北师大版数学必修五:《数列的概念与简单表示法》导学案(含答案)

合集下载

高中数学1-1第1课时数列的概念同步导学案北师大版必修5

高中数学1-1第1课时数列的概念同步导学案北师大版必修5

本章概括●课程目标1.双基目标( 1)经过平时生活中的实例,认识数列的看法和几种简单的表示方法(列表、图像、通项公式),认识数列是一种特别的函数;( 2)经过实例,理解等差数列、等比数列的看法;( 3)研究并掌握等差数列、等比数列的通项公式与前n 项和的公式.在公式的推导过程中,经过察看、实验、猜想、归纳、类比、抽象、归纳等过程,经过反省、沟通,培育学生察看、剖析、研究、归纳的能力,领会由特别到一般,由一般到特别的思想方法;( 4)领会等差数列与一次函数,等比数列与指数函数的关系;( 5)能在详细问题情境中,发现等差、等比数列模型,并能运用有关知识解决相应的问题.2.感情目标( 1)经过本章学习提升察看、剖析、归纳、猜想的能力.( 2)“兴趣是最好的老师” ,数列中的奇妙与兴趣定会激发你去学习,去思虑,去研究.(3)经过成立数列模型,以及应用数列模型解决实质问题的过程,培育学生提出、剖析、解决问题的能力,提升学生的基本数学修养,为后续的学习确立优秀的数学基础.●要点难点要点:等差数列与等比数列的通项公式.前 n 项和公式及其应用,等差数列的性质及判断,等比数列的性质及应用.难点:等差数列、等比数列的性质及应用.●方法研究1.联合实例,经过察看、剖析、归纳、猜想,让学生经历数列看法、公式、性质的发现和推证过程,发现数列的递推公式,领会递推方法是给出数列和研究有关数列问题的重要方法.2.借助类比、对照,领会数列是一种特别的函数. 经历类比函数研究数列,使用函数的思想方法解决数列问题,对照等差数列研究等比数列,对照一次函数、二次函数、指数函数研究等差数列、等比数列的过程.3.指引学生采集有关资料,经历发现等差(等比)关系,成立等差数列和等比数列的模型的过程,研究它们的看法、通项公式、前n 项和公式及其性质,领会它们的宽泛应用.4.帮助学生不停发现、梳理和体验本章包含着的丰富的数学思想方法,设计适合的训练,进一步感觉“察看、试验、归纳、猜想、证明”的方法和模型化思想,函数与方程、转变与化归、分类议论等数学思想,体验叠加、累乘、迭代、倒序相加、乘以公比错位相减等详细方法.本章注意问题:(1)多联合实例,经过实例去理解数列的有关看法 . 数列与函数亲密有关,多角度比较二者之间的异同,加深对双方面内容的理解 . 在解题或复习时,应自觉地运用函数的思想方法去思虑和解决数列问题,特别是平等差数列或等比数列的问题 . 运用函数思想方法以及利用它所获得的很多结论,不单能够深入对数列知识的理解,并且可使这种问题的解答更加迅速、合理.(2)擅长对照学习 . 学习等差数列后,再学等比数列时,能够把等差数列作为模型,从等差数列研究过的问题下手,再研究出等比数列的相应问题,两相比较,能够发现,在这两种数列的定义、一般形式、通项形式、中项及性质中,用了一些相近似的语句和公式形式,但内容却不同样,之所以有这样的差别,原由在于“差”与“比”不同. 经过对照学习,加深了对两种特别数列实质的理解,会收到事半功倍的成效. (3)要重视数学思想方法的指导作用. 本章包含丰富的数学看法、数学思想和方法,学习时应赐予充足注意,解题时多考虑与之相联系的数学思想方法.§1数列第 1 课时数列的看法知能目标解读1. 经过平时生活中的实例,认识数列的看法.2.掌握并理解数列、数列通项公式、递推公式的看法,能划分项和项数,并能依据数列的前几项写出它的一个通项公式,能依据数列的递推公式写出数列的前几项.3.认识数列的分类 .4. 认识数列的表示方法:列表法、图像法、通项公式法、递推公式法.要点难点点拨要点:认识数列的看法和简单表示方法,领会数列是反应自然规律的数学模型.难点:将数列作为一种函数去认识、认识.学习方法指导1.数列的定义(1)数列与数集是不同的,有序性是数列的基本属性. 两组完整同样的数,因为摆列的次序不同样,就构成了不同的数列. 所以用记号 { a n} 表示数列时,不可以把{ a n} 当作一个会合,这是因为:①数列{ a n} 中的项是有序的,而会合中的元素是无序的;②数列{ a n} 中的数是能够重复的,即数列{ a n} 中能够有相等的项,如1,1,2,2,,但会合中的元素是互异的;③数列中的每一项都是数,而会合中的元素还能够代表除数之外的其余事物 .(2) 数列中的项的表示往常用英文字母加右下角标来表示,如a n.此中的右下角标n 表示项的地点序号.(3){ a n} 与a n是不同的看法,{ a n} 表示数列a1, a2, a3,, a n, ,而a n仅表示数列的第n 项.2.数列的项与项数数列的项与它的项数是两个不同的看法,数列的项是指出此刻这个数列中的某一个确立的数a n,因为数列{ a n} 的每一项的序号n与这一项a n的对应关系能够当作序号会合到项的会合的函数,故数列中的项是一个函数值,即 f ( n).而项数是指这个数在数列中的地点序号,它是这个函数值 f ( n)对应的自变量的值,即n 的会合是自然数集(或其子集).3.数列的分类判断一个数列是有穷数列仍是无量数列,应明确数列元素的构成以及影响构成元素的因素是有限仍是无穷的 .4.通项公式(1)因为数列可看做是定义域为正整数集N+( 或它的有限子集 ) 的函数,数列中的各项为当自变量从小到大挨次取值时,该函数所对应的一列函数值,所以数列的通项公式就是相应的函数分析式,项数n 是相应的自变量 .(2) 假如知道了数列的通项公式,那么挨次用1,2,3 去代替公式中的n 就能够求出这个数列的各项;同时,用数列的通项公式也能够判断某数是不是某数列中的项,假如是的话,是第几项.(3) 如全部的函数关系不必定都有分析式同样,其实不是全部的数列都有通项公式.如 2 的近似值,精准到1,0.1,0.01,0.001,0.0001,所构成的数列1,1.4,1.41,1.414,1.4142,就没有通项公式 .注意:(1) 一个数列的通项公式不独一,能够有不同的形式,如a n=(-1)n,能够写成a n=(-1)n+2,还-1 ( n为奇数 )能够写成a n=,这些通项公式固然形式上不同,但都表示同一数列.1( n为偶数 ),(2)有些数列,只给出它的前几项,并无给出它的构成规律,那么仅由前方几项归纳出的数列通项公式其实不独一 . 如数列 2,4,8, 依占有限项能够写成a n=2n,也能够写成a n=n2- n+2. 只需切合已知前几项的构成规律即可 .5. 数列的递推公式(1)递推公式:假如已知数列的第1 项 ( 或前几项 ) ,且从第二项(或第二项此后的某一项)开始的任一项a n与它的前一项a n-1(或前几项)间的关系能够用一个公式来表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种重要方法.