法正确的是()A. 男生的平均成绩高于女生的平均成绩B. 男生的平均成绩低于女生的平均成绩C. 男生成绩的中位数高于女生成绩的中位数D. 男生成绩的中位数低于女生成绩的中位数3. 6.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A. 平均数B. 方差C. 众数D. 中位数4.一组数据4,2,x,3,9的平均数为4,则这组数据的众数和中位数分别是()A. 3,2B. 2,2C. 2,3D. 2,45.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为更合适去参赛的是()A. 甲B. 乙C. 丙D. 丁6.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数7.在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A. 众数是90分B. 中位数是95分C. 平均数是95分D. 方差是158.甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()甲乙平均数/环 9 8方差/环 1 1A. 甲B. 乙C. 丙D. 丁9.小明在五天投掷铅球训练中,每天训练的最好成绩(单位:m)分别为10.1,10.4,10.6,10.5,10.4,关于这组数据,下列说法错误的是()A. 平均数是10.4B. 中位数是10.6C. 众数是10.4D. 方差是0.028二、填空题(本大题共7小题,共21分)10.某餐厅供应单价分别为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为__________元.11.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是______.12.一组数据2,4,a,6,7,7的中位数是5,则方差S2=______.13.某校初一共有四个班参加语文考试,甲班共有a人,平均得x分;乙班共有b人,平均得y分;丙班共有c人,平均得z分;丁班共有d人,平均得w分,则该校初一年级语文平均得分为___________________.14.已知一组从小到大排列的数据:1,x,y,2x,6,10的平均数与中位数都是5,则这组数据的众数是______.15.如图是甲、乙两射击运动员10次射击成绩的折线统计图,则这10次射击成绩更稳定的运动员是______.16.已知一组数据−3,−1,0,a,3的平均数是0,则这组数据的方差是__________.三、解答题(本大题共5小题,共52分)17.某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%,面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:候选人笔试成绩/分面试成绩/分甲90 88乙84 92丙x90丁88 86(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.18.甲、乙两名队员参加射击训练,成绩分别被制成如图的两个统计图:根据以上信息,整理分析数据如表所示:(1)请分别计算表格中a,b,c的值;(2)若选派其中一名参赛,你认为应选哪名队员?请说明理由。

