三角函数的易错点以及典型例题与高考真题

合集下载

高考数学压轴专题最新备战高考《三角函数与解三角形》易错题汇编及解析

高考数学压轴专题最新备战高考《三角函数与解三角形》易错题汇编及解析

新数学复习题《三角函数与解三角形》专题解析一、选择题1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 33f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.2.若函数()sin 2f x x =向右平移6π个单位后,得到()y g x =,则关于()y g x =的说法正确的是( ) A .图象关于点,06π⎛⎫- ⎪⎝⎭中心对称 B .图象关于6x π=-轴对称C .在区间5,126ππ⎡⎤--⎢⎥⎣⎦单调递增 D .在5,1212ππ⎡⎤-⎢⎥⎣⎦单调递增 【答案】D 【解析】 【分析】利用左加右减的平移原则,求得()g x 的函数解析式,再根据选项,对函数性质进行逐一判断即可. 【详解】函数()sin 2f x x =向右平移6π个单位,得()sin 2()sin(2)63g x x x ππ=-=-. 由23x π-=k π,得26k x ππ=+()k ∈Z ,所以,06π⎛⎫- ⎪⎝⎭不是()g x 的对称中心,故A 错; 由23x π-=2k ππ+, 得212k x π5π=+()k ∈Z ,所以()g x 的图象不关于6x π=-轴对称,故B 错;由222232k x k πππππ-≤-≤+,得1212k x k π5ππ-≤≤π+()k ∈Z , 所以在区间5,126ππ⎡⎤--⎢⎥⎣⎦上()g x 不单调递增,在5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增, 故C 错,D 对; 故选:D . 【点睛】解答三角函数问题时一般需将解析式化简为sin()y A x B ωϕ=++或cos()y A x B ωϕ=++,从而可利用正(余)弦型周期计算公式2||T πω=周期,对正弦型函数,其函数图象的对称中心为,k B πϕω-⎛⎫⎪⎝⎭,且对称中心在函数图象上,而对称轴必经过图象的最高点或最低点,此时函数取得最大值或最小值.3.如图所示,已知双曲线C :()222210,0x y a b a b-=>>的右焦点为F ,双曲线的右支上一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=︒,且3BF AF =,则双曲线C 的离心率是( )A .27B .52C .7 D .7【答案】C 【解析】 【分析】利用双曲线的性质,推出AF ,BF ,通过求解三角形转化求解离心率即可. 【详解】解:双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,双曲线C 的右支上一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=︒,且||3||BF AF =,可得||||2BF AF a -=,||AF a =,||3BF a =,60F BF ∠'=︒,所以2222cos60F F AF BF AF BF '=+-︒g ,可得222214962c a a a =+-⨯,2247c a =,所以双曲线的离心率为:72e =. 故选:C .【点睛】本题考查双曲线的简单性质的应用,三角形的解法,考查转化思想以及计算能力,属于中档题.4.在△ABC 中,7b =,5c =,3B π∠=,则a 的值为 A .3 B .4C .7D .8【答案】D 【解析】 【分析】根据题中所给的条件两边一角,由余弦定理可得2222cos b a c ac B =+-,代入计算即可得到所求的值.【详解】因为7,5,3b c B π==∠=,由余弦定理可得2222cos b a c ac B =+-,即214925252a a =+-⨯⨯,整理得25240a a --=, 解得8a =或5a =-(舍去),故选D. 【点睛】该题考查的是有关解三角形的问题,在解题的过程中,涉及到的知识点有余弦定理,解三角形所用的就是正弦定理和余弦定理,结合题中的条件,选择适当的方法求得结果.5.△ABC 中,已知tanA =13,tanB =12,则∠C 等于( )A .30°B .45°C .60°D .135°【答案】D 【解析】 【分析】利用三角形内角和为180o ,可得:tan tan()tan(+)C A B A B π=--=-,利用两角和公式和已知条件,即可得解. 【详解】 在△ABC 中,11tan tan 32tan tan()tan(+)=-1111tan tan 132A BC A B A B A B π++=--=-=-=---⋅,所以135C ?o .故选:D. 【点睛】本题考查了正切的两角和公式,考查了三角形内角和,考查了转化思想和计算能力,属于中档题.6.在ABC ∆中,角,,A B C 所对的边分别为,,a b c 满足,222b c a bc +-=,0AB BC ⋅>u ur u u r u u,2a =,则bc +的取值范围是( ) A .31,2⎛⎫ ⎪⎝⎭B.32⎫⎪⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .31,2⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】利用余弦定理222cos 2b c a A bc+-=,可得3A π=,由|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r,可得B为钝角,由正弦定理可得sin sin(120)30)o o b c B B B ∴+=+-=+,结合B 的范围,可得解【详解】由余弦定理有:222cos 2b c a A bc+-=,又222b c a bc +-=故2221cos 222b c a bc A bc bc +-===又A 为三角形的内角,故3A π=又a=sin sin sin(120)ob c c B C B ==- 又|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r故cos 0B B <∴为钝角3sin sin(120)sin 30)22o o b c B B B B B ∴+=+-=+=+(90,120)o o B ∈Q ,可得130(120150)sin(30)(2o o o o B B +∈∴+∈,330))22o b c B ∴+=+∈ 故选:B 【点睛】本题考查了正弦定理、余弦定理和向量的综合应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题7.在ABC ∆中,若sin :sin :sin 2:3:4A B C =,则ABC ∆是( ) A .直角三角形 B .钝角三角形C .锐角三角形D .等腰直角三角形【答案】B 【解析】 【分析】由题意利用正弦定理,推出a ,b ,c 的关系,然后利用余弦定理求出cosC 的值,即可得解. 【详解】∵sinA :sinB :sinC=2:3:4∴由正弦定理可得:a :b :c=2:3:4, ∴不妨令a=2x ,b=3x ,c=4x ,∴由余弦定理:c 2=a 2+b 2﹣2abcosC ,所以cosC=2222a b cab+-=2224916223x x x x x +-⨯⨯=﹣14, ∵0<C <π, ∴C 为钝角. 故选B . 【点睛】本题是基础题,考查正弦定理,余弦定理的应用,考查计算能力,常考题型.8.已知函数()sin (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( ) A .13B .23C .43D .83【答案】C 【解析】 【分析】利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω⎛⎫=+⎪⎝⎭,根据题意得出()832k k Z πππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭Q ,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>Q ,当0k =时,ω取得最小值43.故选:C. 【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.9.已知ABC V 的内角,,A B C 的对边分别为,,a b c ,且cos cos a B b A +=,1a =,b =c =( )A B .1CD 【答案】B 【解析】 【分析】先由正弦定理将cos cos a B b A +=中的边转化为角,可得sin()A B +=可求出角6C π=,再利用余弦定理可求得结果.【详解】解:因为cos cos a B b A +=,所以正弦定理得,sin cos sin cos A B B A +=所以sin()A B +=sin C =因为sin 0C ≠,所以cos C =, 又因为(0,)C π∈,所以6C π=,因为1a =,b =所以由余弦定理得,2222cos 13211c a b ab C =+-=+-⨯=, 所以1c = 故选:B 【点睛】此题考查的是利用正、余弦定理解三角形,属于中档题.10.在OAB ∆中,已知OB =u u u v 1AB u u u v=,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v的最小值为( )A B C .3D .2【答案】A 【解析】 【分析】根据OB =u u u r,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】在OAB ∆中,已知2OB =u u u r,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OBAOB OAB=∠∠u u u r u u u r 代入2sin 22OAB =∠,解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22,22⎛⎝⎭所以2222OA ⎛= ⎝⎭u u u r ,)2,0OB =u u u r因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r则)222,022OP λμ⎛ =+ ⎝⎭u u u r 222,22λμλ⎛⎫⎪ ⎪⎝⎭= 则2222222OP λμλ⎛⎫=++⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r2222λλμμ=++因为23λμ+=,则32μλ=- 代入上式可得()()22322232λλλλ+-+-==所以当95λ=时, min OP ==u u u r 故选:A 【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.11.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且ABC ∆的面积S C =,且1,a b ==c =( )A BC D 【答案】B 【解析】由题意得,三角形的面积1sin 2S ab C C ==,所以tan 2C =,所以cos 5C =,由余弦定理得2222cos 17c a b ab C =+-=,所以c =,故选B.12.ABC V 中,角A 、B 、C 的对边分别为a ,b ,c ,且tanC cos cos c B A =,若c =4a =,则b 的值为( )A .6B .2C .5D【答案】A 【解析】 【分析】由正弦定理,两角和的正弦公式化简已知等式可得sin tan C C C =,结合sin 0C ≠,可求得tan C =()0,C π∈,可求C ,从而根据余弦定理24120b b --=,解方程可求b 的值. 【详解】解:∵tan cos cos c C B A =, ∴由正弦定理可得:)()sin tan sin cos sin cos C C A B B A A B C =+=+=,∵sin 0C ≠,∴可得tan C = ∵()0,C π∈, ∴3C π=,∵c =4a =,∴由余弦定理2222cos c a b ab C =+-,可得212816242b b =+-⨯⨯⨯,可得24120b b --=,∴解得6b =,(负值舍去). 故选:A . 【点睛】本题考查正弦定理、余弦定理的综合应用,其中着重考查了正弦定理的边角互化、余弦定理的解三角形,难度一般.利用边角互化求解角度值时,注意三角形内角对应的角度范围.13.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:①实数a 的值为1;②()()1,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为23π. 其中所有正确结论的编号是( ) A .①②③ B .①③④C .①④D .③④【答案】B 【解析】 【分析】 根据56x π=是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为2Tπ=,然后由()()12f x f x =-,得到()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称求解验证.【详解】 ∵56x π=是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-⎪⎝⎭,令0x =,得()503f f π⎛⎫=⎪⎝⎭,即-1a =,①正确; ∴()sin 2sin 3π⎛⎫=-=- ⎪⎝⎭f x x x x .又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为2Tπ=,且()()12f x f x =-, ∴()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称,∴121233223x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π,k Z ∈, ∴12223x x k ππ+=+,k Z ∈,当0k =时,12x x +取最小值23π,所以①③④正确,②错误. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.14.已知1tan 4,tan θθ+=则2sin ()4πθ+=( )A .15 B .14C .12D .34【答案】D 【解析】 【分析】根据同角三角函数的关系化简1tan 4tan θθ+=成关于正余弦的关系式,再利用降幂公式与诱导公式化简2sin ()4πθ+求解即可.【详解】由题, 1tan 4,tan θθ+=则22sin cos sin cos 444sin cos 1cos sin sin cos θθθθθθθθθθ++=⇒=⇒=, 故1sin 22θ=. 所以2sin ()4πθ+=1cos 222πθ⎛⎫-+ ⎪⎝⎭1sin 2324θ+==.【点睛】本题主要考查了三角函数的公式运用,在有正切函数时可考虑转化为正余弦的关系进行化简,属于基础题.15.在ABC ∆中,角A ,B ,C 所对的边分别为,,,3,sin a b c a c b A ===cos ,6a B b π⎛⎫+= ⎪⎝⎭则( )A .1 BC D 【答案】C 【解析】 【分析】将sin b A = cos 6a B π⎛⎫+ ⎪⎝⎭结合正弦定理化简,求得B ,再由余弦定理即可求得b . 【详解】因为sin b A = cos 6a B π⎛⎫+⎪⎝⎭,展开得sin b A =1?cos sin 2B a B -,由正弦定理化简得sin sinB A =1?cos sin 2B sinA B -= cos B即3tanB =,而三角形中0<B<π,所以π 6B =由余弦定理可得2222cos b a c ac B =+- ,代入(2223236b π=+-⨯⨯解得b =所以选C 【点睛】本题考查了三角函数式的化简,正弦定理与余弦定理的应用,属于基础题.16.在ABC ∆中,60B ∠=︒,AD 是BAC ∠的平分线交BC 于D ,BD =,1cos 4BAC ∠=,则AD =( )A .2 BC D .2【答案】A【分析】先求出sin 4BAD ∠=,再利用正弦定理求AD. 【详解】∵21cos 12sin 4BAC BAD ∠=-∠=,∴sin BAD ∠=.在ABD ∆中,sin sin AD BD B BAD =∠,∴sin 2sin BAD BD BAD =⋅==∠. 【点睛】本题主要考查二倍角的余弦和正弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.已知函数()()sin x f x x R ωφ+=∈,,其中0ωπφπ>-<,≤.若函数()f x 的最小正周期为4π,且当23x π=时,()f x 取最大值,是( ) A .()f x 在区间[]2ππ--,上是减函数 B .()f x 在区间[]0π-,上是增函数 C .()f x 在区间[]0π,上是减函数 D .()f x 在区间[]02π,上是增函数 【答案】B 【解析】 【分析】先根据题目所给已知条件求得()f x 的解析式,然后求函数的单调区间,由此得出正确选项. 【详解】由于函数()f x 的最小正周期为4π,故2π14π2ω==,即()1sin 2f x x φ⎛⎫=+ ⎪⎝⎭,2ππsin 1,33π6f φφ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭=⎭⎝.所以()1πsin 26f x x ⎛⎫=+ ⎪⎝⎭.由π1ππ2π2π2262k x k -≤+≤+,解得4π2π4π4π33k x k -≤≤+,故函数的递增区间是4π2π4π,4π33k k ⎡⎤-+⎢⎥⎣⎦,令0k =,则递增区间为4π2π,33⎡⎤-⎢⎥⎣⎦,故B 选项正确.所以本小题选B.本小题主要考查三角函数解析式的求法,考查三角函数单调区间的求法,属于基础题.18.已知函数())(0f x x ωϕω=+>,)22ππ-<ϕ<,1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是()A .2(23k -,42)3k +,k Z ∈ B .2(23k ππ-,42)3k ππ+,k Z ∈C .2(43k -,44)3k +,k Z ∈ D .2(43k ππ-,44)3k ππ+,k Z ∈【答案】C 【解析】 【分析】由三角函数图像的性质可求得:2πω=,6πϕ=-,即()sin()26f x x ππ=-,再令222262k x k ππππππ--+剟,求出函数的单调增区间即可.【详解】解:函数())(0f x x ωϕω=+>,)22ππ-<ϕ<, 因为1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,又4BC =,∴222()42T +=,即221216πω+=,求得2πω=.再根据123k πϕπ+=g ,k Z ∈,可得6πϕ=-,()3sin()26f x x ππ∴=-,令222262k x k ππππππ--+剟,求得244433k x k -+剟, 故()f x 的单调递增区间为2(43k -,44)3k +,k Z ∈, 故选:C . 【点睛】本题考查了三角函数图像的性质及单调性,属中档题.19.在三棱锥P ABC -中,PA ⊥平面ABC ,2π,43BAC AP ∠==,AB AC ==P ABC -的外接球的表面积为( )A .32πB .48πC .64πD .72π【答案】C【分析】先求出ABC V 的外接圆的半径,然后取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==,由于PA ⊥平面ABC ,故点O 为三棱锥P ABC -的外接球的球心,OA 为外接球半径,求解即可. 【详解】在ABC V 中,23AB AC ==,23BAC π∠=,可得6ACB π∠=, 则ABC V 的外接圆的半径2323π2sin 2sin 6AB r ACB ===,取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==, 因为PA ⊥平面ABC ,所以点O 为三棱锥P ABC -的外接球的球心, 则222OA OG AG =+,即外接球半径()222234R =+=,则三棱锥P ABC -的外接球的表面积为24π4π1664πR =⨯=. 故选C.【点睛】本题考查了三棱锥的外接球表面积的求法,考查了学生的空间想象能力,属于中档题.20.在函数:①cos |2|y x =;②|cos |y x =;③cos 26y x π⎛⎫=+ ⎪⎝⎭;④tan 24y x π⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为( ) A .①②③ B .①③④C .②④D .①③【答案】A 【解析】逐一考查所给的函数:cos 2cos2y x x == ,该函数为偶函数,周期22T ππ== ; 将函数cos y x = 图象x 轴下方的图象向上翻折即可得到cos y x = 的图象,该函数的周期为122ππ⨯= ; 函数cos 26y x π⎛⎫=+ ⎪⎝⎭的最小正周期为22T ππ== ; 函数tan 24y x π⎛⎫=-⎪⎝⎭的最小正周期为22T ππ==;综上可得最小正周期为π的所有函数为①②③. 本题选择A 选项.点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)”的形式,再利用周期公式即可.。

第五章 三角函数典型易错题集(解析版)

第五章 三角函数典型易错题集(解析版)

第五章 三角函数典型易错题集易错点1.忽略顺时针旋转为负角,逆时针旋转为正角。

【典型例题1】(2022·全国·高一专题练习)将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是( ) A .6πB .3π C .6π-D .3π-【错解】B将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ⨯=. 点评:学生对角的理解还是局限在0360之间,把角都当成正数,容易忽视角的定义,顺时针旋转为负,逆时针旋转为正。

【正解】D 【详解】将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ-⨯=-. 故选:D.易错点2.在三角函数定义中,忽略点坐标值的正负。

【典型例题2】(2022·湖北襄阳·高一期中)设α是第三象限角,(),4P x -为其终边上的一点,且1cos 5x α=,则tan α=( ) A .43-或43B .34C .43D .34-【错解】A解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:3x =±,所以(3,4)P ∴--或者(3,4)P ∴-,所以44tan 33α-∴==-或者44tan 33α-∴==-点评:学生在解此类问题时往往忽略了角α15x=方程时容易造成两种错误:①293a a =⇒=,这类错误往往学生只能看到正根,没有负根。

