5.3.2 命题、定理、证明(教案)

合集下载

人教版数学七年级下册5.3.2-1《命题、定理、证明1》教案2

人教版数学七年级下册5.3.2-1《命题、定理、证明1》教案2

人教版数学七年级下册5.3.2-1《命题、定理、证明1》教案2一. 教材分析《命题、定理、证明1》是人教版数学七年级下册第五章第三节的一部分,这部分内容是学生学习数学证明的基础。

通过这部分的学习,学生将理解命题与定理的概念,学会如何阅读和理解数学证明,并初步掌握证明的方法。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力,能够理解和运用基本的数学概念和运算。

但是,对于数学证明这一概念,学生可能还比较陌生,需要通过具体的例子和实践活动来逐渐理解和掌握。

三. 教学目标1.了解命题和定理的概念,能够区分它们。

2.学会阅读和理解数学证明,能够初步进行简单的证明。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.命题与定理的概念。

2.数学证明的方法和步骤。

五. 教学方法采用问题驱动法和案例教学法,通过具体的例子和实践活动,引导学生理解和掌握命题、定理和证明的概念和方法。

六. 教学准备1.PPT课件。

2.相关例题和练习题。

七. 教学过程1.导入(5分钟)通过一个具体的数学问题,引出命题、定理和证明的概念。

2.呈现(15分钟)讲解命题和定理的概念,通过具体的例子让学生理解它们的区别。

然后讲解数学证明的方法和步骤,引导学生学会阅读和理解数学证明。

3.操练(15分钟)让学生分组讨论,尝试解决一些简单的证明问题,教师巡回指导。

4.巩固(5分钟)对学生的解答进行点评,指出其中的错误和不足,引导学生正确理解和掌握证明的方法。

5.拓展(5分钟)给出一些思考题,让学生进一步深入理解和掌握命题、定理和证明的知识。

6.小结(5分钟)对本节课的主要内容进行总结,强调命题、定理和证明的概念和方法。

7.家庭作业(5分钟)布置一些相关的练习题,让学生巩固所学知识。

8.板书(5分钟)将本节课的主要内容进行板书,方便学生复习和记忆。

教学过程每个环节所用的时间:导入5分钟,呈现15分钟,操练15分钟,巩固5分钟,拓展5分钟,小结5分钟,家庭作业5分钟,板书5分钟。

部编人教版七年级下册数学《命题、定理、证明》教案

部编人教版七年级下册数学《命题、定理、证明》教案

5.3.2 命题、定理、证明一、教学目标1.了解“证明”的必要性和推理过程中要步步有据.2.了解综合法证明的格式和步骤.3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.二、学法引导1.教师教法:尝试指导,引导发现与讨论相结合.2.学生学法:在教师的指导下,积极思维,主动发现.三、重点·难点及解决办法(-)重点证明的步骤和格式是本节重点.(二)难点理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.(三)解决办法通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.四、课时安排l课时五、教具学具准备投影仪、三角板、自制胶片.六、师生互动活动设计1.通过引例创设情境,点题,引入新课.2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.3.通过提问的形式完成小结.七、教学步骤(-)明确目标使学生严密推理过程,掌握推理格式,提高推理能力。

(二)整体感知以情境设计,引出课题,引导讨论,例题示范讲解新知,以练习巩固新知.(三)教学过程创设情境,引出课题师:上节课我们学习了定理与证明,了解了这两个概念.并以证明“两直线平行,内错角相等”来说明什么是证明.我们再看这一命题的证明(投影出示).例1 已知:如图1,,是截线,求证:.证明:∵(已知),∴(两直线平行,同位角相等).∵(对项角相等),∴(等量代换).这节课我们分析这一命题的证明过程,学习命题证明的步骤和格式.[板书]2.9 定理与证明探究新知1.命题证明步骤学生活动:由学生分组讨论以上命题的证明过程,按自己的理解说出证明一个命题都需要哪几步.【教法说明】根据上一节“两直线平行,内错角相等”这一命题的证明过程让学生讨论、分析、归纳命题证明的一般步骤,一是可以加深对命题证明的理解,二是培养学生归纳总结能力。

人教版数学七年级下册5.3.2命题、定理、证明优秀教学案例

人教版数学七年级下册5.3.2命题、定理、证明优秀教学案例
2. 引入定理的概念,通过讲解定理的定义和定理的证明过程,使学生理解定理的意义。
3. 详细讲解证明的方法和步骤,包括直接证明、反证法和归纳法等,让学生掌握证明的基本方法。
4. 通过示例题目,演示如何运用命题、定理和证明的知识解决问题,让学生理解学习的实际意义。
(三)学生小组讨论
1. 将学生分成小组,每组选择一个定理进行证明,并用自己的语言解释证明的每一步。
这些亮点体现了本节课在教学设计、教学方法和教学评价等方面的优秀之处,有助于提高学生的学习兴趣、培养学生的思维能力和团队合作能力,促进学生的全面发展。同时,这些亮点也是我作为特级教师在教学实践中不断探索和尝试的结果,希望能够为其他教师提供一定的借鉴和参考。
4. 总结归纳环节:在课程结束时,引导学生回顾和总结所学内容,帮助学生巩固知识,提高学生的记忆和理解能力。总结归纳环节能够使学生对学习内容有一个清晰的认识,增强学生对知识的系统性和整体性的理解。
5. 作业小结环节:布置与课程内容相关的作业,要求学生运用所学知识解决问题,培养学生的应用能力和实践能力。作业小结环节能够及时巩固所学知识,帮助学生检验自己的学习效果,同时也为教师提供了了解学生学习情况的机会,为下一步的教学提供参考。
3. 设计一些评估题目,检验学生对命题、定理和证明的掌握程度,及时发现和纠正学生的错误。
4. 注重对学生的形成性评价,关注学生的进步和努力,激发学生的学习动力和自信心。
四、教学内容与过程
(一)导入新课
1. 利用生活实例引入命题的概念,例如:“如果今天是星期五,那么学校放假。”引导学生理解命题由题设和结论两部分组成。
2. 强调定理证明的重要性,以及定理证明在数学中的应用,使学生认识到学习定理证明的意义。
3. 总结学生在小组讨论中的表现,对学生的学习成果进行肯定和鼓励,激发学生的学习动力。

人教版数学七年级下册5.3.2《命题、定理、证明》教学设计4

人教版数学七年级下册5.3.2《命题、定理、证明》教学设计4

人教版数学七年级下册5.3.2《命题、定理、证明》教学设计4一. 教材分析《人教版数学七年级下册5.3.2命题、定理、证明》这一节主要介绍命题、定理和证明的概念。