(2)对于递推公式及应用需注意的几个问题:①通项公式和递推公式的差别通项公式直接反应a n和 n 之间的关系,即 a n是 n 的函数,知道随意一个详细的n 值,经过通项公式就能够求出该项的值a n;而递推公式则是间接反应数列的式子,它是数列随意两个(或多个)相邻项之间的推导关系,不可以由n 直接得出 a n.②怎样用递推公式给出一个数列用递推公式给出一个数列,一定给出①“基础” ——数列 { a n} 的第 1 项或前几项;②递推关系——数列{ a n} 的任一项a n与它的前一项a n-1(或前几项)之间的关系,并且这个关系能够用一个公式来表示.注意: (1) 其实不是任何数列都能写出通项公式或递推公式.(2) 此后学习或研究的数列常常以递推公式的方式给出定义或供给信息.(3) 依据数列的递推公式可求数列中的任一项.比如:设数列{ a n} 知足:a1=1,写出这个数的前 5 项 .1 ( n>1)a =1+na n 1由题意可知 a1=1, a2=1+1=1+1=2, a3=1+1=1+1=3, a4=1+1=1+2=5,a5=1+1=1+3=8. a1 a2 2 2 a3 3 3 a4 5 5∴此数列前 5 项分别为: 1,2,3,5,8.23 5本例显示,递推公式和通项公式是反应数列构成规律的两个不同形式. 递推公式反应的是相邻两项或几项之间的关系,它固然揭露了一些数列的性质,但要认识数列的全貌,还需要进行计算,它的计算其实不方便. 而通项公式更着重整体性和一致性,利用通项公式可求出数列中的随意一项.知能自主梳理1.数列的看法( 1)数列:一般地,依据必定摆列的一列数叫做数列.( 2)项:数列中的每个数都叫做这个数列的.(3)数列的表示:数列的一般形式能够写成a1, a2, a3, , a n, , 简记为: . 数列的第 1 项a1也称,a n是数列的第 n 项,叫数列的.2.数列的分类项数有限的数列叫作,项数无穷的数列叫作.3.数列的通项公式假如数列{ a }的第n 项 a 与n 之间的函数关系能够用一个式子表示成 a = ( ) ,那么式子叫作数列 { a } n n n n的 .4.数列的表示方法数列的表示方法一般有三种:、、.[答案] 1.(1)序次(2) 项(3) {a n}首项通项2. 有穷数列无量数列3.通项公式4.列表法图像法分析法思路方法技巧命题方向数列的看法[例 1]以下各式哪些是数列?假如数列,哪些是有穷数列?哪些是无量数列?(1){0,1,2,3,4};(2)0,1,2,3,4;(3)0,1,2,3,4;(4)1, -1,1,-1,1,-1 ;(5)6,6,6,6,6.[剖析]此类问题的解决,一定要对数列及其有关看法理解认识到位,联合有关看法及定义来解决. [分析]( 1)是会合,不是数列;(2)、( 3)、( 4)、(5)是数列 .此中( 3)、( 4)是无量数列,(2)、( 5)是有穷数列 .变式应用 1 以下说法正确的选项是 ()A. 数列 2,3,4 与数列 4,3,2 是同一数列B. 数列 1,2,3 与数列 1,2,3, 是同一数列C. 1,4,2, 1, 5不是数列3D. 数列 {2 n-3} 与 -1,1,3,5, 不必定是同一数列[答案] D[分析]由数列的看法知 A 中的两个数列中的数固然同样,但摆列次序不同样, B 中的两个数列前者为有穷数列,后者为无量数列,故A、 B 均不正确, C中明显是数列, D 中数列 {2 n-3} 是确立数列,通项公式为a n=2n-3,但-1,1,3,5,前4项切合 a n=2n-3,但后边的项不必定切合此规律,故不必定是同一数列.命题方向数列的通项公式[例 2]写出下边各数列的一个通项公式(1)3,5,9,17,33, ;(2)2,4,6,8, ;3153563(3) 1,2,9,8,25, ;222(4) 221, 322,423, 524, .135 7[剖析] 经过察看,找出所给出的项与项数 n 关系的规律,再写通项公式.[分析](1) 经过察看,发现各项分别减去1,变成 2,4,8,16,32,其通项公式为 2n ,故原数列的一个通项公式为 a n =2n +1.(2) 经过察看,发现分子部分为正偶数数列{2 n } ,分母各项分解因式: 1· 3,3 · 5, 5·7 ,7· 9, 为相邻奇数的乘积,即 (2 n -1) · (2 n +1) ,故原数列的一个通项公式为2n.a =n(2n 1)(2n 1)(3) 因为在所给数列的项中,有的是分数,有的是整数,可将各项都一致成分数,再察看,在数列1 , 4 ,2 29,16,25, 中,分母为 2,分子为 n 2,故 a n =n 2.2 2 22(4) 数列中每一项由三部分构成,分母是从1 开始的奇数列,其通项公式为2n -1 ;分子的前一部分是从 2 开始的自然数的平方,其通项公式为 ( n +1) 2,分子的后一部分是减去一个自然数,其通项公式为 n ,综合得原数列的一个通项公式为(n 1)2n n 2 n 1a == .n2n 12n 1[说明]在依据数列的前 n 项求数列的一个通项公式时,要注意察看每一项的特色 . 解题的注意力应集中到追求数列的项与项数的关系上来,察看这几项的表示式中哪些部分是变化的,哪些部分是不变的,再研究各项中变化部分与对应的项数之间的关系,进而归纳出项与项数关系的规律,写出通项公式.变式应用 2 写出数列的一个通项公式,使它的前几项分别是以下各数:( 1) 1, 3, 7, 15,31, ;( 2)1, 1, 1, 1, ;234第n 项有 n 个 9( 3) 0.9 ,0.99 , 0.999 , , 0. 99 9, .[分析]( 1)注意察看各项发现各项分别加上1,变成 2,4,8,16,32,, 其通项公式为2n , 故原数列通项公式为 an∈ N +;=2 -1,n( 2)调整为 1 ,1 , 1 , 1 ,它的前几项都是自然数的倒数,∴ 1 ;a =1 2 3 4nn( 3) 0.9=1 - 0.1 , 0.99=1 -0.01 , 0.999=1 - 0.001 ,n 个9n 个 0∴第 n 项 a n =0. 999 =1- 0. 00 0 1=1-1.10n命题方向数列通项公式的简单应用[例 3]在数列{ a n }中通项公式是 a n =( -1 )n-1· n 2, 写出该数列的前 5 项,并判断 81 是(2n 1)(n1)170否是该数列中的项?假如是,是第几项,假如不是,请说明原由.[剖析]由通项公式写出数列的前5 项,令 a = 81, 判断能否有正整数解即可 .n170[分析]12 = 1 ,a =(-1) 1 · 22=- 42·32= 9 .a =(-1) ·, a =(-1)11 2 223 3935 4204=(-1) 3·42=-16, a 5=(-1) 4 · 52=25.a7 5359 6 54∴该数列前 5 项分别为:1,-4,9 ,- 16, 25 .2920 35 54令 (-1) n-1 ·(2n n 21) =81得1)( n 170n >1 且为奇数8n 2-81 n +81=0.