②第二类错误,本题也解出了3x =±,但是忽视了本题α是第三象限角,此时x 是负数,要舍去其中的正根。

【答案】C 【详解】解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:0x =或3x =±, 又α是第三象限角,0x ∴<,3x ∴=-,(3,4)P ∴--, 44tan 33α-∴==-. 故选:C .易错点3.分数的分子分母同乘或者同除一个数,分数的值不变(分数基本性质)【典型例题3】(2022·安徽省五河第一中学高二月考)已知tan 2θ=则22sin sin cos 2cos θθθθ+-的值为________. 【错解】4222222sin sin cos 2cos (sin sin cos 2cos )cos tan tan 24θθθθθθθθθθθ+-=+-÷=+-=点评:学生在此类问题时多数出现分式问题,习惯了分子分母同除以cos θ(或者2cos θ),但本题是一个整式,要先化成分式,才能进一步同时除以cos θ(或者2cos θ)。

高中数学基本题型系列与三角函数定义有关的易错题赏析

高中数学基本题型系列与三角函数定义有关的易错题赏析

高中数学基本题型系列与三角函数定义有关的易错题赏析例1 判断函数f(x)=1+sinx-cosx1+sinx+cosx的奇偶性.错解:∵f(x)=2sinx2(sinx2+cosx2)2cosx2(sinx2+cosx2)=tanx2,∴f(-x)=tan(-x2)=-tanx2=-f(x),∴f(x)是奇函数.错因剖析:研究函数,首先考虑函数的“定义域”,即要使该函数有意义,则分母必须不为0,从而1+sinx+cosx=1+2sin(x+π4)≠0,即sin(x+π4)≠-22,得:π4+x≠2kπ+54π且π4+x≠2kπ+74π(k∈Z),故x≠2kπ+π且x≠2kπ+32π(k∈Z),而函数f(x)=tanx2的定义域却是{x|x≠2kπ+π,k∈Z},显然这两个函数不是同一个函数.究其原因,当约去因式sinx2+cosx2时,使原函数不关于原点对称的定义域扩大为关于原点对称的定义域.因此,原函数应是非奇非偶函数.易错点二:忽视三角函数的有界性而致错例2 若cosαcosβ=12,求sinαsinβ的取值范围.错解:设sinαsinβ=t,则cosαcosβ+sinαsinβ=t+12,即cos(α-β)=t+12,又因为cos(α-β)∈[-1,1],所以有-1≤t+12≤1,解得:-32≤t≤12,所以sinαsinβ的取值范围为[-32,12].错因剖析:若cosαcosβ+sinαsinβ=t+12,则也有cosαcosβ-sinαsinβ=12-t,所以应该得到cos(α-β)=t+12,cos(α+β)=12-t都成立.由cos(α-β)∈[-1,1],cos(α+β)∈[-1,1],可以得到-12≤t≤12,即sinαsinβ的取值范围为[-12,12].易错点三:忽视三角函数的单调性而致错例3 已知α,β∈(0,π2),且cosα=55,cosβ=1010,求α+β的值.错解:∵α,β∈(0,π2),且cosα=55,cosβ=1010,故sinα=255,sinβ=31010,又∵sin(α+β)=sinαcosβ+cosαsinβ=255×1010+55×31010=22.由α,β∈(0,π2)知α+β∈(0,π),所以α+β=π4或α+β=3π4.错因剖析:由于正弦值为22的角在(0,π)上不唯一,才造成两解.正确的解法是取余弦,因为余弦函数在(0,π)上是单调递减的,这样才不会扩大解集.∵cos(α+β)=cosαcosβ-sinαsinβ=55×1010-255×31010=-22.由α+β∈(0,π),且余弦函数在(0,π)上是单调递减,所以α+β=3π4.易错点四:忽视条件等式对三角函数的角或值的制约而致错例4 设θ是第二象限角,且cosθ2-sinθ2=13,求cosθ2+sinθ2的值.错解:∵θ是第二象限角,∴2kπ+π2<θ<2kπ+π(k∈Z)∴kπ+π4<θ2<kπ+π2(k∈z),∴θ2位于第一或第三象限,即2kπ+π4<θ2<2kπ+π2或2kπ+54π<θ2<="" p=""></kπ+π2(k∈z),∴θ2位于第一或第三象限,即2kπ+π4<θ2<2kπ+π2或2kπ+54π<θ2错因剖析1:有些同学认为θ是第二象限角,则θ2必为第一象限角,从而未讨论θ2在第三象限时的情况.又cosθ2-sinθ2=13>0,∴cosθ2>sinθ2,∴2kπ+54π<θ2<2kπ+32π(k∈Z),∴cosθ2<0,sinθ2<0,将cosθ2-sinθ2=13平方得:1-2sinθ2cosθ2=19,∴2sinθ2cosθ2=89,∴(cosθ2+sinθ2)2=1+2sinθ2cosθ2=179,∴cosθ2+sinθ2=-173.错因剖析2:如果在前面误认为θ2只能为第一象限角,则就会得出cosθ2+sinθ2=173的错误,如果得2kπ+π4<θ2<2kπ+π2或2kπ+54π<θ2<2kπ+32π(k∈Z),而不从三角函数等式中推出隐含条件cosθ2<0,sinθ2<0,则会导致产生cosθ2+sinθ2=±173的错误.易错点五:忽视三角形中边角的关系而致错例5 在△ABC中,三内角A,B,C成等差数列,且sinC=513,求cosA 的值.错解:由A,B,C成等差数列及三角形内角和定理知:2B=A+C,A+B+C=π,∴B=π3,A=23π-C,又∵sinC=513,∴cosC=±1-sin2C=±1213,∵cosA=cos(23π-C)=cos23πcosC+sin23πsinC=-12cosC+32sinC,∴当cosC=1213时,cosA=53-1226;当cosC=-1213时,cosA=53+1226.错因剖析:cosC能否正负都取呢?因为A,B,C是三角形中的三个内角,故A+B+C=π.因此,这三个角之间有着相互制约的关系,应对给出的固定的正弦值的角C的范围加以挖掘,从而决定cosC的正、负号的取舍.∵0<12,∴0<c<π6或56π<c<c。

三角函数典型超级易错题

三角函数典型超级易错题

三角函数典型超级易错题三角函数是高中数学中的一个重要章节,涉及到许多概念和性质。

虽然三角函数的基本理论并不难以理解,但由于其具有一些易错点,所以在做题过程中可能会遇到一些挑战。

本文将就三角函数中的一些典型易错题进行详细分析和解答,以帮助读者更好地理解和掌握这一知识点。

1. 题目:已知$\tan x=\frac{3}{4}$,求$\sin x$和$\cos x$的值。

解答:首先,根据定义,$\tan x=\frac{\sin x}{\cos x}$,所以我们可以得到一个等式:$$\frac{\sin x}{\cos x}=\frac{3}{4}$$接下来,我们可以利用三角函数的定义和性质,将$\sin x$和$\cosx$之间的关系进行转化。

通过三角函数的定义,我们知道$\sin x$和$\cos x$是有关的:$$\sin^2x+\cos^2x=1$$将其变形得到:$$\sin^2x=1-\cos^2x$$将上式代入第一个等式中,得到:$$\frac{1-\cos^2x}{\cos x}=\frac{3}{4}$$进一步整理,得到二次方程:$$4-4\cos^2x=3\cos x$$将其变形,得到:$$4\cos^2x+3\cos x-4=0$$这是一个关于$\cos x$的一元二次方程,我们可以使用求根公式求解。

令$a=4$,$b=3$,$c=-4$,带入求根公式:$$\cos x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$代入数值,我们可以解得:$$\cos x=\frac{-3\pm\sqrt{9+64}}{8}$$将其化简得到:$$\cos x=\frac{-3\pm\sqrt{73}}{8}$$但是我们需要注意的是,对于给定的条件$\tan x=\frac{3}{4}$,角$x$的值是有限制的。

在单位圆上,正切函数$\tan x$的定义域是$(-\infty, \infty)$,而我们已知$\tan x=\frac{3}{4}$,所以根据正切函数在单位圆上的性质,我们可以得到一个范围限制:$$0<x<\frac{\pi}{2}$$在这个范围内,$\cos x>0$,所以我们可以舍弃$\cos x<0$的解,只考虑$\cos x>0$的解。

高三复习三角函数经典错题集

高三复习三角函数经典错题集

高中数学三角函数部分错题精选一、选择题:1.(如中)为了得到函数⎪⎭⎫⎝⎛-=62sin πx y 的图象,可以将函数x y 2cos =的图象( ) A 向右平移6π B 向右平移3π C 向左平移6π D 向左平移3π 错误分析:审题不仔细,把目标函数搞错是此题最容易犯的错误.答案: B2.(如中)函数⎪⎭⎫ ⎝⎛⋅+=2tan tan 1sin x x x y 的最小正周期为 ( )Aπ B π2 C2π D 23π错误分析:将函数解析式化为x y tan =后得到周期π=T ,而忽视了定义域的限制,导致出错.答案: B3.(石庄中学) 曲线y=2sin(x+)4πcos(x-4π)和直线y=21在y 轴右侧的交点按横坐标从小到大依次记为P 1、P 2、P 3……,则|P 2P 4|等于 ( )A .πB .2πC .3πD .4π 正确答案:A 错因:学生对该解析式不能变形,化简为Asin(ωx+ϑ)的形式,从而借助函数图象和函数的周期性求出|P 2P 4|。

4.(石庄中学)下列四个函数y=tan2x ,y=cos2x ,y=sin4x ,y=cot(x+4π),其中以点(4π,0)为中心对称的三角函数有( )个A .1B .2C .3D .4正确答案:D 错因:学生对三角函数图象的对称性和平移变换未能熟练掌握。

5.(石庄中学)函数y=Asin(ωx+ϕ)(ω>0,A ≠0)的图象与函数y=Acos(ωx+ϕ)(ω>0, A ≠0)的图象在区间(x 0,x 0+ωπ)上( )A .至少有两个交点B .至多有两个交点C .至多有一个交点D .至少有一个交点正确答案:C 错因:学生不能采用取特殊值和数形结合的思想方法来解题。

6.(石庄中学) 在∆ABC 中,2sinA+cosB=2,sinB+2cosA=3,则∠C 的大小应为( )A .6πB .3πC .6π或π65D .3π或32π正确答案:A 错因:学生求∠C 有两解后不代入检验。

