平均变化率的概念及几何意义
变化率简介
变化率简介变化率是学习导数的前提,它在描述各种变化规律的过程中起着非常重要的作用,速度和加速度就是两个典型例子.新教材人教A 版中,对于变化率主要从以下两个方面介绍:1、平均变化率;2、瞬时变化率.一、平均变化率函数()y f x =在区间00[,]x x x +∆或(00[,]x x x +∆)上的平均变化率是商yx∆∆,其中x ∆是自变量x 在0x 处的改变量,可正可负,但不能为0,y ∆是函数值相应的改变量,即00()()y f x x f x ∆=+∆-(y ∆为正、负、零均可)所以00()()f x x f x y x x+∆-∆=∆∆,下面通过举例来进一步加深对概念的理解。
例1、求332-=x y 在0x 到x x ∆+0之间的平均变化率.解:当自变量从0x 到x x ∆+0之间变化时,函数的平均变化率为:x f∆∆=∆-∆+=x x f x x f )()(00xx x x ∆---∆+=]33[]3)(3[2020 x x xx x x ∆+=∆∆+∆⋅=36)(3602评注:此类题目只需要紧扣定义式,注意运算过程就可以了. 评注:⑴函数平均变化率的求法可分两步:①求y ∆;②求yx∆∆.⑵不论0x 、x ∆中的哪一个变化,都会引起函数平均变化率的变化。
拓展:函数()y f x =的平均变化率的几何意义为其图象上割线的斜率。
即:函数()y f x =的图象为曲线C ,曲线C 上有一点00(,)P x y 及邻近一点00(,)Q x x y y +∆+∆,则割线PQ 的斜率0000y y y yk x x x x+∆-∆==+∆-∆。
利用平均变化率的几何意义,可解决一些实际问题,举例如下:例2、某电视机厂有甲、乙两条生产流水线,产量S (单位:台)与时间t (单位:天)的关系如图所示,问:(1)0t 天内,甲、乙两条生产线的平均日产量哪个大?(2)在接近0t 天时,甲、乙两条生产线谁的日产量大?0,)x y y ∆+∆解析:(1) 0t 天内,甲、乙两条生产线的平均日产量,即函数1()S f t =与2()S f t =在0[0,]t 内的平均变化率,其都为直线OA 的斜率,所以0t 天内,甲、乙两条生产线的平均日产量相同。
新高考视角下的导数新授课:导数的概念及其意义
第一节:导数的概念与几何意义课时1.导数的概念一.知识梳理 1.平均变化率一般地,函数()f x 在区间[]12,x x 上的平均变化率为:2121()()f x f x x x --,如果函数的自变量的“增量”为x ∆,且21x x x ∆=-,相应的函数值的“增量”为y ∆,21()()y f x f x ∆=-,则函数()f x 从1x 到2x 的平均变化率为2121()()f x f x y x x x -∆=∆- 函数的平均变化率可正可负,平均变化率近似地刻画了曲线在某一区间上的变化趋势.即递增或递减幅度的大小. 2. 导数的概念(瞬时变化率)(1)函数()f x 在0x x =处瞬时变化率是()()0000limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作()0f x '或0|x x y =',()()()00000lim limx x f x x f x yf x x x∆→∆→+∆-∆'=∆∆= 导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率. (2)求导数值的一般步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③求极限,得导数:00000()()'()lim limx x f x x f x yf x x x∆→∆→+∆-∆==∆∆. 二.典例分析 例1.函数()31f x x =-+在区间[]1,2-上的平均变化率为( )A .3B .2C .2-D .3-【解析】由题,函数()31f x x =-+在区间[]1,2-上的平均变化率为()()()()()332111213213f f -+-⎡⎤-⎣⎦-+--==---,故选:D 例2.某物体的运动路程s (单位:m )与时间t (单位:s )的关系可用函数()21s t t t =++表示,则该物体在1t =s 时的瞬时速度为( )A .0m/sB .1m/sC .2m/sD .3m/s【解析】该物体在时间段[]1,1t +∆上的平均速度为()()()()()22111111113t t s t s s t t t t+∆++∆+-+++∆-∆===+∆∆∆∆,当Δt 无限趋近于0时,3t +∆无限趋近于3,即该物体在1t =s 时的瞬时速度为3m/s .故选:D变式3.(2022·全国·高二单元测试)设函数()1f x ax =+,若()12f '=,则=a ( ) A .2B .2-C .3D .3-【解析】∵()()()()()0111111limlim x x f x f a x a f a x x∆→∆→+∆-∆++-+'===∆∆,且()12f '=,∴2a =. 例4.已知函数()243f x ax ax b =-+,()11f '=,()12f =,求实数a ,b 的值. 【解析】()()()0111lim x f x f f x ∆→+∆-'=∆()()20441133lim x a x a x b a a b x∆→⎛⎫+∆-+∆+--+ ⎪⎝⎭=∆()2002223lim lim 133x x a x a x a x a a x ∆→∆→∆+∆⎛⎫==∆+== ⎪∆⎝⎭,∴32a =.又()4123f a a b =-+=,∴52b =. 故32a =,52b =. 下面的问题主要考察了导数定义深层次的理解例5.(2022·黑龙江·双鸭山一中高二期末)已知()f x 是定义在R 上的可导函数,若(3)(3)lim4x f x f x x∆→-∆-+∆=∆,则()3f '=( )A .0B .2-C .1D .12-【解析】因为0(3)(3)lim1x f x f x x ∆→-∆-+∆=∆,所以0(3)(3)(3)(3)lim x f x f f f x x∆→-∆-+-+∆∆,0(3)(3)(3)(3)limlim 2(3)4x x f x f f x f f x x'-∆→∆→-∆-+∆-=--=-=-∆∆,故()3 2.f '=-故选:B 例6.已知函数()f x 的导函数为(),(2)2f x f -'=-',则0(24)(2)lim x f x f x∆→--∆--=∆( )A .8-B .2-C .2D .8【解析】由导数定义和()22f '-=-,得0(24)(2)(24)(2)lim(4)lim 4(2)84x x f x f f x f f x x∆→∆→--∆----∆--'=-⨯=--=∆-∆.故选:D.三.习题演练习题1.已知函数()f x 的导函数为()f x ',且()15f '=,则()()121lim x f x f x∆→+∆-=∆( ) A .2B .52C .5D .10【解析】因为()15f '=,所以()()()()()012121102121lim 2limx x f x f f xf x f x∆→∆→+∆-=-'=∆+∆=∆,故选:D.习题2.已知函数()21f x x =+,则()()22limx f x f x x∆→+∆--∆=∆( )A .2B .4C .6D .8【解析】因为()21f x x =+,所以()()()()2200222121lim lim x x f x f x x x x x ∆→∆→+∆--∆+∆+--∆-=∆∆ 08lim8x xx∆→∆==∆故选:D习题3.设函数()f x 在=1x 处存在导数为2,则()()11lim3x f x f x∆→+∆-=∆=_______________.【解析】由极限的运算法则结合导函数的定义可得: ()()011lim3x f x f x ∆→+∆-∆=()()0111lim 3x f x f x∆→+∆-∆=()31213f '⨯=.故答案为:23习题4.(2022·重庆市璧山来凤中学校高二阶段练习)已知()0f x m '=,则()()0003limx f x x f x x∆→-∆-=∆_________.【解析】∵()0f x m '=,∴原式()()00Δ03Δ3lim 3Δx f x x f x x →--=-- ()033f x m ='-=-.故答案为:3m -课时2.导数的几何意义一.基本原理1.平均变化率的几何意义——曲线的割线 函数()y f x =的平均变化率2121()()f x f x y x x x -∆=∆-的几何意义是表示连接函数()y f x =图像上两点割线的斜率.如图所示,2121()()A B AB A B y y f x f x yk x x x x x--∆===--∆.这样,平均变化率的正负与割线斜率正负一致.2.导数的几何意义——曲线的切线定义:如图,当点00(,)Q x x y y +∆+∆沿曲线无限接近于点00(,)P x y ,即0x ∆→时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线.T 也就是:当0x ∆→时,割线PQ 斜率的极限,就是切线的斜率.即:0000()()limlim ()x x f x x f x yk f x x x∆→∆→+∆-∆'===∆∆.备注:(1)曲线上一点切线的斜率值只与该点的位置有关. (2)切线斜率的本质———函数在0x x =处的导数. (3)曲线的切线的斜率的符号可以刻画函数的增减性. ①若曲线()y f x =在点00(,())P x f x 处的导数不存在,但有切线,则切线与x 轴垂直.②0()0f x '>,切线与x 轴正向夹角为锐角,()f x 瞬时递增;0()0f x '<,切线与x 轴正向夹角为钝角,()f x 瞬时递减;0()0f x '=,切线与x 轴零度角,瞬时无增减.(4)曲线的切线可能和曲线有多个公共点;为什么要用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线叫做切线?” 过去我们定义圆的切线就是“与圆有且只有一个公共点的直线”,这个定义符合圆、椭圆等一类曲线,那么,能否对任何曲线C 都用“与C 有且只有一个公共点”来定义C 的切线呢?如图的曲线C 是我们熟知的正弦曲线sin y x =的一部分,直线l 2显然与曲线C 有唯一公共点M ,但我们不能说直线l 2与曲线C 相切;而直线l 1尽管与曲线C 有不止一个公共点,但我们可以说直线l 1是曲线C 在点N 处的切线.3. 曲线的切线的求法(导数法)(1)用导数的几何意义求曲线的切线方程的方法步骤: ①求出切点00(,())x f x 的坐标;②求出函数()y f x =在点0x 处的导数0()f x ' ③得切线方程00()()()y f x f x x x '-=- 二.典例分析例1.(2022·全国·高二课时练习)曲线()2f x x=-在点()1,2M -处的切线方程为______.【解析】因为()()2211211f x f x x x x-++∆-+∆==∆∆+∆,当0x ∆→时,()()112f x f x+∆-→∆, 所以()12f '=,即切线的斜率2k =,所以切线方程为()221y x +=-,即240x y --=. 故答案为:240x y --= 例2.2(5)3lim2,(3)32x f x f x →--==-,()f x 在(3,(3))f 处切线方程为( )A .290x y ++=B .290x y +-=C .290x y -++=D .290x y -+-=【解析】由已知,2(5)3lim2,(3)32x f x f x →--==-,令2x x ∆=-,∴()()033lim x f x f x∆→-∆-∆=()()()033lim32x f x f f x ∆→-∆--'==-∆,解()32f '=-,∴()f x 在(3,(3))f 处切线方程为32(3)y x -=--,即290x y +-=.故选:B .例3.(2022·全国·高二课时练习)曲线23y x x =-的一条切线的斜率为1,则切点坐标为________.【解析】设切点坐标为()00,x y ,()()()22200000003323lim lim231x x x x x x x x x x x x k x xx∆→∆→+∆-+∆-+∆-∆+∆===-=∆∆,解得02x =,20262y =-=-.切点为()2,2-. 故答案为:()2,2-.例4.如图,函数()y f x =的图像在点P 处的切线方程是9y x =-+,则()()55f f '+=( )A .-2B .3C .2D .-3【解析】因为函数()y f x =的图像在点P 处的切线方程是9y x =-+,所以()()5594,51f f '=-+==-,所以()()55413f f '+=-=,故选:B.例5.已知函数()y f x =的图象如图所示,()f x '是函数()f x 的导函数,则( )A .(4)(2)(2)(4)2f f f f '<'-<B .(4)(2)(4)(2)2f f f f -<<'' C .(4)(2)(2)(4)2f f f f -<<'' D .(4)(2)(4)(2)2f f f f ''-<< 【解析】如图所示,根据导数的几何意义,可得(2)f '表示曲线在A 点处的切线的斜率,即直线1l 的斜率1l k ,(4)f '表示曲线在B 点处的切线的斜率,即直线2l 的斜率2l k ,又由平均变化率的定义,可得(4)(2)2f f -表示过,A B 两点的割线的斜率l k ,结合图象,可得12l l l k k k <<,所以(4)(2)(2)(4)2f f f f '<'-<.故选:A. 题型:过某点的曲线的切线 例6.试求过点(1,3)P -且与曲线2yx 相切的直线的斜率.【解析】设切点坐标为()00,x y ,则有200y x =.因为2200()limlim 2x x y x x x y x x x∆→∆→∆+∆-'===∆∆,所以02k x =.切线方程为()0002y y x x x -=-,将点(1,3)-代入,得02200322x x x --=-,所以200230x x --=,得01x =-或03x =.当01x =-时,2k =-;当03x =时,6k =.所以所求直线的斜率为2-或6.例7.已知函数()32y f x x x ==+-,直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.【解析】设切点为()00,x y ,因为()()()()()3300000022y x x x f x f x x x x x =+-=+++--+∆∆∆-∆()()()20320313x x x x x =+++∆∆∆,所以()2200313x x y x x x ∆∆+∆+∆=+.