通过本节课的学习,学生能够理解命题、定理和证明的定义,掌握判断命题真假的方法,了解证明的两种方法——演绎法和归纳法,并能够运用这些知识解决实际问题。

二. 学情分析七年级的学生已经掌握了基本的数学运算能力和逻辑思维能力,但对命题、定理和证明的概念接触较少。

因此,在教学过程中,需要引导学生从实际问题中抽象出命题、定理和证明的概念,并通过实例让学生理解和掌握这些概念。

三. 教学目标1.了解命题、定理和证明的概念。

2.掌握判断命题真假的方法。

3.掌握证明的两种方法——演绎法和归纳法。

4.能够运用命题、定理和证明的知识解决实际问题。

四. 教学重难点1.重点:命题、定理和证明的概念,判断命题真假的方法,证明的两种方法。

2.难点:证明的两种方法——演绎法和归纳法的理解和运用。

五. 教学方法1.情境教学法:通过实际问题引入命题、定理和证明的概念。

2.实例教学法:通过具体的实例让学生理解和掌握命题、定理和证明的概念。

3.小组讨论法:引导学生分组讨论,培养学生的合作能力和解决问题的能力。

4.教学反馈法:通过提问、练习等方式及时了解学生的学习情况,调整教学进度和方法。

六. 教学准备1.教学PPT:制作含有命题、定理和证明的实例的PPT。

2.练习题:准备一些判断命题真假和运用证明方法的练习题。

3.教学素材:准备一些实际问题作为教学素材。

七. 教学过程1.导入(5分钟)通过一个实际问题引入命题、定理和证明的概念。

例如:在三角形中,如果一个角是直角,那么它的两条边分别是斜边。

这个命题是如何判断真假的?如何用数学语言来表达这个命题?2.呈现(10分钟)介绍命题、定理和证明的定义。

命题是判断某个陈述真假的语句,定理是被证明为真的命题,证明是用逻辑推理的方法来证明定理的过程。

5.3.2命题、定理、证明(教案)(共五篇)

5.3.2命题、定理、证明(教案)(共五篇)

5.3.2命题、定理、证明(教案)(共五篇)第一篇:5.3.2 命题、定理、证明(教案)5.3.2 命题、定理、证明【知识与技能】1.知道什么叫做命题,什么叫真命题,什么叫做假命题,什么叫定理.2.理解命题由题设和结论两部分组成,能将命题写成“如果……那么……”的形式或“若……则……”的形式.【过程与方法】通过对若干个命题的分析,了解什么叫命题以及命题的组成,知道什么叫做真命题,什么做假命题,什么叫做定理.【情感态度】通过本节的学习使同学们明白命题在数学上的重要作用,不仅如此,命题在其它许多学科都有重要作用.【教学重点】命题的定义,命题的组成.【教学难点】命题的判断,真假命题的判断,命题的题设和结论的区分.一、情境导入,初步认识问题1 分析下列判断事情的语句,指出它们的题设和结论.(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(2)两条平行线被第三条直线所截,同旁内角互补.(3)对顶角相等.(4)等式两边加同一个数,结果仍是等式.问题2 判断下列语句,是不是命题,如果是命题,是真命题,还是假命题.(1)画线段AB=5cm.(2)两条直线相交,有几个交点?(3)如果直线a∥b,b∥c,那么a∥c.(4)直角都相等.(5)相等的角是对顶角.【教学说明】全班同学合作交流,即先分组完成上面的两个问题,然后交流成果,最后得出正确的答案.二、思考探究,获取新知思考1.真命题与定理有什么样的关系.2.对题设和结论不明显的命题,怎样找出它们的题设和结论.【归纳结论】1.命题:判断一件事情的语句,叫做命题.2.命题由题设和结论两部分组成3.真命题与假命题:正确的命题叫真命题,错误的命题叫假命题.4.定理是经过推理证实的真命题,是在今后推理中经常作为依据的一种真命题.但不是所有经过推理证实的真命题都把它当作定理.对于题设和结论不明显的命题,应先将它改写成“如果……那么……”的形式或“若……则……”的形式.一般来说,如果前面的部分是题设,那么后面的部分是结论.将这种命题改写成“如果……那么……”的形式时,那么后面的部分一定要简单明了.三、运用新知,深化理解判断下列命题是真命题还是假命题,如果是假命题.举出一个反例.(1)若a>b,则a2>b2.(2)两个锐角的和是钝角.(3)同位角相等.(4)两点之间,线段最短.【教学说明】本环节让同学们分组讨论,在合作交流中深刻理解命题的组成和真假命题的判断.【答案】略.四、师生互动,课堂小结请几名学生口答,然后由教师归纳,可用电脑课件放映到屏幕上.1.布置作业:从教材“习题5.3”中选取.2.完成练习册中本课时的练习.本节课的学习任务是让学生了解命题的概念,能区分命题的题设和结论,并初步认识真假命题.这节课一开始由教师提出问题,学生自学课本,让学生体验先学后教的理念,同时培养了学生的自学能力.第二篇:命题定理证明教案5、3命题定理证明教案学习目标:(1)了解命题的概念以及命题的构成(如果……那么……的形式).(2)知道什么是真命题和假命题.(3)理解什么是定理和证明.(4)知道如何判断一个命题的真假.学习重点:对命题结构的认识.理解证明要步步有据一、自学基础:(看书20页---22页)1、对一件事情___________________的语句,叫做命题。