∴ n =9. 所以81是该数列中的第 9 项 .170[说明] 已知数列的通项公式能够写出该数列中的随意一项,能够判断一个数(或代数式)能否为该数 列中的项 . 令通项公式等于这个数,若方程有正整数解,则该数是数列中的项,不然不是 .变式应用 3以下四个数中,哪个是数列 { n ( n + 1) } 中的项()A. 380B. 39C. 32D. 23[剖析] 数列 { a } 的通项公式 f ( n )= n · ( n +1) ,对于某个数 m ,若 m 是数列 { a } 中的项,则 n ·( n +1) =mnn必有正整数解 . 若无正整数解,则 m 必定不是 { a } 中的项 .n[答案] A[分析] 挨次令 n ( n +1)=23 或 32 或 39 查验知无整数解 . 只有 n ·( n +1) =380 有整数解 n =19.研究延拓创新命题方向 数列的递推公式[例 4]在数列 { a n } 中, a 1=2, a 2=1, 且 a n+2=3a n+1- a n , 求 a 6+a 4-3 a 5.[剖析] 由 a 1=2, a 2=1 及递推公式 a n+2=3a n+1- a n , 挨次找出 a 3, a 4, a 5, a 6 即可 . [分析] 解法一:∵ a 1=2, a 2=1, a n+2 =3a n+1- a n ,∴ a 3=3a 2- a 1=3× 1-2=1,a 4 =3a 3- a 2=3× 1-1=2,a 5 =3a 4- a 3=3× 2-1=5,a 6 =3a 5- a 4=3× 5-2=13,∴ a 6+a 4-3 a 5=13+2-3 × 5=0.解法二:∵ a n+2 =3a n+1 - a n ,令 n =4, 则有 a 6=3a 5- a 4, ∴ a 6+a 4-3 a 5=0.[说明]递推公式是给出数列的一种方法,应用递推公式能够求数列中的项,但需要一项一项递推,故在运算过程中要特别仔细 .变式应用 4已知数列 { an }的首项1=1,an=2 n-1 +1( n ≥ 2) ,那么 a 5=.a a[答案] 31[分析]由递推关系式 a n =2a n-1 +1 和 a 1=1 可得a 2 =2a 1+1=3, a 3=2a 2+1=7,a 4 =2a 3+1=15, a 5=2a 4+1=31.名师辨误做答[例 5]已知数列 { a } 的前 4 项为 1,0,1,0,则以下各式能够作为数列{ a } 的通项公式的有()nn① a1 [ 1+(-1) n+1 ] ; ② a =sin2 nπ, ( ∈ N +); ③ a1 [ 1+(-1) n+1 ] +( -1)( n -2); ④ a1 cosn π===;n2n2n2n21 ( n 为偶数 )⑤ a n =0 ( n 为奇数 )A.4 个B. 3 个C.2 个D. 1 个[误会] D[辨析] 误会的原由是以为通项公式只有一个而致使错误.[正解]B 将 n =1,2,3,4 分别代入考证可知①②④均正确. 均能够作为数列的通项公式,而③⑤不是数列的通项公式,答案选B.讲堂稳固训练一、选择题1. 数列 2 , 5 , 2 2 , 11 , ,则 2 5 是该数列的()A.第6项B.第7项C.第10项D.第 11 项[答案]B[分析]数列 2, 5 ,2 2 , 11 , 的一个通项公式为 a n = 3n 1 ( n ∈ N +), 令 2 5 = 3n 1 ,得 n =7. 应选 B.2. 数列 0, 1 , 1 , 3 , 2, 的通项公式为()32 53n 2B. a n 1C. a = n1D. a n2 A. a ===nnn nn1n2nn[答案] C[分析]解法一:考证当 n =1 时, a 1=0, 清除 A 、D ;当 n =2 时, a 2= 1, 清除 B ,应选 C.3解法二:数列 0,1,1,3,2, 即数列0,1,2,3,4, ,3253 234 56∴该数列的一个通项公式为a n =n 1,应选 C.n 13. 数列 1,3, 6, 10, x , 21, 中, x 的值是() A.12B.13C.15D.16[答案]C[分析]∵ 3-1=2,6-3=3,10-6=4,x -10=5∴,∴x =15.21-x =6二、填空题4. 已知数列 {a n }的通项公式为n=2 +1, 则k +1=.a n a[答案]2k +3[分析]∵ a n =2n +1, ∴a k +1=2( k +1)+1=2 k +3.5. 已知数列{ a n }的通项公式 a n =1 ( n ∈ N +), 则1是这个数列的第项 .n(n 2) 120[答案] 10[分析]令 a1 , 即11 ,==n120 n( n 2) 120解得 n =10 或 n =-12 (舍去) . 三、解答题6. 依据数列的前四项的规律,写出以下数列的一个通项公式 .(1)-1,1,-1,1;(2)-3,12,-27,48;(3)3,1, 5,3;5211 7(4)2,4,6,8.315 35 63[分析] (1) 各项绝对值为1,奇数项为负,偶数项为正,故通项公式为a n =(-1)n;(2) 各项绝对值能够写成 3×12 ,3 × 22,3 × 32,3 × 42, ,又因为奇数项为负, 偶数项为正, 故通项公式为 a n =(-1) n 3n 2;(3) 因为 1=4,3 =6,各项分母挨次为5,8,11,14 ,为序号 3n +2;分子挨次为3,4,5,6 为序号 n +2,故28 7 14通项公式为 a n = n 2 ;3n 2(4) 因为分母 3,15,35,63可看作2 22-1 ,2a =2n=2n.2 -1,4-1, 6 8 -1 ,故通项公式为n(2n) 2 1 4n 21课后加强作业一、选择题1. 已知数列 1 , 2 , 3 ,4, ,n , 则 0.96 是该数列的()2 3 4 5n 1A.第 22 项B.第 24 项C.第 26 项D.第 28 项[答案] B[分析]因为数列的通项公式为a n =n, 由n=0.96 得 n =24,应选 B.n 1n 12. 已知 a n =n 2+n , 那么()A.0 是数列中的项B.20 是数列中的项C.3 是数列中的项D.930 不是数列中的项[答案]B[分析]∵ a n =n ( n +1), 且 n ∈N +,∴ a n 的值为正偶数,故清除A 、C ;令 n 2+n =20, 即 n 2+n -20=0, 解得 n =4 或 n =-5( 舍去 ).∴ a 4=20, 故 B 正确;令 n 2+n =930, 即( n +31) ( n -30)=0.∴ n =30 或 n =-31( 舍去 )∴ a 30 =930, 故 D 错 .3. 下边四个结论:①数列能够看作是一个定义在正整数集(或它的有限子集{1 , 2, 3 , n } )上的函数 .