当x ∆趋于0时,y x∆∆趋于2031x +,即()20031f x x '=+,所以切线方程为()()()320000231y x x x x x -+-=+-,因为切线过原点,所以()()320000231x x x x -+-=-+,所以3022x =-,解得01x =-,所以()14f '-=,故直线l 的方程为4y x =,又()14f -=-,所以切点的坐标为()1,4--.课时3. 复习与习题讲评一.基本原理知识点1(易错点). 在点求切线与过点求切线1. 求曲线在某点(切点))(,(00x f x )处的切线方程的步骤:2.切线过点))(,(11x f x ,求切线的方法:(要理解过某点的含义,切线过某点,这点不一定是切点),求法步骤:①设切点()()00,x f x ,②建立切线方程00()()()y f x f x x x '-=-,③代入点))(,(11x f x 到切线方程中,利用此时切点在切线且在曲线上,即同时满足方程:⎪⎩⎪⎨⎧--==01010'00)()()()(x x x f x f x f x f y解出切点坐标,从而写出切线方程. 知识点2.导函数的概念由函数()f x 在0x x =处求导数的过程可以看到,当时,0()f x '是一个确定的数,那么,当x 变化时,便是x 的一个函数,我们叫它为f (x )的导函数.记作:()f x '或y ', 即:0()()()limx f x x f x f x y x ∆→+∆-''==∆注:(1)函数在一点处的导数0()f x ',就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数.(2)函数的导数,是指某一区间内任一点x 而言的,也就是函数()f x 的导函数. (3)函数()f x 在点0x 处的导数()f x '就是导函数()f x '在0x x =处的函数值. 在点00(,())x f x 处的切线与过点00(,)x y 的切线的区别.在点00(,())x f x 处的切线是说明点00(,())x f x 为此切线的切点;而过点00(,)x y 的切线,则强调切线是过点00(,)x y ,此点可以是切点,也可以不是切点.因此在求过点00(,)x y 的切线方程时,先应判断点00(,)x y 是否为曲线()f x 上的点,若是则为第一类解法,若不同则必须先在曲线上取一切点11(,())x f x ,求过此切点的切线方程111()()y y f x x x '-=-,再将点00(,)x y 代入,求得切点11(,())x f x 的坐标,进而求过点00(,)x y 的切线方程.知识点3.证明:在定义域R 上,奇函数的导数是偶函数,偶函数的导数是奇函数 二.典例分析例1.曲线()1y f x x ==在点P 处的切线与直线14y x =垂直,则点P 的坐标为______. 【解析】易知曲线在点P 处的切线的斜率为4-,设001,P x x ⎛⎫⎪⎝⎭,因为()()()()00000000111f x x f x x x x x x x xx x x x x x -+∆-+∆-∆===-∆∆∆+∆+∆, 当0x ∆→时,()()00201f x x f x x x +∆-→-∆,所以02011=42x x --⇒=±,则点P 的坐标为1,22⎛⎫ ⎪⎝⎭或1,22⎛⎫-- ⎪⎝⎭. 故答案为:1,22⎛⎫ ⎪⎝⎭或1,22⎛⎫-- ⎪⎝⎭.例2.设函数()f x 在2x =处的导数存在,则()122f '-=( ). A .()()022lim2x f x f x∆→+∆-∆B .()()022lim2x f f x x∆→-+∆∆C .()()022lim 2x f x f x∆→-∆-∆D .()()022lim 2x f f x x∆→--∆∆【解析】因为函数()f x 在2x =处的导数存在,所以()()()()()00222211limlim 2222x x f f x f x f f x x ∆→∆→-+∆+∆-'=-=-∆∆,故B 正确.又∵()()()()()00222211limlim 2222x x f x f f x f f x x ∆→∆→-∆--∆-'=-=-∆-∆,所以C 正确. 故选:BC.例3函数()f x 的定义域为R ,()31f x -为奇函数,且()1f x -的图像关于1x =对称.若曲线()f x 在1x =处的切线斜率为2,则曲线()f x 在2023x =处的切线方程为( ) A .24046y x =-+ B .24046y x =+ C .24046y x =-D .24046y x =--【解析】因为()31f x -为奇函数,即()()3131f x f x --=--, 所以,函数()f x 的图像关于点()1,0-对称,即()()2f x f x --=-,因为()1f x -的图像关于1x =对称,所以()f x 的图像关于0x =对称,即()()=f x f x -, 所以,()()()22f x f x f x --=+=-,所以()()()42f x f x f x +=-+=,即函数()f x 是周期为4的周期函数,所以曲线()f x 在2023x =处的切线斜率等于曲线()f x 在=1x -处的切线斜率,因为曲线()f x 在1x =处的切线斜率为2,图像关于0x =对称,所以,曲线()f x 在=1x -处的切线斜率为2-,因为()()11f f =-,()()11f f -=--,所以()()110f f =-=,所以()()120230f f =-=,所以曲线()f x 在2023x =处的切线方程为()022023y x -=--,即24046y x =-+.故选:A变式2.(2022·陕西安康·高二期末(文))为了评估某种治疗肺炎药物的疗效,有关部门对该药物在人体血管中的药物浓度进行测量.设该药物在人体血管中药物浓度c 与时间t 的关系为()c f t =,甲、乙两人服用该药物后,血管中药物浓度随时间t 变化的关系如下图所示.给出下列四个结论错误的是( )A .在1t 时刻,甲、乙两人血管中的药物浓度相同;B .在2t 时刻,甲、乙两人血管中药物浓度的瞬时变化率不同;C .在[]23,t t 这个时间段内,甲、乙两人血管中药物浓度的平均变化率相同;D .在[]12,t t ,[]23,t t 两个时间段内,甲血管中药物浓度的平均变化率相同.【答案】D【解析】A 选项,根据图象可知,在1t 时刻,甲、乙两人血管中的药物浓度相同,A 选项结论正确.B 选项,根据图象以及导数的知识可知,在2t 时刻,甲、乙两人血管中药物浓度的瞬时变化率不同, B 选项结论正确.C 选项,根据图象可知,在[]23,t t 这个时间段内,甲、乙两人血管中药物浓度的平均变化率相同,C选项结论正确.,t t这个时间段内,甲血管中药物浓度的平均变化率为大于D选项,根据图象可知,在[]12,t t这个时间段内,甲血管中药物浓度的平均变化率在[]23D选项结论错误.故选:D。
高中数学变化率问题导数的概念(老师版)
变化率的“视觉化”, %越大,曲线y = f(x)在区间[X 1, X 2]上越“陡峭”,反之亦然 平均变化率的几何意义是函数曲线上过两点的割线的斜率,若函数 则fx2― fx1X 2 — X 1知识点二瞬时速度与瞬时变化率 把物体在某一时刻的速度称为瞬时速度.做直线运动的物体,它的运动规律可以用函数s = s(t)描述,设 A 为时间改变量,在t o + A t 这段时间内,物体的位移 (即位置)改变量是A s = s(t o ^ At) — s(t 0),那么位移改变量 A s 与时间改变量A t 的比就是这段时间内物体的平均速度s s t o + A t — s t oV ,即 V = A t = A t1.1.1 变化率问题1.1.2导数的概念[学习目标]1•理解函数平均变化率、瞬时变化率的概念 .2.掌握函数平均变化率的求法 3掌握导数的概念,会用导 数的定义求简单函数在某点处的导数 . 知识梳理自主学习知识点一函数的平均变化率 1•平均变化率的概念 设函数y = f(x), X 1, X 2是其定义域内不同的两个点,那么函数的变化率可用式子f X2 — f X1我们把这个式子称 X 2 — X 1 为函数y = f(x)从X 1到X 2的平均变化率,习惯上用 A x 表示X 2 — X 1,即A x = X 2— X 1,可把A x 看作是相对于X 1的一个 “增量”,可用 X 1+ A x 代替X 2;类似地,A y = f(X 2)— f(X 1).于是,平均变化率可以表示为A y A2•求平均变化率 求函数y = f(x)在[*, x 2]上平均变化率的步骤如下: (1)求自变量的增量 A x = X 2— X 1 ; ⑵求函数值的增量 A y = f(x 2)- f(x 1); ⑶求平均变化率A x X 2 — X 1 A y f X 2 — f X 1 f X 1 + A x — f X 1 A x 思考 (1)如何正确理解 A x , A y? (2)平均变化率的几何意义是什么? 答案(1) A 是一个整体符号,而不是 △与X 相乘,其值可取正值、负值,但 时0 ;A y 也是一个整体符号,若 A x=X 1 — x 2,贝U A y = f(X 1)— f(X 2),而不是 A y = f(X 2)— f(X 1), A y 可为正数、负数,亦可取零(2)如图所示: y = f(x)在区间[X 1, X 2]上的平均变化率 “数量化”,曲线陡峭程度是平均 y = f(x)图象上有两点 A(X 1, f(X 1)) , B(X 2, f(X 2)),物理学里,我们学习过非匀速直线运动的物体在某一时刻 t o 的速度,即t o 时刻的瞬时速度,用 v 表示,物体在t o 时刻的瞬时速度 v 就是运动物体在t o 到t o +A t 这段时间内的平均变化率 s+弓+_在A t T 0时的极限,即v = limA ss t o + A t — s t o 一 一△t = ym o 石 •瞬时速度就是位移函数对时间的瞬时变化率 .思考(1)瞬时变化率的实质是什么?(2)平均速度与瞬时速度的区别与联系是什么? 答案⑴其实质是当平均变化率中自变量的改变量趋于 o 时的值,它是刻画函数值在某处变化的快慢 •⑵①区别:平均变化率刻画函数值在区间[X 1, X 2]上变化的快慢,瞬时变化率刻画函数值在 x o 点处变化的快慢;②联系:当A X 趋于o 时,平均变化率A y 趋于一个常数,这个常数即为函数在 x o 处的瞬时变化率,它是一个固定值 • 知识点三导数的概念函数y = f(x)在x = x o 处的导数一般地,函数y = f(x)在x = xo 处的瞬时变化率是 |im o 多=妁。
平均变化率的几何意义课件
平均变化率可以反映该段区间 内因变量相对于自变量的平均
变化速度
平均变化率为正表示因变量在 该段区间内呈上升趋势,即正
增长
平均变化率为负表示因变量在 该段区间内呈下降趋势,即负
增长
平均变化率的应用
判断函数单调性
总结词
平均变化率可以用于判断函数的单调性。
详细描述
平均变化率是函数在某区间上的改变量与区间的比值,当这个比值大于0时,函 数在该区间上是单调递增的;当这个比值小于0时,函数在该区间上是单调递减 的。
近似计算
总结词
平均变化率可以用于进行近似计算。
详细描述
在某些情况下,我们可以利用平 均变化率来近似计算函数的值, 这种方法称为微积分中的微分法。
平均变化率的拓展
导数的概念
01
02
03
导数的定义
导数是函数在某一点的变 化率,它描述了函数在该 点的切线斜率。
导数的几何意义
导数在几何上表示函数曲 线在某一点的切线斜率, 即曲线在该点的变化趋势。
曲线的变化趋势
01
曲线的形状代表因变量 随自变量的变化趋势
02
曲线的陡峭程度代表变 化率的绝对值大小
03
曲线向上代表因变量随 自变量增加而增加,即 正相关关系
04
曲线向下代表因变量随 自变量增加而减少,即 负相关关系
平均变化率的几何意义
01
02
0304平均Fra bibliotek化率是曲线在某一段区 间上的平均倾斜程度
平均变化率的几何意义课件
引言
课程背景
01
平均变化率是微积分学中的基本 概念,它描述了一个函数在某区 间上的变化快慢。
02
几何意义是将平均变化率与线段 的长度联系起来,从而在几何空 间中解释函数的变化趋势。
平均变化率及其几何意义
平均变化率及其几何意义
平均变化率是衡量投资或经济数据变化情况的一个重要参数。
它可以提供有关一段事件、投资等变化的全面概况,因此被经常用于估计重要的经济数据,以及评估投资收益的可靠性。
一、什么是平均变化率
平均变化率是衡量一段事件或投资的变化情况的数据,也叫做变化速率、变化率或百分比变化率。
它指的是从一组数据的开头到结尾之间,每个数据点间的平均改变值,以百分比来表示。
二、平均变化率的计算
平均变化率可以通过以下公式计算:
平均变化率 = (结尾数据值 - 开头数据值) / 开头数据值
例如,假设从某个时刻开始,某个基金投资组合的价值从100到200,那么这段时间内的平均变化率就是:(200-100)/100 = 100%。
三、平均变化率的几何意义
由于平均变化率反映的是数据的累计变化,它也具有几何意义。
如果一个投资组合在一定时间内的平均变化率为100%,那么这段时间的投资组合总体上就处于增长的趋势,那么投资组合的价值会两倍增长。
相反,如果平均变化率为-100%,则表示该投资组合所处的趋势是下降的,那么投资组合的价值会两倍下降。
四、平均变化率的用途
平均变化率可以用来比较不同的投资组合的表现,这样可以让投资者更好地抉择有潜力的投资组合。
此外,平均变化率还可以帮助投资者了解不同时间段投资价值的变化趋势。
五、总结
平均变化率是用于了解投资价值变化趋势的重要参数,它衡量一段时期内数据的各种变化方向,具有几何意义和应用价值。
尽管这一概念不是投资行情精准分析的最终答案,但是它有助于投资分析的可信度,使投资者更好地进行投资决策。
曲线在点处切线的斜率D
A、在 x xo处的斜率 B、在点 (xo, f (xo ))处的切线与 x 轴所夹锐角的正切值
C、曲线 y f (x)在点 (xo , f (xo ))处切线的斜率
D、点 (xo , f (xo ))与(0,0)连线的斜率
应用举例——利用导数几何意义求切线方程
例1:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
x
x2 x1
f(x1) O
A x2-x1=△xx
x1
x2
3、导数的概念
从函数y=f(x)在x=x0处的瞬时变化率是:
4、由导数的意义可知,求函数y=f(x)在点x0处的导数 的基本步骤是:
(1)求函数的增量y f (x0 x) f (x0 );
(2)求平均变化率 y f (x 0 x) f (x0 ) ;
解 : k lim f (x0 x) f (x0 )
x0
x
yQ
(1 x)2 1 (1 1)
lim
x0
x
y = x 2 +1
2x (x)2
lim
2.
x0
x
因此,切线方程为y-2=2(x-1),即y=2x.
y
P
M
x
求曲线在某点处的切线方程的基本步骤: ①求出P点的坐标; ②利用切线斜率的定义求出切线的斜率; ③利用点斜式求切线方程.