2020部编人教版七年级下册数学《命题、定理、证明》教案

2020部编人教版七年级下册数学《命题、定理、证明》教案

5.3.2 命题、定理、证明1.理解命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式;(重点)2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对命题举反例.(难点)一、情境导入2015年10月,屠呦呦因发现青蒿素治疗疟疾的新疗法获诺贝尔生理学或医学奖.屠呦呦是第一位获得诺贝尔科学奖项的中国本土科学家、第一位获得诺贝尔生理医学奖的华人科学家.青蒿素是从植物黄花蒿茎叶中提取的有过氧基团的倍半萜内酯药物.其对鼠疟原虫红内期超微结构的影响,主要是疟原虫膜系结构的改变,该药首先作用于食物泡膜、表膜、线粒体、内质网,此外对核内染色质也有一定的影响.青蒿素的作用方式主要是干扰表膜-线粒体的功能.可能是青蒿素作用于食物泡膜,从而阻断了营养摄取的最早阶段,使疟原虫较快出现氨基酸饥饿,迅速形成自噬泡,并不断排出虫体外,使疟原虫损失大量胞浆而死亡.要读懂这段报道,你认为要知道哪些名称和术语的含义?二、合作探究探究点一:命题的定义与结构【类型一】命题的判断下列语句中,不是命题的是()A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线解析:根据命题的定义,看其中哪些选项是判断句,其中只有D选项不是判断句.故选D.方法总结:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”.【类型二】把命题写成“如果……那么……”的形式把下列命题写成“如果……那么……”的形式.(1)内错角相等,两直线平行;(2)等角的余角相等.解:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(2)如果两个角是相等的角,那么它们的余角相等.方法总结:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.【类型三】命题的条件和结论写出命题“平行于同一条直线的两条直线平行”的条件和结论.解析:先把命题写成“如果……那么……”的形式,再确定条件和结论.解:把命题写成“如果……那么……”的形式:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以命题的条件是“两条直线都与第三条直线平行”,结论是“这两条直线也互相平行”.方法总结:每一个命题都一定能用“如果……那么……”的形式来叙述.在“如果”后面的部分是“条件”,在“那么”后面的部分是“结论”.探究点二:真命题与假命题下列命题中,是真命题的是()A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0D.若a·b=0,则a=0或b=0解析:选项A中,a·b>0可得a、b同号,可能同为正,也可能同为负,是假命题;选项B中,a·b <0可得a、b异号,所以错误,是假命题;选项C中,a·b=0可得a、b中必有一个字母的值为0,但不一定同时为零,是假命题;选项D中,若a·b=0,则a=0或b=0或二者同时为0,是真命题.故选D.方法总结:判断一个命题是真命题还是假命题,就是判断一个命题是否正确,即由条件能否得出结论.如果命题正确,就是真命题;如果命题不正确,就是假命题.探究点三:证明与举反例 【类型一】 命题的证明求证:两条直线平行,一组内错角的平分线互相平行.解析:按证明与图形有关的命题的一般步骤进行.要证明两条直线平行,可根据平行线的判定方法来证明.解:如图,已知AB ∥CD ,直线AB ,CD 被直线MN 所截,交点分别为P ,Q ,PG 平分∠BPQ ,QH 平分∠CQP ,求证:PG ∥HQ .证明:∵AB ∥CD (已知),∴∠BPQ =∠CQP (两直线平行,内错角相等).又∵PG 平分∠BPQ ,QH 平分∠CQP (已知),∴∠GPQ =12∠BPQ ,∠HQP =12∠CQP (角平分线的定义), ∴∠GPQ =∠HQP (等量代换),∴PG ∥HQ (内错角相等,两直线平行).方法总结:证明与图形有关的命题时,正确分清命题的条件和结论是证明的关键.应先结合题意画出图形,再根据图形写出已知与求证,然后进行证明.【类型二】 举反例举反例说明下列命题是假命题.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab =0,则a +b =0.解析:分清题目的条件和结论,所举的例子满足条件但不满足结论即可.解:(1)两条直线平行形成的内错角,这两个角不是对顶角,但是它们相等;(2)当a =5,b =0时,ab =0,但a +b ≠0.方法总结:举反例时,所举的例子应当满足题目的条件,但不满足题目的结论.举反例时常见的几种错误:①所举例子满足题目的条件,也满足题目的结论;②所举例子不满足题目的条件,但满足题目的结论;③所举例子不满足题目的条件,也不满足题目的结论.三、板书设计命题⎩⎪⎨⎪⎧概念结构真、假命题证明与举反例本节课通过命题及其证明的学习,让学生感受到要说明一个定理成立,应当证明;要说明一个命题是假命题,可以举反例.同时让学生感受到数学的严谨,初步养成学生言之有理、落笔有据的推理习惯,发展初步的演绎推理能力。

人教版七年级下册 5.3.2命题定理证明教案设计

人教版七年级下册 5.3.2命题定理证明教案设计

教学过程一、创设情境,导入新课问题1 请同学读出下列语句(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果仍是等式.像这样判断一件事情的语句,叫做命题(proposition).问题2 判断下列语句是不是命题?(1)两点之间,线段最短;()(2)请画出两条互相平行的直线;()(3)过直线外一点作已知直线的垂线;()(4)如果两个角的和是90º,那么这两个角互余.()问题3 你能举出一些命题的例子吗?问题4 请同学们观察一组命题,并思考命题是由几部分组成的?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)如果两个角的和是90º,那么这两个角互余;(4)等式两边都加同一个数,结果仍是等式.(5)两点之间,线段最短.二、命题的结构命题由提示和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.许多数学命题常可以写成“如果……,那么……”的形式.“如果”后面连接的部分是题设,“那么”后面连接的部分就是结论.问题5 下列语句是命题吗?如果是,请将它们改写成“如果……,那么……”的形式.(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.问题6 请同学们说出一个命题,并说出此命题的题设和结论.问题7 问题5中哪些命题是正确的,哪些命题是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.三、命题的真假真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫做假命题.问题8 请同学们举例说出一些真命题和假命题.四、归纳小结1.什么叫做命题?你能举出一些例子吗?2.命题是由哪两部分组成的?3.举例说明什么是真命题,什么是假命题.五、布置作业第五章相交线与平行线学科数学年级七年级课时课时主备课人蒋继荣审核人七年级数学备课组使用教师使用时间年月日课题 5.3.2命题定理的证明(2)学习目标(1)理解什么是定理和证明.(2)知道如何判断一个命题的真假.学习重点理解证明要步步有据.学习难点能够熟练地证明问题。

人教版七年级数学下册5.3.2命题、定理、证明教学设计

人教版七年级数学下册5.3.2命题、定理、证明教学设计
2.从以下题目中选择两题进行深入探讨,要求写出详细的解题过程和证明步骤:
a.证明:三角形的内角和等于180度。
b.证明:对角线相等的平行四边形是矩形。
c.证明:圆的任意直径垂直于圆的切线。
3.结合生活实际,自行设计一个包含命题、定理和证明的数学问题,并用所学的知识进行解答。要求问题具有一定的挑战性,能够体现学生对几何知识的综合运用。
4.强调证明过程中需要注意的问题,如逻辑严密、步骤清晰等。
(三)学生小组讨论
1.将学生分成若干小组,每组分配一个几何问题,要求学生运用所学的定理和证明方法解决问题。
2.学生在小组内展开讨论,共同探讨解决问题的方法,教师巡回指导,给予提示和帮助。
3.各小组汇报讨论成果,分享解题过程和经验,其他小组进行评价和补充。
(三)情感态度与价值观
1.培养学生严谨、细致的学习态度,使学生认识到数学的严密性和逻辑性。
2.增强学生对数学美的感知,激发学生对数学学科的兴趣和热爱。
3.培养学生勇于探索、善于思考的品质,使学生体验到数学探究的乐趣。
4.引导学生将所学知识应用于实际生活,认识到数学在现实生活中的重要性,增强学生的社会责任感。
5.创设轻松愉快的学习氛围,鼓励学生提问、表达,激发学生的学习兴趣和积极性。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握命题的概念,能够正确判断命题的真假。
2.熟悉基本的几何定理,并能运用定理解决实际问题。
3.学会运用逻辑推理进行证明,提高学生的逻辑思维能力。
4.能够将所学知识综合运用,解决复杂的几何问题。
(二)教学设想
1.创设情境,引入命题概念
-利用生活实例,如“两点之间线段最短”,引导学生理解命题的概念,并学会判断命题的真假。