易错点05 三角函数与解三角形 (解析版) -备战2021年新高考数学一轮复习易错题

易错点05 三角函数与解三角形  (解析版) -备战2021年新高考数学一轮复习易错题

易错点05 三角函数与解三角形—备战2021年高考数学一轮复习易错题【典例分析】例1 (2020年普通高等学校招生全国统一考试数学)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A. πsin(3x +)B. πsin(2)3x - C. πcos(26x +)D.5πcos(2)6x -【答案】BC 【解析】 【分析】首先利用周期确定ω的值,然后确定ϕ的值即可确定函数的解析式,最后利用诱导公式可得正确结果.【详解】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z , 即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭ 故选:BC.【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 例2 (2020年普通高等学校招生全国统一考试数学) 某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12 cm ,DE=2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为________cm 2.【答案】542π+ 【解析】【分析】利用3tan 5ODC ∠=求出圆弧AB 所在圆的半径,结合扇形的面积公式求出扇形AOB 的面积,求出直角OAH △的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.【详解】设==OB OA r ,由题意7AM AN ==,12EF =,所以5NF =, 因为5AP =,所以45AGP ︒∠=,因为//BH DG ,所以45AHO ︒∠=,因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥, 即OAH △为等腰直角三角形;在直角OQD △中,52OQ =-,72DQ r =-,因为3tan 5OQ ODC DQ ∠==,所以212522r r -=-,解得r =等腰直角OAH △的面积为1142S =⨯=;扇形AOB 的面积(2213324S ππ=⨯⨯=,所以阴影部分的面积为1215422S S ππ+-=+. 故答案为:542π+.【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.例3 (2020年普通高等学校招生全国统一考试数学)在①ac =②sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】 【分析】解法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解. 解法二:利用诱导公式和两角和的三角函数公式求得tanA 的值,得到角,,A B C 的值,然后根据选择的条件进行分析判断和求解. 【详解】解法一:由sin 3sin A B 可得:ab=不妨设(),0a b m m =>,则:2222222cos 32c a b ab C m m m m =+-=+-⨯=,即c m =. 选择条件①的解析:据此可得:2ac m =⨯==,1m ∴=,此时1c m ==. 选择条件②的解析:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin A ==,此时:sin 3c A m ==,则:c m ==选择条件③的解析:可得1c mb m==,c b =,与条件=c 矛盾,则问题中的三角形不存在.解法二:∵(),,6sinA C B A C ππ===-+,∴()6sinA A C A π⎛⎫=+=+⎪⎝⎭,()1?2sinA A C =+= ,∴sinA =,∴tanA =23A π=,∴6B C π==,若选①,ac =,∵a ==2=若选②,3csinA =,3=,c =;若选③,与条件=c 矛盾.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.【易错警示】易错点1 角的概念不清例1 若α、β为第三象限角,且βα>,则( )A .βαcos cos >B .βαcos cos <C .βαcos cos =D .以上都不对 【错解】A【错因】角的概念不清,误将象限角看成类似)23,(ππ区间角. 【正解】如取34,672πβππα=+=,可知A 不对.用排除法,可知应选D . 易错点2 忽视对角终边位置的讨论致误 例2 若α的终边所在直线经过点33(cos,sin )44P ππ,则sin α= .【错解】∵33(cos,sin )(4422P ππ=-,所以sin 2α==. 【错因】忽略了对角终边的位置进行讨论【正解】∵直线经过二、四象限,又点P 在单位圆上,若α的终边在第二象限,则3sin sin42πα==,若α的终边在第四象限,∴sin 2α=-,综上可知sin 2α=±.易错点3 忽视函数的定义域对角范围的制约致错 例3 求函数xxy 2tan 1tan 2-=的最小正周期. 【错解】x x x y 2tan tan 1tan 22=-=,2π=∴T ,即函数的最小正周期为2π. 【错因】忽视其定义域导致错误,2π不是x x y 2tan 1tan 2-=的周期,因为当0=x 时,x x y 2tan 1tan 2-=有意义,所以由周期函数定义知应有)0()20(f f =+π成立,然而)20(π+f 根本无意义,故2π不是其周期. 【正解】由于函数x x y 2tan 1tan 2-=的定义域为)(4,2Z k k x k x ∈+≠+≠ππππ,故作出函数x y 2tan =的图象,可以看出,所求函数周期应为π.易错点4 对“诱导公式中的奇变偶不变,符号看象限理解不对”致误例4 若316sin =⎪⎭⎫⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ232cos =( ) A .97-B .31-C .31D .97 【错解一】⎪⎭⎫⎝⎛+απ232cos cos[(2)]3ππα=--sin(2)2sin()cos()366πππααα=-=--12(3=⨯⨯=,无答案.【错解二】227cos 2cos[(2)]cos(2)12sin ()33369ππππαπααα⎛⎫+=--=-=--=⎪⎝⎭,故选D .【错因】三角函数的诱导公式可简记为:“奇变偶不变,符号看象限”.这里的“奇、偶”指的是π2的倍数的奇偶;“变与不变”指的是三角函数的名称变化;“符号看象限”的含义是:在该题中把整个角(2)3πα-看作锐角时,(2)3ππα--所在象限的相应余弦三角函数值的符号.【正解】227cos 2cos[(2)]cos(2)12sin ()33369ππππαπααα⎛⎫+=--=--=-+-=- ⎪⎝⎭,故选A .易错点5 忽略隐含条件例5 若01cos sin >-+x x ,求的取值范围.【错解】 移项得1cos sin >+x x ,两边平方得)(222,02sin Z k k x k x ∈+<<>πππ那么即)(2Z k k x k ∈+<<πππ【错因】忽略了满足不等式的在第一象限,上述解法引进了1cos sin -<+x x .【正解】1cos sin >+x x 即1)4sin(2>+πx ,由22)4sin(>+πx 得 )(432442Z k k x k ∈+<+<+πππππ ∴)(222Z k k x k ∈+<<πππ易错点6 因“忽视三角函数中内层函数的单调性”致错例6 )23sin(2x y -=π单调增区间为( )A .5[,]1212k k ππππ-+,()k Z ∈ B .]1211,125[ππππ++k k ,()k Z ∈C .]6,3[ππππ+-k k ,()k Z ∈D .2[,]63k k ππππ++,()k Z ∈【错解】由题意,222232k x k πππππ-+≤-≤+()k Z ∈,解得521212k x k ππππ--≤≤-,所以)23sin(2x y -=π单调增区间为5[,]1212k k ππππ-+,()k Z ∈,故选A . 【错因】内层函数为减函数,因此不能直接套用sin y x =的单调性来求.【正解】∵sin(2)sin(2)33y x x ππ=-=--,即求函数sin(2)3y x π=-的减区间. 故函数)23sin(2x y -=π的增区间为]1211,125[ππππ++k k ,()k Z ∈,故选B .易错点7 图象变换知识混乱例7 要得到函数sin 23y x π⎛⎫=-⎪⎝⎭的图象,只需将函数1sin2y x =的图象( ) A .先将每个值扩大到原来的4倍,y 值不变,再向右平移3π个单位. B .先将每个值缩小到原来的14倍,y 值不变,再向左平移3π个单位. C .先把每个值扩大到原来的4倍,y 值不变,再向左平移个6π单位. D .先把每个值缩小到原来的14倍,y 值不变,再向右平移6π个单位. 【错解】A 、C 、B 【错因】1sin2y x =变换成sin 2y x =误认为是扩大到原来的倍,这样就误选A 或C ;把sin 2y x =平移到sin 23y x π⎛⎫=- ⎪⎝⎭平移方向错了,平移的单位误认为是3π,误选B .【正解】由1sin2y x =变形为sin 23y x π⎛⎫=- ⎪⎝⎭常见有两种变换方式,一种先进行周期变换,即将1sin2y x =的图象上各点的纵坐标不变,横坐标变为原来的14倍得到函数sin 2y x =的图象,再将函数sin 2y x =的图象纵坐标不变,横坐标向右平移6π单位.即得函数sin 23y x π⎛⎫=-⎪⎝⎭,故选D . 易错点8 已知条件弱用例8 在不等边△ABC 中,a 为最大边,如果a b c 222<+,求A 的取值范围.【错解】∵a b c b c a 2222220<++->,∴,则cos A b c a bc=+->22220, 由于cosA 在(0°,180°)上为减函数且cos900=°,90A <∴°,又∵A 为△ABC 的内角, ∴0°<A <90°.【错因】审题不细,已知条件弱用,题设是为最大边,而错解中只把看做是三角形的普通一条边,造成解题错误.【正解】由上面的解法,可得A <90°,又∵a 为最大边,∴A >60°, 因此得A 的取值范围是(60°,90°). 易错点9 三角变换不熟练例9 在△ABC 中,若a b A B 22=tan tan ,试判断△ABC 的形状.【错解】由正弦定理,得sin sin tan tan 22A B A B=, 即sin sin sin cos cos sin sin sin 2200A B A ABB A B =>>·,∵, ∴,即sin cos sin cos sin sin A A B B A B ==22.∴2A =2B ,即A =B .故△ABC 是等腰三角形.【错因】由sin sin 22A B =,得2A =2B .这是三角变换中常见的错误,原因是不熟悉三角函数的性质,三角变换生疏.【正解】同上得sin sin 22A B =,∴2A =22k B π+,或222A k B k Z =+-∈ππ().∵000<<<<==A b k A B ππ,,∴,则或A B =-π2.故△ABC 为等腰三角形或直角三角形. 易错点10 解三角形时漏解例10 已知在△ABC 中,a =3,b =045,2=B ,求A ∠、C ∠和边c .【错解】由正弦定理BbA a sin sin =,得sinA =.23所以,︒=60A ,︒=︒︒︒=7560-45-180C ,所以,c =sin sin b C B =.【错因】上述解法中,用正弦定理求C 时,丢了一个解,实际上,由sinA =.23可得︒=60A 或︒=120A ,故︒=75A 或︒=15A .【正解】由正弦定理BbA a sin sin =,得sinA =.23因为,b a >,所以︒=60A 或︒=120A ,当︒=60A 时,︒=︒︒︒=7560-45-180C ,c =sin sin b C B =.当︒=120A 时,︒=︒︒︒=15120-45-180C ,c =sin sin b C B = 易错点11 不会应用正弦定理的变形公式例11 在△ABC 中,A =60°,b =1,S ABC △=3,求a b cA B C++++sin sin sin 的值.【错解】∵A =60°,b =1,S ABC △=3,又S ABC △=12bc A sin ,∴312=c sin 60°,解得c =4.由余弦定理,得a b c bc A =+-=+-222116860cos cos °=13又由正弦定理,得sin sin C B ==6393239,. ∴a b cA B C++++=++++sin sin sin 1314323239639.【错因】公式不熟、方法不当,没有正确应用正弦定理.【正解】由已知可得c a ==413,.由正弦定理,得213602393R a A ===sin sin °. ∴a b c A B C R ++++==sin sin sin 22393.【变式练习】1.已知α为第三象限角,则2α是第 象限角,α2是第 象限角.【解析】α 是第三象限角,即Z k k k ∈+<<+,2322ππαππ Z k k k ∈+<<+∴,4322ππαππ,Z k k k ∈+<<+,34224ππαππ 当为偶数时,2α为第二象限角;当为奇数时,2α为第四象限角; 而α2的终边落在第一、二象限或y 轴的非负半轴上. 2.函数y =sin x |sin x |+|cos x |cos x +tan x|tan x |的值域是( )A .{-1,1}B .{1,3}C .{1,-3}D .{-1,3}【解析】由条件知终边不能落在坐标轴上,故要分四种情况讨论:当的终边分别落在第一、二、三、四象限时,上述函数的值域为{-1,3}.故选D. 3.记cos(80)k -︒=,那么tan100︒=( )AB .CD .【解析】∵sin80°=,∴tan100°=-tan80°=-sin 80cos80︒︒=-sin 80cos(80)︒︒-=B . 4.已知()0,απ∈,7sin cos 13αα+=,求tan α的值. 【解析】据已知7sin cos 13αα+=(1),有1202sin cos 0169αα=-<,又由于()0,απ∈,故有sin 0,cos 0αα><,从而sin cos 0αα->即17sin cos 13αα-==(2),联立(1)、(2)可得125sin ,cos 1313αα==,可得12tan 5α=.5.若0x π≤≤,则函数sin cos 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的单调递增区间为 .【解析】x x x x x y sin sin 3cos cos 3sin 2cos 3sin ⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+=ππππ2162sin 21-⎪⎭⎫ ⎝⎛--=πx ,所以由πππππk x k 2236222+≤-≤+,可得函数的的单调增区间z k k k ∈⎥⎦⎤⎢⎣⎡++,65,3ππππ,又因为π≤≤x 0,所以函数sin cos 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的单调递增区间为⎥⎦⎤⎢⎣⎡65,3ππ. 6.要得到函数sin 2y x =的图象,只需将函数πcos(2)3y x =-的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π12个单位长度 D .向左平移π12个单位长度 【解析】试题分析:函数⎪⎭⎫⎝⎛-==22cos 2sin πx x y ,将函数πcos(2)3y x =-的图象向右平移π12个单位长度得到⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=3122cos ππx y x x 2sin 22cos =⎪⎭⎫ ⎝⎛-=π,故答案为C .7.在ABC ∆中,30,2B AB ︒===.求ABC ∆的面积.【解析】根据正弦定理知:sin sin AB ACC B=2sin 30︒=,得sin C =,由于sin30AB AC AB ︒<<即满足条件的三角形有两个故60C ︒=或120︒.则30A ︒=或90︒故相应的三角形面积为12sin 302s ︒=⨯⨯=122⨯=. 8.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则角C = .【解析】由正弦定理可得::7:8:13a b c =,所以可设7,8,9a k b k c k ===,由余弦定理()()()2222227891cos 22782k k k a b c C ab k k +-+-===-⨯⨯,所以23C π=.9.(2020·北京高考真题)在△ABC 中,a +b =11,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sinC 和△ABC 的面积.条件①:c =7,cosA =−17; 条件②:cosA =18,cosB =916.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ)sinC =√32, S =6√3;选择条件②(Ⅰ)6(Ⅱ)sinC =√74, S =15√74. 【解析】选择条件①(Ⅰ)∵c =7,cosA =−17, a +b =11∵a 2=b 2+c 2−2bccosA ∴a 2=(11−a)2+72−2(11−a)⋅7⋅(−17)∴a =8(Ⅱ)∵cosA =−17,A ∈(0,π)∴sinA =√1−cos 2A =4√37由正弦定理得:asinA =csinC ∴4√37=7sinC ∴sinC =√32S =12basinC =12(11−8)×8×√32=6√3选择条件②(Ⅰ)∵cosA =18,cosB =916,A,B ∈(0,π)∴sinA =√1−cos 2A =3√78,sinB =√1−cos 2B =5√716由正弦定理得:asinA =bsinB ∴3√78=5√716∴a =6(Ⅱ)sinC =sin(A +B)=sinAcosB +sinBcosA =3√78×916+5√716×18=√74S =12basinC =12(11−6)×6×√74=15√7410.某地有三家工厂,分别位于矩形ABCD 的顶点A ,B ,及CD 的中点P 处,已知20AB =km,10km BC =,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A ,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO ,BO ,OP ,设排污管道的总长为y km .(I )按下列要求写出函数关系式:①设(rad)BAO θ∠=,将y 表示成θ的函数关系式;②设(km)OP x =,将y 表示成x 的函数关系式.(Ⅱ)请你选用(I )中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短.【答案】(I )①2010sin 10(0)cos 4y θπθθ-=+<<②10)y x x =+<<(Ⅱ)选择函数模型①,P 位于线段AB 的中垂线上且距离AB 处. 【解析】(I )①由条件可知PQ 垂直平分AB ,(rad)BAO θ∠=,则10cos cos AQ OA BAO θ==∠故10cos OB θ=,又1010tan OP θ=-,所以 10101010tan cos cos y OA OB OP θθθ=++=++- 2010sin 10(0)cos 4θπθθ-=+<<.②(km)OP x =,则10OQ x =-,所以OA OB ==所以所求的函数关系式为10)y x x =+<<. (Ⅱ)选择函数模型①.22210cos (2010sin )(sin )10(2sin 1)cos cos y θθθθθθ-----=='. 令0y '=得1sin 2θ=,又04πθ<<,所以6πθ=. 当06πθ<<时,0y '<,y 是θ的减函数;64ππθ<<时,0y '>,y 是θ的增函数.所以当6πθ=时min 10y =.当P 位于线段AB 的中垂线上且距离AB 边km 3处. 【典例分析】1.【2020年高考全国Ⅰ卷理数】设函数π()cos()6f x x ω=+在[−π,π]的图像大致如下图,则f (x )的最小正周期为A .10π9B .7π6C .4π3D .3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ωππ⎛⎫-⋅+= ⎪⎝⎭,又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962ωπππ-⋅+=-,解得32ω=.所以函数()f x 最小正周期为224332T ωπππ=== 故选C .【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.2.【2020年高考全国Ⅰ卷理数】已知 π()0,α∈,且3cos28cos 5αα-=,则sin α= AB .23C .13D 【答案】A【解析】3cos28cos 5αα-=,得26cos 8cos 80αα--=, 即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin αα∈π∴==. 故选:A .【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,的考查计算求解能力,属于基础题.3.【2020年高考全国Ⅱ卷理数】若α为第四象限角,则 A .cos2α>0 B .cos2α<0 C .sin2α>0D .sin2α<0【答案】D【解析】方法一:由α为第四象限角,可得3222,2k k k απ+π<<π+π∈Z , 所以34244,k k k απ+π<<π+π∈Z此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α<, 故选:D .方法二:当6απ=-时,cos 2cos 03απ⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3απ=-时,2cos 2cos 03απ⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D .【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.4.【2020年高考全国III 卷理数】在△ABC 中,cos C =23,AC =4,BC =3,则cos B = A .19B .13C .12D .23【答案】A【解析】在ABC 中,2cos 3C =,4AC =,3BC =, 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅,2224322433AB =+-⨯⨯⨯,可得29AB = ,即3AB =,由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =. 故选:A .5.【2020年高考全国Ⅲ卷理数】已知2tan θ–tan(θ+π4)=7,则tan θ= A .–2 B .–1C .1D .2【答案】D【解析】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-, 令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D .【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.6.【2020年高考北京】2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是A . 30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ B . 30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C . 60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D . 60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭【答案】A【解析】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n︒︒=⨯,每条边长为302sinn︒, 所以,单位圆的内接正6n 边形的周长为3012sinn n︒, 单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒, 303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sintan n n n π︒︒⎛⎫=+ ⎪⎝⎭. 故选:A .【点睛】本题考查圆周率π的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.7.【2020年新高考全国Ⅰ卷】下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)=A .πsin(3x +)B .πsin(2)3x - C .πcos(26x +) D .5πcos(2)6x -【答案】BC【解析】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z , 即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭ 故选:BC .【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.8.【2020年高考全国Ⅰ卷理数】如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.【答案】14-【解析】AB AC ⊥,AB =1AC =,由勾股定理得2BC ==,同理得BD =,BF BD ∴==在ACE △中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos30132112CE AC AE AC AE =+-⋅=+-⨯=, 1CF CE ∴==,在BCF 中,2BC =,BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-. 【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题. 9.【2020年高考全国III 卷理数】16.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.10.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是 ▲ .【答案】13【解析】221sin ()(cos )(1sin 2)4222παααα+=+=+121(1sin 2)sin 2233αα∴+=∴= 故答案为:13【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.11.【2020年高考北京】若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.【答案】2π(2,2k k Z ππ+∈均可)【解析】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,故可取2ϕπ=. 故答案为:2π(2,2k k Z ππ+∈均可).【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.12.【2020年高考浙江】已知tan 2θ=,则cos2θ=_______,πtan()4θ-=_______.【答案】35;13【解析】2222222222cos sin 1tan 123cos 2cos sin cos sin 1tan 125θθθθθθθθθ---=-====-+++, tan 1211tan()41tan 123πθθθ---===++,故答案为:31,53- 【点睛】本题考查二倍角余弦公式以及弦化切、两角差正切公式,考查基本分析求解能力,属基础题.13.【2020年高考江苏】将函数πsin(32)4y x =﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 ▲ . 【答案】524x π=-【解析】3sin[2()]3sin(2)6412y x x πππ=-+=- 72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈ 当1k =-时524x π=-. 故答案为:524x π=-【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.14.【2020年新高考全国Ⅰ卷】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12 cm ,DE=2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为________cm 2.【答案】542π+【解析】设==OB OA r ,由题意7AM AN ==,12EF =,所以5NF =, 因为5AP =,所以45AGP ︒∠=,因为//BH DG ,所以45AHO ︒∠=,因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥, 即OAH △为等腰直角三角形;在直角OQD △中,5OQ =,7DQ =,因为3tan 5OQ ODC DQ ∠==,所以212522r r -=-,解得r =等腰直角OAH △的面积为1142S =⨯=;扇形AOB 的面积(2213324S ππ=⨯⨯=,所以阴影部分的面积为1215422S S ππ+-=+. 故答案为:542π+.【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.15.【2020年高考全国II 卷理数】ABC △中,sin 2A -sin 2B -sin 2C = sin B sin C .(1)求A ;(2)若BC =3,求ABC △周长的最大值.【解析】(1)由正弦定理和已知条件得222BC AC AB AC AB --=⋅,①由余弦定理得2222cos BC AC AB AC AB A =+-⋅,②由①,②得1cos 2A =-. 因为0πA <<,所以2π3A =.(2)由正弦定理及(1)得sin sin sin AC AB BCB C A===从而AC B =,π)3cos AB A B B B =--=-.故π33cos 3)3BC AC AB B B B ++=++=++.又π03B <<,所以当π6B =时,ABC △周长取得最大值3+16.【2020年高考江苏】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.【解析】(1)在ABC △中,因为3,45a c B ===︒,由余弦定理2222cos b a c ac B =+-,得292235b =+-⨯︒=,所以b =在ABC △中,由正弦定理sin sin b cB C=,,所以sin C =(2)在ADC △中,因为4cos 5ADC ∠=-,所以ADC ∠为钝角,而180ADC C CAD ∠+∠+∠=︒,所以C ∠为锐角.故cos C =则sin 1tan cos 2C C C ==. 因为4cos 5ADC ∠=-,所以3sin 5ADC ∠==,sin 3tan cos 4ADC ADC ADC ∠∠==-∠.从而31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C -+∠+∠∠=︒-∠-∠=-∠+∠---∠⨯∠--⨯.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题.17.【2020年高考天津】在ABC △中,角,,A B C 所对的边分别为,,a b c.已知5,a b c ===(Ⅰ)求角C 的大小;(Ⅱ)求sin A 的值;(Ⅲ)求πsin(2)4A +的值.【解析】(Ⅰ)在ABC △中,由余弦定理及5,a b c ===,有222cos 2a b c C ab +-==.又因为(0,π)C ∈,所以π4C =.(Ⅱ)在ABC △中,由正弦定理及π,4C a c ===,可得sin sin 13a C A c ==.(Ⅲ)由a c <及sin 13A =,可得cos A == 进而2125sin 22sin cos ,cos 22cos 11313A A A A A ===-=.所以,πππ125sin(2)sin 2cos cos 2sin 44413213226A A A +=+=⨯+⨯=. 【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算能力,是一道容易题.18.【2020年高考北京】在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积. 条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.【解析】选择条件①(Ⅰ)17,cos 7c A ==-,11a b += 22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅- 8a ∴=(Ⅱ)1cos (0,)sin 7A A A π=-∈∴==,由正弦定理得:7sin sin sin sin 7a c C A C C ==∴=11sin (118)8222S ba C ==-⨯⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin A B ∴====由正弦定理得:6sin sin 816a b a A B === (Ⅱ)91sin sin()sin cos sin cos 8161684C A B A B B A =+=+=+=11sin (116)622S ba C ==-⨯=【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.19.【2020年高考浙江】在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,C .已知2sin 0b A =.(Ⅰ)求角B 的大小;(Ⅱ)求cos A +cos B +cos C 的取值范围.【解析】(Ⅰ)由正弦定理得2sin sin B A A =,故sin B =由题意得π3B =. (Ⅱ)由πA B C ++=得2π3C A =-, 由ABC △是锐角三角形得ππ(,)62A ∈.由2π1cos cos()cos 32C A A A =-=-得11π13cos cos cos cos sin()]22622A B C A A A ++++=++∈.故cos cos cos A B C ++的取值范围是3]2. 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求最值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是转化为关于某个角的函数,利用函数思想求最值.20.【2020年新高考全国Ⅰ卷】在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分.【解析】方案一:选条件①.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =.由①ac =1a b c ==.因此,选条件①时问题中的三角形存在,此时1c =.方案二:选条件②.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =,6B C π==,23A π=.由②sin 3c A =,所以6c b a ===.因此,选条件②时问题中的三角形存在,此时c =方案三:选条件③.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =.由③c =,与b c =矛盾.因此,选条件③时问题中的三角形不存在.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.。