对于导数几何意义的理解应该注意的问题: 1、提供了求曲线上某点切线的斜率的一种方法。
2、切线斜率的本质——函数在 x xo处的导数。
3、曲线在某点处的切线与该点的位置有关。
4、求曲线在某点处的切线的前提是函数在该点处的 导数存在。
瞬时变化率
长为10m。x(单位:m)表示OX这段棒长,y
(单位:kg)表示OX这段棒的质量,它们满足以
下函数关系:
y f (x) 2 x
估计该合金棒在x=2m处的线密度 分析:一段合金棒的质量除以这段合金棒的长度, 就是这段合金棒的平均线密度。 解:由,我们可以计算出相应的平均线密度得到 下表
(四)、练习: 课本30页练习2:1、2. (五)、作业:
课本习题2-1:3、4、5
一、教学目标: 1、理解函数瞬时变化率的概念; 2、会求给定函数在某点处的瞬时变化率,并能
根据函数的瞬时变化率判断函数在某点处变化的快 慢。
3、理解瞬时速度、线密度的物理意义,并能解 决一些简单的实际问题。
二、教学重点:知道瞬时变化率刻画的是函数在某 点处变化的快慢。
(Δt)/s
路程的改 变量(Δs ) /m源自 平均速度/(m/s)
5
5.1
0.1
4.95
49.5
5
5.01
0.01
0.49
49.049
5
5.001
0.001
0.049 49.0049
5
5.0001 0.0001 0.0049 49.00049
5
…
…
…
…
可以看出,当时间t1趋于t0=5s时,平均速度趋 于49m/s,因此,可以认为小球在t0=5s时的瞬 时速度为49m/s。从上面的分析和计算可以看出, 瞬时速度为49m/s的物理意义是,如果小球保持 这一刻的速度进行运动的话,每秒将要运动 49m。
(三)、小结:对于一般的函数y f (x)
,在自变量x从x0变到x1的过程当中,若 设Δx= x1-x0,y f (x1 ) f (x0 ),则函数的
选修2-2平均变化率
数学应用
例3、已知函数 f (x) = x2, 分别计算 f (x)在下列区 、 在下列区 y 间上的平均变化率: 间上的平均变化率: (1)[1,3]; ) , ; (2)[1,2]; ) , ; (3)[1,1.1]; ) , ;
4
3 2.1 (4)[1,1.001]. 2.001 ) ,
课后思考: 课后思考:为什么平均变化率
r
1 O 1 2 3
v
r (V 2 ) − r (V1 ) V 2 − V1
气球的平均膨胀率, 气球的平均膨胀率,反映了气球半径变化 的快慢程度. 的快慢程度
思考? 思考
问题情境1 问题情境2 问题情境3 T (t 2 ) − T (t1 ) 气温的平均变化率 = t 2 − t1 h(t 2 ) − h(t1 ) 平均速度 v = t 2 − t1
令∆x = x2 − x1
∆y = f ( x2 ) − f ( x1 )
∆x是一个整体符号 , 而不是 ∆与x相乘 .
f ( x2 ) − f ( x1 ) ∆y = x2 − x1 ∆x
定义理解: 定义理解:
1.式子中的 △ x , △ y 值可正可负,但是 △ x 式子中的 值可正可负, 值不可以为 0, △ y 值可为 0. , 2.变式: ∆ x = x2 − x1 , x2 = ∆x + x1 变式: 变式
∆y f ( −1) − f ( −3) 4 = = =2 ( −1) − ( −3) 2 ∆x
∆y f (5) − f (0) 10 = = =2 5−0 5 ∆x
思考:一次函数y=kx+b在区间[m,n]上的平 思考:一次函数y=kx+b在区间[m,n]上的平 y=kx+b在区间[m,n] 均变化率有什么特点? 均变化率有什么特点?
高中数学第6章导数及其应用6.1导数6.1.1函数的平均变化率课件新人教B版选择性必修第三册
1.平均速度反映运动物体的位移随时间变化而变化的情况.平 均速度是运动物体在一个时间段里位移的改变量与这段时间的比值.
2.运动物体在 t0 到 t1 这段时间内运动的平均速度就是物体运动 的位移函数 s(t)在区间[t0,t1]上的平均变化率,因此求平均速度的实 质就是求函数的平均变化率.
[跟进训练] 3.一个物体做直线运动,位移 s(单位:m)与时间 t(单位:s)之 间的函数关系为 s(t)=5t2+mt,且这一物体在 2≤t≤3 这段时间内的 平均速度为 26 m/s,则实数 m 的值为( ) A.2 B.1 C.-1 D.6 B [由已知,得s33--2s2=26,所以(5×32+3m)-(5×22+2m) =26,解得 m=1,选 B.]
当ΔΔyx=0 时,并不能说明函数在该区间上一定为常函数,如 f(x) =x2 在区间[-2,2]上的平均变化率是 0,但它不是常函数.
拓展:函数平均变化率的几何意义 如图所示,函数 f(x)在区间[x1,x2]上的平均变化率,就是直线 AB 的 斜率,其中 A(x1,f(x1)),B(x2,f(x2)),事实上 kAB=fxx22--fx1x1=ΔΔyx.
1.思考辨析(正确的画“√”,错误的画“×”)
(1)Δx 表示 x2-x1,是相对于 x1 的一个增量,Δx 的值可正可负 f(x2)-f(x1),Δy 的值可正可负,也可以为零.
()
(3)ΔΔxy表示曲线 y=f(x)上两点(x1,f(x1)),(x2,f(x2))连线的斜率.
求物体运动的平均变化率
【例 2】 跳水运动员相对于水面的高度 h(单位:m)与起跳后的 时间 t(单位:s)存在函数关系 h(t)=-4.9t2+6.5t+10.
(1)求运动员在0,6459这段时间内的平均速度; (2)运动员在0,6459这段时间内是静止的吗? (3)你认为用平均速度描述运动员的运动状态有什么问题?
平均变化率的概念及几何意义
(1)定义
称函数y=f(x)在x=x0处的瞬时变化率li =
li 为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=li .
(2)几何意义
函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处切线的斜率.相应地,切线方程为y-f(x0)=f′(x0)(x-x0).
课后作业
【基础】
1.利用导数的定义求下列函数的导数:
(1) ;
(2) ;
(3) ;
(4) 。
【解析】(1) ,
∴ ,
∴ 。
(2) ,
∴ ,
∴ 。
(3) ,
∴ ,
∴ 。
(4) ,
∴ ,
∴ 。
【巩固】
1.求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
【解析】 ,
所以,所求切线的斜率为2,因此,所求的切线方程为 即
(1)因为切线与直线y=4x―5平行,所以2x0=4,x0=2,y0=4,
即P(2,4)。
(2)因为切线与直线2x―6y+5=0垂直,所以 ,得 , ,
即 。
(3)因为切线与x轴成135°的倾斜角,所以其斜率为―1。即2x0=―1,得 , ,
即 。
课后作业
【基础】
函数在某一点的导数是()
A.在该点的函数的姓名
性别
年级
学科
授课教师
上课时间
年月日
第()次课
共()次课
课时:课时
教学课题
平均变化率的概念及几何意义;
教学目标
1.了解平均变化率的几何意义;
高中数学选择性必修二 5 1 2导数的概念及其几何意义(知识梳理+例题+变式+练习)(含答案)
5.1.2导数的概念及其几何意义要点一 导数的概念1.平均变化率:对于函数y =f (x ),设自变量x 从x 0变化到x 0+Δx ,则把Δy Δx =f (x 0+Δx )-f (x 0)Δx 叫做函数y =f (x )从x 0到x 0+Δx 的平均变化率.2.导数:如果Δx →0时,平均变化率Δy Δx 无限趋近于一个确定的值,即ΔyΔx 有极限,则称y =f (x )在x =x 0处可导,并把这个确定的值叫做y =f (x )在x =x 0处的导数(也称瞬时变化率),记作f ′(x 0)或y ′|0x x = ,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →f (x 0+Δx )-f (x 0)Δx . 【重点小结】(1)当Δx ≠0时,比值Δy Δx 的极限存在,则f(x)在x =x 0处可导;若ΔyΔx的极限不存在,则f(x)在x =x 0处不可导或无导数.(2)在x =x 0处的导数的定义可变形为f ′(x 0)=lim Δx →0 f (x 0-Δx )-f (x 0)-Δx 或f ′(x 0)=lim x →x 0 f (x )-f (x 0)x -x 0.要点二 导数的几何意义对于曲线y =f (x )上的点P 0(x 0,f (x 0))和P (x ,f (x )),当 点P 0趋近于点P 时,割线P 0P 趋近于确定的位置,这个确定位置的直线P 0T 称为点P 0处的切线.割线P 0P 的斜率是k =f (x )-f (x 0)x -x 0.当点P 无限趋近于点P 0时,k 无限趋近于切线P 0T 的斜率.因此,函数f (x )在x =x 0处的导数就是切线P 0T 的斜率k ,即k =li m Δx →0f (x 0+Δx )-f (x 0)Δx 【重点总结】(1)曲线的切线与割线①曲线的切线是由割线绕一点转动,当另一点无限接近这一点时割线趋于的直线. ②曲线的切线就是割线趋近于某一确定位置的直线,体现了无限趋近的思想. (2)曲线的切线与导数①函数f(x)在x =x 0处有导数,则在该点处函数f(x)表示的曲线必有切线,且导数值是该切线的斜率. ②函数f(x)表示的曲线在点(x 0,f(x 0))处有切线,但函数f(x)在该点处不一定可导,如f(x)=3x 在x =0处有切线,但不可导.曲线的切线并不一定与曲线只有一个交点,可以有多个,甚至可以有无穷多个.与曲线只有一个公共点的直线也不一定是曲线的切线. 要点三 导函数对于 函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数,当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y=f(x)的导函数(简称为导数),即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx【重点总结】函数在某点处的导数与导函数的区别(1)函数在某点处的导数是一个定值,导函数是一个函数.(2)函数f(x)在x0处的导数就是导函数f ′(x)在x=x0处的函数值.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)函数f(x)在x=x0处有意义,则f′(x0)存在.()(2)直线与曲线相切,则直线与已知曲线只有一个公共点.()(3)导函数f′(x)的定义域与函数f(x)的定义域相等.()(4)曲线f(x)=x2在原点(0,0)处的切线方程为y=0.()【答案】(1)×(2)×(3)×(4)√2.若函数f(x)=-3x-1,则f′(x)=()A.0 B.-3xC.3 D.-3【答案】D【解析】k=li mΔx→0-3(x+Δx)-1-(-3x-1)Δx=-3.3.设曲线y=x2+x-2在点M处的切线斜率为3,则点M的坐标为() A.(0,-2) B.(1,0)C.(0,0) D.(1,1)【答案】B【解析】设点M(x0,y0),∴k=limΔx→0(x0+Δx)2+(x0+Δx)-2-(x20+x0-2)Δx=2x0+1,令2x0+1=3,∴x0=1,则y0=0.故选B.4.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.【答案】2【解析】点(5,f(5))在切线y=-x+8上,∴f(5)=-5+8=3.且f′(5)=-1,∴f(5)+f′(5)=2.题型一 求函数在某点处的导数【例1】(1)已知函数f (x )=2x 2+4x ,则f ′(3)=________. 【答案】(1)16【解析】(1)Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx , ∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16. ∴f ′(3)=li m Δx →0(2Δx +16)=16.(2)已知函数f (x )=2x 2+4x ,若f ′(x 0)=12,则x 0=________. 【答案】(2)2【解析】(2)根据导数的定义f ′(x 0)=li m Δx →0ΔyΔx =li m Δx →f (x 0+Δx )-f (x 0)Δx=li m Δx →2(x 0+Δx )2+4(x 0+Δx )-(2x 20+4x 0)Δx=li m Δx →04x 0·Δx +2(Δx )2+4ΔxΔx =li m Δx →(4x 0+2Δx +4)=4x 0+4,∴f ′(x 0)=4x 0+4=12,解得x 0=2.【方法归纳】用导数定义求函数在某一点处的导数的三个步骤 (1)作差Δy =f (x 0+Δx )-f (x 0). (2)作比Δy Δx =f (x 0+Δx )-f (x 0)Δx .(3)取极限f ′(x 0)=li m Δx →0ΔyΔx. 简记为一差、二比、三极限.【跟踪训练1】已知函数f (x )=x +1x,则f ′(1)=________.【答案】0【解析】f ′(1)=lim Δx →f (1+Δx )-f (1)Δx=lim Δx →0⎣⎡⎦⎤(1+Δx )+11+Δx -(1+1)Δx=lim Δx →0⎝⎛⎭⎫Δx +11+Δx -1Δx=lim Δx →0⎝⎛⎭⎫1-11+Δx =0题型二 求曲线的切线方程【例2】已知曲线y =13x 3,求曲线在点P (3,9)处的切线方程.【解析】由y =13x 3,得y ′=li m Δx →0 ΔyΔx =li m Δx →013(x +Δx )3-13x 3Δx=13li m Δx →3x 2Δx +3x (Δx )2+(Δx )3Δx=13li m Δx →[3x 2+3xΔx +(Δx )2]=x 2, y ′|x =3=32=9,即曲线在P (3,9)处的切线的斜率等于9. 