第五章相交线与平行线5.3.2命题、定理、证明

第五章相交线与平行线5.3.2命题、定理、证明

第五章相交线与平行线5. 3.2 命题、定理、证明(1)教学设计教学目标:【知识与技能】1、了解什么是命题,并且会把一些简单命题改写成如果……那么……”的形式。

2、了解命题的题设和结论,并能够分析出命题的题设和结论。

3、了解什么是真命题和假命题,并能够判断哪些是真命题,哪些是假命题。

【过程与方法】通过对若干个命题的分析,了解什么叫命题及命题的组成,知道什么是真命题,什么是假命题;【情感态度】通过本节课的学习让同学们知道命题在数学上的重要作用,不仅如此,命题在其他许多学科上都有重要作用。

教学重点:命题的定义和命题的组成;教学难点:1、命题的判断;2、命题的题设和结论的区分;3、真假命题的判断;学情分析:七年级的学生自主学习能力和独立思考能力不强,但大部分学生对数学感兴趣,有些学生学习方法不对路。

虽然说时间花费很多,但效果不是最佳的,学习方法很重要,要养成良好的学习方法,才能有所上升。

教学过程:一、回顾旧知,导入新课:平行线的判定和性质设计目的:回顾旧知的同时给学生呈现命题的例句,让学生对命题有个初步的体会和认识,并导入新课。

二、学习目标1、了解什么是命题,并且会把一些简单命题改写成“如果…… 那么……”的形式。

2、了解命题的题设和结论,并能够分析出命题的题设和结论。

3、了解什么是真命题和假命题,并能够判断哪些是真命题,哪些是假命题。

设计目的:让学生有目的的学习。

三、预习板块通过预习,我学到了什么?在预习中,我存在的疑惑是什么?需要解决哪些问题?1什么是命题?命题由几部分组成?2、命题可以被改写成什么形式?并试着改写命题对顶角相等”。

3、什么是真命题?什么是假命题?设计目的:要求学生课前预习,养成良好的学习习惯。

四、合作探究一(设计目的:让同学们通过合作探究的方式将句子改写成“如果…..那么……”的形式来体会什么是命题)1、观察下列两组语句有什么区别?A组:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边加同一个数,结果仍是等式•B组:⑴画线段AB=CD(2)点P在直线AB外.(3)对顶角相等吗?总结:1、_____________________________ 的语句,叫做命题。

初中数学 教案:5.3.2 命题、定理、证明

初中数学 教案:5.3.2   命题、定理、证明

命题、定理(1)教学目标:了解命题、定理、证明的含义,会区分命题的题设和结论.重点难点:命题及组成是重点;区分命题的题设和结论是难点.教学过程一、情景导入我们平常说的话细究起来是有区别的,例如,“你吃饭了吗?”与“今天天气不好”就有区别,前一句表示疑问,没有作出判断,后一句作出了判断.数学中象这类对某件事情作出判断的语句还很多,值得我们研究.二、命题下列语句在表述形式上,哪些是对事情作了判断?(1)对顶角相等.(2)画一个角等于已知角.(3)两条平行线被第三条直线所截,同旁内角互补.(4)a、b两条直线平行吗?(5)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(6)等式两边加同一个数,结果仍是等式.这些语句都对某一件事情作出了“是”或“不是”的判断,象这样判断一件事情的语句,叫做命题.三、命题的构成命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.命题常可以写成“如果……那么……”的形式,这时“如果”后面的部分是题设,“那么”后面的部分是结论.例如,上面命题(5)中,“两条直线都与第三条直线平行”是已知事项,是题设,“这两条直线也互相平行”是由已知事项推出的事项,是结论.有些命题的题设和结论不明显,怎样才能找出题设和结论呢?我们可以将它们改写成“如果……那么……”的形式.例如,上面命题(1)可改写成:如果两个角是对顶角,那么这两个角相等.请你把上面的命题(3)、(6)改写成“如果……那么……”的形式,并指出它的题设和结论.四、命题的真假上面的命题中有正确的,也有错误的,正确的命题叫做真命题,错误的命题叫做假命题,如果是真命题,题设成立,那么结论一定成立,如果是假命题,题设成立,不一定能保证结论成立.要确定一个命题是真命题,必须通过推理证实,推理的过程叫做证明,通过证明是真的命题叫做定理,定理是推理的依据;要确定一个命题是假命题,只需举一个反例即可.例1、把下列命题改写成“如果……那么……”的形式:(1)垂直于同一直线的两直线平行;(2)对顶角相等.小结:添加“如果”“那么”后,命题的意义不能改变.改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨.改写过程中,可适当增加词语,切不可生搬硬套.例2、指出下列命题的题设和结论:(1)如果AB⊥CD,垂足为O,那么∠AOC=90°;(2)两直线平行,同位角相等;(3)邻补角互补.解题反思:(1)区分不出命题的题设和结论时,就把命题改写成“如果……那么……”的形式;(2)命题的题设与结论不包括“如果”和“那么”这些字眼.四、课堂练习练习1:把下列命题改写成“如果……那么……”的形式:(1)两条平行线被第三条直线所截,内错角相等;(2)平行于同一直线的两直线平行;(3)直角三角形的两个锐角互余;(4)等角的补角相等.练习2:指出下列命题的题设和结论,并说明哪些是真命题,哪些是假命题:(1)如果AC=BC,那么C是线段AB的中点;(2)如果∠1= ∠2,∠2= ∠3,那么∠1= ∠3;(3)若xy=0,则x=0;(4)大于直角的角是钝角.五、课堂小结1.本节课你学习了哪些知识?2.本节课你掌握了哪些数学方法?3.本节课你最大的体验是什么?六、作业:判断下列命题是真命题还是假命题:(1)两个锐角的和是锐角;(2)邻补角是互补的角;(3)同旁内角互补.(2)教学目标:了解命题、定理、证明的含义,会区分命题的题设和结论.重点难点:命题及组成是重点;区分命题的题设和结论是难点.教学过程一、情景导入请同学们举出我们学过的一些真命题的例子.二、定理的概念一些命题的正确性是经过推理证实的,这样得到的真命题叫做定理.问题:你能再举出一些基本事实或定理的例子吗?三、命题“在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条”是真命题吗?如果是,说明理由,如果不是,请举出反例.四、例题例1.如图1,已知直线b∥c,a⊥b.求证a⊥c.证明:∵a⊥b(已知),∴∠1=90º(垂直定义).又b∥c(已知),∴∠1=∠2(两直线平行,同位角相等).∴∠2=∠1=90º(等量代换).∴a⊥c(垂直的定义).注:证明中的每一步推理都要有根据,不能“想当然”,这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.四、课堂练习练习1:1.在下面的括号内,填上推理的依据.如图3,∠A+∠B=180º,求证∠C+∠D=180º.证明:∵∠A+∠B=180º(已知),∴AD∥BC().∴∠C+∠D=180º().练习2:2.命题“同位角相等”是真命题吗?如果是,说出理由;如果不是,请举出反例.五、课堂小结通过本节课的学习,你有哪些新的收获?在下面括号内,填上推理的根据.(1)如图5,AB和CD相交于点O,∠A=∠B.求证:∠C=∠D.证明:∵∠A=∠B(已知),∴AC∥BD().∴∠C=∠D().在下面括号内,填上推理的根据.(2)已知:如图6,AB⊥BC,BC⊥CD,且∠1=∠2.求证:BE∥CF.证明:∵AB⊥BC,BC⊥CD(已知),∴ = =90°().∵∠1=∠2(已知),∴ = (等式性质).∴BE∥CF(). D CBA六、作业:教材习题综合运用第13题.。