三角函数题型常见的八个易错点

三角函数题型常见的八个易错点

三角函数模块常见的八个易错点易错点1:不能正确理解三角函数的定义例题1: 角α的终边落在直线y =2x 上,则sin α的值为错解:在角的终边上取点P (1,2),∴r =|OP |=12+22=5,∴sin α=y r =25=255错因:当角的终边在一条直线上时,应注意到角的终边为两条射线,所以应分两种情况处理而错解中没有对两种情况进行讨论导致错误解析:当角的终边在第一象限时,在角的终边上取点P (1,2) 由r =|OP |=12+22=5,得sin α=25=255当角的终边在第三象限时,在角的终边上取点Q (-1,-2)∴r OQ ===sin α=-25=-255变式1: 已知角的终边过点P ,,则角的正弦值、余弦值分别为 解析:当0m <时,||,OP = 所以sin αα====当0m >时,||,OP =所以sin ,cos 55αα====总结:本题主要考查了三角函数的定义以及分类讨论思想方法,这也是高考考查的一个重点,在做题时容易遗忘0m <的情况α(,2)m m 0m ≠α易错点2 利用同角三角函数基本关系式时忽略参数取值例题2: 已知cos θ=t ,求sin θ、tan θ的值. 错解:①当0<t <1时,θ为第一或第四象限角.θ为第一象限角时,sin θ=1-cos 2θ=1-t 2,tan θ=sin θcos θ=1-t 2t ;θ为第四象限角时,sin θ=-1-cos 2θ=-1-t 2,tan θ=sin θcos θ=-1-t 2t. ②当-1<t <0时,θ为第二或第三象限角. θ为第二象限角时,sin θ=1-cos 2θ=1-t 2,tan θ=sin θcos θ=1-t 2t; θ为第三象限角时,sin θ=-1-cos 2θ=-1-t 2,tan θ=sin θcos θ=-1-t 2t.综上,sin θθθ=⎪⎩为第一、二象限角为第三、四象限角tan t θθθ=⎨⎪⎪⎩为第一、二象限角为第三、四象限角 错因:上述解法注意到了θ的余弦值含有参数t ,根据余弦函数的取值范围对t 进行分类讨论,但上述讨论不全面,漏掉了很多情况,如t =-1,t =0,t =1 解析:①当t =-1时,sin θ=0,tan θ=0 ②当-1<t <0时,θ为第二或第三象限角 若θ为第二象限角,则sin θ=1-t 2,tan θ=1-t 2t若θ为第三象限角,则sin θ=-1-t 2,tan θ=-1-t2t③当t =0时,sin θ=1,tan θ不存在或sin θ=-1,tan θ不存在 ④当0<t <1时,θ为第一或第四象限角若θ为第一象限角,则sin θ=1-t 2,tan θ=1-t 2t若θ为第四象限角,则sin θ=-1-t 2,tan θ=-1-t 2t⑤当t =1时,sin θ=0,tan θ=0综上得:变式2: 如果,那么解析:()222sin801cos 801cos 801k =-=--=-sin80tan100tan80cos80k∴=-=-=-总结:要作出正确选择,需认真选择诱导公式,不能错用公式.对于nπ+α,若n 是偶数,则角nπ+α的三角函数值等于角α的同名三角函数值;若n 为奇数,则角nπ+α的三角函数值等于角π+α的同名三角函数值.cos(80)k -︒=tan100︒=易错点3 不能准确运用诱导公式进行化简求值例题3: 若sin θ=33,求cos(π)cos(2π)3ππ3πcos [sin()1]cos(π)sin()sin()222θθθθθθθ--+--++-+的值错解:原式=cos cos (sin 1)θθθ--+cos θcos θsin θ+cos θ=-cos θcos θsin θ+cos θ+cos θcos θsin θ+cos θ=0. 错因:错解中混淆了诱导公式sin(3π2-θ)=-cos θ,sin(3π2+θ)=-cos θ,cos(π-θ)=-cos θ,cos(π+θ)=-cos θ. 解析:原式=cos cos (cos 1)θθθ---+cos θ-cos θcos θ+cos θ=11+cos θ+11-cos θ=2sin 2θ,因为sin θ=33,所以所求三角函数式的值为6=.变式3: 若n ∈Z ,在①sin ⎝⎛⎭⎫n π+π3;②sin ⎝⎛⎭⎫2n π±π3;③πsin[π(1)]3n n +-;④πcos[2π(1)]6n n +-中,与sin π3相等的是A .①②B .③④C .①④D .②③解析:①sin ⎝⎛⎭⎫n π+π3=⎩⎨⎧sin π3,n 为偶数sin ⎝⎛⎭⎫π+π3,n 为奇数=⎩⎨⎧sin π3,n 为偶数-sin π3,n 为奇数.②sin ⎝⎛⎭⎫2n π±π3=sin(±π3)=±sin π3. ③ππsin[(1)],sin ,π33sin[π(1)]=πππ3sin[π(1)],sin(π)sin ,333n nn n n n n n ⎧⎧-⎪⎪⎪⎪+-=⎨⎨⎪⎪+--=⎪⎪⎩⎩为偶数为偶数为奇数为奇数 . ④ππππcos[2π(1)]cos[(1)]cos sin 6663nn n +-=-⋅==. 故③④与sin π3相等,应选B .易错点4 不能正确理解三角函数图象变换规律例题4: 为得到函数y =cos(2x +π3)的图象,只需将函数y =sin2x 的图象 A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位错解:y =cos(2x +π3)=sin(2x +π3+π2)=sin2(x +5π12),因此向右平移5π12个长度单位,故选B . 错因:没有注意到变换方向导致了错解,目标是y =cos(2x +π3)的图象.解析:y =cos(2x +π3)=sin(2x +π3+π2)=sin(2x +5π6)=sin2(x +5π12),因此将函数y =sin2x 的图象向左平移5π12个长度单位即可.故选A .变式4: 将函数()()ππsin 2()22f x x θθ=+-<<的图象向右平移()0ϕϕ>个单位长度后得到函数()g x 的图象,若()f x ,()g x的图象都经过点P ,则ϕ的值可以是 A .53π B .56π C .2πD .6π 解析:依题意()()()sin 2sin 22g x x x ϕθθϕ=-+=+-⎡⎤⎣⎦,因为()f x ,()g x的图象都经过点P ,所以()sin sin 22θθϕ⎧=⎪⎪⎨⎪-=⎪⎩, 又因为22θππ-<<,所以3θπ=,所以2233k ϕππ-=π+或22233k ϕππ-=π+,k ∈Z , 解得k ϕ=-π或ππ6k ϕ=--,k ∈Z , 在6k ϕπ=-π-,k ∈Z 中,取1k =-,即得56ϕ=π,故选B.易错点5 注意符号对三角函数性质的影响例题5: 已知函数f (x )=2cos ⎝⎛⎭⎫π3-x 2.(1)求f (x )的单调递增区间;(2)若x ∈[-π,π],求f (x )的最大值和最小值.错解:(1)由-π≤π3-x 2≤0得,2π3≤x ≤8π3,∴f (x )的单调递增区间为⎣⎡⎦⎤2π3,8π3. (2)∵-1≤cos ⎝⎛⎭⎫π3-x 2≤1,∴[f (x )]ma x =2,[f (x )]min =-2.错因:(1)忽略了函数f (x )的周期性;(2)忽略了x ∈[-π,π]对函数f (x )的最值的影响 解析:(1)∵f (x )=2cos ⎝⎛⎭⎫π3-x 2=2cos ⎝⎛⎭⎫x 2-π3.由2k π-π≤x 2-π3≤2k π得,4k π-4π3≤x ≤4k π+2π3(k ∈Z ).故f (x )的单调增区间为[4k π-4π3,4k π+2π3](k ∈Z ).(2)由-π≤x ≤π⇒-5π6≤x 2-π3≤π6.当x 2-π3=0,即x =2π3时,f (x )ma x =2,当x 2-π3=-5π6,即x =-π时,f (x )min =-3变式5: (1)函数tan(2)3y x π=-的单调递减区间是______(2)已知函数y =a sin x +2,x ∈R 的最大值为3,则实数a 的值是______(3)若函数y =tan(2x +θ)的图象的一个对称中心为(π3,0),且-π2<θ<π2,则θ的值是_____解析:(1)把函数tan(2)3y x π=-变为tan(2)3y x π=--由2,232k x k k ππππ-<-<π+∈Z ,得2,66k x k k π5ππ-<<π+∈Z 即5,212212k k x k ππππ-<<+∈Z,tan(2)3y x π=-减区间为5(,)()212212k k k ππππ-+∈Z (2)若a >0时,当sin x =1时,函数y =a sin x +2取最大值a +2,∴a +2=3,∴a =1 若a <0,当sin x =-1时,函数y =a sin x +2(x ∈R )取得最大值-a +2=3,∴a =-1 综上可知,a 的值为±1(3)易知函数y =tan x 的图象的对称中心为(k π2,0),其中k ∈Z所以2x +θ=k π2,其中x =π3,即θ=k π2-2π3,k ∈Z因为-π2<θ<π2,所以当k =1时,θ=-π6;当k =2时,θ=π3.即θ=-π6或π3易错点6 三角恒等变换中忽略角的范围致误例题6: 已知α、β为三角形的两个内角,cos α=17,sin (α+β,则β=错解:∵0<α<π,cos α=17,∴sin α7=.又∵sin (α+β)=14,∴cos (α+β11.14-∴sin β=sin[(α+β)-α]=sin (α+β)cos α-cos (α+β)sin α 又∵0<β<π,∴β=233ππ或. 错因:(1)不能根据题设条件缩小α、β及α+β取值范围,在由同角基本关系式求sin (α+β)时不能正确判断符号,产生两角(2)结论处应由cos β的值确定β的取值,由sin β确定结论时易出现两解而造成失误解析:因为0<α<π,cos α=17,所以sin α=,故32αππ<<又因为0<α+β<π,sin (α+β)=142<,所以0<α+β<3π或32π<α+β<π由3π<α<2π知32π<α+β<π,所以cos (α+β1114∴cos β=cos[(α+β)-α]=cos (α+β)cos α+sin (α+β)sin α=12.又0<β<π,∴β=3π变式6: (1)已知△ABC 中,sin(A +B )=45,cos B =-23,则cos A 的值为(2)已知sin α-sin β=-23,cos α-cos β=23,且α、β∈⎝⎛⎭⎫0,π2,则tan(α-β)的值为 解析:(1)在△ABC 中,∵cos B =-23<0,∴B 为钝角,且sin B =53,∴A +B 为钝角由sin(A +B )=45,得cos(A +B )=-35∴cos A =cos[(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B =-35×⎝⎛⎭⎫-23+45×53=6+4515(2)由题知sin α-sin β=-23①, cos α-cos β=23②由于sin α-sin β=-23<0,所以-π2<α-β<0由①2+②2,得cos(α-β)=59,所以sin(α-β)=-2149.所以tan(α-β)=-2145易错点7 求函数y=Asin(ωx+φ)的性质时出错例题7: 函数y =5sin(x +20°)+4cos(x +50°)的最大值为 错解:函数的最大值为52+42=41.错因:形如y =asin x +bcos x 的函数的最大值为a 2+b 2,而函数y =5sin(x +20°)+4cos(x +50°)不符合上述形式.解析:y =5sin(x +20°)+4cos(x +50°)=5sin(x +20°)+4cos[(x +20°)+30°] =5sin(x +20°)+4cos(x +20°)cos30°-4sin(x +20°)sin30°=5sin(x +20°)+23cos(x +20°)-2sin(x +20°)=3sin(x +20°)+23cos(x +20°),∴max y ==变式7: 已知函数2()sin 22sin f x x x =-(1)求函数()f x 的最小正周期(2)求函数()f x解析:(1)因为2()sin 22sin f x x x =-sin 2(1cos2x x =--所以函数()f x(2所以()f x [1]-易错点8 解三角形时忽略角的取值范围致误例题8: 在ABC △中,若3C B =,则c b的取值范围为 错解:由正弦定理,可得2222sin sin 3sin 2cos cos2sin =2cos cos24cos 1sin sin sin 0cos 1,14cos 13,0,0,03c C B B B B B B B B b B B BcB B b c b+===+=-≤<∴-≤-<>><<由可得错因:错解中没有考虑角B 的取值范围,误认为角B 的取值范围为()0,180︒︒ 解析:由正弦定理可得222sin sin 3sin 2cos cos2sin =2cos cos24cos 1sin sin sin 180,3,045,cos 1214cos 13,13c C B B B B B B B B b B B BA B C C B B B cB b+===+=-++=︒=∴︒<<︒<<∴<-<<<即变式8: 已知,21,21a a a -+是钝角三角形的三边,则实数a 的取值范围为解析:因为,21,21a a a -+是三角形的三边,所以01210,2210a a a a >⎧⎪->>⎨⎪+>⎩即①所以21a +是三角形的最大边,设其所对的角为θ(钝角)则222(21)(21)cos 02(21)a a a a a θ+--+=<-,化简得280a a -<,解得08②a <<要使,21,21a a a -+构成三角形,需满足21212121,2121a a a a a a a a a ++>-⎧⎪+->+⎨⎪-++>⎩即2③a >结合①②③,可得28.a <<。

三角函数易错点

三角函数易错点

由i +=A c s一 _ = s 日s c+ i 2 佃孚 n )n。 。 i 得
A= . +孕 B
剖 析 :本 题 错误 解 法 是 扩 大 了角 度 范 围 ,由
s = i < 1 < 霄

的原则,这样在 解决函数问题时才会减 少失误 .
例 2. 已知 3ia 2i 32i ,求 s 2+i8 s 2+s  ̄ s a n n= n ia s ] n n
错 解 :因 为 A、B均 为钝 角 且 s = i ,所 丁V3- cs vT - 2 o肛 3 o



、 】 故 Y 卜2 / 一 ,一 ) u(4 、 一】 / , ∈ 、 2 4 - ,2 / 2 为
所求.
评 析 :研 究 函数 问题 必 须 要 遵 循 “ 义 域 优 先 ” 定
很 多数 学题 目都有 隐含条件 , 需要做题 时非常细心.
追踪练习 :
判断函数 )— cs :1s x —x的奇偶性 +i 。o n- Z

c仪) 。 s s i (
1 2 ,

,以 或= 出 错 所卢 卢 } 孥. 误 现
原 因是 当卢∈( , ) , 不是单调 函数 , 07 时 s r i 还要进 一
s a O时,i2+i ̄取最小值 0 i= n s as n n .
评析: 本题错 解忽略 了 s j= (s c 3i2) i B 2i  ̄ s a E n n一 n
【,】 含 隐含 条 件 , 得 s a的取 值 范 围扩 大 而致 错 . 0 】这 使 i n
追踪练 > : - - j
角 函 数 易 锚 点
■ 田彦 武
误做一分类 剖析 ,供大家参考.