由直线的点斜式方程可得,所求切线方程为y -9=9(x -3), 即9x -y -18=0.【变式探究】本例条件不变,求曲线过点M (1,0)的切线方程.【解析】设切点坐标为⎝⎛⎭⎫x 0,13x 30,由例2知切线方程为:y -13x 30=x 20(x -x 0) ∵切线过点(1,0), ∴-13x 30=x 20(1-x 0)即23x 30-x 20=0,解得x 0=0或x 0=32. ∴切点坐标为(0,0)或⎝⎛⎭⎫32,98,∴切线方程为:y =0或y -98=94⎝⎛⎭⎫x -32. 即y =0或9x -4y -9=0. 设切点,写出切线方程,已知点代入,求切点. 【方法归纳】1.求曲线上某点切线方程的三个步骤2.过曲线外的点P (x 1,y 1)求曲线的切线方程的步骤 (1)设切点为Q (x 0,y 0).(2)求出函数y =f (x )在点x 0处的导数f ′(x 0).(3)利用Q 在曲线上和f ′(x 0)=k PQ ,解出x 0,y 0及f ′(x 0). (4)根据直线的点斜式方程,得切线方程为y -y 0=f ′(x 0)(x -x 0). 【跟踪训练2】已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由. 【解析】将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx=3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0,解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 题型三 导数几何意义的应用 探究1 求切点坐标【例3】已知曲线y =x 2+6的切线分别符合下列条件,求切点. (1)平行于直线y =4x -3; (2)垂直于直线2x -y +5=0. 【解析】设切点坐标为(x 0,y 0).f ′(x )=li m Δx →f (x +Δx )-f (x )Δx=li m Δx →0 (x +Δx )2+6-(x 2+6)Δx=li m Δx →0(2x +Δx )=2x .∴过(x 0,y 0)的切线的斜率为2x 0.(1)∵切线与直线y =4x -3平行,∴2x 0=4,x 0=2,y 0=x 20+6=10, 即过曲线y =x 2+6上点(2,10)的切线与直线y =4x -3平行. (2)∵切线与直线2x -y +5=0垂直,∴2x 0×2=-1,得x 0=-14,y 0=9716,即过曲线y =x 2+6上点⎝⎛⎭⎫-14,9716的切线与直线2x -y +5=0垂直. 【方法归纳】求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0); (2)求导函数f ′(x ); (3)求切线的斜率f ′(x 0);(4)由斜率间的关系列出关于x 0的方程,解方程求x 0; (5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.探究2 与曲线的切点相关的问题【例4】已知直线l 1为曲线y =x 2+x -2在(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2. (1)求直线l 2的方程;(2)求由直线l 1,l 2和x 轴围成的三角形面积.【解析】(1)y ′=lim Δx →0(x +Δx )2+(x +Δx )-2-x 2-x +2Δx=lim Δx →02xΔx +(Δx )2+ΔxΔx=lim Δx →0(2x +Δx +1)=2x +1.所以y ′|x =1=2×1+1=3,所以直线l 1的方程为y =3(x -1),即y =3x -3.设直线l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2), 则l 2的方程为y =(2b +1)x -b 2-2.因为l 1⊥l 2,则有2b +1=-13,b =-23,B ⎝⎛⎭⎫-23,-209,所以直线l 2的方程为y =-13x -229.(2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1,l 2与x 轴交点的坐标分别为(1,0),⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×52=12512.(1)先由已知求出l 1的斜率,再由l 1⊥l 2,求出l 2的斜率,进而求出切点坐标,得出l 2的方程. (2)求出l 1与l 2的交点坐标,l 1,l 2与x 轴的交点,求出直线l 1,l 2和x 轴围成的三角形的面积. 【方法归纳】利用导数的几何意义处理综合应用题的两种思路(1)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线的方程、直线间的位置关系等,因此要综合应用所学知识解题.(2)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.【跟踪训练3】(1)已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是( ) A .f ′(x A )>f ′(x B ) B .f ′(x A )=f ′(x B ) C .f ′(x A )<f ′(x B )D .f ′(x A )与f ′(x B )大小不能确定 【答案】A【解析】由y =f (x )的图象可知,k A >k B ,根据导数的几何意义有f ′(x A )>f ′(x B ).故选A.(2)曲线f (x )=x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 围成的三角形的面积为16,则a =________.【答案】(2)±1【解析】(2)因为f ′(a )=li m Δx →(a +Δx )3-a 3Δx =3a 2,所以曲线在点(a ,a 3)处的切线方程为y -a 3=3a 2(x -a ).令y =0,得切线与x 轴的交点为⎝⎛⎭⎫23a ,0,由题意知三角形面积为12⎪⎪⎪⎪a -23a ·|a 3|=12×⎪⎪⎪⎪a 3·|a 3|=16a 4=16.∴a 4=1,即a =±1. 【易错辨析】求切线方程时忽略“过”与“在”的差异致错【例5】已知抛物线y =x 2+x +1,则过抛物线原点的切线方程为________. 【答案】3x -y =0或x +y =0【解析】设切点坐标为(x 0,y 0),则f ′(x 0)=lim Δx →(x 0+Δx )2+(x 0+Δx )+1-(x 20+x 0+1)Δx=lim Δx →0(2x 0+1+Δx )=2x 0+1,所以斜率k =2x 0+1,故所求的切线方程为y -y 0=(2x 0+1)(x -x 0),将(0,0)及y 0=x 20+x 0+1代入上式得:-(x 20+x 0+1)=-x 0(2x 0+1), 解得x 0=1或x 0=-1,所以k =3或k =-1,所以切线方程为y =3x 或y =-x , 即3x -y =0或x +y =0. 【易错警示】 1.出错原因把原点当作切点,易求的是在原点处的切线方程. 2.纠错心得(1)看清楚求的是原点处的切线,还是过原点的切线. (2)过原点的切线,原点不一定是切点,需设切点为(x 0,y 0).一、单选题1.设()f x 在0x x =处可导,则()()000lim2h f x h f x h h→+--=( ). A .()02f x ' B .()012f x ' C .()0f x ' D .()04f x '【答案】C 【分析】根据导数的定义即可求解. 【解析】解:∵()f x 在0x 处可导, ∵()()()0000lim2h f x h f x h f x h→+--'=,故选:C.2.函数()y f x =在0x x =处的导数可表示为0x x y =',即( ). A .()()()000f x f x x f x =+∆-' B .()()()0000lim x f x f x x f x ∆→'=+∆-⎡⎤⎣⎦ C .()()()0000lim x f x x f x f x x∆→+∆-'=∆D .()()()000f x x f x f x x+∆-'=∆【答案】C 【分析】结合导数定义直接选择即可. 【解析】x x y ='是()0f x '的另一种记法,根据导数的定义可知C 正确.故选:C3.若函数()f x 在0x x =处可导,则()()000limh f x h f x h→+-的结果( ).A .与0x ,h 均无关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 均有关【答案】B 【分析】根据导数的定义即可求解. 【解析】 解:因为()()()0000limh f x h f x f x h→+-'=,所以结果仅与0x 有关,而与h 无关, 故选:B.4.设()f x 为可导函数,且满足0(1)(12)lim12x f f x x→--=-,则'(1)f 为( )A .1B .1-C .2D .2-【答案】B 【分析】利用导数的定义进行求解. 【解析】 因为0(1)(12)lim12x f f x x →--=-,所以20(1)(12)lim =12x f f x x→---,即20(12)(1)lim12x f x f x-→--=--所以'(1)1f =-. 故选:B.5.已知函数f (x )可导,且满足0(3)l (m 2i 3)x f f x x∆→-+∆=∆,则函数y =f (x )在x =3处的导数为( )A .-1B .-2C .1D .2【分析】根据导数的定义即可得到答案. 【解析】 由题意,()()()()()003333lim lim3x x f f x f x f f xx∆→∆→-+∆+∆-=-=-∆'∆,所以()32f '=-.故选:B.6.已知函数()f x 的图像如图所示,()f x '是()f x 的导函数,则下列结论正确的是( )A .()()()()310132f f f f '<-'<< B .()()()()310312f f f f -''<<< C .()()()()310312f f f f '<-'<< D .()()()()310132f f f f ''<<-< 【答案】B 【分析】结合图象,判断出()()()()310,3,,12f f f f ''-的大小关系. 【解析】由题图可知函数()f x 的图像在1x =处的切线的斜率比在3x =处的切线的斜率大,且均为正数,所以()()031f f ''<<. AB 的斜率为()()3131f f --,其比在1x =处的切线的斜率小,但比在3x =处的切线的斜率大,所以()()()()310312f f f f -''<<<. 故选:B7.已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20【分析】根据导数的定义可得()()()0121lim 21x f x f f x∆→+∆='-∆,再用求导公式可得()28f x x'=+,代入1x =即可得解. 【解析】因为()2ln 8f x x x =+,所以()28f x x'=+, 所以()()()()()020121121lim2lim 21202x x f x f f x f f xx∆→∆→+∆-+∆-=∆'==∆.故选:D8.下列说法正确的是( )A .曲线的切线和曲线有且只有一个交点B .过曲线上的一点作曲线的切线,这点一定是切点C .若()0f x '不存在,则曲线()y f x =在点()()00,x f x 处无切线D .若曲线()y f x =在点()()00,x f x 处有切线,但()0f x '不一定存在 【答案】D 【分析】根据瞬时变化率和导数的基本概念对各选项逐一判断即可. 【解析】对于A ,曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,故A 错误;对于B ,过曲线上的一点作曲线的切线,由于曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,所以这个点不一定是切点,故B 错误;对于C ,()0f x '不存在,曲线()y f x =在点()()00,x f x 处切线的斜率不存在,但切线可能存在,故C 错误; 对于D ,曲线()y f x =在点()()00,x f x 处有切线,但切线斜率可能不存在,所以()0f x '不一定存在,故D 正确. 故选:D二、多选题9.已知函数()f x 的图象如图所示,()f x '是()f x 的导函数,则下列数值的排序正确的是( )A .()()32f f ''<B .()()()332f f f '<-C .()()()232f f f '<-D .()()320f f -<【答案】AB 【分析】根据导数的几何意义可得()()23f f ''>,记()()22A f ,,()()33B f ,,作直线AB ,根据两点坐标求出直线AB 的斜率,结合图形即可得出()()()323f f f '->. 【解析】由函数的图象可知函数()f x 是单调递增的,所以函数图象上任意一点处的导函数值都大于零,并且由图象可知,函数图象在2x =处的切线斜率1k 大于在3x =处的切线斜率2k ,所以()()23f f ''>; 记()()22A f ,,()()33B f ,,作直线AB ,则直线AB 的斜率()()()()323232f f k f f -==--,由函数图象,可知120k k k >>>,即()()()()23230f f f f ''>->>. 故选:AB10.