人教版七年级数学下册5.3.2《命题、定理、证明》说课稿

人教版七年级数学下册5.3.2《命题、定理、证明》说课稿

人教版七年级数学下册5.3.2《命题、定理、证明》说课稿一. 教材分析《人教版七年级数学下册5.3.2<命题、定理、证明>》这一节主要让学生了解命题、定理和证明的概念。

通过学习,学生能理解命题的含义,区分定理和证明,并学会运用证明的方法来解决数学问题。

教材通过丰富的实例和具有启发性的问题,引导学生主动探索、发现和证明数学结论,培养学生的逻辑思维能力和数学素养。

二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,例如了解四则运算、几何图形的性质等。

但部分学生可能对抽象的逻辑推理和证明过程感到困难,对定理和证明的概念理解不深。

因此,在教学过程中,要关注学生的个体差异,引导他们通过观察、思考、讨论和动手操作等方式,逐步理解和掌握知识。

三. 说教学目标1.知识与技能:使学生了解命题、定理和证明的概念,学会运用证明的方法来解决数学问题。

2.过程与方法:通过观察、思考、讨论和动手操作等方式,培养学生的逻辑思维能力和数学素养。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、坚持真理的精神。

四. 说教学重难点1.重点:命题、定理和证明的概念,证明的方法。

2.难点:对命题、定理和证明的理解,证明方法的运用。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探索、发现和证明数学结论。

2.运用多媒体课件、实物模型等教学手段,辅助学生直观地理解概念和证明过程。

3.小组讨论,让学生在合作交流中提高逻辑思维能力。

4.注重实践操作,让学生动手动脑,增强对知识的理解和运用能力。

六. 说教学过程1.导入:通过一个有趣的数学故事,引发学生对命题、定理和证明的好奇心,激发他们的学习兴趣。

2.新课导入:介绍命题、定理和证明的概念,引导学生理解它们之间的关系。

3.实例讲解:分析具体的数学问题,讲解证明的方法,让学生学会如何运用证明来解决实际问题。

4.小组讨论:学生进行小组讨论,让他们分享自己的理解和方法,互相学习和借鉴。

5.3.2 命题、定理、证明(教案)

5.3.2 命题、定理、证明(教案)

5.3.2 命题、定理、证明(第2课时) 教学目标一、基本目标【知识与技能】1.理解命题的概念,能区分命题的题设和结论,并把命题写成“如果……那么……”的形式.2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对假命题举反例.【过程与方法】通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语言正确画出几何图形的能力.【情感态度与价值观】初步培养学生用几何语言叙述的能力.二、重难点目标【教学重点】命题的概念和区分命题的题设与结论.【教学难点】区分命题的题设和结论.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P20~P22的内容,完成下面练习.【3 min反馈】(一)命题1.判断一件事情的语句叫做命题.命题由题设和结论两部分组成.2.如果题设成立,那么结论一定成立,这样的命题叫做真命题.题设成立,不能保证结论一定成立,这样的命题叫做假命题.(二)定理与证明3.经过推理证实的真命题叫做定理.在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫做证明.判断一个命题是假命题,只要举出一个反例,它符合命题的题设,但不满足结论就可以了.4.证明命题的步骤:(1)画出命题的图形.先根据命题的题设即已知条件,画出图形,再把命题的结论即求证的内容在图上标出.还要根据证明的需要,在图上标出必要的字母或符号,以便于叙述或推理过程的表达.(2)结合图形写出已知、求证.把命题的题设化为几何符号的语言写在已知中,命题的结论转化为几何符号的语言写在求证中.(3)经过分析,找出由已知推得求证的途径,写出推理的过程.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】把下列命题写成“如果……那么……”的形式.(1)内错角相等,两直线平行;(2)等角的余角相等.【互动探索】(引发学生思考)这两个命题的题设和结论分别是什么?改写时,应注意什么问题。

【解答】(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(2)如果两个角是相等的角,那么它们的余角相等.【互动总结】(学生总结,老师点评)把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.【例2】证明命题“三角形的三内角和为180°”是真命题.【互动探索】(引发学生思考)证明命题是真命题的步骤是什么?【解答】已知:∠A、∠B、∠ACB为△ABC的三个内角.求证:∠A+∠B+∠ACB=180°.证明:作射线BD,过点C作CE∥BA,如图.∵CE∥BA,∴∠1=∠A,∠2=∠B.∵∠ACB+∠1+∠2=180°,∴∠A+∠B+∠ACB=180°.∴命题“三角形的三内角和为180°”是真命题.【互动总结】(学生总结,老师点评)添加辅助线,将三角形的内角和进行转化是证明的关键.活动2巩固练习(学生独学)1.下列语句中,不是命题的是(D)A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线2.下列命题中,是真命题的是(D)A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0D.若a·b=0,则a=0或b=03.举反例说明下列命题是假命题.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab=0,则a+b=0.解:(1)两条平行直线被第三条直线所截形成的内错角,这两个角不是对顶角,但是它们相等.(2)当a=5,b=0时,ab=0,但a+b≠0.4.命题“若n是自然数,则代数式(3n+1)(3n+2)的值是3的倍数”.(1)写出命题的题设和结论;(2)是真命题还是假命题?并说明理由.解:(1)命题的题设是n是自然数,结论是代数式(3n+1)(3n+2)的值是3的倍数.(2)是假命题.理由:∵(3n+1)(3n+2)=9n2+6n+3n+2=9n2+9n+3-1=3(3n2+3n+1)-1,又n为自然数,∴3(3n2+3n+1)-1不为3的倍数.∴是假命题.活动3拓展延伸(学生对学)【例3】求证:两条直线平行,一组内错角的平分线互相平行.【互动探索】按证明与图形有关的命题的一般步骤进行.要证明两条直线平行,可根据平行线的判定方法来证明.【解答】已知:如图,已知AB ∥CD ,直线AB 、CD 被直线MN 所截,交点分别为P 、Q ,PG 平分∠BPQ ,QH 平分∠CQP .求证:PG ∥HQ.证明:∵AB ∥CD ,∴∠BPQ =∠CQP (两直线平行,内错角相等).∵PG 平分∠BPQ ,QH 平分∠CQP ,∴∠GPQ =12∠BPQ ,∠HQP =12∠CQP , ∴∠GPQ =∠HQP ,∴PG ∥HQ (内错角相等,两直线平行).【互动总结】(学生总结,老师点评)证明与图形有关的命题时,正确分清命题的题设和结论是证明的关键.应先结合题意画出图形,再根据图形写出已知与求证,然后进行证明.环节3 课堂小结,当堂达标(学生总结,老师点评)命题⎩⎪⎨⎪⎧ 概念结构真、假命题证明与举反例练习设计请完成本课时对应练习!。