北师大版八年级数学上册 第六章数据的分析 单元验收测试题试题

北师大版八年级数学上册 第六章数据的分析 单元验收测试题试题

北师大版八年级数学上册第六章数据的分析单元验收测试题试题一、选择题(每题3分,共30分)1、某市2019年底总人口700万人,该数字说明全市人口()A.在年内发展的总规模B.在统计时点的总规模C.在年初与年末间隔内发展的总规模D.自年初至年末增加的总规模2、在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是()A.1.65,1.70 B.1.70,1.65 C.1.70,1.70 D.3,53、如图是甲.乙两位同学5次数学考试成绩的折线统计图,你认为成绩较稳定的是().A.甲B.乙C.甲.乙的成绩一样稳定D.无法确定4、某车间6月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,2则在这10天中该车间生产零件的次品数的().A.众数是4B.中位数是1.5C.平均数是2D.方差是1.255、已知a,b,c,d,e的平均数是x,则a+5,b+12,c+22,d+9,e+2的平均数是( )A.x-1B.x+3C.x+10 D,x+126、权数对平均数的影响作用取决于()A、各组标志值的大小 C、各组的次数多少B 、总体单位总量 D 、各组次数在总体单位总量中的比重 7、在2020年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是( )A .18,18,1B .18,17.5,3C .18,18,3D .18,17.5,18、丽华根据演讲比赛中九位评委所给的分数作了如下表格:如果去掉一个最高分和一个最低分,则表中数据不发生变化的是( ) A .平均数 B .众数 C .方差 D .中位数9、一次体检中,某班学生视力检查的结果如图所示,从图中看出全班视力数据的众数是( )A.55%B.24%C.1.0D.1.0以上10、人数相等的甲.乙两班学生参加了同一次数学测验,班级平均分和方差如下:甲x =80,乙x =80,s 2甲=240,s 2乙 =180,则成绩较为稳定的班级为( ). A.甲班 B.乙班 C.两班成绩一样稳定 D.无法确定二、填空题(每题3分,共18分)11、某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜600个,在西瓜上市前该瓜农随机摘下了10个成熟的西瓜,称重如下:(1)这10个西瓜的平均质量是千克.(2)根据计算结果你估计这亩地的西瓜产量约是千克.12、五个数1,2,4,5,a的平均数是3,则a= ,这五个数的方差为 .13、八年级一班有39名学生,其中数学测试(满分100分)前20名的平均分为89分,后20名的平均分为67分,全班的平均分是整数,每人的测试分数为整数,则全班数学成绩的中位数是_______14、已知一组数据1,2,1,0,-1,-2,0,-1,则这组数据的平均数为,中位数为,方差为 .15、某大学生招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算,已知小明数学得分为95分,物理得分为90分,那么小明的综合得分是____分.16、跳远运动员李刚对训练进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为____(精确到0.001).如果李刚再跳两次,成绩分别为7.7,7.9,则李刚这8次跳远成绩的方差____(填“变大”、“不变”或“变小”).三、解答题(共72分)17、某学生在一学年的6次测验中语文.数学成绩分别为(单位:分):语文:80,84,88,76,79,85数学:80,75,90,64,88,95试估计该学生是数学成绩稳定还是语文成绩稳定?18、某校在一次考试中,甲乙两班学生的数学成绩统计如下:19、在某次体育活动中,统计甲.乙两班学生每分钟跳绳的成绩(单位:次)情况如下表:下面有三种说法:(1)甲班学生的平均成绩高于乙班的学生的平均成绩;(2)甲班学生成绩的波动比乙班成绩的波动大;(3)甲班学生成绩优秀的人数比乙班学生成绩优秀的人数(跳绳次数≥150次为优秀)少,试判断上述三个说法是否正确?请说明理由.20、小明调查了班级里20位同学本学期计划购买课外书的花费情况,并将结果绘制成了下面的统计图.(1)在这20位同学中,本学期计划购买课外书的花费的众数是多少?(2)计算这20位同学计划购买课外书的平均花费是多少?你是怎么计算的?21、某景区附近的A,B两家餐饮店在国庆黄金周内的日营业额如下表:(1)要评价两家餐饮店日营业额的平均水平,你选择什么统计量?求出这个统计量(2)分别求出两家餐饮店各相邻两天的日营业额变化数量,得出两组新数据,然后求出两组新数据的方差,这个方差的大小反映了什么?(结果精确到(0.1)(3)你能预测明年黄金周中哪几天营业额会比较高吗?说说你的理由?22、下图反映了初三(1)班、(2)班的体育成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
桑水出品
杜步中学2015年秋八年级上册数学第六章数据分析单元测试
班级:姓名:得分:
一、选择题(30分)
1. 数据5、3、2、1、4的平均数是()
A. 2
B. 5
C. 4
D. 3
2. 某电视台举办的青年歌手电视大奖赛上,六位评委给3号选手的评分如下:90、96、91、
96、95、94,这组数据的中位数是()
A. 95
B. 94
C. 94.5
D. 96
3. 某校四个科技兴趣小组在“科技活动周”上交的作品数分别如下:10、10、x、8,已知这
组数据的众数与平均数相等,则这组数据的中位数是()
A. 8
B. 9
C. 10
D. 12
4. 某组数据3、3、2、3、6、3、10、3、6、3、2,①这组数据的众数是3;②这组数据的众数与中位数数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()
A. 1个
B. 2个
C. 3个
D. 4个
5. 已知一组数据20、30、40、50、50、50、60、70、80,其中平均数、中位数、众数的大小关系是()
A. 平均数>中位数>众数
B. 平均数<中位数<众数
C. 中位数<众数<平均数
D. 平均数=中位数=众数
6. 某车间对生产的零件进行抽样调查,在10天中,该车间生产的零件次品数如下(单位:个):0、3、0、1、2、1、4、2、1、3,在这10天中,该车间生产的零件次品数的()
A. 中位数是2
B. 平均数是1
C. 众数是1
D. 以上均不正确
7. 从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为1.5、1.6、
1.4、1.3、1.5、1.2、1.7、1.8(单位:千克),那么可估计这240条鱼的总质量大约为()
A. 300千克
B. 360千克
C. 36千克
D. 30千克
8. A、B、C、D、E五名射击运动员在一次比赛中的平均成绩是80环,而A、B、C三人的平均成绩是78环,那么下列说法中一定正确的是()
A. D、E的成绩比其他三人好
B. D、E两人的平均成绩是83环
C. 最高分得主不是A、B、C
D. D、E中至少有1人的成绩不少于83环。