(多选题)若函数f (x )在x =x 0处存在导数,则000()()limh f h x f x h→+-的值( )A .与x 0有关B .与h 有关C .与x 0无关D .与h 无关【答案】AD 【分析】由导数的定义进行判定. 【解析】由导数的定义,得:'0000()()lim()h f x f x f x hh →-=+,即函数f (x )在x =x 0处的导数与x 0有关,与h 无关. 故选:AD.11.甲、乙两个学校同时开展节能活动,活动开始后两学校的用电量()W t 甲(单位:kW h ⋅),()W t 乙(单位:kW h ⋅)与时间t (单位:h )的关系如图所示,则一定有( )A .甲校比乙校节能效果好B .甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小C .两学校节能效果一样好D .甲校与乙校在活动期间的用电量总是一样大 【答案】AB 【分析】根据切线斜率的实际意义判断AC 选项的正确性.根据平均变化率的知识确定B 选项的正确性.根据图象判断用电量是否“总是一样大”,由此判断D 选项的正确性. 【解析】由图可知,对任意的()100,t t ∈,曲线()W t 甲在1t t =处的切线斜率的绝对值比曲线()W t 乙在1t t =处的切线斜率的绝对值大,所以甲校比乙校节能效果好,A 正确,C 错误; 由图可知,()() 000W t W t -甲甲()()000W t W t -<乙乙,则甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小,B 正确;由于曲线()W t 甲和曲线()W t 乙不重合,故D 错误. 故选:AB.12.(多选)设()f x 在0x 处可导,下列式子中与()0f x '相等的是( ) A .()()0002lim2x f x f x x x∆→--∆∆B .()()000limx f x x f x x x∆→+∆--∆∆C .()()0002limx f x x f x x x∆→+∆-+∆∆D .()()0002limx f x x f x x x∆→+∆--∆∆【答案】AC 【分析】利用导数的定义对各选项逐一分析计算并判断作答. 【解析】 对于A ,()()()()()000000202222lim lim 22x x f x f x x f x x x f x x f x x x ∆→∆→--∆-∆+∆--∆'==∆∆,A 满足; 对于B ,()()()()()000000202lim 2lim 22x x f x x f x x f x x x f x x f x x x ∆→∆→+∆--∆-∆+∆--∆'==∆∆,B 不满足; 对于C ,()()()00002limx f x x f x x f x x∆→+∆-+∆'=∆,C 满足;对于D ,()()()()()000000302232lim 3lim 33x x f x x f x x f x x x f x x f x x x∆→∆→+∆--∆-∆+∆--∆'==∆∆,D 不满足. 故选:AC第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.某生物种群的数量Q 与时间t 的关系近似地符合10()9tt e Q t e =+.给出下列四个结论:①该生物种群的数量不会超过10;②该生物种群数量的增长速度先逐渐变大后逐渐变小; ③该生物种群数量的增长速度与种群数量成正比; ④该生物种群数量的增长速度最大的时间()02,3t ∈. 根据上述关系式,其中所有正确结论的序号是__________. 【答案】①②④ 【分析】对解析式上下同时除以t e ,结合反比例函数模型可判断①正确;对10()9tt e Q t e =+求导,()Q t '即为该生物种群数量的增长速度与时间的关系式,结合导函数特征和对勾函数模型可判断③错,②④正确 【解析】1010()991t t t e Q t e e ==++,因为0te >,故()911,t e+∈+∞,()100,1091t e ∈+,故该生物种群的数量不会超过10,①正确;由()28109090()()89191t tt t t t e e Q t Q t e e e e=⇒'=+++=+,显然该生物种群数量的增长速度与种群数量不成正比,③错;因为81tt e e +为对勾函数模型,故81tt e e+≥,当且仅当9t e =时取到等号,故811890t t e e++整体先增加后减小,当()03ln92,t =∈时,()Q t '最大,故②④正确, 综上所述,①②④正确, 故答案为:①②④ 14.若02)(=f x ',则00Δ0()(Δ)lim2Δx f x f x x x→-+=________.【答案】1- 【分析】利用导数的定义进行求解. 【解析】00Δ0()(Δ)lim2Δx f x f x x x→-+00Δ0(Δ)()1lim 2Δx f x x f x x →+-=- '01()2f x =-1=-.故答案为1-.15.已知函数f (x ),则()1f '=________. 【答案】12 【分析】根据导数的定义即可得到答案. 【解析】()()()001111lim lim 21x x f x f f x x →→+∆-'====∆+∆+.故答案为:12.16.函数()f x 在R 上可导,且()02f '=,x y R ∀∈,,若函数()()()f x y f x f y +=成立,则()0f =________.【答案】1 【分析】令0y =,则有()()()0f x f x f =,再根据条件即可求出答案. 【解析】解:令0y =,则有()()()0f x f x f =,()02f '=, ()f x ∴不恒为0, ()01f ∴=,故答案为:1.四、解答题17.已知2()f x x =,利用2'(1)11,(1)2,Δ0.03f f x ====,求(1.03)f 的近似值. 【答案】1.06 【分析】将'(1)1,(1)2,Δ0.03f f x ===代入'000()()()f x x f x f x x +∆≈+⋅∆中计算即可得到答案.【解析】由'000()()()f x x f x f x x +∆≈+⋅∆,可知'(1.03)(1)(1)0.03120.03 1.06f f f ≈+⨯=+⨯=.18.已知某产品的总成本函数为22C Q Q =+,总成本函数在0Q 处导数()0f Q '称为在0Q 处的边际成本,用()0MC Q 表示.求边际成本(500)MC 并说明它的实际意义.【答案】(500)1002MC =,其实际意义是:此时多生产1件产品,成本要增加1002. 【分析】利用导数的定义计算即可. 【解析】设500Q =时,产量的改变量为Q ∆,22(500)2(500)(5002500)C Q Q Q Q ∆+∆++∆-+⨯=∆∆ 1002Q =∆+,则0(500)lim (1002)1002Q MC Q ∆→=∆+=,即产量为500时的边际成本为1002,其实际意义是:此时多生产1件产品,成本要增加1002.。
2020版高中数学人教B版选修2-2课件:1.1.1 函数的平均变化率
【解析】质点在2到2+Δt之间的平均速度为
[(2 t)2 1] 22 1 4t (t)2
v
4 t.
t
t
又 v≤5,即4+Δt≤5,
所以Δt≤1.
又Δt>0,
所以Δt的取值范围为(0,1]. 答案:(0,1]
【易错误区案例】 求解函数的平均变化率问题 【典例】函数y=2x2+3x在[1,2]内的平均变化率为_-_9_.
y x
f x2 f x1
x2 x1
公式中Δx与Δy可能同号,也可能异号.
(3)×.函数值的改变量应是f(x0+Δx)-f(x0).
2.若已知函数f(x)=x2-1的图象上一点(1,0)及附近一 点(1+Δx,Δy),则Δy的值为________. 【解析】Δy=f(1+Δx)-f(1)= (1+Δx)2-1=(Δx)2+2Δx. 答案:(Δx)2+2Δx
33 3
所以函数f(x)=3-x2在x0=1附近的平均变化率最大.
【方法技巧】 比较平均变化率的方法步骤
(1)求出两不同点处的平均变化率. (2)作差(或作商),并对差式(或商式)作合理变形,以 便探讨差的符号(或商与1的大小). (3)下结论.
【补偿训练】一质点做直线运动,其位移s与时间t的 关系为s(t)=t2+1,该质点在2到2+Δt(Δt>0)之间的 平均速度不大于5,则Δt的取值范围是______.
为 f x1 f x2 ?
x1 x2
提示:能.若从x1变为x2,平均变化率为
若从x2变为x1,平均变化率为
而 f x2 =f x1 f x.1 f x2
f x1 f,
高考数学 导数 知识汇总
知识点1.函数的平均变化率一般地,已知函数y=f(x),f (x 2)−f(x 1)x 2−x 1称作函数y=f(x)在[x 1,x 2]上的平均变化率. x 2−x 1表示自变量x 的改变量,计作∆x ;y 2−y 1表示函数值的改变量,计作∆y .于是平均变化率也可用Δy Δx表示.这里∆x ,∆y 可为正值,也可为负值,但∆x ≠0,∆y 可以为0.函数的平均变化率f (x 2)−f(x 1)x 2−x 1表示函数值的改变量与对应的自变量的改变量之间的比例,它表示函数图像上(x 1,f(x 1)),( x 2,f(x 2))两点连线的斜率,近似地刻画了曲线在区间[x 1,x 2]上的变化趋势.在式子Δy Δx=f (x 2)−f(x 1)x 2−x 1=f (x 1+Δx )−f(x 1)Δx中,当x 1取定值,Δx 取不同的数值时,函数的平均变化率不同;当Δx 取定值,x 1取不同的数值时,函数的平均变化率也不同.平均变化率的几何意义:设函数y=f(x)的图像如下图所示.PQ 是曲线的一条割线,其斜率为tan β=∆y ∆x =f (x 0+∆x )−f(x 0)∆x可知曲线割线的斜率就是函数的平均变化率.2.平均速度设物体运动路程与时间的关系是s=f(t),在t 0到t 0+Δt 这段时间内,物体的平均速度是v ̅=f (t 0+Δt )−f(t 0)Δt=ΔsΔt在匀速直线运动中,比值ΔsΔt 是恒定的.在非匀速直线运动中,比值ΔsΔt 是不恒定的.要精确地描述非匀速直线运动,就要知道物体在每一时刻运动的快慢程度,即瞬时速度.3.瞬时速度作变速直线运动的物体在不同时刻的速度是不同的,把物体在某一时刻的速度叫做瞬时速度.设物体运动的路程与时间之间的关系是s=f(t),当∆t →0时,函数f(t)在t 0到t 0+∆t 之间的平均变化率f (t 0+Δt )−f(t 0)Δt趋近于常数,我们把这个常数称为t 0时刻的瞬时速度.即V=lim ∆t→0Δs Δt=lim∆t→0f (t 0+∆t )−f(t 0)∆t同理,对于速度函数y=v(t) 其在t 0的瞬时变化率就是在t 0时刻的瞬时加速度,即当t 0→0,v (t 0+∆t )−v(t 0)∆t表示t 0时刻的瞬时加速度.瞬时速度实质是平均速度当Δt →0时的极限值.瞬时速度的计算必须先求出平均速度v ̅=Δs Δt,再对平均速度取极限.Δt →0,是指时间间隔Δt 越来越短,能超过任意小的时间间隔,但始终不能为零. Δt 、Δs 在变化中都趋近月0,但它们的比值却趋近于一个确定的常数. 4.导数的概念 4.1导数设函数y=f(x)在x 0及其附近有定义,当自变量在x=x 0附近改变量为∆x 时,函数值相应地改变∆y=f(x 0+∆x)-f(x 0).当∆x 趋近于0时,平均变化率Δy Δx =f (x 0+∆x )−f(x 0)∆x趋近于一个常数l,那么常数l称为函数f (x )在点x 0的瞬时变化率,计作当∆x →0时,f (x 0+∆x )−f(x 0)∆x→l,或lim ∆x→0f(x0+∆x)−f(x0)∆x=l.一般地,函数y=f(x)在点x0处的瞬时变化率,称为f(x)在点x0处的导数,并计作,f´(x0)或y′|x=x.这时又称f(x)在点x0处是可导的.于是上述变化过程又可计作当∆x→0时,f(x0+∆x)−f(x0)∆x→f´(x0).或lim ∆x→0f(x0+∆x)−f(x0)∆x= f´(x0).∆x是自变量x在x0处的改变量,所以∆x可正、可负,但不能为0.当∆x >0(或<0)时,∆x→0表示x0+∆x从右边(或从左边)趋近于x0.∆y是相应函数的改变量,∆y可正、可负、也可为0.求函数y=f(x)在点x0处的导数的步骤如下:(1)求函数的增量∆y=f(x0+∆x)-f(x0);(2)求函数的平均变化率:ΔyΔx =f(x0+∆x)−f(x0)∆x;(3)取极限,求得f´(x0)=lim∆x→0∆y∆x.4.2导函数如果f(x)在区间(a,b)内每一点x都是可导的,则称f(x)在区间(a,b)可导,这样对于区间(a,b)内每个值x,都对应一个确定的导数f´(x).于是,在区间(a,b)内,f´(x)构成一个新的函数,叫做y= f (x)的导函数,计作f´(x)或y´.导函数通常简称导数.求函数在某一点处的导数,一般是先求处函数的导函数,再计算这点的导函数值.注意区分函数y=f(x)“在x0处的导数”、“导函数”、“导数”.函数在x0处的导数表示在点x0函数的改变量与自变量的比的极限,它是一个数值,不是变数;导函数是如果函数f(x)在区间(a,b)可导,这样对于区间(a,b)内每个值x,都对应一个确定的导数f´(x),而构成一个新的函数y= f´(x);导函数简称导数,于是导数{f (x )在点x 0处的导数导函数.5.导数的几何意义设函数y=f(x)的图像如下图所示.P P 0是曲线的一条割线,其斜率为可知曲线割线的斜率就是函数的平均变化率.当点P 0沿曲线趋近于点P 时,其最终位置为曲线在点P 的切线,此时,切线的斜率为由导数意义可知,曲线y=f(x)在点(x 0,f(x 0) )的切线的斜率等于f ´(x 0).我们用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线是切线”.