专题1-1 三角函数 重难点、易错点突破(含答案)

专题1-1  三角函数 重难点、易错点突破(含答案)

专题1-1 三角函数重难点、易错点突破(建议用时:180分钟)1 同角三角函数关系巧应用同角三角函数的用途主要体现在三角函数的求值和恒等变形中各函数间的相互转化,下面结合常见的应用类型举例分析,体会其转化作用,展现同角三角函数关系的巧应用.一、知一求二例1 已知sin α=255,π2≤α≤π,则tan α=_________________________________.二、“1”的妙用例2 证明:1-sin 6x -cos 6x 1-sin 4x -cos 4x =32.三、齐次式求值例3 已知tan α=2,求值:(1)2sin α-3cos α4sin α-9cos α=________; (2)2sin 2α-3cos 2α=________.2 三角函数的性质总盘点三角函数的性质是高考考查的重点和热点内容之一,应用“巧而活”.要能够灵活地运用性质,必须在脑海中能及时地浮现出三角函数的图象.下面通过典型例题对三角函数的性质进行盘点,请同学们用心体会.一、定义域例1 函数y =cos x -12的定义域为________.二、值域与最值例2 函数y =cos(x +π3),x ∈(0,π3]的值域是________.三、单调性例3 已知函数f (x )=sin(π3-2x ),求: (1)函数f (x )的单调减区间;(2)函数f (x )在[-π,0]上的单调减区间.四、周期性与对称性例4 已知函数f (x )=sin(2ωx -π3)(ω>0)的最小正周期为π,则函数f (x )的图象的对称轴方程是________.五、奇偶性例5 若函数f (x )=sin x +φ3(φ∈[0,2π))是偶函数,则φ=________.1 善用数学思想——巧解题一、数形结合思想例1 在(0,2π)内,使sin x >cos x 成立的x 的取值范围是________.二、分类讨论思想例2 已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.三、函数与方程的思想例3 函数f (x )=3cos x -sin 2x (π6≤x ≤π3)的最大值是________.四、转化与化归思想例4 比较下列两个数的大小tan(-13π4)与tan(-17π5).2 三角恒等变形的几个技巧三角函数是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助.一、灵活降幂例1 3-sin 70°2-cos 210°=________. 二、化平方式例2 化简求值:12-1212+12cos 2α(α∈(3π2,2π)).三、灵活变角例3 已知sin(π6-α)=13,则cos(2π3+2α)=________. 四、构造齐次弦式比,由切求弦例4 已知tan θ=-12,则cos 2θ1+sin 2θ的值是________. 五、分子、分母同乘以2n sin α求cos αcos 2αcos 4α·cos 8α…cos 2n -1α的值例5 求值:sin 10°sin 30°sin 50°sin 70°.1 数形结合百般好,形象直观烦琐少——构建正弦、余弦函数图象解题正弦、余弦函数的图象是本章的重点,也是高考的一个热点,它不仅能直观反映三角函数的性质,而且它还有着广泛的应用,若能根据问题的题设特点灵活构造图象,往往能直观、准确、快速解题.一、确定函数的值域例1 定义运算a ※b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,例如,1※2=1,则函数f (x )=sin x ※cos x 的值域为________.二、确定零点个数例2 函数f (x )=⎝⎛⎭⎫12x -sin x 在区间[0,2π]上的零点个数为________.三、确定参数的值例3 已知f (x )=sin(ωx +π3)(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=_________.四、判断函数单调性例4 设函数f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3(x ∈R ),则f (x )________.(将正确说法的序号填上) ①在区间⎣⎡⎦⎤2π3,4π3上是单调增函数 ②在区间⎣⎡⎦⎤3π4,13π12上是单调增函数 ③在区间⎣⎡⎦⎤-π8,π4上是单调减函数 ④在区间⎣⎡⎦⎤π3,5π6上是单调减函数 五、确定参数范围例5 当0≤x ≤1时,不等式sinπx 2≥kx 恒成立,则实数k 的取值范围是________. 六、研究方程的实根例6 已知方程2sin ⎝⎛⎭⎫x +π4=k 在[0,π]上有两个实数根x 1,x 2,求实数k 的取值范围,并求x 1+x 2的值.2 聚焦三角函数最值的求解策略一、化为y =A sin(ωx +φ)+B 的形式求解例1 求函数f (x )=sin 4x +cos 4x +sin 2x cos 2x 2-sin 2x的最值.例2 求函数y =sin 2x +2sin x cos x +3cos 2x 的最小值,并写出y 取最小值时x 的集合.二、利用正弦、余弦函数的有界性求解例3 求函数y =2sin x +12sin x -1的值域.例4 求函数y =sin x +3cos x -4的值域.三、转化为一元二次函数在某确定区间上求最值例5 设关于x 的函数y =cos 2x -2a cos x -2a 的最小值为f (a ),写出f (a )的表达式.四、利用函数的单调性求解例7 求函数y =(1+sin x )(3+sin x )2+sin x的最值.例8 在Rt △ABC 内有一内接正方形,它的一条边在斜边BC 上,设AB =a ,∠ABC =θ,△ABC 的面积为P ,正方形面积为Q .求P Q的最小值.易错问题盘点一、求角时选择三角函数类型不当而致错例1 已知sin α=55,sin β=1010,α和β都是锐角,求α+β的值.二、忽视条件中隐含的角的范围而致错例2 已知tan 2α+6tan α+7=0,tan 2β+6tan β+7=0,α、β∈(0,π),且α≠β,求α+β的值.三、忽略三角形内角间的关系而致错例3 在△ABC 中,已知sin A =35,cos B =513,求cos C .四、忽略三角函数的定义域而致错例4 判断函数f (x )=1+sin x -cos x 1+sin x +cos x的奇偶性.五、误用公式a sin x +b cos x =a 2+b 2sin(x +φ)而致错例5 若函数f (x )=sin(x +θ)+cos(x -θ),x ∈R 是偶函数,求θ的值.专题1-1 三角函数重难点、易错点突破参考答案1 同角三角函数关系巧应用例1 解析 由sin α=255,且sin 2α+cos 2α=1得cos α=±55, 因为π2≤α≤π,可得cos α=-55,所以tan α=sin αcos α=-2. 答案 -2点评 已知某角的弦函数值求其他三角函数值时,先利用平方关系求另一弦函数值,再求切函数值,需要注意的是利用平方关系时,若没有角度的限制,要注意分类讨论.例2 证明 因为sin 2x +cos 2x =1,所以1=(sin 2x +cos 2x )3,1=(sin 2x +cos 2x )2,所以1-sin 6x -cos 6x 1-sin 4x -cos 4x =(sin 2x +cos 2x )3-sin 6x -cos 6x (sin 2x +cos 2x )2-sin 4x -cos 4x=3sin 4x cos 2x +3cos 4x sin 2x 2sin 2x cos 2x =3(sin 2x +cos 2x )2=32. 即原命题得证.点评 本题在证明过程中,充分利用了三角函数的平方关系,对“1”进行了巧妙的代换,使问题迎刃而解.例3 解析 (1)因为cos α≠0,分子分母同除以cos α,得2sin α-3cos α4sin α-9cos α=2tan α-34tan α-9=2×2-34×2-9=-1. (2)2sin 2α-3cos 2α=2sin 2α-3cos 2αsin 2α+cos 2α, 因为cos 2 α≠0,分子分母同除以cos 2α,得2sin 2α-3cos 2αsin 2α+cos 2α=2tan 2α-3tan 2α+1=2×22-322+1=1. 答案 (1)-1 (2)1点评 这是一组在已知tan α=m 的条件下,求关于sin α、cos α的齐次式值的问题.解这类问题需注意以下几点:(1)一定是关于sin α、cos α的齐次式(或能化为齐次式)的三角函数式;(2)因为cos α≠0,所以分子、分母可同时除以cos n α(n ∈N +).这样可以将所求式化为关于tan α的表达式,整体代入tan α=m 的值求解.2 三角函数的性质总盘点例1解析 由题意得cos x ≥12,所以2k π-π3≤x ≤2k π+π3,k ∈Z . 即函数的定义域是[2k π-π3,2k π+π3],k ∈Z . 答案 [2k π-π3,2k π+π3],k ∈Z 点评 解本题的关键是先列出保证函数式有意义的三角不等式,然后利用三角函数的图象或者单位圆中三角函数线求解.例2 解析 因为0<x ≤π3,所以π3<x +π3≤23π,f (x )=cos x 的图象如图所示: 可知cos 23π≤cos(x +π3)<cos π3,即-12≤y <12.故函数的值域是[-12,12). 答案 [-12,12) 点评 解本题的关键是从x 的范围入手,先求得ωx +φ的范围,再结合余弦函数的图象对应得出cos(ωx +φ)的范围,从而可得函数的值域或者最值.例3 解 由f (x )=sin(π3-2x )可化为f (x )=-sin(2x -π3). 所以原函数的单调减区间即为函数y =sin(2x -π3)的单调增区间. (1)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 解得k π-π12≤x ≤k π+5π12,k ∈Z . 所以f (x )=sin(π3-2x )的单调减区间为[k π-π12,k π+5π12],k ∈Z . (2)在减区间[k π-π12,k π+5π12],k ∈Z 中, 令k =-1、0时,可以得到当x ∈[-π,0]时,f (x )=sin(π3-2x )的单调减区间为[-π,-7π12],[-π12,0]. 点评 解本题的关键是先把函数化为标准形式y =sin(ωx +φ),ω>0,然后把ωx +φ看做一个整体,根据y =sin x 的单调性列出不等式,求得递减区间的通解;如果要求某一个区间上的单调区间,再对通解中的k 进行取值,便可求得函数在这个区间上的单调区间.例4 解析 由T =π=2π2ω得ω=1, 所以f (x )=sin(2x -π3), 由2x -π3=π2+k π,k ∈Z ,解得f (x )的对称轴为x =5π12+k π2,k ∈Z . 答案 x =5π12+k π2,k ∈Z 点评 解本题的关键是先由周期公式求得ω的值,再解决对称轴问题,求解对称轴有两种方法:一种是直接求得函数的对称轴;另一种是根据对称轴的特征——对应的函数值为函数的最值解决.同样地,求解对称中心也有两种方法.例5 解析 函数是偶函数,所以函数关于x =0对称.由x +φ3=π2+k π,k ∈Z ,可得函数的对称轴方程是x =x 3π2+3k π-φ,k ∈Z .令3π2+3k π-φ=0,k ∈Z , 解得φ=3π2+3k π,k ∈Z ,又φ∈[0,2π),故φ=3π2. 答案 3π2点评 解本题的关键是把奇偶性转化为对称性解决:偶函数⇔函数图象关于y 轴对称;奇函数⇔函数图象关于原点对称.1 善用数学思想——巧解题例1 解析 在同一坐标系中画出y =sin x ,y =cos x ,x ∈(0,2π)的图象如图: 由图知,x ∈(π4,5π4).答案 (π4,5π4)点评 求解三角函数的方程、不等式时,通常利用函数的图象使问题变得更简单. 例2 解 角α的终边在直线3x +4y =0上, 在角α的终边上任取一点P (4t ,-3t )(t ≠0),则x =4t ,y =-3t , r =x 2+y 2=(4t )2+(-3t )2=5|t |.当t >0时,r =5t ,sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t 4t =-34;当t <0时,r =-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =-3t 4t =-34,综上可知,sin α=-35,cos α=45,tan α=-34; 或sin α=35,cos α=-45,tan α=-34.点评 (1)若角的终边位置象限不确定,应分类讨论.(2)若三角函数值含有变量,因变量取不同的值会导致不同的结果,需要讨论.例3 解析 f (x )=3cos x -sin 2x =cos 2x +3cos x -1=(cos x +32)2-74, 设cos x =t ,因为π6≤x ≤π3,所以由余弦函数的单调性可知,12≤cos x ≤32,即12≤t ≤32,又函数f (t )=(t +32)2-74在[12,32]上是单调增函数,故f (t )max =f (32)=54,所以f (x )的最大值为54. 答案 54点评 遇平方关系,可想到构造二次函数,再利用二次函数求解最大值. 例4 解 tan(-13π4)=-tan π4,tan(-17π5)=-tan 2π5.因为0<π4<2π5<π2,且y =tan x 在(0,π2)上是单调增函数,所以tan π4<tan 2π5.所以-tan π4>-tan 2π5,即tan(-13π4)>tan(-17π5).点评 三角函数值比较大小问题一般将其转化到某一三角函数的一个单调区间内,然后利用三角函数的单调性比较大小.另外诱导公式的使用也充分体现了将未知化为已知的化归与转化思想.2 三角恒等变形的几个技巧例1 解析3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2=2.答案 2点评 常用的降幂技巧还有:因式分解降幂、用平方关系sin 2θ+cos 2θ=1进行降幂:如cos 4θ+sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12sin 22θ,等等.例2 解 因为α∈(3π2,2π),所以α2∈(3π4,π), 所以cos α>0,sin α2>0,故原式=12-121+cos 2α2= 12-12cos α= sin 2α2=sin α2.点评 一般地,在化简求值时,遇到1+cos 2α、1-cos 2α、1+sin 2α、1-sin 2α常常化为平方式:2cos 2α、2sin 2α、(sin α+cos α)2、(sin α-cos α)2.例3 解析 cos(2π3+2α)=2cos 2(π3+α)-1=2sin 2(π6-α)-1=2×(13)2-1=-79.答案 -79点评 正确快速求解本题的关键是灵活运用已知角“π6-α”表示待求角“2π3+2α”,善于发现前者和后者的一半互余.例4 解析 cos 2θ1+sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ+2sin θcos θ=1-tan 2θ1+tan 2θ+2tan θ=1-141+14+2×(-12)=3414=3.答案 3点评 解本题的关键是先由二倍角公式和平方关系把“cos 2θ1+sin 2θ”化为关于sin θ和cos θ的二次齐次弦式比.例5 解 原式=12cos 20°cos 40°cos 80°=4sin 20°cos 20°cos 40°cos 80°8sin 20°=2sin 40°cos 40°cos 80°8sin 20°=sin 80°cos 80°8sin 20°=116·sin 160°sin 20°=116.点评 这类问题的解决方法是分子、分母同乘以最小角的正弦的倍数即可.1 数形结合百般好,形象直观烦琐少——构建正弦、余弦函数图象解题例1 解析 根据题设中的新定义,得f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,作出函数f (x )在一个周期内的图象,如图可知函数f (x )的值域为⎣⎡⎦⎤-1,22. 答案 ⎣⎡⎦⎤-1,22点评 有关三角函数的值域的确定,常常作出函数的图象,借助于图象直观、准确地求解. 例2 解析 在同一直角坐标系内,画出y =⎝⎛⎭⎫12x及y =sin x 的图象,由图象可观察出交点个数为2. 答案 2点评 有关三角函数的交点个数的确定,常常作出函数的图象,借助于图象直观、准确求解.例3 解析 ∵f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)且f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3, 又f (x )在区间⎝⎛⎭⎫π6,π3内只有最小值、无最大值,画出函数大致图象,如图所示, ∴f (x )在π6+π32=π4处取得最小值.∴π4ω+π3=2k π-π2(k ∈Z ).∴ω=8k -103(k ∈Z ). ∵ω>0,∴当k =1时,ω=8-103=143;当k =2时,ω=16-103=383,此时在区间⎝⎛⎭⎫π6,π3内已存在最大值.故ω=143. 答案143点评 本小题考查对y =A sin(ωx +φ)的图象及性质的理解与应用,求解本题应注意两点:一是f (x )在π4处取得最小值;二是在区间⎝⎛⎭⎫π6,π3内只有最小值而无最大值,求解时作出其草图可以帮助解题.例4 解析 作出函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3的图象如图所示.由图象可知②正确. 答案 ②点评 形如f (x )=|A sin(ωx +φ)+k |(A ≠0,ω≠0)的函数性质,可作出其图象,利用数形结合思想求解. 例5 解析 作出函数y =sinπx2,y =kx 的函数图象,如图所示.当k ≤0时,显然成立;当0<k ≤1时,由图象可知: sinπx2≥kx 在[0,1]上成立.综上所述,k ≤1. 答案 (-∞,1]点评 数形结合时,函数图象要根据题目需要作得精确可信,必要时应结合计算判断.本题讨论y =kx 与y =sinπx2的图象关系时,不要忘记k ≤0的情况. 例6 解 在同一坐标系内作出函数y 1=2sin ⎝⎛⎭⎫x +π4(0≤x ≤π)与y 2=k 的图象,如图所示.当x =0时,y 1=2sin ⎝⎛⎭⎫0+π4=1. 所以当k ∈[1,2)时,两曲线在[0,π]上有两个交点,即方程有两个实数根x 1、x 2,且x 1、x 2关于x =π4对称,x 1+x 2=π2.故实数k 的取值范围是[1,2),且x 1+x 2=π2.点评 本题通过函数图象的交点个数判断方程实数根的个数,应重视这种方法.2 聚焦三角函数最值的求解策略例1 解 原函数变形得:f (x )=(sin 2x +cos 2x )2-sin 2x cos 2x2-sin 2x=1-14sin 22x 2-sin 2x=⎝⎛⎭⎫1+12sin 2x ⎝⎛⎭⎫1-12sin 2x 2⎝⎛⎭⎫1-12sin 2x =14sin 2x +12.∴f (x )max =34,f (x )min =14.例2 解 原函数化简得:y =sin 2x +cos 2x +2=2sin ⎝⎛⎭⎫2x +π4+2. 当2x +π4=2k π+32π,k ∈Z ,即x =k π+58π,k ∈Z 时,y min =2- 2.此时x 的集合为{x |x =k π+58π,k ∈Z }.点评 形如y =a sin 2ωx +b sin ωx cos ωx +c cos 2ωx +d (a ,b ,c ,d 为常数)的式子,都能转化成y =A sin(2ωx +φ)+B 的形式求最值.例3 解 原函数整理得sin x =y +12(y -1).∵|sin x |≤1,∴⎪⎪⎪⎪⎪⎪y +12(y -1)≤1,解出y ≤13或y ≥3.即函数的值域为⎝⎛⎦⎤-∞,13∪[3,+∞). 例4解 原函数整理得sin x -y cos x =-4y -3,∴y 2+1sin(x +φ)=-4y -3, ∴sin(x +φ)=-4y -31+y 2.∵|sin(x +φ)|≤1,解不等式⎪⎪⎪⎪⎪⎪-4y -31+y 2≤1得:-12-2615≤y ≤-12+2615. 即值域为⎣⎢⎡⎦⎥⎤-12-2615,-12+2615.点评 对于形如y =a sin x +b c sin x +d 或y =a sin x +bc cos x +d 的这类函数,均可利用三角函数中弦函数的有界性去求最值.例5 解y =cos 2x -2a cos x -2a =2cos 2x -2a cos x -(2a +1)=2⎝⎛⎭⎫cos x -a 22-⎝⎛⎭⎫a 22+2a +1.当a2<-1,即a <-2时,f (a )=y min =1,此时cos x =-1. 当-1≤a 2≤1,即-2≤a ≤2时,f (a )=y min =-a 22-2a -1,此时cos x =a2.当a2>1,即a >2时,f (a )=y min =1-4a ,此时cos x =1. 综上所述,f (a )=⎩⎪⎨⎪⎧1(a <-2),-a22-2a -1(-2≤a ≤2),1-4a (a >2).点评 形如y =a sin 2x +b sin x +c 的三角函数可转化为二次函数y =at 2+bt +c 在区间[-1,1]上的最值问题解决.例6 解 设sin x +cos x =t ,t ∈[-2, 2 ],则2sin x cos x =t 2-1,原函数变为y =t 2+t +1,t ∈[-2,2 ],当t =-12时,y min =34;当t =2时,y max =3+ 2.点评 一般地,既含sin x +cos x (或sin x -cos x )又含sin x cos x 的三角函数采用换元法可以转化为t 的二次函数解最值.注意以下结论的运用,设sin x +cos x =t ,则sin x cos x =12(t 2-1);sin x -cos x =t ,则sin x cosx =12(1-t 2). 例7 解 y =sin 2x +4sin x +3sin x +2=(sin x +2)2-1sin x +2=(sin x +2)-1(sin x +2),令t =sin x +2,则t ∈[1,3],y =t -1t.利用函数单调性的定义易证函数y =t -1t 在[1,3]上为增函数.故当t =1即sin x =-1时,y min =0; 当t =3即sin x =1时,y max =83.例8 解 AC =a tan θ,P =12AB ·AC =12a 2tan θ.设正方形边长为x ,AG =x cos θ,BC =acos θ.BC 边上的高h =a sin θ,∵AG AB =h -x h ,即x cos θa =a sin θ-x a sin θ, ∴x =a sin θ1+sin θcos θ, ∴Q =x 2=a 2sin 2θ(1+sin θcos θ)2. 从而P Q =sin θ2cos θ·(1+sin θcos θ)2sin 2θ=(2+sin 2θ)24sin 2θ=1+⎝⎛⎭⎫sin 2θ4+1sin 2θ. 易知函数y =1t +t 4在区间(0,1]上是减少的, 所以当sin 2θ=1时,⎝⎛⎭⎫P Q min =94. 点评 一些复杂的三角函数最值问题,可以通过适当换元转化为简单的代数函数后,利用函数单调性巧妙解决.易错问题盘点例1 [错解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, sin(α+β)=sin αcos β+cos αsin β=55×31010+255×1010=22. 因为α,β∈⎝⎛⎭⎫0,π2,则α+β∈(0,π). 所以α+β=π4或3π4. [剖析] 由sin α=55,sin β=1010,α和β都是锐角,可以知道α和β都是定值,因此α+β也是定值,因此上述解法出现两个答案,其中就有一个是错误的.这是因为sin(α+β)在第一、第二象限没有区分度,应选择计算cos(α+β)的值.[正解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22.因为α,β∈⎝⎛⎭⎫0,π2,则α+β∈(0,π), 所以α+β=π4.温馨点评 根据条件求角,主要有两步:(1)求角的某种三角函数值;(2)确定角的范围,从而确定所求角的值.完成第一步一般要选择相对角的范围区分度比较大的三角函数,且确定范围要尽量缩小.例2 [错解] 由题意知tan α、tan β是方程x 2+6x +7=0的两根,由根与系数的关系得:⎩⎪⎨⎪⎧tan α+tan β=-6 ①tan αtan β=7 ②∴tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1.∵0<α<π,0<β<π,∴0<α+β<2π, ∴α+β=π4或α+β=54π.[剖析] 由①②知tan α<0,tan β<0,角α、β都是钝角.上述解法忽视了这一隐含条件.[正解] 由⎩⎪⎨⎪⎧tan α+tan β=-6,tan αtan β=7易知tan α<0,tan β<0.∵α、β∈(0,π), ∴π2<α<π,π2<β<π.∴π<α+β<2π.又∵tan(α+β)=1,∴α+β=54π.例3 [错解] 由sin A =35,得cos A =±45,由cos B =513,得sin B =1213,当cos A =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.当cos A =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =5665.[剖析] 在△ABC 中,三个内角A 、B 、C 的和为π,解题时要充分利用这一定理.本题得到cos A =±45后,没有对cos A =-45这一结果是否合理进行检验,从而导致结论不正确.[正解] 由cos B =513>0,∴B ∈⎝⎛⎭⎫0,π2,且sin B =1213. 由sin A =35,得cos A =±45,当cos A =-45时,cos A <-12.∴A >2π3.∵sin B =1213>32,B ∈⎝⎛⎭⎫0,π2,∴B >π3. 故当cos A =-45时,A +B >π,与A 、B 是△ABC 的内角矛盾.∴cos A =45,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.例4 [错解] f (x )=1+sin x -cos x 1+sin x +cos x=1+2sin x 2cos x 2-⎝⎛⎭⎫1-2sin 2x 21+2sin x 2cos x 2+⎝⎛⎭⎫2cos 2x 2-1=2sin x2⎝⎛⎭⎫cos x 2+sin x 22cos x 2⎝⎛⎭⎫sin x 2+cos x 2=tan x2,由此得f (-x )=tan ⎝⎛⎭⎫-x 2=-tan x2=-f (x ), 因此函数f (x )为奇函数.[剖析] 运用公式后所得函数f (x )=tan x2的定义域为{}x |x ∈R ,x ≠2k π+π,k ∈Z .两函数的定义域不同,变形后的函数定义域扩大致错.[正解] 事实上,由1+sin x +cos x ≠0可得sin x +cos x ≠-1, 即2sin ⎝⎛⎭⎫x +π4≠-1,从而sin ⎝⎛⎭⎫x +π4≠-22, 所以x +π4≠2k π+5π4且x +π4≠2k π+7π4(k ∈Z ),故函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x |x ≠2k π+π,且x ≠2k π+3π2,k ∈Z ,显然该定义域不关于原点对称. 所以函数f (x )为非奇非偶函数.例5 [错解] ∵f (x )=sin(x +θ)+cos(x -θ), ∴f (0)=sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π4. ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数, ∴|f (0)|=f (x )max = 2. ∴f (0)=2sin ⎝⎛⎭⎫θ+π4=±2, ∴sin ⎝⎛⎭⎫θ+π4=±1,∴θ+π4=k π+π2,k ∈Z . 即θ=k π+π4,k ∈Z .[剖析] 因为x +θ与x -θ是不同的角,所以函数f (x )的最大值不是2,上述解答把f (x )的最大值误当作2来处理.[正解] 因为f (x )=sin(x +θ)+cos(x -θ)是偶函数,所以f (x )=f (-x )对一切x ∈R 恒成立.即sin(x +θ)+cos(x -θ)=sin(-x +θ)+cos(-x -θ)恒成立. ∴[sin(x +θ)+sin(x -θ)]+[cos(x -θ)-cos(x +θ)]=0. ∴2sin x cos θ+2sin x sin θ=0恒成立. 即2sin x (cos θ+sin θ)=0恒成立. ∴cos θ+sin θ=0.∵cos θ+sin θ=2sin ⎝⎛⎭⎫θ+π4=0, ∴θ+π4=k π,即θ=k π-π4,k ∈Z .。