②数列若用图像表示,从图像上看都是一群孤立的点.③数列的项数是无穷的.④数列通项的表示式是独一的.此中正确的选项是( )A. ①②B. ①②③C. ②③D. ①②③④[答案] A[分析]数列的项数能够是有限的也能够是无穷的 . 数列通项的表示式能够不独一 . 比如数列 1, 0, -1 ,0, 1, 0, -1 , 0 的通项能够是 a n =sinn,也能够是 a n =cos(n 3)等等 .224. 数列 2,0, 4, 0, 6, 0, 的一个通项公式是()A. a n = n[ 1+(-1) n ]B. a n =n 2 1[ 1+(-1) n +1]2n [ 1+(-1) n+1 ]n 1 [ 1+(-1) nC. a =D. a =]nn22[答案] B[分析]经考证可知 B 切合要求 .3n +1( n 为奇数 )5. 已知数列 { a } 的通项公式是 a =,则2 3等于()nn2n -2( n 为偶数 )A.70B.28C.20D.8[答案] C[分析]由通项公式可得a 2=2, a 3=10, ∴ a 2 a 3=20.+45,则以下表达正确的选项是A.20 不是这个数列中的项B. 只有第5项是 20C. 只有第 9 项是 20D. 这个数列第 5 项、第9 项都是 20[答案] D[分析]令 a n=20,得 n2-14 n+45=0,解得 n=5或 n=9,应选D.7. 已知数列5, 11 , 17 , 23, 29 , ,则5 5 是它的第()A.18 项B.19 项C.20 项D.21 项[答案] D[分析]察看可得 { a } 的通项公式 : a = 6n 1 ,(n∈N ),5 5 = 125 = 6n 1 ,所以n=21.n n +8. 已知数列 { a } 对随意的p 、q∈N+知足 a = + a,且a 2=-6,那么a 10 等于()n p+q p qA.-165B.-33C.-30D.-21[答案] C[分析]∵对随意p 、q ∈N+都有a = + a.p+q p q∴a10=a8+a2=a4+a4+a2=5a2=-30.二、填空题9. 已知数列 3 ,3,15 ,21 ,3 3 ,,3(2n 1) ,, 则 9 是这个数列的第项.[答案]14[分析]数列可写为 3 , 3 3 , 3 5 , 3 7 , 3 9 ,,3(2n 1) ,,所以 a n= 3(2n 1) , 令3( 2n 1) =9.∴n=14.10. 已知数列 { a } 中,a = 2a n 对随意正自然数n 都成立,且 a = 1 ,则 a =.n n+1a n 2 725[答案] 1[分析]由已知 a = 2a6 = 1 27a6 2 2 6 3又∵a 6=2a5 =2, ∴5=1. a5 2 3a11. 已知数列{a n}的通项公式是a n= n2 n 1, 则它的前4项为.n 1 [答案]3,7,13, 21.2 3 4 5[分析]取 =1,2,3,4, 即可计算出结果 .n当 n=1时, a 1 1 1 3= = ,11 1 2当 n=2时, a 4 2 1 7= = ,22 1 311 / 12当 n =3 时, a 3=931 =13,3 14当 n =4 时, a 4=1641 =21.4 1512. 以下有四种说法,此中正确的说法是 .①数列 a,a,a , 是无量数列;②数列 0,-1,-2,-3,的各项不行能为正数;③数列{ f ( n ) }可 以看作是一个定义域为正整数N +或它的有限子集{ 1, 2, , n }的函数值;④已知数列{ a n },则数列{ a n+1- a n }也是一个数列 .[答案]①④[分析]题中①④明显正确,对于②,数列只给出前四项,后边的项是不确立的,所以②不正确,对于③,数列能够看作是一个定义域为正整数 N +或它的有限子集{ 1, 2, , n }的函数,当自变量从小到大依次取值时对应的一列函数值,所以③不正确.三、解答题13. 依据数列的通项公式,写出它的前4 项:( 1) a = n;nn 2n ( 2) a n =( 1).n[分析](1) 在通项公式中挨次取 n =1,2,3,4, 即可得数列{ a n }的前 4 项为 :a 1 = 1 , a 2= 2 = 1 , a 3= 3 , a 4= 4 = 2.3 4 2 5 6 3(2) 在通项公式中挨次取n =1,2,3,4, 即可得数列{ a }的前 4 项为: a =-1, a = 11 1, a =-, a= .n1 2 3442 314. 数列{ a n }的通项公式是 a n =n 2-7 n +6.( 1)这个数列的第 4 项是多少?( 2) 150 是不是这个数列的项?假如这个数列的项,它是第几项?( 3)该数列从第几项开始此后各项都是正数?[分析]( 1)当 n =4 时, a 4=42-4 × 7+6=- 6.( 2)令 a n =150, 即 n 2-7 n +6=150, 解得 n =16( n =-9 舍 ) ,即 150 是这个数列的第 16 项.(3) 令 a n =n 2-7 n +6>0,解得 n >6 或 n <1( 舍 ) ,∴从第 7 项起此后各项都是正数 .15. 已知数列{ a n }中, a 1=2, a 17=66, 通项公式是项数n 的一次函数 .( 1)求数列 { a n } 的通项公式;( 2) 88 是不是数列{ a n }中的项?[分析]( 1)设 a=,n∴ a 1=a+b =2,①a 17 =17a+b =66,②1112 / 12② - ①得 16a =64, ∴ a =4, b =-2,∴ a n =4n -2( n ∈ N +).(2) 令 4n -2=88 ,∴ 4n =90, n =45+舍去 ),2 N (∴ 88 不是数列{ a n }中的项 .16. ( 1)在数列 1, 5 ,3, 13 , 17 , 中, 3 5 是数列的第几项?( 2)已知无量数列: 1× 2,2 × 3,3 × 4, , n ( n +1), , 判断 420 与 421 能否为该数列的项?假如,应为第几项?[分析](1) ∵ 1=1=1 ,a 2= 5 = 1 4,a 3= 1 4 2 ,4= 1 4 3 ,aa由此归纳得 a n = 1 4(n 1) = 4n 3 .令 a n = 4n3 =3 5 , ∴ n =12.故 3 5 是此数列的第 12 项.(2) 由 n = ( +1)=420, 解得 n =20 或 n =-21 (舍去),故 420 是此数列的第 20 项.a n n由 a n =n ( n +1)=421, 得 n 2+n -421=0 ,此方程无正整数解,故 421 不是该数列中的项 .[说明]数列 { a } 的通项公式为 a =f ( n ) ,对于一个数 m , 若 m 是此数列中的项,则方程 f ( n )= m 必有正整nn数解;反之,若 f ( n )= m 无正整数解,则 m 必定不是此数列中的项 .12。