以前我们学过圆的切线:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线.圆是一种特殊的曲线,如果将圆的切线定义推广到一般曲线,显然是不合适的.观察下图虽然直线l与曲线有唯一公共点,但是我们不能说l与曲线相切;而尽管直线m与曲线有不止一个公共点,我们却可以说直线m与曲线相切.因此,对于一般曲线不能以公共点个数来界定直线与曲线相切与否.6.利用导数的几何意义求曲线的切线方程6.1利用导数的几何意义求曲线的切线方程的步骤第一步:求出函数y=f(x)在点x0处的导数f´(x0);第二步:根据直线的点斜式方程,得切线方程为y-y0=f´(x0)(x-x0).特别地,若切线平行于y轴(即倾斜角为π2),此时导数不存在,曲线在点(x0,f(x0) )处的切线方程是x=x0.观察图像易知,f´(x0)>0则切线的倾斜角为锐角;f´(x0)<0则切线与x轴正向的夹角为钝角;f´(x0)=0则切线与x轴平行.函数在某点可导是曲线在该点存在切线的充分不必要条件,如果函数在某一点不可导,则可利用切线的定义来求切线方程.过某一点P的切线与在点P处的切线是不同的概念,过点P的切线不一定以点P为切点,在点P处的切线是以点P为切点的直线,注意不要混淆.6.2几种常见曲线的切线方程(1)过圆(x-a)²+(y-b)²=r²上过一点P0(x0,y0)的切线方程为(x0-a)(x-a)+( y0-b)(y-b)=r².特例,当a=b=0时,即圆心在坐标原点,此时,过点P0(x0,y0)的切线方程为x0x+y0y=r².(2)过椭圆x²a²+y²b²=1上的一点P0(x0,y0)的切线方程为x0xa²+y0yb²=1.(3)过双曲线x²a²−y²b²=1上的一点P0(x0,y0)的切线方程为x0xa²−y0yb²=1.(4)过抛物线y²=2px上的一点P0(x0,y0)的切线方程为y0y=p(x+x0).7.几个常用函数的导数7.1常数函数y=f(x)=c的导数y´=lim∆x→0ΔyΔx=lim∆x→0f (x+∆x )−f(x)∆x=lim∆x→0c−cΔx=0.y ´=0的几何意义为函数y=c 图像上每一点处的切线的斜率都为0,.其物理意义为若y=c 表示路程关于时间的函数,则y´=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.7.2函数y=x 的导数 y´=lim∆x→0Δy Δx=lim∆x→0(x+∆x )−x∆x=lim ∆x→01=1.同理,对于y=2x ,y´=2;对于y=3x ,y´=3……对于y=x ,y´=1表示函数y=x 图像上每一点处的切线斜率都是1.函数y=kx (k >0)增加的快慢与k 有关,即与函数的导数有关系.k 越大,函数增加得越快;k 越小,函数增加的越慢.函数y=kx (k <0)减少的快慢与|k|有关系,即与函数导数的绝对值有关系. |k|越大,函数减少得越快;|k|越小,函数减少得越慢.7.3函数y=f(x)=x ²的导数. y´=lim∆x→0Δy Δx =lim∆x→0f (x+∆x )−f(x)∆x=lim∆x→0(x+∆x )²−x ²∆x=lim∆x→0x ²+2x·∆x+(∆x )2−x ²∆x=lim ∆x→0(2x+∆x )+2x7.4函数y=f(x)=1x的导数 y´=lim∆x→0Δy Δx=lim∆x→0f (x+∆x )−f(x)∆x =lim∆x→01x+Δx −1xΔx=lim∆x→0x−(x+∆x )x(x+∆x)∆x =lim ∆x→0[−1x(x+∆x)]=-1x ².函数y=1x的图像如:结合函数图像及其导数y´=-1x²发现,当x<0时,随着x的增加,函数y=1x减少的越来越快;当x>0时,随着x的增加,函数减少得越来越慢;7.5函数y=√x的导数设y=f(x)=√x(x>0),y´=lim∆x→0ΔyΔx =lim ∆x→0f(x+∆x)−f(x)∆x=lim∆x→0√x+Δx−√xΔx=limΔx(√x+Δx+√x)=lim√x+Δx+√x=2√x(x>0)由y´=2√x可知,函数y=√x的图像上没一地啊n的切线斜率都大于零(不包括原点).以上公式是进行导数运算的基础,务必要熟练掌握.上述公式可划分为四类,第一类是幂函数y ´=(x μ )´ =μx μ−1;第二类为指数函数y ´=(a x )′a x ln a ,(e x )′=e x 是一个特例;第三类为对数函数y ´=(log a x)′=1x ln a ,(ln x)′=1x 是对数函数的一个特例;第四类为三角函数,可记为正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数.对于公式(ln x )´=1x 和(e x )´=e x 很好记,但对于(log a x )´=1x log a e 和 (a x )´=a x ln a 的记忆就比较难,应从以下几个方面加深对公式的理解和记忆:(1)区分公式的结构特征,从纵的方面区分(ln x )´与(log a x )´,和(e x )´与(a x )´,找出差异,记忆公式;(2)对公式(log a x )´,用(ln x )´和复合函数求导法则证明来帮助记忆,即求证对数函数求导公式(log a x )´=1x log a e证明如下: (log a x )´=(ln x ln a)´=1ln a ·1x=1xlog a e这样知道了(log a x )´=1x log a e 中log a e 的来历,对于公式的记忆和区分是很有必要的.9.导数的四则运算9.1函数和或差的求导法则设函数f(x),g(x)是可导的,则(f(x)±g(x))´=f ´(x) ±g ´(x).即,两个函数的和(或差)的导数,等于这两个函数的导数和(或差).这个法则可以推广到任意有限个函数,即(f 1±f 2±⋯±f n )′=f 1′±′f 2′±⋯±f n ′.9.2函数积的求导法则设函数f(x),g(x)是可导的,则(f(x) g(x))´= f ´(x) g(x)+ f(x) g ´(x).即,两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数.另,[Cf(x)]´=Cf ´(x).(C 为常数)切忌与函数和(或差)的公式混淆,(f(x) g(x))´≠f ´(x)g ´(x),与(f(x)±g(x))´=f ´(x) ±g ´(x)要分清.9.3函数的商的求导法则设函数f(x),g(x)是可导的,g(x) ≠0,则[f(x)g(x)]′=g (x )f ′(x )−f (x )g ′(x)g ²(x).特别地,当f(x) ≡1时,有[1g(x)]′=g ′(x)g ²(x).注意f ´(x 0)与(f (x 0)) ´的区别.f ´(x 0)代表函数f(x)在x= x 0处的导数值,不一定为0;而(f(x 0)) ´是函数值f(x 0)的导数,而f(x 0)是一个常量,其导数值一定为0,即(f(x 0))´=0.9.4复合函数的求导法则由几个函数复合而成的函数,叫做复合函数.由函数y=f(u)与u=φ(x)复合而成的函数一般形式是y=f(φ(x)),其中,u 称为中间变量.设函数u=φ(x)在点x 处可导,函数y=f(u)在点x 对应点u 处也可导,则复合函数y=f(φ(x))在点x 处也可导,且y´x =y´u ·u´x 或f´x (φ(x))=f ´(u) φ′(x).注意:(1)要弄清复合函数的结构关系,分清它是由哪些基本函数复合而成的,选择合适的中间变量;判断复合函数复合关系时,一般是从外向里分析,最外层的主题函数结构是以基本函数为主要形式,各层的中间变量结构也都是基本函数关系,直到最里层应是关于自变量的基本函数或关于自变量的基本函数经过有限次四则运算而得到的函数.(2)复合函数求导方法:①将复合函数的复合关系一一分解;②分步计算,每一步都要清楚是对哪个变量求导,特别要注意中间变量的导数;③根据基本初等函数的求导公式以及运算法则求出个函数的导数,并把中间变量转换成自变量的函数;④熟练掌握复合函数的求导后,中间步骤可以省略不写.(3)上述复合函数的求导公式可以推广到有限次的复合函数求导,如:y=f(u),u=u(t),t=t(w),w=w(x),则y´x =f´u ·u´t ·t´w ·w´x .复合函数求导法则的应用.利用复合函数的求导法则可以求出抽象函数的导数.例:求证存在导函数的奇函数的导数是偶函数.证明:设f(x)是奇函数,即f(-x)=f(x).两边分别对x求导数,得f´(-x)·(-x)´=-f´(-x),即-f´(x)= -f´(-x),∴f´(x)= f´(-x),故命题成立.10.利用导数判断函数的单调性10.1对于函数f(x),在区间(a,b)内,如果f′(x)>0,那么函数f(x)在这个区间内单调递增;如果f′(x)<0,那么函数f(x)在这个区间内单调递减.注意:(1)用曲线的切线的斜率来理解法则,当切线斜率非负时,切线的倾斜角小于90°,函数曲线呈向上增加趋势;当切线斜率为负时,切线的倾斜角大于90°,小于180°,函数曲线呈向下减少趋势;(2)如果在某个区间内恒有f(x)=0.则f(x)在这个区间内等于常数;(3)对于可导函数f(x)来说,f′(x)>0是f(x)在(a,b)上单调递增的充分不必要条件,f′(x)<0是f(x)在(a,b)上单调递减的充分不必要条件.例如f(x)=x3在R 上为增函数,但f′(0)=0,所以在x=0处不满足f′(x)>0.函数单调性的必要条件是:函数f(x)在(a,b)内可导,若f(x)在(a,b)上单调递增(或递减),则f′(x)≥0(或f′(x)≤0)且f′(x)在(a,b)的任意子区间上都不恒为0.10.2求可导函数单调区间的一般步骤和方法:第一步,确定函数f(x)的定义域;第二步,求f′(x);第三步,在定义域内,f′(x)>0的解集对应的区间为f(x)的增区间;f′(x)<0的解集对应的区间为f(x)的减区间.注意:(1)利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中只能在定义域内通过讨论导数的符号来判断函数的单调区间;(2)除了讨论f′(x)>0或f′(x)<0外,还要注意定义域内不连续和不可导点.10.3用导数判断函数单调性的应用(1)证明不等式若证明不等式f(x)>g(x),x∈(a,b),可以转化为证明f(x)-g(x)>0.如果(f(x)-g(x))´>0,说明函数F(x)=f(x)-g(x)在(a,b)上是增函数.若f(a)-g(a)≥0,由增函数的定义可知,当x∈(a,b)时,f(x)-g(x)>0,即f(x)>g(x).(2)证明有关函数根的问题用求导的方法确定方程根的个数,是一种很有效的方法,它是通过函数的变化情况,运用数形结合的思想来确定函数的图像与x轴的交点个数,最简单的一种是只有一个交点(即一个根)的情况,即函数在整个定义域内是单调函数,再结合某一个特殊值来确定f(x)=0.(3)求函数的值域有些函数的值域用以前学的方法有时不简便,这时我们可以考虑研究函数的单调性,特别是函数的自变量定义在某一区间上时,这时可用单调性来研究值域.(4)求参数的值(或取值范围)求函数y=f(x)的单调增区间、减区间分别是解不等式f´(x)>0,f´(x)<0所得的x的取值集合.反过来,若已知f(x)在区间D上单调递增,求f(x)中的参数值的问题,这类问题往往转化为不等式的恒成立问题,即f´(x)≥0在D上恒成立,求f(x)中的参数值.11.利用导数研究函数的极值11.1函数的极值已知函数y=f(x),设点a是定义域(a,b)内任一点,如果对a附近的所有点=f(a).并把a x,都有f(x)<f(a),则称函数f(x)在点a处取极大值,计作y极大称为函数f(x)的一个极大值点.同样,如果在点b附近都有f(x)>f(b),则称函=f(b).并把b称为函数f(x)的一个极小值数f(x)在点b处取极小值,计作y极小点. 极小值点、极大值点统称为极值点,极大值和极小值统称为极值.对于极大值点a,f′(a)=0;而且在点x=a附近的左侧f′(x)>0,右侧f′(x)<0.类似地,对于小值点b,f′(b)=0;而且在点x=b附近的左侧f′(x)<0,右侧f′(x)>0.注意:(1)极值必须在区间内的连续点处取得.一个函数的定义域内可能出现许多个极小值和极大值点,某一点的极小值可能大于另一点的极大值,也即极小值和极大值之间没有必然的大小关系.极值是一个局部性概念.(2)函数的极值点的导数为0,但导数为0的点可能不是函数的极值点.即,f′(c)=0是f(x)在x=c处取极值的必要条件,但不是充分条件.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内一定不是单调函数,即在区间上单调的函数没有极值.(4)如果函数y=f(x)在区间[a,b]内有极值,则极值点的分布是有规律的.相邻两个极大值点之间必然会有一个极小值点,同样相邻两个极小值点之间必然会有一个极大值点.通常当函数y=f(x)在区间[a,b]内有有限个极值点时,其极大值点与极小值点是交替出现的.11.2函数y=f(x)极值的求解方法第一步:求导数f′(x);第二步:求方程f′(x)=0的根;第三步:检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.注意:(1)对于使f′(x)无意义的点也可能是极值点,因此和f′(x)=0的根对应的点一样,都是可疑点,也要进行讨论.(2)极大值点可以看做函数单调递增区间与单调递减区间的分界点,同样极小值点是函数单调递减区间与单调递增区间的分界点.12.利用导数研究函数的最值12.1函数的最大值与最小值对于函数y=f(x),如果在其定义域I内存在x0,使得对任意的x∈I,总有f(x)≤f(x0),则称f(x0)为函数在定义域I上的最大值.如果在其定义域I内存在x0,使得对任意的x∈I,总有f(x)≥f(x0),则称f(x0)为函数在定义域I上的最小值.