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》经典测试题附答案

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》经典测试题附答案

【高中数学】数学《三角函数与解三角形》高考知识点(1)一、选择题1.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+若2sin sin sin B C A ⋅=,则ABC ∆的形状是()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】C 【解析】 【分析】直接利用余弦定理的应用求出A 的值,进一步利用正弦定理得到:b =c ,最后判断出三角形的形状. 【详解】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c , 且b 2+c 2=a 2+bc .则:2221222b c a bc cosA bc bc +-===,由于:0<A <π,故:A 3π=.由于:sin B sin C =sin 2A , 利用正弦定理得:bc =a 2, 所以:b 2+c 2﹣2bc =0, 故:b =c ,所以:△ABC 为等边三角形. 故选C . 【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.2.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:①实数a 的值为1;②()()1,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为23π. 其中所有正确结论的编号是( )A .①②③B .①③④C .①④D .③④【答案】B 【解析】 【分析】 根据56x π=是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为2Tπ=,然后由()()12f x f x =-,得到()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称求解验证.【详解】 ∵56x π=是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-⎪⎝⎭, 令0x =,得()503f f π⎛⎫=⎪⎝⎭,即-1a =,①正确; ∴()sin 2sin 3π⎛⎫=-=- ⎪⎝⎭f x x x x .又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为2Tπ=,且()()12f x f x =-, ∴()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称,∴121233223x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π,k Z ∈, ∴12223x x k ππ+=+,k Z ∈,当0k =时,12x x +取最小值23π,所以①③④正确,②错误. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a ﹣c cos B )sin A =c cos A sin B ,则△ABC 的形状一定是( ) A .钝角三角形 B .直角三角形C .等腰三角形D .锐角三角形【答案】C 【解析】 【分析】根据题意,由(cos )sin cos sin a c B A c A B -=变形可得sin sin a A c C =,进而由正弦定理可得22a c =,即a c =,即可得答案. 【详解】根据题意,在ABC ∆中,(cos )sin cos sin a c B A c A B -=, 变形可得:sin cos sin cos sin (cos sin cos sin )sin()sin a A c B A c A B c B A A B c A B c C =+=+=+=,即有sin sin a A c C =,又由正弦定理可得22a c =,即a c =. 故选:C . 【点睛】本题主要考查三角形的形状判断,考查正弦定理的应用,意在考查学生对这些知识点的理解掌握水平,属于基础题.4.在ABC ∆中,角,,A B C 所对的边分别为,,a b c 满足,222b c a bc +-=,0AB BC ⋅>u ur u u r u u,2a =,则bc +的取值范围是( ) A .31,2⎛⎫ ⎪⎝⎭B.32⎫⎪⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .31,2⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】利用余弦定理222cos 2b c a A bc+-=,可得3A π=,由|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r,可得B为钝角,由正弦定理可得sin sin(120)30)o o b c B B B ∴+=+-=+,结合B 的范围,可得解【详解】由余弦定理有:222cos 2b c a A bc+-=,又222b c a bc +-=故2221cos 222b c a bc A bc bc +-===又A 为三角形的内角,故3A π=又2a=sin sin sin(120)ob c c B C B ==- 又|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r故cos 0B B <∴为钝角3sin sin(120)sin 30)22o o b c B B B B B ∴+=+-=+=+(90,120)o o B ∈Q ,可得130(120150)sin(30)(,22o o o o B B +∈∴+∈,330))22o b c B ∴+=+∈ 故选:B 【点睛】本题考查了正弦定理、余弦定理和向量的综合应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题5.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2πC .76π D .π【答案】B 【解析】 【分析】根据两个函数相等,求出所有交点的横坐标,然后求和即可. 【详解】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =.又[],2x ππ∈-,所以2x π=-或32x π=或6x π=或56x π=,所以函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象交点的横坐标的和3522266s πππππ=-+++=,故选B. 【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.6.在ABC ∆中,若sin :sin :sin 2:3:4A B C =,则ABC ∆是( ) A .直角三角形 B .钝角三角形C .锐角三角形D .等腰直角三角形【答案】B 【解析】 【分析】由题意利用正弦定理,推出a ,b ,c 的关系,然后利用余弦定理求出cosC 的值,即可得解. 【详解】∵sinA :sinB :sinC=2:3:4∴由正弦定理可得:a :b :c=2:3:4, ∴不妨令a=2x ,b=3x ,c=4x ,∴由余弦定理:c 2=a 2+b 2﹣2abcosC ,所以cosC=2222a b cab+-=2224916223x x x x x +-⨯⨯=﹣14, ∵0<C <π, ∴C 为钝角. 故选B . 【点睛】本题是基础题,考查正弦定理,余弦定理的应用,考查计算能力,常考题型.7.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=()A .5-B .CD 【答案】B 【解析】 【分析】由辅助角公式可确定()max f x =sin 2cos θθ-=平方关系可构造出方程组求得结果. 【详解】()()sin 2cos f x x x x ϕ=-=+Q ,其中tan 2ϕ=- ()max f x ∴sin 2cos θθ-=又22sin cos 1θθ+= cos θ∴=【点睛】本题考查根据三角函数的最值求解三角函数值的问题,关键是能够确定三角函数的最值,从而得到关于所求三角函数值的方程,结合同角三角函数关系构造方程求得结果.8.△ABC 中,已知tanA =13,tanB =12,则∠C 等于( )A .30°B .45°C .60°D .135°【答案】D 【解析】 【分析】利用三角形内角和为180o ,可得:tan tan()tan(+)C A B A B π=--=-,利用两角和公式和已知条件,即可得解. 【详解】在△ABC 中,11tan tan 32tan tan()tan(+)=-1111tan tan 132A BC A B A B A B π++=--=-=-=---⋅,所以135C ?o .故选:D. 【点睛】本题考查了正切的两角和公式,考查了三角形内角和,考查了转化思想和计算能力,属于中档题.9.在△ABC 中,7b =,5c =,3B π∠=,则a 的值为 A .3 B .4C .7D .8【答案】D 【解析】 【分析】根据题中所给的条件两边一角,由余弦定理可得2222cos b a c ac B =+-,代入计算即可得到所求的值. 【详解】因为7,5,3b c B π==∠=,由余弦定理可得2222cos b a c ac B =+-,即214925252a a =+-⨯⨯,整理得25240a a --=, 解得8a =或5a =-(舍去),故选D. 【点睛】该题考查的是有关解三角形的问题,在解题的过程中,涉及到的知识点有余弦定理,解三角形所用的就是正弦定理和余弦定理,结合题中的条件,选择适当的方法求得结果.10.在∆ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .则“sin >sin A B ”是“a b >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】由正弦定理得sin sin 22a b A B a b R R>⇔>⇔> ,所以“sin sin A B >”是“a b >”的充要条件,选C.11.函数y=ππππcos sin cos -sin 4444x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图象是( ) A .B .C .D .【答案】B 【解析】 【分析】首先根据二倍角余弦公式化简得到函数的解析式,再由函数表达式得到函数的单调性和周期,进而得到选项. 【详解】根据两角和差公式展开得到: y=ππππcos sin cos -sin 4444x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22πππcos sin cos 2424x x x ⎛⎫⎛⎫⎛⎫+-+=+ ⎪ ⎪ ⎪⎝⎭⎝=⎝⎭⎭=-sin2x ,函数在0的右侧是单调递减的,且周期为π,故选B. 故答案选B . 【点睛】这个题目考查了三角函数的恒等变换,题型为已知函数表达式选择函数的图像,这种题目,一般是先根据函数的表达式得到函数的定义域,或者值域,进行排除;也可以根据函数的表达式判断函数的单调性,周期性等,之后结合选项选择.12.已知函数f (x )=sin 2x +sin 2(x 3π+),则f (x )的最小值为( ) A .12B .14C 3D .22【答案】A 【解析】 【分析】先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛⎫=-+ ⎪⎝⎭,再求最值. 【详解】已知函数f (x )=sin 2x +sin 2(x 3π+), =21cos 21cos 2322x x π⎛⎫-+⎪-⎝⎭+,=1cos 22111cos 222223x x x π⎛⎫⎛⎫--=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因为[]cos 21,13x π⎛⎫+∈- ⎪⎝⎭, 所以f (x )的最小值为12. 故选:A 【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.13.在OAB ∆中,已知OB =u u u v 1AB u u u v=,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v的最小值为( )ABCD【答案】A 【解析】 【分析】根据OB =u u u r,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】在OAB ∆中,已知OB =u u u r,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OBAOB OAB=∠∠u u u r u u u rsin 2OAB =∠,解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22⎝⎭所以2222OA ⎛= ⎝⎭u u u r ,)2,0OB =u u u r因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r则)222,022OP λμ⎛ =+ ⎝⎭u u u r 222,22λμλ⎛⎫⎪ ⎪⎝⎭=则2222222OP λμλ⎛⎫=++⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r2222λλμμ=++因为23λμ+=,则32μλ=- 代入上式可得()()22322232λλλλ+-+-218518λλ-=+299555λ⎛⎫=-+ ⎪⎝⎭所以当95λ=时, min 93555OP ==u u u r 故选:A 【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.14.若函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方,则实数k 的取值范围为( )A .)+∞ B .)+∞C .()+∞D .()【答案】A 【解析】 【分析】计算tan 203x π⎛⎫<-< ⎪⎝⎭,tan 23x k π⎛⎫->- ⎪⎝⎭恒成立,得到答案. 【详解】∵0,6x π⎛⎫∈ ⎪⎝⎭,∴2033x ππ-<-<,∴tan 203x π⎛⎫-< ⎪⎝⎭,函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方, 即对任意的0,6x π⎛⎫∈ ⎪⎝⎭,都有tan 203x k π⎛⎫-+> ⎪⎝⎭,即tan 23x k π⎛⎫->- ⎪⎝⎭,∵tan 23x π⎛⎫-> ⎪⎝⎭k -≤,k ≥ 故选:A . 【点睛】本题考查了三角函数恒成立问题,转化为三角函数值域是解题的关键.15.函数()22sin 3cos 2f x x x =+-,2,36x ππ⎡⎤∈-⎢⎥⎣⎦的值域为( ) A .40,3⎡⎤⎢⎥⎣⎦B .41,3⎡⎤⎢⎥⎣⎦C .51,4⎡⎤⎢⎥⎣⎦D .50,4⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】化简得到()23sin 2sin 1f x x x =-++,设sin t x =,利用二次函数性质得到答案. 【详解】根据22sin cos 1x x +=,得()23sin 2sin 1f x x x =-++,2,36x ππ⎡⎤∈-⎢⎥⎣⎦, 令sin t x =,由2,36x ππ⎡⎤∈-⎢⎥⎣⎦,得1sin 1,2x ⎡⎤∈-⎢⎥⎣⎦, 故[]0,1t ∈,有2321y t t =-++,[]0,1t ∈,二次函数对称轴为13t =, 当13t =时,最大值43y =;当1t =时,最小值0y =,综上,函数()f x 的值域为40,3⎡⎤⎢⎥⎣⎦.故选:A . 【点睛】本题考查了三角函数值域,换元可以简化运算,是解题的关键.16.某船开始看见灯塔A 时,灯塔A 在船南偏东30o 方向,后来船沿南偏东60︒的方向航行45km 后,看见灯塔A 在船正西方向,则这时船与灯塔A 的距离是( ) A .152km B .30kmC .15kmD .153km【答案】D 【解析】 【分析】如图所示,设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,根据题意求出BAC ∠与BAC ∠的大小,在三角形ABC 中,利用正弦定理算出AC 的长,可得该时刻船与灯塔的距离. 【详解】设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,如图所示,可得60DBC ∠=︒,30ABD ∠=︒,45BC =30ABC ∴∠=︒,120BAC ∠=︒在三角形ABC 中,利用正弦定理可得:sin sin AC BCABC BAC=∠∠,可得sin 1153sin 23BC ABC AC km BAC ∠===∠ 故选D 【点睛】本题主要考查的是正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解决本题的关键,属于基础题.17.已知函数()3)(0f x x ωϕω=+>,)22ππ-<ϕ<,1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是()A .2(23k -,42)3k +,k Z ∈ B .2(23k ππ-,42)3k ππ+,k Z ∈C .2(43k -,44)3k +,k Z ∈ D .2(43k ππ-,44)3k ππ+,k Z ∈【答案】C 【解析】 【分析】由三角函数图像的性质可求得:2πω=,6πϕ=-,即()sin()26f x x ππ=-,再令222262k x k ππππππ--+剟,求出函数的单调增区间即可.【详解】解:函数())(0f x x ωϕω=+>,)22ππ-<ϕ<, 因为1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,又4BC =,∴222()42T +=,即221216πω+=,求得2πω=.再根据123k πϕπ+=g ,k Z ∈,可得6πϕ=-,()3sin()26f x x ππ∴=-,令222262k x k ππππππ--+剟,求得244433k x k -+剟, 故()f x 的单调递增区间为2(43k -,44)3k +,k Z ∈, 故选:C . 【点睛】本题考查了三角函数图像的性质及单调性,属中档题.18.4cos2d cos sin xx x xπ=+⎰( )A .1)B 1C 1D .2【答案】C 【解析】 【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分. 【详解】因为22cos2cos sin cos sin cos sin cos sin x x xx x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0xx x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.19.设函数()()sin f x x x x R =∈,则下列结论中错误的是( ) A .()f x 的一个周期为2π B .()f x 的最大值为2 C .()f x 在区间2,63ππ⎛⎫⎪⎝⎭上单调递减 D .3f x π⎛⎫+⎪⎝⎭的一个零点为6x π=【答案】D 【解析】 【分析】先利用两角和的正弦公式化简函数()f x ,再由奇偶性的定义判断A ;由三角函数的有界性判断B ;利用正弦函数的单调性判断C ;将6x π=代入 3f x π⎛⎫+ ⎪⎝⎭判断D .【详解】()sin f x x x = 23sin x π⎛⎫=+ ⎪⎝⎭,()f x 周期22,1T A ππ==正确; ()f x 的最大值为2,B 正确,25,,,63326x x πππππ⎛⎫⎛⎫∈∴+∈ ⎪⎪⎝⎭⎝⎭Q , ()f x ∴在2,63ππ⎛⎫⎪⎝⎭上递减,C 正确; 6x π=时,1032f x f ππ⎛⎫⎛⎫+==≠ ⎪ ⎪⎝⎭⎝⎭,6x π=不是3f x π⎛⎫+⎪⎝⎭的零点,D 不正确. 故选D. 【点睛】本题通过对多个命题真假的判断,综合考查两角和的正弦公式以及三角函数的单调性、三角函数的周期性、三角函数的最值与零点,意在考查对基础知识掌握的熟练程度,属于中档题.20.关于函数()()()sin tan cos tan f x x x =-有下述四个结论: ①()f x 是奇函数; ②()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增; ③π是()f x 的周期; ④()f x 的最大值为2.其中所有正确结论的个数是( ) A .4 B .3C .2D .1【答案】C 【解析】 【分析】计算()()()sin tan cos tan f x x x -=--得到①错误,根据复合函数单调性判断法则判断②正确,()()f x f x π+=③正确,假设()f x 的最大值为2,取()2f a =,得到矛盾,④错误,得到答案. 【详解】()()()sin tan cos tan f x x x =-,()()()sin tan cos tan f x x x -=---⎡⎤⎡⎤⎣⎦⎣⎦()()sin tan cos tan x x =--,所以()f x 为非奇非偶函数,①错误;当0,4x π⎛⎫∈ ⎪⎝⎭时,令tan t x =,()0,1t ∈, 又()0,1t ∈时sin y t =单调递增,cos y t =单调递减,根据复合函数单调性判断法则, 当0,4x π⎛⎫∈ ⎪⎝⎭时,()sin tan y x =,()cos tan y x =-均为增函数, 所以()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增,所以②正确; ()()()sin tan cos tan f x x x πππ+=+-+⎡⎤⎡⎤⎣⎦⎣⎦()()()sin tan cos tan x x f x =-=,所以π是()f x 的周期,所以③正确;假设()f x 的最大值为2,取()2f a =,必然()sin tan 1a =,()cos tan 1a =-, 则tan 22a k ππ=+,k Z ∈与tan 2a k ππ=+,k Z ∈矛盾,所以()f x 的最大值小于2,所以④错误. 故选:C . 【点睛】本题考查了三角函数奇偶性,单调性,周期,最值,意在考查学生对于三角函数知识的综合应用.。