北师大版高中数学必修5《一章 数列 1 数列 1.1数列的概念》赛课导学案_26

北师大版高中数学必修5《一章 数列  1 数列  1.1数列的概念》赛课导学案_26

《数列的概念》教学设计一.教学内容解析本节课为北师大版必修五第一章第一节内容,主要讲授数列的概念及数列的通项公式,这部分内容是后续学习等差数列、等比数列及数列应用的基础。

教材中通过大量的实例引入了数列的概念,将生活实际与数学有机地联系在一起。

这能让学生能够体会到数学就在身边,是符合学生的认知规律。

作为数列概念的第一节课,要着重于培养学生的研究意识、创新意识、合作意识和应用意识,营造一个良好的教学开端。

教学过程中从日常生活中的实例入切入,直观感受并掌握其中的一些基本关系,感受数列在日常生活中的广泛应用。

基于以上教材分析,我将本节课教学重点确定为:理解数列的概念,认识到数列是反映自然规律的基本数学模型,探索并掌握数列的简单表示法。

二.学生学情分析数列对于学生来说虽然是一个全新的概念,但由于数列与函数有关内容有着密切的联系。

小初阶段有过找寻数字规律的训练,前期学习的函数相关知识也为他们学习数列奠定了基础。

但是在稍复杂的数列通项公式找寻过程中学生还是会遇到困难。

基于以上学情分析,我将本节课教学难点确定为:认识数列是一种特殊的函数,发现规律并找出数列可能的通项公式。

三.教学目标设置1.理解数列的基本知识,会用数列的通项公式表示数列。

2.通过类比函数学习数列,能够参悟转化与化归的数学基本思想。

在整个教学过程中渗透抽象概括、数学建模、数学运算的核心素养。

3.学习过程中通过大量生活中的实例导入、观察与思考,体验数学魅力,感受数学在解决实际问题中的作用。

四.教学策略分析数列是高中数学的重要内容,作为数列部分的起始内容,在整个教学过程中我将展示实际问题,借鉴生活规律,展现数学之美,从而营造不一样的课堂。

营造“生态课堂”、引导学生进行“动态学习”,让学生参与到整个课堂教学中来。

所以本节课对于教师角色的定位为引导教学者,成为学生学习条件的提供者、学习环境的营造者、学习动力的激励者。

五.教法与学法为了突出重点、突破难点实现教学目标,本节课我将采用直观教学法、讨论教学法、启发式教学、多媒体辅助教学法。

北师大版高中数学必修五数列的概念学案(1)(8)

北师大版高中数学必修五数列的概念学案(1)(8)

数列的概念一、知识归纳:1.数列的定义:数列是一类离散函数,是以正整数集(或它的有限子集)为定义域的函数当自变量按照从小到大的顺序依次取值时所对应的一列函数值。

在直角坐标系中,其图象是一些离散的点,数列的能项公式就是相应函数的解析式。

2.数列的分类:(1)按数列的项数分是有限数列还是无限数列; (2)按数列的任意相邻两项之间的大小关系分类:有递增数列(n n a a ≥+1);递减数列(n n a a ≤+1);摆动数列;常数数列(各项都相等) 3.数列的通项公式:如果数列}{n a 的第n 项n a 与n 之间的函数关系可以用一个公式来表示,这个公式就叫做这个数列的通项公式。

数列的通项公式)(n f a n =揭示了数列}{n a 的第n 项n a 与n 的函数关系。

4.数列的递推公式:如果已知数列}{n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个公式来表示,则这个公式叫这个数列的递推公式。

递推公式是数列特有的表示法,它包含两个部分:一是递推关系,二是初始条件。

两者缺一不可。

5.数列}{n a 的前n 项和n S 与通项n a 的关系:设数列}{n a 的前n 项和为n S ,即n n a a a S +++=Λ21,那么n S 与n a 有如下关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n nn二、学习要点:1. 通过对数列前几项的观察、分析,可以寻找第n 项n a 与n 的函数关系,归纳出数列的一个通项公式,这种方法叫不完全归纳法,用这种法求数列的通项时通常要联系到一些基本数列,如})1{(n-、}2{n、{21}n -等。

2.数列是一种特殊的函数,其图象是由离散的点组成,用函数观点证明数列的单调性只要比较1+n a 与n a 的大小关系则可。

3.理解数列}{n a 的前n 项和n S 的定义,正确掌握n S 与n a 的关系。

高中数学 第一章 数列复习导学案 北师大版必修5

高中数学 第一章 数列复习导学案 北师大版必修5

学习目标1. 系统掌握数列的有关概念和公式;2. 了解数列的通项公式n a 与前n 项和公式n S 的关系;3. 能通过前n 项和公式n S 求出数列的通项公式n a .学习过程一、课前准备(1)数列的概念,通项公式,数列的分类,从函数的观点看数列.(2)等差、等比数列的定义.(3)等差、等比数列的通项公式.(4)等差中项、等比中项.(5)等差、等比数列的前n 项和公式及其推导方法.5. 数列求和主要:(1)逆序相加;(2)错位相消;(3)叠加、叠乘;(4)分组求和;(5)裂项相消,如111(1)1n n n n =-++.※ 典型例题例1在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.三、总结提升※ 学习小结1. 数列的有关概念和公式;2. 熟练掌握有关概念和公式并能灵活运用,培养解决实际问题的能力.※ 知识拓展数列前n 项和重要公式:2222(1)(21)1236n n n n +++++=; 3332112[(1)]2n n n ++=+※ 当堂检测1. 集合{}*21,,60M m m n n N m ==-∈<的元素个数是( ).A. 59B. 31C. 30D. 292. 若在8和5832之间插入五个数,使其构成一个等比数列,则此等比数列的第五项是( ).A .648B .832C .1168D .19443. 设数列{}n a 是单调递增的等差数列,前三项的和是12, 前三项的积是48,则它的首项是( ).A. 1 B. 2 C. 4 D. 8 4. 已知等差数列245,4,3, (77)的前n 项和为n S ,则使得n S 最大的序号n 的值为 . 5. 在小于100的正整数中,被5除余1的数的个数有 个;这些数的和是。