函数的最大值与最小值是一个整体性概念,是比较整个定义区间的函数值得出.一般地,若函数f(x)在闭区间上的图像是一条连续不间断的曲线,那么它必有最大值与最小值,且最值必在极值点或端点处取得.函数的极值可以有多个.对于最值,若存在最大值,则最大值唯一;若存在最小值,则最小值唯一;极值有可能是最值,最值只要不在端点处必定是极值.在开区间(a,b)内连续的函数不一定存在最大值与最小值.如函数y=tan x,在区间(-π2,π2)内连续,但没有最大值与最小值. 12.2函数最值的求解方法求可导函数f(x)在区间[a ,b ]上的最大值与最小值的步骤:第一步:求f(x)在(a,b)内的极值;第二步:将f(x)的各极值与f(a)、f(b)比较,其中最大的是最大值,最小的是最小值.如果函数f(x)在[a ,b ]上是单调时,可利用函数的单调性求得函数的最值,即,若f(x)在[a ,b ]上单调递增,则其最大值为f(b),最小值为f(a);若f(x)在[a ,b ]上单调递减,则其最大值为f(a),最小值为f(b).与求函数极值不同,求最值时不需要对各导数为零的点讨论其是最大值还是最小值,只需将导数为零的点的函数值和端点的函数值进行比较就行了.13.函数极值的应用:(1)确定参数的值,这里一般用待定系数法(2)求参数的取值范围(3)判断方程的根的变化,这里一般是利用数形结合的思想来讨论方程的根,即先根据函数的极值情况画出函数f (x )的图像,再观察方程的根(4)证明不等式,这里一般是先构造函数,再根据函数的最值来证明不等式(5)求含参数的值域问题时,通常对参数进行分类讨论,然而当函数有极值,需要确定参数值或其范围时,利用逆向思维较容易解决问题.14.导数的实际应用——最优问题14.1解决优化问题的基本思路(1)在解决实际最优化问题时,不难发现基本思路是:上述解决最优化问题的过程是一个典型的数学建模过程.(2)实际应用问题的解题程序:读题(文学语言)⇒建模(数学语言)⇒求解(数学应用)⇒反馈(检验作答) 函数建模,要设出两个变量,根据题意分析它们的关系,把变量转化成函数关系式,确定自变量的定义域.14.2用导数解决最优问题的一般步骤:第一步:分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y=f(x);第二步:求函数的导数f ′(x ),解方程f ′(x )=0;第三步:比较函数在区间端点和使f ′(x )=0的点的数值的大小,最大(小)者为最大(小)值.第四步:将结果代回原问题中,根据实际问题的现实意义判断取舍.注意:应用导数解决实际问题,关键是要建立恰当的数学模型(函数关系).函数建模,要设出两个变量,根据题意分析它们的关系,把变量转化成函数关系式,并确定自变量的定义区间以及其他限制条件.如果函数在定义区间内只有一个点使f ′(x )=0,此时函数在这点有极大(小)值,那么不与端点比较也可以知道这就是最大(小)值.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.15.曲边梯形的面积以及变速直线运动行驶的路程曲边梯形面积的求法主要是用了“以直代曲”的思想,即用直边图形(如矩形)代替曲边梯形的面积,再用求极限的方法求曲边梯形的面积.求曲边梯形的面积可分为四步:分割→近似代替→求和→取极限.把变速直线运动的路程问题划归为求匀速直线运动的路程问题,采用的方法仍然是分割、近似代替、求和、取极限,它与曲边梯形的面积可以归纳为求一个特定形式和的极限.分割的目的在于更精确地“以直代曲”.以“矩形”代替“曲边梯形”,随着分割的等分越来越多,这种“代替”就越精确,所有小矩形的面积和就越逼近曲边梯形的面积.16.定积分的概念设函数y=f(x)定义在区间[a ,b ]上,用分点a=x 0<x 1<x 2<⋯<x n−1<x n <b .把区间[a ,b ]分为n 个小区间,其长度依次为∆x i =x i+1-x i ,i=0,1,2,…,n-1.计λ为这些小区间长度的最大者,当λ趋近于0时,所有的小区间长度都趋近于0.在每个小区间内任取一点ξi ,作和式I n =∑f(ξi )n−1i=0∆x i .当λ→0时,如果和式的极限存在,我们把和式I n 的极限叫做函数f(x)在区间[a ,b ]上的定积分,计作∫f (x )dx ba, 即∫f (x )dx b a =lim λ→0∑f(ξi )n−1i=0∆x i . 其中,f(x)叫做被积函数,a 叫做积分下限,b 叫做积分上限,f(x)dx 叫做被积式.此时称函数f(x)在区间[a ,b ]上可积.注意:(1)定积分∫f (x )dx ba 是一个常数.它的数值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即∫f (x )dx b a =∫f (u )du b a =∫f (t )dt b a =……(称为积分形式不变性); 另外,定积分∫f (x )dx b a 与积分区间[a ,b ]息息相关,不同的积分区间,定积分的积分上、下限不同,所得的值也不同.(2)用定义求定积分的一般方法是:①分割,将区间[a ,b ]n 等分;②近似替代,取点ξi ∈[x i−1,x i ];③求和,∑f(ξi )n i=0b−a n ;④取极限,∫f (x )dx b a =lim n→∞∑f(ξi )b−a n i=0;(3)函数f(x)在区间[a ,b ]上连续这一条件是不能忽视的,它保证了和的极限(定积分)的存在(实际上,函数连续是定积分存在的充分条件,而不是必要条件).17.定积分的性质(1)∫kf (x )dx b a =k ∫f (x )dx b a(k 为常数); (2)∫[f 1(x )±f 2(x )]dx b a =∫f 1(x )dx b a ±∫f 2(x )dx b a;(3)∫f (x )dx b a =∫f (x )dx c a +∫f (x )dx b c (其中a<c<b ).注意:(1)性质(1)、(2)称为定积分的线性性质,性质(3)称为定积分对积分区间的可加性.(2)性质(2)对于有限个函数(两个以上)也成立,性质(3)对于把区间[a ,b ]分成有限个(两个以上)区间也成立.18.定积分的几何意义当函数f(x)在区间[a ,b ]上恒为正时,定积分∫f (x )dx b a的几何意义是由直线x=a,x=b,y=f(x),y=0围成的曲边梯形的面积.一般情况下,定积分∫f (x )dx b a 的几何意义是介于x 轴、函数f(x)的图像以及x=a ,x=b 之间的部分面积的代数和,在x 轴上方的取正好,在x 轴下方的取负号.如上图所示,321)(A A A dx x f ba +-=⎰则(1A 、2A 、3A 表示各阴影部分的面积).注意:(1)定积分∫f (x )dx b a 不一定表示面积,也可能是面积的相反数;定积分也可以是体积,可以是功,可以是路程、压力等,总之定积分还有更多的实际意义.(2)∫f (x )dx b a 、∫|f (x )|dx b a 、|∫f (x )dx ba | 在几何意义上有不同的含义.由于被积函数f(x)在[a ,b ]上可正可负,即它的图像可以在x 轴上方,也可以再x 轴下方,还可以在x 轴的上、下两侧,所以∫f (x )dx ba表示由x 轴,函数f(x)的曲线以及直线x=a ,x=b (a ≠b )围成的图像各部分面积的代数和;而|f (x )|是非负的,所以∫|f (x )|dx ba表示在区间[a ,b ]上所有以|f (x )|为曲边的正曲边梯形的面积;而|∫f (x )dx b a |则是∫f (x )dx ba 的绝对值.三者的值一般情况下是不同的.19.微积分基本定理如果F ′(x )=f (x ),且f(x)在[a ,b ]上可积,则其中F (x )叫做f(x)的一个原函数.由于[F (x )+c ]′=f(x), F (x )+c 也是f(x)的原函数,其中c 为常数.一般,原函数在[a ,b ]上的改变量F(b)-F(a)简记作因此微积分基本定理(又称牛顿——莱布尼兹公式)可以写成注意:(1)利用微积分基本定理计算定积分的关键是找到满足F ′(x )=f (x )的函数F(x).通常我们用基本初等函数的求导公式和倒数的四则运算法则从反方向求出F(x).(2)这项定理揭示了导数与定积分之间的关系,即求积分与求导数是互为逆运算,这也是计算定积分的重要方法,是微积分学中最重要的定理.(3)若F (x )是f(x)的一个原函数,则F (x )+c 也是f(x)的原函数,即f(x)的原函数有无数个.一般只写最简单的一个,不用再加任意常数c 了.20.定积分的简单应用20.1几种典型平面图形面积的计算(1)求由一条曲线y=f(x)和直线x=a ,x=b(a <b)及y=0所围成的平面图形的面积S .常见有以下三种类型: ()ba F x①②③如图①,f(x)>0,∫f (x )dx b a >0,∴S =∫f (x )dx b a如图②,f(x)<0, ∫f (x )dx b a<0,∴S =|∫f (x )dx b a |=-∫f (x )dx b a . 如图③,当a ≤x ≤c 时,f(x)<0,∫f (x )dx c a<0;当c ≤x ≤b 时,f(x)>0,∫f (x )dx bc >0, ∴S =|∫f (x )dx c a |+|∫f (x )dx b c |=-∫f (x )dx c a +∫f (x )dx bc . (2)由两条曲线f(x)和g(x),直线x=a ,x=b ,(a <b )所围成的平面图形的面积S .①②如图①,当f(x)>g(x)>0时,S =∫[f (x )−g(x)]dx b a; 如图②,当f(x)>0,g(x)<0时,S =∫f (x )dx b a +|∫g (x )dx ba |=∫[f (x )−g(x)]dxb a . 求由两条曲线围成的平面图形的面积的解题步骤:第一步:画出图形;第二步:确定图形范围,通过解方程组求出交点的横坐标,确定积分上、下限;第三步:确定被积函数,特别要注意分清被积函数上、下位置; 第四步:写出平面图形面积的定积分表达式;第五步:运用微积分基本公式计算定积分,求出平面图形的面积.20.2作变速直线运动的物体所经过路程S ,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a ,b ]上的定积分,即S=∫v (t )dt b a. 20.3变力做功物体在恒力F (单位:N )的作用下作直线运动,如果物体沿着与F 相同的方向移动了s (单位:m ),则力F 所做的功为:W=Fs.如果物体在变力F (x )的作用下作直线运动,并且物体沿着与F (x )相同的方向从x=a 移动到x=b (a <b ),那么变力F (x )所做的功为:W=∫f (x )dx b a .求变力做功的步骤:第一步:根据物理学的实际意义求出变力F(x)的表达式;第二步:求出起始位置与终止位置;第三步:根据变力做功公式W=∫f (x )dx b a 求出变力F(x)所做的功.。
1.1.1函数的平均变化率
称作函数y=f(x)在区间[x0,x0+Δx](或[x0+Δx, x0])的平均变化率.
1.函数的平均变化率:已知函数y=f(x),x0,x1是其定义域
本 课
内不同的两点,记Δx= x1-x0 ,Δy=y1-y0=f(x1)-
A. 2Δt+4 B. -2Δt+4 C. 2Δt-4 D. -2Δt-4
解析:ΔΔst=4-21+ΔtΔ2t-4+2×12
=-4Δt-Δt 2Δt2
=-2Δt-4. 答案:D
例 1 某婴儿从出生到第 12 个月的体重变化如图所示, 试分别计算从出生到第 3 个月与第 6 个月到第 12 个月 该婴儿体重的平均变化率.
本 课 时
y=f(x)上任意不同的两点,函数 y=f(x) 的平均变化率ΔΔyx=fxx22- -fx1x1=fx1+ΔΔxx-fx1
栏 目
为割线 AB 的斜率.
开 关
x1,x2 是定义域内不同的两点,因此 Δx≠0,但 Δx 可正也可
负;Δy=f(x2)-f(x1)是相应 Δx=x2-x1 的改变量,Δy 的值可
你能从数学的角度来反映山坡的 平缓和陡峭程度吗?
怎样用数量刻画弯曲山路的陡峭程度?
假设如图是一座山的剖面示意图,并建立如图所示平面直角坐标系.A 是出发点,H是山顶.爬山路线用函数y=f(x)表示.
自变量x表示某旅游者的水平位置,函数值y=f(x)表示此时旅游者所在 的高度.设点A的坐标为(x1,y1),点B的坐标为(x2,y2).
(3)实质: 函数值 的改变量与 自变量 的改变量 之比 .
(4)作用:刻画函数在区间[x0,x0+Δx](或[x0+Δx,x0])上变化的快慢.
变化率与导数
记为 f ( x0 ) 或
y
x xo
,即
f ( x0 x) f ( x0 ) f f ( x0 ) lim lim x 0 x x 0 x
思考?
观察函数f(x)的图象
Y=f(x) y B
y f(x2 ) f ( x1 ) 平均变化率 x x2 x1
表示什么?
f(x2) f(x2)-f(x1)=△y A f(x1)
直线AB 的斜率
x2-x1=△x x x1 x2
O
四、导数的几何意义:
y
y=f(x) Pn
割 线
T
y
P
切线
x
o
x 我们发现,当点Pn沿着曲线无限接近点P即 Δ x→0时,割线P Pn趋近于确定位置PT.则我们 把直线PT称为曲线在点P处的切线.
因此,函数f(x)在x=x0处
y
y= Q f( x) P
的导数就是切线PT的斜率.
o
'
割 线 T 切 线 x
即:
f ( x0 x) f ( x0 ) y k切线 f ( x0 ) lim lim x 0 x x 0 x
这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质——函数在x=x0处的导数.
f ( x0 x) f ( x0 ) f lim lim x 0 x 0 x x
练习:
1.函数f(x)=x2在x=1处的瞬时变化率为( ).