高考数学-三角函数专题复习

高考数学-三角函数专题复习

高考数学-三角函数专题复习三角函数专题考点例题解析】考点1.求值1、求sin330°、tan690°、sin585°的值。

解:利用三角函数的周期性和对称性,可得:sin330°=sin(360°-30°)=sin30°=1/2tan690°=tan(720°-30°)=tan30°=1/√3sin585°=sin(540°+45°)=sin45°=√2/22、已知角α为第三象限角,求sin(α+π/2)的值。

解:由于α为第三象限角,所以sinα<0,cosα<0.又因为sin(α+π/2)=cosα,所以sin(α+π/2)<0.3、已知sinθ+cosθ=5/3,cosθ-sinθ=2,求sin2θ的值。

解:将sinθ+cosθ和cosθ-sinθ相加,可得cosθ+cosθ=5/3+2=11/3,即cosθ=11/6.将cosθ-sinθ和sinθ+cosθ相减,可得2sinθ=-1/6,即sinθ=-1/12.代入sin2θ=2sinθcosθ的公式,可得sin2θ=-11/72.4、已知si n(π/4-α)=2/√5,求cosα的值。

解:sin(π/4-α)=sinπ/4cosα-cosπ/4sinα=2/√5,代入cosπ/4=√2/2和sinπ/4=√2/2,可得cosα=1/√10.5、已知f(cosx)=cos3x,求f(sin30°)的值。

解:将x=π/6代入f(cosx)=cos3x,可得f(cosπ/6)=cos(3π/6)=cosπ=-1.又因为sin30°=cosπ/6,所以f(sin30°)=-1.6、已知tanα=15π/22,求cos(π/2-α)的值。

解:tanα=15π/22,所以α为第三象限角,cos(π/2-α)=sinα>0.由tanα=sinα/cosα,可得cosα=15/√466,代入sin^2α+cos^2α=1,可得sinα=7/√466,最终可得cos(π/2-α)=7/15.7、已知tan(π/4+x)=2tan(π/4-x),求cos2x的值。

高中数学三角函数图像和性质易错点梳理(附例题详解)

高中数学三角函数图像和性质易错点梳理(附例题详解)

3π 2

“第五点”为ωx+φ=2π.
题组一:三角函数的图像与性质
1.(2011 新课标)设函数 f (x) sin(2x ) cos(2x ) ,则( )
4
4
A. y f (x) 在 (0, ) 单调递增,其图象关于直线 x 对称
2
4
B. y f (x) 在 (0, ) 单调递增,其图象关于直线 x 对称
12

单位长度,得到曲线 C2
【解析】把C2 的解析式运用诱导公式变为余弦,
C2

y
sin(2x
2 3
)
cos[
2
(2x
2 3
)]
cos[(2x
6
)]
cos(2x
6
)
则由
C1
图象横坐标缩短为原来的
1 2
,再把得到的曲线向左平移
12
个单位长度,得到曲线
C2 .选 D
9.(2016 全国 II)若将函数 y 2sin 2x 的图像向左平移 个单位长度,则平移后图象的对
4
D. π
【解析】解法一 f (x) cos x sin x 2 cos(x π) ,且函数 y cos x 在区间
4
[0, ]上单调递减,则由 0 ≤ x ≤ ,得 ≤ x ≤ 3 .
4
4
4
因为
f
(x)
在[a,
a]
上是减函数,所以
aa≤≥344
,解得
a

4

解法二 因为 f (x) cos x sin x ,所以 f (x) sin x cos x ,
2
y sin(2x ) 的图象重合,则 _________.