《数列的概念》 导学案

《数列的概念》 导学案

《数列的概念》导学案一、学习目标1、理解数列的概念,了解数列的分类。

2、掌握数列的通项公式,能根据通项公式写出数列的项。

3、理解数列的递推公式,能根据递推公式写出数列的前几项。

二、学习重点1、数列的概念及数列的通项公式。

2、利用数列的通项公式求数列的项。

三、学习难点1、根据数列的前几项归纳出数列的通项公式。

2、理解数列的递推公式,并能运用递推公式求出数列的项。

四、知识梳理(一)数列的定义按一定次序排列的一列数叫做数列。

数列中的每一个数都叫做这个数列的项。

排在第一位的数称为这个数列的第 1 项(通常也叫做首项),排在第二位的数称为这个数列的第 2 项,……,排在第 n 位的数称为这个数列的第 n 项。

(二)数列的分类1、按项数分类:(1)有穷数列:项数有限的数列。

(2)无穷数列:项数无限的数列。

2、按项的大小变化分类:(1)递增数列:从第 2 项起,每一项都大于它的前一项的数列。

(2)递减数列:从第 2 项起,每一项都小于它的前一项的数列。

(3)常数列:各项都相等的数列。

(4)摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列。

(三)数列的通项公式如果数列\(\{a_{n}\}\)的第\(n\)项\(a_{n}\)与\(n\)之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式。

(四)数列的递推公式如果已知数列\(\{a_{n}\}\)的第 1 项(或前几项),且从第二项(或某一项)开始的任一项\(a_{n}\)与它的前一项\(a_{n 1}\)(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。

五、典型例题例 1:写出下面数列的一个通项公式,使它的前 4 项分别是下列各数:(1)1,3,5,7;(2)2,4,6,8;(3)1,4,9,16。

解:(1)观察数列 1,3,5,7,发现各项都是奇数,且都是从 1开始的连续奇数,所以通项公式可以是\(a_{n} = 2n 1\)。

1.1.1数列的概念学案(高中数学必修五北师大版)

1.1.1数列的概念学案(高中数学必修五北师大版)

§1数列1.1数列的概念课标解读1.了解数列、通项公式的概念.2.了解数列是自变量为正整数的一类函数(难点).3.能根据通项公式确定数列的某一项(重点).4.能根据数列的前几项写出数列的一个通项公式(重点、难点).数列的有关概念及表示【问题导思】小山想利用电子邮箱发送一个E-mail,但是由于长时间未登录邮箱,从而他忘记了邮箱的密码,只记得密码由3~8这6个数字构成,如:(1)3456 78;(2)468735;(3)76538 4.1.这三组数字有什么异同之处?【提示】都是由3~8这6个数字构成,但是排列顺序不同.2.小山把上面3组数当成密码来试验时,都没有打开邮箱,他说:“仅仅知道数字及个数还不能确定密码”.那么,找到密码还需要确定什么?【提示】数字的排列顺序.1.数列的有关概念数列按一定次序排列的一列数叫作数列项数列中的每一个数叫作这个数列的项首项数列的第1项常称为首项通项数列中的第n项a n,叫数列的通项2.数列的表示①一般形式:a1,a2,a3,,,a n,,;②字母表示:上面数列也记为{a n}.数列的分类【问题导思】当n分别取1,2,3,4,,时,sin nπ2的值排成一个数列:1,0,-1,0,;当n分别取1,2,3,4,5时,sin nπ2的值排成一个数列:1,0,-1,0,1.这两个数列是同一数列吗?若不是同一数列,这两个数列有何区别与联系?【提示】不是同一数列.第一个数列有无穷多项,第二个数列共有5项,这5项恰好是第一个数列的前5项.按数列的项数,数列分为有穷数列与无穷数列.(1)项数有限的数列叫作有穷数列;(2)项数无限的数列叫作无穷数列.数列的通项公式【问题导思】传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.如图:图1-1-1上图表示的数可构成数列1,4,9,16,,,这个数列的第n项a n与n之间能否用一个函数式表示?怎样表示?【提示】可以.函数式可表示为a n=n2.1.如果数列{a n}的第n项a n与n之间的函数关系可以用一个式子表示成a n =f(n),那么这个式子就叫作这个数列的通项公式,数列的通项公式就是相应函数的解析式.2.数列可以看作定义域为正整数集N+(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.数列的有关概念下列说法哪些是正确的?哪些是错误的?并说明理由.(1){0,1,2,3,4}是有穷数列;(2)所有自然数能构成数列;(3)同一个数在数列中可能重复出现;(4)数列1,2,3,4,,,2n是无穷数列.【思路探究】紧扣数列的有关概念,验证每一个说法是否符合条件.【自主解答】(1)错误.{0,1,2,3,4}是集合,不是数列.(2)正确.如将所有自然数按从小到大的顺序排列.(3)正确.数列中的数可以重复出现.(4)错误.数列1,2,3,4,,,2n,共有2n项,是有穷数列.1.数列{a n}表示数列a1,a2,a3,,,a n,,,不是表示一个集合,与集合表示有本质的区别.2.从数列的定义可以看出,如果组成数列的数相同而排列次序不同,那么它们就是不同的数列;在定义中,并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.下列说法正确的是()A.数列3,5,7与数列7,5,3是相同数列B.数列2,3,4,4可以记为{2,3,4}C.数列1,12,13,,,1n,,可以记为1nD.数列{2n+1}的第5项是10【解析】数列是有序的,选项A错;数列与数集是两个不同的概念,选项B错;对于D,当n=5时,a5=2×5+1=11,选项D错,故选 C.【答案】C。

《数列的概念》学案1(北师大版必修5)

《数列的概念》学案1(北师大版必修5)