2.函数f(x)=1-3x在x=x0处的瞬时变化率为( ) 3.质点运动规律s=t2+3,则在t=3秒的瞬时速度为
三、导数
一般地,函数 y =f(x) 在x=x0处的瞬时变化率 称为函数 y = f (x)在点x=x0处的导数,
极限与平均变化率
· · ·
函数的极限
y
O
x
1 y 当x 趋向于负无穷大时,函数 的极限是0,记作 x 1 lim 0 x x
函数的极限
一般地,当自变量x 取正值并且无限增大时,如果函数
f ( x ) 无限趋近于一个常数a , 就说当x 趋向于正无穷大时,
函数 f ( x )的极限是a ,记作 lim f ( x ) a
1
y
M
求曲线在某点处的切线方程 的基本步骤: ①求出P点的坐标; ②利用切线斜率的定义求 出切线的斜率; ③利用点斜式求切线方程.
j
x
-1 O
1
小结:
• 1.函数的平均变化率
f ( x ) f(x2 ) f ( x1 ) x2 x1 x
• 2.求函数的平均变化率的步骤: (1)求函数的增量Δf=Δy=f(x2)-f(x1);
练习:
1.质点运动规律s=t2 +3,则在时间(3,3+t)中 相应的平均速度为( A ) A. 6+t C.3+t 9 B. 6+t+ t D.9+t
2.物体按照s(t)=3t2+t+4的规律作直线 运动,求在4s附近的平均变化率.
25 3t
3:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程. f ( x 0 x ) f ( x 0 ) 解 : k lim y x 0 Q x (1 x ) 2 1 (1 1) lim 2 x 0 x y = x +1 2 x ( x ) 2 lim 2. x 0 x P 因此,切线方程为y-2=2(x-1), x 即y=2x.
x
导数的概念、导数公式与应用
导数的概念及运算知识点一:函数的平均变化率(1)概念:函数中,如果自变量在处有增量,那么函数值y也相应的有增量△y=f(x0+△x)-f(x),其比值叫做函数从到+△x的平均变化率,即。
若,,则平均变化率可表示为,称为函数从到的平均变化率。
注意:①事物的变化率是相关的两个量的“增量的比值”。
如气球的平均膨胀率是半径的增量与体积增量的比值;②函数的平均变化率表现函数的变化趋势,当取值越小,越能准确体现函数的变化情况。
③是自变量在处的改变量,;而是函数值的改变量,可以是0。
函数的平均变化率是0,并不一定说明函数没有变化,应取更小考虑。
(2)平均变化率的几何意义函数的平均变化率的几何意义是表示连接函数图像上两点割线的斜率。
如图所示,函数的平均变化率的几何意义是:直线AB的斜率。
事实上,。
作用:根据平均变化率的几何意义,可求解有关曲线割线的斜率。
知识点二:导数的概念:1.导数的定义:对函数,在点处给自变量x以增量,函数y相应有增量。
若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。
即:(或)注意:①增量可以是正数,也可以是负数;②导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。
2.导函数:如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数。
注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在处的函数值,反映函数在附近的变化情况。
3.导数几何意义:(1)曲线的切线曲线上一点P(x0,y)及其附近一点Q(x+△x,y+△y),经过点P、Q作曲线的割线PQ,其倾斜角为当点Q(x0+△x,y+△y)沿曲线无限接近于点P(x,y),即△x→0时,割线PQ的极限位置直线PT叫做曲线在点P处的切线。
若切线的倾斜角为,则当△x→0时,割线PQ斜率的极限,就是切线的斜率。
即:。
(2)导数的几何意义:函数在点x的导数是曲线上点()处的切线的斜率。
2020-2021高中数学第一册学案:第3章 3.1 3.1.2 第2课时函数的平均变化率含解析
2020-2021学年高中数学新教材人教B版必修第一册学案:第3章3.1 3.1.2 第2课时函数的平均变化率含解析第2课时函数的平均变化率学习目标核心素养1.理解斜率的含义及平均变化率的概念.(重点)2.掌握判断函数单调性的充要条件.(重点、难点)通过利用函数f(x)的平均变化证明f(x)在I上的单调性,提升数学运算和培养逻辑推理素养.科考队对“早穿棉袄午穿纱,围着火炉吃西瓜”这一独特的沙漠气候进行科学考查,如图是某天气温随时间的变化曲线.请根据曲线图思考下列问题:问题(1)在区间[6,17]对应的曲线上任取不同两点A(x1,y1),B(x2,y2),ΔyΔx=y2-y1x2-x1一定大于零吗?(2)如果在区间[2,10]对应的曲线上任取不同两点C(x3,y3),D(x4,y4),错误!=错误!一定大于零吗?1.直线的斜率(1)定义:给定平面直角坐标系中的任意两点A(x1,y1),B(x2,y2),当x1≠x2时,称错误!为直线AB的斜率;(若记Δx=x2-x1,相应的Δy=y2-y1,当Δx≠0时,斜率记为ΔyΔx),当x1=x2时,称直线AB的斜率不存在.(2)作用:直线AB的斜率反映了直线相对于x轴的倾斜程度.2.平均变化率与函数单调性若I是函数y=f(x)的定义域的子集,对任意x1,x2∈I且x1≠x2,记y1=f(x1),y2=f(x2),错误!=错误!错误!,则:(1)y=f(x)在I上是增函数的充要条件是错误!>0在I上恒成立;(2)y=f(x)在I上是减函数的充要条件是错误!<0在I上恒成立.当x1≠x2时,称ΔfΔx=错误!为函数y=f(x)在区间[x1,x2](x1<x2时)或[x2,x1](x1>x2时)上的平均变化率.通常称Δx为自变量的改变量,Δy为因变量的改变量.[拓展](1)注意自变量与函数值的对应关系,公式中,若Δx =x2-x1,则Δy=f(x2)-f(x1);若Δx=x1-x2,则Δy=f(x1)-f (x2)。
导数概念与运算
求一个函数 y=f(x)的导数,要准确地把函数 y=f(x)分割为基本函数的和、 差、 商及其复合运算, 积、 再利用求导法则求导数. 利用复合函数的求导法则 y′x=y′u· x u′ 应注意以下几个方面: (1)利用复合函数求导法则求导后,要把中间变量换成自变量的函数. (2)要分清每一步的求导是哪个变量对哪个变量的求导, 不能混淆, 常出现如下错误: (cos 2x)′=-sin 2x,实际应为-2sin 2x. 1 (3)求复合函数的导数,关键在于分清函数的复合关系,选好中间变量,如 y= , 1-3x4 1 若分解为 y= ,u=v4,v=1-ω,ω=3x,计算起来就要复杂得多了. u
y f ( x0 ) f ( x 0 )( x x0 )
f (1) 2.
故所求的斜率为-2.
1 3 4 【典例3】已知曲线y x . 3 3 1 求曲线在点P 2, 4 处的切线方程;
2 求曲线过点P 2, 4 的切线方程; 3 求斜率为4的曲线的切线方程.
x
3
4 3 1 4 ( x0 , x 0 ) , 3 与过点P(2,4)的切线相切于点 3 3
2
则切线的斜率k=y′|x=x0= x0 ……………………………………………6′
∴切线方程为 y (
2
3 1 4 ) 3 x0 3
x0
2
( x x0 ) ,
3 2 4 即 y x0 x x0 3 3
y
Q
△y
T P o
△x
即△x→0时, 如果割线PQ有一个极 限位置PT, 那么直线PT叫做曲线在
x
点P处的切线。
3.导数的概念:
函数 y f ( x),如果自变量x在 x0处有增量x,那么 y 函数 y相应地有增量y f ( x0 x) f ( x0 ); 比值 就 x 叫做函数y f ( x)在x0到x0 x之间的平均变化率,即 y f ( x0 x) f ( x0 ) . x x y 如果当x 0 时, 有极限, 我们就说函数y f ( x)在 x 点 x0处可导, 并把这个极限叫做函数 y f ( x)在点 x0处
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以,所求切线的斜率为2,因此,所求的切线方程为 即
四、课堂运用
【基础】
1.求 在 到 之间的平均变化率,并求 , 时平均变化率的值.
【解析】当变量从 变到 时,函数的平均变化率为
当 , 时,平均变化率的值为: .
2.求函数y=5x2+6在区间[2,2+ ]的平均变பைடு நூலகம்率
【解析】 ,
所以平均变化率为
【巩固】
1.自由落体运动的运动方程为 ,计算t从3s到3.1s,3.01s,3.001s各段的平均速度(位移s的单位为m)。
【解析】要求平均速度,就是求 的值,为此需求出 、 。
设在[3,3.1]的平均速度为v1,则
,
。
所以 。
同理 。
。
2.过曲线 上两点 和 作曲线的割线,求出当 时割线的斜率.
【解析】当 时
=4Δt+4+8t0,
= (4Δt+4+8t0)=4+8t0.
【拔高】
1.函数y=f(x),当自变量x由x0改变到x0+Δx时,Δy=()
A.f(x0+Δx)B.f(x0)+Δx
C.f(x0)·ΔxD.f(x0+Δx)-f(x0)
【答案】D
【解析】Δy看作相对于f(x0)的“增量”,可用f(x0+Δx)-f(x0)代替.
一对一辅导教案
学生
性别
年级
学科
授课教师
上课时间
年 月 日
第( )次课
共( )次课
课时: 课时
教学课题
平均变化率的概念及几何意义;
教学目标
1.了解平均变化率的几何意义;
2.会求函数在某点处附近的平均变化率
教学重点与难点
平均变化率的概念,导数的几何意义
教学过程
教学过程
一、复习预习
问题1气球膨胀率
我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?
2.求函数y=3x2在点 处的导数.
【解析】因为
所以,所求切线的斜率为6,因此,所求的切线方程为 即
【拔高】
1.已知函数 可导,若 , ,求
【解析】
2.在曲线y=x2上过哪一点的切线:
(1)平行于直线y=4x―5;
(2)垂直于直线2x―6y+5=0;
(3)与x轴成135°的倾斜角。
【解析】 ,
设所求切点坐标为P(x0,y0),则切线斜率为k=2x0
∴
【例题2】求 在 附近的平均变化率
【答案】
【解析】解: ,所以
所以 在 附近的平均变化率为
【例题3】求函数y=3x2在x=1处的导数.
【答案】6
【解析】:先求Δf=Δy=f(1+Δx)-f(1)=6Δx+(Δx)2
再求 再求
【例题4】:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
【答案】
2.f(x)在x=x0处可导,则 ()
A.与x0,Δx有关
B.仅与x0有关,而与Δx无关
C.仅与Δx有关,而与x0无关
D.与x0,Δx均无关
【答案】B
【解析】式子 表示的意义是求f′(x0),即求f(x)在x0处的导数,它仅与x0有关,与Δx无关.
课后作业
【基础】
1.利用导数的定义求下列函数的导数:
(1) ;
(2) ;
(3) ;
(4) 。
【解析】(1) ,
∴ ,
∴ 。
(2) ,
∴ ,
∴ 。
(3) ,
∴ ,
∴ 。
(4) ,
∴ ,
∴ 。
【巩固】
1.求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
【解析】 ,
所以,所求切线的斜率为2,因此,所求的切线方程为 即
问题2高台跳水
在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)= -4.9t2+6.5t+10.如何用运动员在某些时间段的平均速 度粗略地描述其运动状态?
二、知识讲解
本节课主要知识点解析,中高考考点、易错点分析
考点1:平均变化率概念
1.上述问题中的变化率可用式子 表示,称为函数f(x)从x1到x2的平均变化率
2.函数y=f(x)在x=x0处的导数
(1)定义
称函数y=f(x)在x=x0处的瞬时变化率li =
li 为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=li .
(2)几何意义
函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处切线的斜率.相应地,切线方程为y-f(x0)=f′(x0)(x-x0).
函数y=f(x)在x=x0处的导数等于在该点 处的切线的斜率,
即
说明:求曲线在某点处的切线方程的基本步骤:
①求出P点的坐标;
②求出函数在点 处的变化率 ,得到曲线在点 的切线的斜率;
③利用点斜式求切线方程.
三、例题精析
【例题1】已知函数f(x)= 的图象上的一点 及临近一点 ,则 .
【答案】
【解析】解: ,
2.若设 , (这里 看作是对于x1的一个“增量”可用x1+ 代替x2,同样 )
3.则平均变化率为
考点2导数的概念
从函数y=f(x)在x=x0处的瞬时变化率是:
我们称它为函数 在 出的导数,记作 或 ,即
说明:(1)导数即为函数y=f(x)在x=x0处的瞬时变化率
(2) ,当 时, ,所以
考点/3导数的几何意义
……
【拔高】
1.用导数的定义,求函数 在x=1处的导数
∵
∴
∴ 。
2.已知函数 可导,若 , ,求
【解析】 ( )
(令t=x2,x→1,t→1)
课程小结
1.函数y=f(x)从x1到x2的平均变化率
函数y=f(x)从x1到x2的平均变化率为 .
若Δx=x2-x1,Δy=f(x2)-f(x1),则平均变化率可表示为 .
B.一个函数
C.一个常数,不是变数
D.函数在这一点到它附近一点之间的平均变化率
【答案】C
【解析】由导数定义可知,函数在某一点的导数,就是平均变化率的极限值.
【巩固】
质点M的运动规律为s=4t+4t2,则质点M在t=t0时的速度为()
A.4+4t0B.0
C.8t0+4D.4t0+4t
【答案】C
【解析】Δs=s(t0+Δt)-s(t0)=4Δt2+4Δt+8t0Δt,
(1)因为切线与直线y=4x―5平行,所以2x0=4,x0=2,y0=4,
即P(2,4)。
(2)因为切线与直线2x―6y+5=0垂直,所以 ,得 , ,
即 。
(3)因为切线与x轴成135°的倾斜角,所以其斜率为―1。即2x0=―1,得 , ,
即 。
课后作业
【基础】
函数在某一点的导数是()
A.在该点的函数的增量与自变量的增量的比