9. 某班一次语文测验的成绩如下:得100分的7人,90分的14,80分的17人,70分的8人,60分的2人,50分2人,这里80分是()
A. 平均数
B. 是众数不是中位数
C. 是众数也是中位数
D. 是中位数不是众数
10. 如果a、b、c的中位数与众数都是5,平均数是4,那么a可能是()
A. 2
B. 3
C. 4
D. 6
二、填空题(24分)
11、某住宅小区6月份随机抽查了该小区6天的用水量(单位:吨),结果分别
是30、34、32、37、28、31,那么,请你估计该小区6月份(30天)的总用水量约是吨.
12、为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调
查,最终确定买什么水果。

调查数据中最值得关注的是。

13、如果四个整数数据中的三个分别是2、4、6,且它们的中位数也是整数,那么它们的中位数是 .
14、5个数据的和是405,其中一个数据为85,则另外4个数据的平均数是_______。

15、将30个数据分别减去300后,得到一组新数据的平均数是4,那么原30个数据的和是_________ 。

16、一组数据2,3,x,-1,2有两个众数,则_____。

17、数据1,0,-3,2,3,2,-2的中位数是,方差是.
18、某电视台举办青年歌手演唱大赛,7位评委给1号选手的评分如下:
9.3 8.9 9.2 9.5 9.2 9.7 9.4
按规定,去掉一个最高分和一个最低分后,将其余得分的平均数作为选手的最后得分.那么,1号选手的最后得分是分.
三、解答题(46分)
19、(6分)数学老师布置了10道计算题作为课堂练习,小明将全班同学的解题情况绘成了下面的条形统计图.根据图表,求平均每个学生做对了几道题?
20、(8分)某班30个同学的成绩如下:
76 56 80 78 71 78 90 79 92 83 81 93 84 86 98 61 75 84 90 73 80 86 84 88 81 90 78 92 89 100。

请计算这次考试全班分数的平均数、中位数和众数。

(1)估计该城市年平均气温大约是多少?
(2)写出该数据的中位数、众数;
(3)计算该城市一年中约有几天的日平均气温为26℃?
(4)若日平均气温在17℃~23℃为市民“满意温度”,则这组数据中达到市民“满意温度”的有几天?
22、(8分)某果农种了44棵苹果树,现进入第三年收获期,收获时,他先随意采摘了5棵苹果树,称得每棵树上的苹果重量如下(千克):
36,34,35,38,39。

(1)根据样本平均数估计今年苹果总产量;
(2)根据市场上苹果的销售价为5元/千克,则今年该果农的收入大约为多少元?
(3)已知该果农第一年卖苹果的收入为6600元,请你根据以上估算,求出第三年收入的年增长率。

23、(8分)小丽家上个月用于吃饭费用500元,教育费用200元,其它费用500元。

本月小丽家这三项费用分别增长了10﹪,30﹪和5﹪。

小丽家本月的总费用比上个月增长的百分数是多少?
24、(8分)甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)
甲厂:4,5,5,5,5,7,9,12,13,15
乙厂:6,6,8,8,8,9,10,12,14,15
丙厂:4,4,4,6,7,9,13,15,16,16
请回答下面问题:
(3)如果你是位顾客,宜选购哪家工厂的产品?为什么?。

相关文档
最新文档