《数列的概念》学习指导一、数列基本内容概述1、数列的基本概念(1)数列是按一定次序排列的一列数;(2)数列是定义域为自然数集或其子集的函数,当自变量从小到大依次取值时对应的一列函数值;(3)数列的一般形式:,简记为。

(4)数列的属性:有序性;比如:数列和数列,两数列中的元素相同,但由于排列顺序不相同,它们是两个不同的数列;(5)数列的表示方法:列表法、图象法(独立的点)、解析法。

其中解析法又分为:通项公式法和递推关系式法;①通项公式法:若数列第项与之间的函数关系可以用一个公式来表示,这个公式就叫做这个数列的通项公式;②递推关系式法:数列的任意连续若干项所满足的关系式称为该数列的一个递推关系式,用递推关系式和相应的前若干个已知项可以确定一个数列。

这种表示数列的方法叫做递推关系式法。

2、数列的分类:(1)从定义域方面:有穷数列和无穷数列;(2)从值域方面:有界数列和无界数列;(3)从单调性方面:递增数列和递减数列;3、数列的前项和与的关系是:,注意适用的条件是。

二、数列相关问题的理解和处理途径1、把数列中的项与集合中的元素相比较,数列中的项具有确定性、有序性、可重复性,不具有互异性;集合中的元素具有确定性、无序性、互异性。

2、根据数列的前项写出数列的通项公式时,常用到“观察、归纳、猜想、验证”的数学思想方法,即先找出各项相同的部分(不变量),再找出不同的部分(可变量)与序号之间的关系,并用表示出来。