人教版七年级数学(下)—教案:5.3.2命题、定理、证明优秀教学案例

人教版七年级数学(下)—教案:5.3.2命题、定理、证明优秀教学案例
3.教师对学生的学习成果进行肯定和鼓励,增强他们的自信心和自尊心。
4.针对学生的学习情况,调整教学策略,为下一节课的教学做好准备。
五、案例亮点
1.情境创设:本节课通过生活实例和多媒体展示,有效地激发了学生的学习兴趣,使他们能够主动参与到课堂学习中。情境创设不仅增强了学生对数学知识的理解,还提高了他们的学习积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发他们学习数学的内在动力。
2.培养学生的自信心和自尊心,让他们感受到自己在数学学习中的进步和成就。
3.引导学生认识到数学的严谨性和逻辑性,培养他们的思维品质和道德素养。
4.通过对命题、定理和证明的学习,使学生感受到数学的美丽和力量,提高他们对数学价值观的认识。
2.问题导向:教师在教学中提出了具有挑战性和引导性的问题,引导学生进行深入思考和探索。问题导向的教学策略使得学生在解决问题的过程中,能够不断提高自己的数学思维水平和解决问题的能力。
3.小组合作:教师组织学生进行小组讨论和合作,培养了他们的团队协作能力和沟通能力。小组合作使得每个学生都能在课堂上发挥自己的特长,提高了他们的自主学习能力和合作意识。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,培养他们的自我评价和自我调节能力。
2.组织学生进行互评和小组评价,让他们学会倾听他人的意见,提高他们的批判性思维。
3.教师对学生的学习成果进行肯定和鼓励,增强他们的自信心和自尊心。
4.结合学生的学习情况,调整教学策略,为下一节课的教学做好准备。
四、教学内容与过程
(二)问题导向
1.提出具有挑战性和引导性的问题,激发学生的思维活力,培养他们的解决问题的能力。
2.引导学生通过讨论和思考,逐步解决问题,让他们体验到解决问题的过程和成就感。

人教版七年级数学下册教案 5-3-2 命题、定理、证明

人教版七年级数学下册教案 5-3-2 命题、定理、证明

5.3.2 命题、定理、证明一、教学目标【知识与技能】1.理解命题,定理及证明的概念,会区分命题的题设和结论.2.会判断真假命题,知道证明的意义及必要性,了解反例的作用.3.理解证明要步步有据,培养学生养成科学严谨的学习态度. 【过程与方法】经历判断命题真假的过程,对命题的真假有一个初步的了解. 【情感态度与价值观】初步培养学生不同几何语言相互转化的能力.二、课型新授课三、课时1课时四、教学重难点【教学重点】命题的概念和区分命题的题设与结论.【教学难点】区分命题的题设和结论.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)让学生阅读课件中的两个例子,讨论句子含义。

(二)探索新知1.出示课件4-5,探究命题的概念教师出示问题:完成下列问题:请同学读出下列语句:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果仍是等式.这些句子有何特点?学生答:都对事情做出了判定.教师问:这样的句子叫做命题.什么叫做命题?学生答:像这样判断一件事情的语句,叫做命题.总结点拨:(出示课件5)教师强调:1.只要对一件事情作出了判断,不管正确与否,都是命题.如:相等的角是对顶角.2.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.如:画线段AB=CD.考点1:命题的识别判断下列四个语句中,哪个是命题,哪个不是命题?并说明理由:(1)对顶角相等吗?(2)画一条线段AB=2cm;(3)两条直线平行,同位角相等;(4)相等的两个角,一定是对顶角.(出示课件6)师生共同讨论解答如下:解:(3)(4)是命题,(1)(2)不是命题.理由如下:(1)是问句,故不是命题;(2)是做一件事情,也不是命题.总结点拨:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”.出示课件7,学生自主练习后口答,教师订正.2.出示课件8-10,命题的构成教师问:观察下列命题,你能发现这些命题有什么共同的结构特征?与同伴交流.(1)如果两个三角形的三条边相等,那么这两个三角形的周长相等;(2)如果两个数的绝对值相等,那么这两个数也相等;(3)如果一个数的平方等于9,那么这个数是3.学生答:都是“如果……那么……”的形式.教师问:命题一般都可以写成“如果……那么……”的形式.1.“如果”后接的部分是题设,2.“那么”后接的部分是结论.如命题:熊猫没有翅膀.改写为:“如果……那么……”的形式.学生答:如果这个动物是熊猫,那么它就没有翅膀.师生一起总结:添加“如果”“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套.总结点拨:(出示课件10)命题的组成:题设——已知事项命题结论——由已知事项推出的事项两直线平行,同位角相等题设(条件)考点2:命题表述形式的变换分别把下列命题写成“如果……那么……”的形式.(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等. (出示课件11)学生独立思考后,师生共同分析解答.教师依次展示学生解答过程:学生1解:(1)如果有两个定点,那么过这两点有且只有一条直线;学生2解:(2)如果两个角分别是两个等角的补角,那么这两个角相等;学生3解:(3)如果两个角是内错角,那么这两个角相等.总结点拨:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.出示课件12,学生自主练习后口答,教师订正.3.出示课件13,探究真假命题的概念.教师问:有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时,结论不一定成立. 如命题:“如果一个数能被4整除,那么它也能被2整除”是条件也成立,结论也成立吗?学生答:如命题:“如果一个数能被4整除,那么它也能被2整除”是条件也成立,结论也成立.教师问:上面的命题:条件也成立,结论也成立.这样的命题是正确命题. 如命题:“如果一个数能被4整除,那么它也能被2整除”是一个正确的命题吗?学生答:是一个正确的命题.教师问:有些命题题设成立时,结论不一定成立.这样的命题是错误的命题.如命题:“如果两个角互补,那么它们是邻补角”就是一个怎样的命题呢?学生答:“如果两个角互补,那么它们是邻补角”就是一个错误的命题.教师问:正确的命题叫真命题,错误的命题叫假命题.则命题“内错角相等,两直线平行”是真命题还是假命题?学生答:是真命题.教师问:怎样确定定一个命题真假呢?师生一起解答:确定一个命题真假的方法:利用已有的知识,通过观察、验证、推理、举反例等方法.考点3:真假命题的识别下列命题哪些命题是正确的,哪些命题是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.学生独立思考后,师生共同解答.解:真命题有(2)、(3)、(5);假命题有(1)、(4).总结点拨:判断一个命题是真命题还是假命题,就是判断一个命题是否正确,即由条件能否得出结论.如果命题正确,就是真命题;如果命题不正确,就是假命题.出示课件15,学生自主练习后口答,教师订正.4.出示课件16-19,探究证明和反证法(举反例)教师出示问题:一天早上,张老汉来到公安局里告状说:王五刚刚在他地里偷了一袋子苹果.公安局长立即派干警将王五传唤到公安局审讯:公安局长问张老汉:“你怎知是王五偷了你的苹果?”“因为早上我发现王五从苹果园那边过来,把一袋东西背回家,还发现我果园的苹果被人偷了,我知道王五家没有苹果树.所以我家苹果肯定是王五偷的.”张老汉想证明什么?他是怎么证明的?学生答:张老汉想证明偷了他的苹果,王五从他家的苹果园那边经过,把一袋东西背回家.教师问:根据张老汉的证明,你能断定苹果是王五偷的吗?你觉得有疑点吗?学生答:根据张老汉的证明,不能断定苹果是王五偷的,有疑点:因为只是经过,张老汉的推断太牵强.总结点拨:(出示课件16)这种从已知条件出发(列出理由),推断出结论的证明方法,叫综合法.综合法是最常用的证明方法.教师出示问题:公安局长一时拿不定主意,就问旁边的梁副局长:“梁局长,你怎么看?”梁局长会如何回答呢?学生答:梁局长说“这事要证明是王五干的,还得弄清那袋子里装的是不是刚摘的苹果,还要看看地里的脚印是不是王五的才行.如果袋子里装的是刚摘的苹果,且地里的脚印是王五的,那就一定是他偷的.”总结点拨:(出示课件17)从结论出发,逆着寻找所需要的条件的思考过程,叫分析.在分析的过程中,如果发现所需要的条件,都已具备或可从已知条件中推得.那么证明就很容易了.总结点拨:(出示课件18)证明的概念在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫作证明.教师强调:证明的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.教师问:如何判定一个命题是假命题呢?学生答:举一个反例即可.教师问:例如,要判定命题“相等的角是对顶角”是假命题如何证明?师生一起解答:可以举出如下反例:如图,OC是∠AOB的平分线,∠1=∠2,但它们不是对顶角.总结点拨:(出示课件19)确定一个命题是假命题的方法:只要举出一个例子(反例):它符合命题的题设,但不满足结论即可.考点4:利用证明推理解决问题如图,∠1=∠2,试说明直线AB,CD平行.(出示课件20)师生共同分析:要证明AB,CD平行,就需要同位角相等的条件,图中∠1与∠3就是同位角.我们只要找到:能说明它们相等的条件就行了.从图中,我们可以发现:∠2与∠3是对顶角,所以∠3=∠2.这样我们就找到了∠1与∠3相等的确切条件了.学生独立思考后,师生共同解答.证明:∵∠2与∠3是对顶角,∴∠3=∠2.又∵∠1=∠2,∴∠1=∠3.∴AB∥CD.出示课件21,学生自主练习,教师给出答案。

教学设计3:5.3.2 命题、定理、证明

教学设计3:5.3.2 命题、定理、证明
4、有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时,结论不一定成立。
如命题:“如果一个数能被4整除,那么它也能被2整除”就是一个正确的命题。
如命题:“如果两个角互补,那么它们是邻补角”就是一个错误的命题。
正确的命题叫真命题,错误的命题叫假命题。
确定一个命题真假的方法:利用已有的知识,通过观察、验证、推理、举反例等方法。
公理举例:
1、直线公理:经过两点有且只有一条直线
2、线段公理:两点的所有连线中,线段最短
3、平行公理:经过直线外一点,有且只有一条直线与已知直线平行
4、平行线判定公理:同位角相等,两直线平行。
5、平行线性质公理:两直线平行,同位角相等。
定理举例:
1、补角的性质:同角或等角的补角相等
2、余角的性质:同角或等角的余角相等
3、对顶角的性质:对顶角相等
4、垂线的性质:①过一点有且只有一条直线与已知直线垂直;②垂线段最短。
5、平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
6、平行线的判定定理:内错角相等,两直线平行。同旁内角互补,两直线平行。
7、平行线的性质定理:两直线平行,内错角相等。两直线平行,同旁内角互补。
教学难点
区分命题的题设和结论,会把一些简单命题改写“如果…….那么….”的形式
课前准备
ppt课件
教学方法
引导探究
教学活动过程
师生活动
设计意图
一、创设情境,导入新课
下列语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断?
1、对顶角相等;2、画一个角等于已知角;3、两直线平行,同位角相等;
4、a、b两条直线平行吗?5、温柔的李明明;6、玫瑰花是动物.

人教版七年级数学下册第五章5.3.2命题、定理、证明(教案)

人教版七年级数学下册第五章5.3.2命题、定理、证明(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《命题、定理、证明》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断真假的陈述?”比如,判断广告中的产品宣传是否真实。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索命题的奥秘。
在学生小组讨论环节,大家对于定理在实际生活中的应用提出了很多有趣的观点。但同时我也注意到,部分学生在讨论过程中较为沉默,可能是因为他们对主题不他们积极参与讨论,提高自信心。
首先,关于命题的真假判断,大多数学生能够理解并掌握基本的判断方法,但在遇到一些复杂命题时,仍然会出现判断失误的情况。这说明在今后的教学中,我需要多设计一些具有挑战性的题目,帮助学生提高判断能力。
其次,定理的应用是学生们普遍感到困惑的地方。在讲解定理时,我应该更加注重引导学生理解定理的适用条件,以及如何在实际问题中灵活运用定理。通过案例分析,让学生明白定理并不是孤立的知识点,而是可以解决实际问题的有力工具。
1.教学重点
(1)理解命题的概念:命题是描述性语句,可以判断其真假。本节课重点是让学生掌握命题的基本要素,如何判断一个命题的真假,以及如何书写正确的命题。
举例:判断下列命题的真假:“一个三角形的三个内角和为180度。”
(2)掌握定理的定义:定理是经过证明的命题。重点在于让学生理解定理在几何证明中的重要性,并学会运用定理进行问题的解决。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解命题的基本概念。命题是可以判断真假的陈述句。它是数学逻辑推理的基础,是建立定理和进行证明的前提。
2.案例分析:接下来,我们来看一个具体的案例。通过分析“一个三角形的三个内角和为180度”这个命题,了解它在几何证明中的应用。

人教版七年级数学下册5.3.2《命题、定理、证明》教学设计

人教版七年级数学下册5.3.2《命题、定理、证明》教学设计

人教版七年级数学下册5.3.2《命题、定理、证明》教学设计一. 教材分析《命题、定理、证明》是人教版七年级数学下册第五章第三节的内容,主要介绍了命题、定理和证明的概念。

这部分内容是学生学习几何证明的基础,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。

本节课的内容主要包括命题的定义、分类及定理的概念,以及证明的方法。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于基本的几何概念和性质有一定的了解。