不是所有的数列都有通项公式,一个数列有通项公式在形式上可以不唯一。

3、已知数列的前项和求时,一般采用公式,但要注意对是否满足进行验证。

4、数列的通项公式给出了有关量之间的关系。

在具体解题中,若给出部分量的值求其他未知量的值,基本公式就转化为方程,于是用函数与方程的思想方法分析问题,成为学习数列的重要思想方法。

同理,数列中其他的有关公式同样可以用上述观点去认识。

5、转化思想是数学中最基本、最常用的一种解题策略,数列中的转化更是层出不穷,如和的转化,就属于数列不同给出方式间的转化,问题总是在一步步的转化过程中得到解决。

北师大版高中数学必修5《一章 数列 1 数列 1.1数列的概念》赛课导学案_11

北师大版高中数学必修5《一章 数列  1 数列  1.1数列的概念》赛课导学案_11

数列的概念一、教材与教学分析根据新课程的标准,“数列”这一章首先通过GDP排列、人口数量等大量的实例引入数列的概念,然后将数列作为一种特殊函数,介绍数列的几种简单表示法,等差数列和等比数列.这样就把生活实际与数学有机地联系在一起,这是符合人们的认识规律,让学生体会到数学就在我们身边.作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端.教学中从日常生活中大量实际问题入手,探索并掌握它们的一些基本数量关系,感受数列模型的广泛应用(如存款利息、购房贷款等与人们生活联系密切的现实问题).二、教学目标分析知识与技能:(1)理解数列的概念,了解数列是一种特殊函数,体会数列中项an与序号n之间的函数关系.(2)能区分项和项数(序号)这两个不同的概念,理解通项公式是数列第n项an 与项数n之间的关系式,能根据通项公式写出数列的任意一项.(3)对比较简单的数列,能根据数列前几项,用不完全归纳法写出一个通项公式. 过程与方法:通过对一个数列的观察归纳,写出符合条件的一个通项公式,培养学生观察、归纳、类比、联想等分析问题的能力.情感态度与价值观:通过引例,体会数学来自生活,进一步体会数列、函数与生活的关系.通过课外的学习延伸,激发学生学习积极性.教学重点:理解数列的概念,数列的通项公式.教学难点:数列的特殊特征,根据数列前几项,能写出数列的一个通项公式.三、教学方法与学习方法启发式教学法:以设问和疑问层层引导,激发学生,启发学生积极思考.探究教学法:引导学生去疑;鼓励学生去探;激励学生去思,培养学生的创造性思维和批判精神.四、多媒体辅助教学六、教学反思本课依照新课程标准设计,力求使学生明确(1)概念的发生、发展及背景;(2)概念中关键词及与已有知识有联系;(3)概念的应用. 课初,通过丰富的实例展开,让学生直观感知、观察发现、抽象概括置身于知识的发生、发展、形成过程,提醒学生大胆发现,小心求证,这有助于提高学生分析问题和解决问题的能力.巩固练习时,设计通过新颖的形式展开,增强学生学习数列的兴趣,产生学习数学的积极情感,使他们感受到数列离自己很近,数列有用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时数列的概念与简单表示法1.了解数列的概念和几种简单的表示方法(通项公式、列表、递推公式、图像法).2.通过对简单数列的观察与分析归纳,认识数列是反映自然的基本数学模型.3.能简单地总结数列的规律与表示方法,理解数列与函数的关系.(1)国际象棋的传说:在一张棋盘的第一个小格内放一粒麦子,在第二个小格内放两粒,在第三个小格内放四粒,照这样下去,每一小格都比前一小格加一倍.(2)古语:一尺之棰,日取其半,万世不竭.(3)童谣:一只青蛙,一张嘴,两只眼睛,四条腿;两只青蛙,两张嘴,四只眼睛,八条腿;三只青蛙,三张嘴,六只眼睛,十二条腿.问题1:数列的定义:按排列的一列数叫作数列.数列的项:数列中的每一个数都叫作这个,各项依次叫作这个数列的第1项(或首项),第2项……第n 项……通项公式:如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子表示成 ,那么这个式子就叫作这个数列的通项公式.问题2:数列的分类:(1)按项数分类: 和 . (2)按数列的单调性分类: 、 及 .(3)一个数列,如果从第2项起,有些项大于它的前一项,有些项小于它的前一项,这样的数列叫 .问题3:数列中的项与集合中的元素相比较异同如下:相同点:数列中的每一项都是 、集合中的每一个元素都是 . 不同点:重复性:数列中的某些项可以 、集合中的每一个元素都 . 有序性: 数列中的项 、集合中的元素 . 范围: 数列中的每一项都是 、集合中的元素可以 .问题4:数列的表示方法: 、 、 及 .数列的前n 项和记作S n = .1.把自然数的前五个数:①排成1,2,3,4,5;②排成5,4,3,2,1;③排成3,1,4,2,5;④排成2,3,1,4,5,那么可以叫作数列的有( )个.A .1B .2C .3D .4 2.已知数列{a n }的通项公式为a n =1+(-1)n+12,则该数列的前4项依次为( ).A .1,0,1,0B .0,1,0,1C .12,0,12,0 D .2,0,2,03.设数列{a n }满足:a 1=2,a n+1=1-1a n,则a 4= .4.已知{a n }满足a 1=3,a n+1=2a n +1,试写出该数列的前5项,并用观察法写出这个数列的一个通项公式.根据数列的前几项写出通项公式 写出下列数列的一个通项公式: (1)1,-1,1,-1,…; (2)3,5,9,17,33,…; (3)12,2,92,8,252,….待定系数法求通项公式已知数列{a n }中,a 1=3,a 10=21,通项a n 是项数n 的一次函数. (1)求{a n }的通项公式,并求a 2019;(2)若{b n }是由a 2,a 4,a 6,a 8,…组成,试归纳{b n }的一个通项公式.已知数列的单调性求参数若a n =n 2+λn ,且数列{a n }为递增数列,则实数λ的取值范围是 .写出下列数列的一个通项公式: (1)1,0,-13,0,15,0,-17,0,…; (2)0.7,0.77,0.777,….已知数列{a n }中,a 1=-1,a 2=0且a n =xn 2+yn ,求a n .已知数列{a n }的通项公式为a n =n 2-5n+4.(1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值. (3)设数列{a n }的前n 项和S n ,求S n 的最小值.1.已知数列{a n }的通项公式为a n =n 2-n-50,则-8是该数列的( ).A .第5项B .第6项C .第7项D .非任何一项2.数列1,3,6,10,…的一个通项公式是( ).A .a n =n 2-n+1B .a n =n(n-1)2C .a n =n(n+1)2D .a n =n 2+13.已知数列{a n }的通项公式为a n =1n(n+2)(n ∈N +),那么1120是这个数列的第 项.4.数列{a n }中,已知a n =n 2+n-13(n ∈N +). (1)写出a 10,a n+1;(2)7923是否是数列中的项?如果是,是第几项?(2019年·北京卷)已知数列{a n }满足:a 4n-3=1,a 4n-1=0,a 2n =a n ,n ∈N +,则a 2019= ,a 2019= .考题变式(我来改编):第一章数列第1课时数列的概念与简单表示法知识体系梳理问题1:一定次序数列的项a n=f(n)问题2:(1)有穷数列无穷数列(2)递增数列递减数列常数列(3)摆动数列问题3:确定的确定的重复不能重复有顺序无顺序数不是数问题4:列表法图像法通项公式法递推公式法a1+a2+…+a n基础学习交流1.D按照数列定义得出答案D.2.A将n=1,2,3,4代入通项公式可知,应选A.,a3=-1,a4=2.3.2a2=124.解:∵a1=3,a n+1=2a n+1,∴a2=7,a3=15,a4=31,a5=63,注意到:3=22-1,7=23-1,15=24-1,31=25-1,∴猜得a n=2n+1-1.重点难点探究探究一:【解析】(1)这是一个常用的摆动数列,奇数项为正,偶数项为负,所以它的通项可以是a n=(-1)n+1(n∈N+)或a n=cos(n+1)π(n∈N+)或a n=sin2n-1π(n∈N+).2(2)观察发现每项减1即为2的n次方,所以a n=2n+1(n∈N+).(n∈N+).(3)统一写成分母为2的分数,发现分子是n的平方,故a n=n22【小结】已知数列的前几项,写出数列的通项公式,主要从以下几个方面来考虑:(1)对于正负交错出现的数列,符号用(-1)n与(-1)n+1来调节,这是因为n和n+1奇偶交错.(2)此类问题虽无固定模式,但也有其规律可循,主要用观察、比较、归纳、转化等方法. (3)对于分数形式的数列,分子、分母可分别找通项,并充分借助分子、分母的关系. 探究二:【解析】(1)设a n =kn+b , 则{k +b =3,10k +b =21,解得{k =2,b =1.∴a n =2n+1(n ∈N +),∴a 2019=4031.(2)又∵a 2,a 4,a 6,a 8,…即为5,9,13,17,…,∴b n =4n+1(n ∈N +).【小结】数列的通项公式a n 是关于n (n ∈N +)的函数,即a n =f (n ).待定系数法是求通项公式的一种常用方法.探究三:【解析】∵(n ,a n )(n ∈N +)是函数f (x )=x 2+λx 图像上的点,且数列{a n }为递增数列,只需-λ2≤1,即λ≥-2,∴λ的取值范围是[-2,+∞).[问题]递增数列是单调递增函数吗?[结论]利用二次函数的单调性时,忽视了数列的离散型特征.数列{a n }为递增数列,只要求满足a 1<a 2<…<a n <…于是,正确解答为:∵数列{a n }是递增数列,且a n =n 2+λn ,其对称轴x=-λ2既可以x ≤1,也可以在 1<x<32之间,故-λ2<32,即λ>-3,∴λ的取值范围是(-3,+∞).【答案】(3,+∞)【小结】此题极易出错,考虑问题要全面. 思维拓展应用应用一:(1)从原数列不能看出通项公式,但可改写为11,02,-13,04,15,06,….分母依次为1,2,3,4,…,分子依次为1,0,-1,0,…,呈周期性变化,可以用sin n 2π表示,也可用cos n-12π表示,故a n =sinnπ2n (n ∈N +)或a n =cos n-12πn (n ∈N +).(2)∵0.9,0.99,0.999,…的通项公式为a n =1-110n (n ∈N +),∴0.7,0.77,0.777,…的通项公式为a n =79(1-110n)(n ∈N +). 应用二:由{a 1=x +y =-1,a 2=4x +2y =0,可得x=1,y=-2.∴a n =n 2-2n (n ∈N +).应用三:(1)由a n =n 2-5n+4<0得1<n<4,又n ∈N +,∴n=2,3,即数列中有2项是负数.(2)a n =(n-52)2-94(n ∈N +),∴n=2,3时a n 最小,此时a 2=a 3=-2. (3)由(1)(2)知a 1=a 4=0,a 2=a 3=-2,当n ≥4时,a n >0,∴S 3,S 4最小,且S 3=S 4=-4. 基础智能检测1.C 由n 2-n-50=-8,得n=7或n=-6(舍去).2.C 令n=1,2,3,4,代入A 、B 、C 、D 检验即可.排除A 、B 、D ,从而答案是C .3.10 ∵1n(n+2)=1120,∴n (n+2)=10×12,∴n=10. 4.解:(1)a 10=1093,a n+1=n 2+3n+13. (2)设a n =7923,即n2+n-13=2393,解得n=15或n=-16(舍去),即7923是数列中的第15项. 全新视角拓展1 0 a 2019=a 4×503-3=1,a 2019=a 1007=a 4×252-1=0. 思维导图构建有序性 集合无序性。

相关文档
最新文档