但是,学生在证明方面的知识和能力还有待提高,因此,在教学过程中需要注重引导学生理解和掌握证明的方法和技巧。

三. 教学目标1.理解命题、定理和证明的概念,能够区分它们之间的联系和区别。

2.学会用几何语言表达命题和定理。

3.掌握证明的方法和技巧,能够运用所学的知识解决一些简单的几何问题。

四. 教学重难点1.重点:命题、定理和证明的概念及它们之间的联系和区别。

2.难点:证明的方法和技巧,以及如何运用所学的知识解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主学习、合作探究的方式掌握命题、定理和证明的概念。

2.利用几何图形和实例,帮助学生直观地理解命题、定理和证明的联系和区别。

3.通过练习和案例分析,培养学生的证明能力和解决实际问题的能力。

六. 教学准备1.准备相关的几何图形和实例,用于讲解和展示。

2.准备一些练习题和案例,用于巩固和拓展所学知识。

七. 教学过程1.导入(5分钟)利用一个简单的几何问题引入命题、定理和证明的概念,激发学生的兴趣。

2.呈现(10分钟)讲解命题、定理和证明的定义及它们之间的联系和区别。

通过几何图形和实例,让学生直观地理解这些概念。

3.操练(10分钟)让学生分组讨论,分析一些给定的几何问题,尝试运用所学的命题、定理和证明方法解决问题。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)让学生独立完成一些相关的练习题,巩固对命题、定理和证明的理解。

人教版七年级下册5.3.2命题、定理、证明教学设计

人教版七年级下册5.3.2命题、定理、证明教学设计

人教版七年级下册5.3.2命题、定理、证明教学设计一、教学目标1.理解命题、定理、证明的定义与本质;2.掌握命题、定理、证明的基本方法;3.培养学生正确的逻辑思维方式;4.提高学生的实际问题解决能力。

二、教学重点和难点1.命题、定理、证明的区别;2.掌握证明的基本方法和要素;3.发现并利用生活中的具体例子。

三、教学过程1.导入环节1.老师与学生对话,引导学生探讨“世界上有哪些真理?”;2.引出知识点——命题、定理、证明。

2.讲授环节(1)命题1.定义:能够判断真假的陈述句;2.给出多个例子,使学生彻底领悟命题的概念。

(2)定理1.定义:在一定条件下成立的命题;2.给出具体定理的例子,并与学生一起探讨它的证明方法。

(3)证明1.定义:利用已知的命题或定理,通过演绎推理来证明给定命题的正确性;2.讲解证明的基本方法和注意事项:–观察分析,找出已知条件、所求结论以及中间步骤;–运用基本运算法则和逻辑法则进行推理;–从已知条件出发,按照逻辑关系,步步深入推理,直至得到所求结论;–在证明中,要小心使用某些特殊的词句,比如“一定”、“必然”、“当且仅当”等。

3.实践环节1.老师出一些具体的例子,让学生按照证明的方法,证明其正确性;2.或者让学生先猜测一些规律,再通过证明来验证其是否成立。

4.总结环节1.结合今天的学习内容,带领学生发现:命题、定理、证明有哪些联系和区别;2.老师总结本节课的内容,帮助学生理顺知识脉络;3.常见错题集讲解,总结容易犯的错误。

四、教学评估1.课堂上通过观察和听取学生的解答来了解他们掌握的程度;2.布置课后作业,检验学生学习效果;3.半个月后,再对此知识点进行检测,检查学习效果是否稳定。

人教版数学七年级下册教案5.3.2《 命题、定理、证明》

人教版数学七年级下册教案5.3.2《 命题、定理、证明》

人教版数学七年级下册教案5.3.2《命题、定理、证明》一. 教材分析《命题、定理、证明》是人教版数学七年级下册的教学内容,这部分内容是学生学习几何初步知识的重要环节。

通过学习命题、定理和证明,使学生了解几何学的基本概念和逻辑推理方法,培养学生空间想象能力和思维能力。

本节课的内容在教材中起到了承前启后的作用,为后续几何知识的学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念,具备了一定的逻辑推理能力。

但部分学生对抽象的命题、定理和证明的概念理解起来较为困难,需要通过具体例子来帮助学生理解和掌握。

三. 教学目标1.了解命题、定理、证明的概念,理解它们之间的关系。

2.学会用逻辑推理的方法证明几何命题。

3.培养学生的空间想象能力和思维能力。

四. 教学重难点1.教学重点:命题、定理、证明的概念及逻辑推理方法。

2.教学难点:理解命题、定理、证明之间的关系,运用逻辑推理证明几何命题。

五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。

通过具体例子引入概念,引导学生主动探究、合作交流,培养学生的逻辑推理能力。

六. 教学准备1.教学PPT课件。

2.相关例题及练习题。

3.几何画图工具。

七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的一些几何现象,引导学生思考这些现象背后的几何规律。

通过观察和讨论,让学生感受到几何学的魅力,激发学生的学习兴趣。

2.呈现(10分钟)介绍命题、定理、证明的概念,并通过PPT课件展示相关例题。

让学生直观地了解命题、定理、证明之间的关系,帮助学生建立基本概念。

3.操练(15分钟)让学生分组讨论,选取一些简单的几何命题,尝试用逻辑推理的方法进行证明。

教师巡回指导,解答学生疑问,帮助学生掌握证明的方法。

4.巩固(10分钟)出示一些有关命题、定理、证明的练习题,让学生独立完成。

教师及时批改、讲解,巩固学生所学知识。

5.拓展(10分钟)引导学生思考:如何判断一个命题是真命题还是假命题?让学生通过举例、分析,掌握判断命题真假的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.3.2 命题、定理、证明(教案)
这个命题的题设和结论分别是什么?这个命题是真命题还是假命题?写出已知、求证和证明过程。

已知直线b//c,a⊥b,求证a⊥c
证明:∵a⊥b(已知)
∴∠1=90°(垂直的定义)
又b//c(已知)
∴∠1=∠2(两直线平行,同位角相等)
∴∠2=∠1=90°(等量代换)
∴a⊥c(垂直的定义)
答案:如果两条直线都与第三条直线平行,那么这两条直线互相平行
7、阅读以下两小题后作出相应的解答:
(1)“同位角相等,两直线平行”,“两直线平行,同位角相等”,这两个命题的题设和结论在命题中的位置恰好对凋,我们把其中一命题叫做另一个命题的逆命题,请你写出命题“角平分线上的点到角两边的距离相等“的逆命题,并指出逆命题的题设和结论;
(2)根据以下语句作出图形,并写出该命题的文字叙述.
已知:过直线AB上一点O任作射线OC,OM、ON分别平分∠AOC、∠BOC,则OM⊥ON.
答案:
解:
(1)逆命题是:到角两边距离相等的点在这个角的平分线上,题设是到角两边距离相等的点,结论是该点在这个角的平分线上;
(2)如图:
该命题的文字描述是:邻补角的平分线互相垂直.。

相关文档
最新文档