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》技巧及练习题含答案

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》技巧及练习题含答案

高中数学《三角函数与解三角形》期末考知识点一、选择题1.已知函数()sin 3cos (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( ) A .13B .23C .43D .83【答案】C 【解析】 【分析】利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω⎛⎫=+⎪⎝⎭,根据题意得出()832k k Z πππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin 3cos 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭Q ,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>Q ,当0k =时,ω取得最小值43.故选:C. 【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.2.已知函数()2sin()0,,2f x x πωϕωϕπ⎛⎫⎡⎤=+>∈ ⎪⎢⎥⎣⎦⎝⎭的部分图象如图所示,其中()01f =,5||2MN =,则点M 的横坐标为( )A .12B .25-C .1-D .23-【答案】C 【解析】 【分析】 由(0)1f =求出56πϕ=,由5||23MN πω=⇒=,再根据()2f x =可得答案.【详解】由函数()2sin()0,,2f x x πωϕωϕπ⎛⎫⎡⎤=+>∈ ⎪⎢⎥⎣⎦⎝⎭的部分图象,可得(0)2sin 1f ϕ==,56πϕ∴=,5||23MN πω===, ∴函数5()2sin 36f x x ππ⎛⎫=+ ⎪⎝⎭,令52sin 236x ππ⎛⎫+= ⎪⎝⎭, 得52,0362x k k ππππ+=+=得1x =-. 故选:C. 【点睛】本题主要考查三角函数的图象与性质,考查了数形结合思想的应用,解题的关键是利用勾股定理列方程求出3πω=,属于中档题.3.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=()A .B .CD 【答案】B 【解析】 【分析】由辅助角公式可确定()max f x =sin 2cos θθ-=平方关系可构造出方程组求得结果. 【详解】()()sin 2cos f x x x x ϕ=-=+Q ,其中tan 2ϕ=- ()max f x ∴sin 2cos θθ-=又22sin cos 1θθ+= cos 5θ∴=- 【点睛】本题考查根据三角函数的最值求解三角函数值的问题,关键是能够确定三角函数的最值,从而得到关于所求三角函数值的方程,结合同角三角函数关系构造方程求得结果.4.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减 【答案】D 【解析】f (x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫⎪⎝⎭=cos 8ππ33⎛⎫+ ⎪⎝⎭=cos3π=-1,为f (x )的最小值,故B 正确; ∵f (x +π)=cos ππ3x ⎛⎫++ ⎪⎝⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫+ ⎪⎝⎭=-cos 2π=0,故C 正确; 由于f 2π3⎛⎫⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪⎝⎭=cosπ=-1,为f (x )的最小值,故f (x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误. 故选D.5.将函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的图象向右平移6π个单位长度后,所得图象关于y 轴对称,且1π2f ω⎛⎫=- ⎪⎝⎭,则当ω取最小值时,函数()f x 的解析式为( )A .()sin 26f x x π⎛⎫=+⎪⎝⎭B .()sin 2π6f x x ⎛⎫=- ⎪⎝⎭C .()sin 4π6f x x ⎛⎫=+ ⎪⎝⎭D .()sin 4π6f x x ⎛⎫=- ⎪⎝⎭【答案】C 【解析】 【分析】由题意利用函数()sin y A x ωφ=+的图象变换规律,可得所得函数的解析式,由12f πω⎛⎫=- ⎪⎝⎭,求出φ,再根据所得图象关于y 轴对称求出ω,可得()f x 的解析式.【详解】解:将函数()()sin (0,)2f x x πωφωφ=+><的图象向右平移6π个单位长度后,可得sin 6y x ωπωφ⎛⎫=-+ ⎪⎝⎭的图象;∵所得图象关于y 轴对称,∴62k ωππφπ-+=+,k Z ∈.∵()1sin sin 2f ππφφω⎛⎫=-=+=- ⎪⎝⎭,即1sin 2φ=,26ππφφ<=,. ∴63k ωπππ-=+,620k ω=-->,则当ω取最小值时,取1k =-,可得4ω=, ∴函数()f x 的解析式为()sin 46f x x π⎛⎫=+ ⎪⎝⎭. 故选C . 【点睛】本题主要考查函数()sin y A x ωφ=+的图象变换规律,正弦函数的性质,属于中档题.6.已知1F 、2F 分别为双曲线22146x y -=的左、右焦点,M 为双曲线右支上一点且满足120MF MF ⋅=u u u u v u u u u v,若直线2MF 与双曲线的另一个交点为N ,则1MF N ∆的面积为( )A .12B .C .24D .【答案】C 【解析】 【分析】设1MF m =,2MF n =,根据双曲线的定义和12MF MF ⊥,可求出6m =,2n =,再设2NF t =,则14NF t =+根据勾股定理求出6t =即可求出三角形的面积. 【详解】解:设1MF m =,2MF n =,∵1F 、2F 分别为双曲线22146x y -=的左、右焦点,∴24m n a -==,122F F c ==∵120MF MF ⋅=u u u u v u u u u v,∴12MF MF ⊥, ∴222440m n c +==, ∴()2222m n m n mn -=+-, 即2401624mn =-=, ∴12mn =, 解得6m =,2n =,设2NF t =,则124NF a t t =+=+, 在1Rt NMF ∆中可得()()222426t t +=++, 解得6t =, ∴628MN =+=, ∴1MF N ∆的面积111862422S MN MF =⋅=⨯⨯=. 故选C .【点睛】本题考查了双曲线的定义和向量的数量积和三角形的面积,考查了运算能力和转化能力,属于中档题.7.要得到函数y =sin (2x +9π)的图象,只需将函数y =cos (2x ﹣9π)的图象上所有点( ) A .向左平移518π个单位长度 B .向右平移518π个单位长度 C .向左平移536π个单位长度 D .向右平移536π个单位长度 【答案】D 【解析】 【分析】先将函数cos 29y x π⎛⎫=-⎪⎝⎭转化为7sin 218y x π⎛⎫=+⎪⎝⎭,再结合两函数解析式进行对比,得【详解】 函数75cos 2sin 2sin 2sin 299218369y x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+=+=++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ∴要得到函数sin 29y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数cos 29y x π⎛⎫=- ⎪⎝⎭的图象上所有点向右平移536π个单位长度,故选D . 【点睛】本题考查函数()sin y A x b ωϕ=++的图象变化规律,关键在于能利用诱导公式将异名函数化为同名函数,再根据左右平移规律得出结论.8.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩的图像关于y 轴对称,则sin y x =的图像向左平移( )个单位,可以得到cos()y x a b =++的图像( ). A .4π B .3π C .2π D .π【答案】D 【解析】 【分析】根据条件确定,a b 关系,再化简()cos y x a b =++,最后根据诱导公式确定选项. 【详解】因为函数()()(),0,0sin x a x f x cos x b x ⎧+≤⎪=⎨+>⎪⎩的图像关于y 轴对称,所以sin cos 22a b ππ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,()()sin cos a b ππ-+=+,即sin cos sin cos b a a b ,==,因此π2π()2a b k k Z +=+∈, 从而()()cos sin y x a b sinx x π=++=-=+,选D. 【点睛】本题考查偶函数性质、诱导公式、三角函数图象变换,考查基本分析识别能力,属中档题.9.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c ,则C =A .π12B .π6C .π4D .π3【解析】 【分析】 【详解】试题分析:根据诱导公式和两角和的正弦公式以及正弦定理计算即可 详解:sinB=sin (A+C )=sinAcosC+cosAsinC , ∵sinB+sinA (sinC ﹣cosC )=0,∴sinAcosC+cosAsinC+sinAsinC ﹣sinAcosC=0, ∴cosAsinC+sinAsinC=0, ∵sinC ≠0, ∴cosA=﹣sinA , ∴tanA=﹣1,∵π2<A <π, ∴A= 3π4,由正弦定理可得c sin sin aC A=, ∵a=2,,∴sinC=sin c A a=12=22, ∵a >c , ∴C=π6, 故选B .点睛:本题主要考查正弦定理及余弦定理的应用,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.10.若,2παπ⎛⎫∈ ⎪⎝⎭,2cos2sin 4παα⎛⎫=- ⎪⎝⎭,则sin 2α的值为( )A .78-B .78C .18-D .18【答案】A 【解析】 【分析】利用二倍角公式及两角差的正弦公式化简得到cos sin 4αα+=,再将两边平方利用二倍角正弦公式计算可得; 【详解】解:因为2cos2sin 4παα⎛⎫=-⎪⎝⎭所以()222cos sin sincos cossin 44ππαααα-=-所以()())2cos sin cos sin cos sin αααααα-+=- ,cos sin 02παπαα⎛⎫∈-≠ ⎪⎝⎭Q ,所以cos sin 4αα+=所以()21cos sin 8αα+=,即221cos 2cos sin sin 8αααα++=,11sin 28α+= 所以7sin 28α=- 故选:A 【点睛】本题考查两角和差的正弦公式、二倍角公式的应用,属于中档题;11.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫=⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 3f x f π⎛⎫==⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.12.若函数()y f x =同时满足下列三个性质:①最小正周期为π;②图象关于直线3x π=对称;③在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增,则()y f x =的解析式可以是( ) A .sin 26y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=-⎪⎝⎭ C .cos 26y x π⎛⎫=- ⎪⎝⎭D .cos 23y x π⎛⎫=+⎪⎝⎭【答案】A 【解析】 【分析】利用性质①可排除B ,利用性质②可排除C ,利用性质③可排除D ,通过验证选项A 同时满足三个性质. 【详解】逐一验证,由函数()f x 的最小正周期为π,而B 中函数最小正周期为2412ππ=,故排除B ;又cos 2cos 0362πππ⎛⎫⨯-== ⎪⎝⎭,所以cos 26y x π⎛⎫=- ⎪⎝⎭的图象不关于直线3x π=对称,故排除C ; 若63x ππ-≤≤,则023x ππ≤+≤,故函数cos 23y x π⎛⎫=+ ⎪⎝⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递减,故排除D ; 令2262x πππ-≤-≤,得63x ππ-≤≤,所以函数sin 26y x π⎛⎫=- ⎪⎝⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增.由周期公式可得22T ππ==,当3x π=时,sin(2)sin 1362πππ⨯-==, 所以函数sin 26y x π⎛⎫=- ⎪⎝⎭同时满足三个性质.故选A . 【点睛】本题考查了三角函数的周期性,对称性,单调性,属于中档题.13.已知函数()3cos(2)2f x x π=+,若对于任意的x ∈R ,都有12()()()f x f x f x 剟成立,则12x x -的最小值为( ) A .4 B .1C .12D .2【答案】D 【解析】 【分析】由题意得出()f x 的一个最大值为()2f x ,一个最小值为()1f x ,于此得出12x x -的最小值为函数()y f x =的半个周期,于此得出答案. 【详解】对任意的x ∈R ,()()()12f x f x f x 剟成立. 所以()()2min 3f x f x ==-,()()2max 3f x f x ==,所以12min22Tx x -==,故选D . 【点睛】本题考查正余弦型函数的周期性,根据题中条件得出函数的最值是解题的关键,另外就是灵活利用正余弦型函数的周期公式,考查分析问题的能力,属于中等题.14.已知π1cos 25α⎛⎫-= ⎪⎝⎭,则cos2α=( )A .725B .725-C .2325D .2325-【答案】C 【解析】 【分析】由已知根据三角函数的诱导公式,求得sin α,再由余弦二倍角,即可求解. 【详解】 由π1cos α25⎛⎫-=⎪⎝⎭,得1sin α5=,又由2123cos2α12sin α122525=-=-⨯=. 故选C . 【点睛】本题主要考查了本题考查三角函数的化简求值,其中解答中熟记三角函数的诱导公式及余弦二倍角公式的应用是解答的关键,着重考查了推理与计算能力,属于基础题.15.已知()0,απ∈,3sin 35πα⎛⎫+= ⎪⎝⎭,则cos 26πα⎛⎫+= ⎪⎝⎭( ) A .2425B .2425-C .725D .725-【答案】B 【解析】 【分析】根据余弦的二倍角公式先利用sin 3πα⎛⎫+⎪⎝⎭求得2cos 23πα⎛⎫+⎪⎝⎭.再由诱导公式求出sin 26πα⎛⎫+ ⎪⎝⎭,再利用同角三角函数关系中的平方关系求得cos 26πα⎛⎫+ ⎪⎝⎭.根据角的取值范围,舍去不合要求的解即可. 【详解】因为3sin 35πα⎛⎫+= ⎪⎝⎭由余弦二倍角公式可得22237cos 212sin 1233525ππαα⎛⎫⎛⎫⎛⎫+=-+=-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭而2cos 2cos 2sin 23626ππππααα⎛⎫⎛⎫⎛⎫+=++=-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以27sin 2cos 26325ππαα⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭由同角三角函数关系式可得24cos 2625πα⎛⎫+==± ⎪⎝⎭因为()0,απ∈ 则4,333πππα⎛⎫+∈ ⎪⎝⎭,而3sin 035πα⎛⎫+=> ⎪⎝⎭ 所以,33ππαπ⎛⎫+∈ ⎪⎝⎭则,33ππαπ⎛⎫+∈ ⎪⎝⎭所以22,233ππαπ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭32,3262ππππα⎛⎫⎛⎫+-∈ ⎪ ⎪⎝⎭⎝⎭,即32,662πππα⎛⎫+∈ ⎪⎝⎭又因为7sin 20625πα⎛⎫+=-< ⎪⎝⎭,所以32,62ππαπ⎛⎫+∈ ⎪⎝⎭故cos 206πα⎛⎫+< ⎪⎝⎭所以24cos 2625πα⎛⎫+=- ⎪⎝⎭ 故选:B 【点睛】本题考查了同角三角函数关系式及诱导公式的化简应用,三角函数恒等变形及角的范围确定,综合性较强,属于中档题.16.直线y a =与函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两个交点的距离为2π,若()f x 在()(),0m m m ->上是增函数,则m 的取值范围是( )A .(0,]4πB .(0,]2πC .3(0,]4π D .3(0,]2π 【答案】B 【解析】 【分析】根据直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期,得到12ω=,则()1tan 24f x x π⎛⎫=+ ⎪⎝⎭,然后求得其单调增区间,再根据()f x 在()(),0m m m ->上是增函数,由(,)m m -是增区间的子集求解. 【详解】因为直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期, 所以12ω=,()1tan 24f x x π⎛⎫=+ ⎪⎝⎭,由12242k x k πππππ-<+<+,得322()22k x k k ππππ-<<+∈Z , 所以()f x 在3,22ππ⎛⎫-⎪⎝⎭上是增函数, 由3(,),22m m ππ⎛⎫-⊆- ⎪⎝⎭, 解得02m π<≤.故选:B 【点睛】本题主要考查正切函数的图象和性质,还考查了运算求解的能力,属于中档题17.已知函数()sin()f x x πϕ=+某个周期的图象如图所示,A ,B 分别是()f x 图象的最高点与最低点,C 是()f x 图象与x 轴的交点,则tan ∠BAC =( )A .12B .47C 255D 76565【答案】B 【解析】 【分析】过A 作AD 垂直于x 轴于点D ,AB 与x 轴交于E ,设C (a ,0),可得32CD =,11,2AD DE ==,3tan 2CD CAD AD ∠==,1tan 2ED EAD AD ∠==,再利用tan tan()BAC CAD EAD ∠=∠-∠计算即可.【详解】过A 作AD 垂直于x 轴于点D ,AB 与x 轴交于E , 由题可得周期为2,设(,0)C a ,则1(,1)2B a +-,3(,1)2A a +,所以32CD=,11,2AD DE==,3tan2CDCADAD∠==,1tan2EDEADAD∠==所以tan tantan tan()1tan tanCAD EADBAC CAD EADCAD EAD∠-∠∠=∠-∠=+∠⋅∠31422317122-==+⨯.故选:B【点睛】本题主要考查两角差的正切公式,涉及到正弦型函数图象等知识,考查学生数学运算能力,是一道中档题.18.若函数()sin2f x x=向右平移6π个单位后,得到()y g x=,则关于()y g x=的说法正确的是()A.图象关于点,06π⎛⎫-⎪⎝⎭中心对称B.图象关于6xπ=-轴对称C.在区间5,126ππ⎡⎤--⎢⎥⎣⎦单调递增D.在5,1212ππ⎡⎤-⎢⎥⎣⎦单调递增【答案】D【解析】【分析】利用左加右减的平移原则,求得()g x的函数解析式,再根据选项,对函数性质进行逐一判断即可.【详解】函数()sin2f x x=向右平移6π个单位,得()sin2()sin(2)63g x x xππ=-=-.由23x π-=k π,得26k x ππ=+()k ∈Z ,所以,06π⎛⎫- ⎪⎝⎭不是()g x 的对称中心,故A 错; 由23x π-=2k ππ+, 得212k x π5π=+()k ∈Z ,所以()g x 的图象不关于6x π=-轴对称,故B 错;由222232k x k πππππ-≤-≤+,得1212k x k π5ππ-≤≤π+()k ∈Z , 所以在区间5,126ππ⎡⎤--⎢⎥⎣⎦上()g x 不单调递增,在5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增, 故C 错,D 对; 故选:D . 【点睛】解答三角函数问题时一般需将解析式化简为sin()y A x B ωϕ=++或cos()y A x B ωϕ=++,从而可利用正(余)弦型周期计算公式2||T πω=周期,对正弦型函数,其函数图象的对称中心为,k B πϕω-⎛⎫⎪⎝⎭,且对称中心在函数图象上,而对称轴必经过图象的最高点或最低点,此时函数取得最大值或最小值.19.已知函数()()sin x f x x R ωφ+=∈,,其中0ωπφπ>-<,≤.若函数()f x 的最小正周期为4π,且当23x π=时,()f x 取最大值,是( ) A .()f x 在区间[]2ππ--,上是减函数 B .()f x 在区间[]0π-,上是增函数 C .()f x 在区间[]0π,上是减函数 D .()f x 在区间[]02π,上是增函数 【答案】B 【解析】 【分析】先根据题目所给已知条件求得()f x 的解析式,然后求函数的单调区间,由此得出正确选项. 【详解】由于函数()f x 的最小正周期为4π,故2π14π2ω==,即()1sin 2f x x φ⎛⎫=+ ⎪⎝⎭,2ππsin 1,33π6f φφ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭=⎭⎝.所以()1πsin 26f x x ⎛⎫=+ ⎪⎝⎭.由π1ππ2π2π2262k x k -≤+≤+,解得4π2π4π4π33k x k -≤≤+,故函数的递增区间是4π2π4π,4π33k k ⎡⎤-+⎢⎥⎣⎦,令0k =,则递增区间为4π2π,33⎡⎤-⎢⎥⎣⎦,故B 选项正确.所以本小题选B. 【点睛】本小题主要考查三角函数解析式的求法,考查三角函数单调区间的求法,属于基础题.20.在ABC V 中,角A 的平分线交边BC 于D ,4AB =,8AC =,2BD =,则ABD △的面积是( )A .15B .315C .1D .3【答案】A 【解析】 【分析】先根据正弦定理求得DC ,再结合余弦定理求得cos B ,进而求出ABD S V ,即可求得结论. 【详解】 如图:()sin sin sin ADC ADB ADB π∠=-∠=∠,在ABD △中,由正弦定理得sin sin BD ABBAD ADB=∠∠,同理可得sin sin CD ACCAD ADC=∠∠,因为ABC V 中,角A 的平分线交边BC 于D ,上述两个等式相除得BD ABCD AC=, 4AB =Q ,8AC =,2BD =,8244AC BD CD AB ⋅⨯∴===,6BC ∴=. 2222224681cos 22464AB BC AC B AB BC +-+-∴===-⋅⨯⨯,2115sin 14B ⎛⎫=--=⎪⎝⎭ 1sin 152ABD S AB BD B ∴=⋅⋅=V 故选:A . 【点睛】本题考查三角形面积的求法以及角平分线的性质应用,是中档题,解题时要注意余弦定理的合理运用,考查计算能力,属于中等题.。

高考数学-【易错点22】三角函数单位圆

高考数学-【易错点22】三角函数单位圆

1 高考数学易错点 【易错点22】单位圆中的三角函数线在解题中一方面学生易对此知识遗忘,应用意识不强,另一方面易将角的三角函数值所对应的三角函数线与线段的长度二者等同起来,产生概念性的错误。

例22、下列命题正确的是()A 、α、β都是第二象限角,若sin sin αβ>,则tan tan αβ>B 、α、β都是第三象限角,若cos cos αβ>,则sin sin αβ>C 、α、β都是第四象限角,若sin sin αβ>,则tan tan αβ>D 、α、β都是第一象限角,若cos cos αβ>,则sin sin αβ>。

【易错点分析】学生在解答此题时易出现如下错误:(1)将象限角简单理解为锐角或钝角或270到360度之间的角。

(2)思维转向利用三角函数的单调性,没有应用三角函数线比较两角三角函数值大小的意识而使思维受阻。

解析:A 、由三角函数易知此时角α的正切线的数量比角β的正切线的数量要小即tan tan αβ<B 、同理可知sin sin αβ<C 、知满足条件的角α的正切线的数量比角β的正切线的数量要大即tan tan αβ>。

正确。

D 、同理可知应为sin sin αβ<。

【知识点归类点拔】单位圆的三角函数线将抽象的角的三角函数值同直观的有向线段的数量对应起来,体现了数形结合的数学思想,要注意一点的就是角的三角函数值是有向线段的数量而不是长度。

三角函数线在解三角不等式、比较角的同名函数值的大小、三角关系式的证明都有着广泛的应用并且在这些方面有着一定的优越性。

例如利用三角函数线易知0,,sin tan 2παααα⎛⎫∈<< ⎪⎝⎭,sin cos 1αα+≥等。

【练22】已知sin sin αβ>,那么下列命题正确的是()A 、 若αβ、都是第一象限角,则cos cos αβ>B 、若αβ、都是第二象限角,则tan tan αβ>B 、 若αβ、都是第三象限角,则cos cos αβ>D 、若αβ、都是第四象限角,则tan tan αβ> 答案:D。

三角函数的易错点以及典型例题与高考真题

三角函数的易错点以及典型例题与高考真题

三角函数的易错点以及典型例题三角函数的易错点以及典型例题与真题1. 三 角 公 式 记 住 了 吗 ? 两 角 和 与 差 的 公 式 ________________; 二 倍 角 公式 :_________________ 万 能 公 式 ______________ 正 切 半 角 公 式 ____________________;解题时本着“三看”的基本原则来进行: “看角 , 看函数 ,看特征” , 基本的技巧有 : 巧变角 , 公式变形使用 , 化切割为弦 , 用倍角公式将高次 降次。

万能公式:(1) (sin α)2+(cos α) 2=1 (2)1+(tan α) 2=(sec α) 2(3)1+(cot α) 2=(csc α) 2(4) 对于任意非直角三角形 , 总有 tanA+tanB+tanC=tanAtanBtanC (证明:利用A+B=π-C )同理可得证 , 当 x+y+z=n π(n ∈Z) 时, 该关系式也成立由 tanA+tanB+tanC=tanAtanBtanC 可得出以下结论: (5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA )2+(cosB )2+(cosC )2=1-2cosAcosBcosC (8) (sinA ) 2+(sinB )2+(sinC )2=2+2cosAcosBcosC (9)设t an(A/2)=tsinA=2t/(1+t^2) (A ≠2k π+π,k ∈Z ) tanA=2t/(1-t^2) (A ≠2k π+π,k ∈Z )cosA=(1-t^2)/(1+t^2) (A ≠2k π+π,且 A ≠k π+(π/2) k ∈Z ) 2. 在解三角问题时, 你注意到正切函数、 余切函数的定义域了吗?正切函数在整个定义域内是否为单调函数?你注意到正弦函数、余弦函数的有界性了吗?2cos 2 sec 2 tan 23. 在三角中,你知道 1 等于什么吗?(x x x x 4. 1 sintan x cot x tansincos 0 这些统称为 1的代换 ) 常数 “1”的种42种代换有着广泛的应用.(还有同角关系公式: 商的关系, 倒数关系, 平方关系;诱导公试: 奇变偶不变,符号看象限) 5. 在 三 角 的恒 等 变 形中 , 要 特 别注 意 角 的各 种 变 换 .( 如(),(),等) 2 2 26. 你还记得三角化简题的要求是什么吗? 项数最少、 函数种类最少、 分母不含三 角函数、且能求出值的式子,一定要算出值来 )7. 你还记得三角化简的通性通法吗? (切割化弦、 降幂公式、 用三角公式转化出8.现特殊角 . 异角化同角,异名化同名,高次化低次 );你还记得降幂公式吗?cos 2x=(1+cos2x)/2;sin 2x=(1+cos2x)/2;sin2x=(1-cos2x)/2 9. 你还记得某些特殊角的三角函数值吗? (62 62 5 1sin 15cos 75, sin 75cos15,sin 18)4 4 41三角函数的易错点以及典型例题110.你还记得在弧度制下弧长公式和扇形面积公式吗?( l r ,S扇形lr )22 ( 其中角所在的象限由a, b211.辅助角公式: a sin x b cos x a b sin x的符号确定,角的值由btan 确定) 在求最值、化简时起着重要作用.a12.三角函数(正弦、余弦、正切)图象的草图能迅速画出吗?能写出他们的单调区、对称轴、对称中心,取最值时的x 值的集合吗?(别忘了k Z)三角函数性质要记牢。

专题05 三角函数(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版)

专题05 三角函数(5大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版)

D.
1 8
D. 3 4 3 10
D. 5 6
D. 4 7 3
9.已知 sin
cos
π 6
3cos
sin
π 6
,则
tan
.
10.已知 是第四象限角,且满足 sin cos 7 ,则 tan

13
11.若 0
π 2
,且
tan
2
,则
sin cos cos 2

易错点三:忽视三角函数图象变换研究对象选取(三角函数的图象和性质)
5
A. 84 85
B. 36 85
C. 13 85
D.
77 85
3.在平面直角坐标系中,角 的顶点为坐标原点,始边在 x 轴的正半轴上,终边过点 m,6 ,且
tan 3,则 cos ( )
A. 10 5
B. 10 10
C. 10 5
4.已知 sin
cos
1 ,则
2 sin
2
π 4
变式 1.如图,在平面直角坐标系 xOy 中,锐角 的顶点与原点重合,始边与 x 轴的非负半轴重合,终边与
单位圆交于点 P x1, y1 , cos
5. 5
(1)求 y1 的值;
(2)射线 OP 绕坐标原点 O 按逆时针方向旋转 2
后与单位圆交于点
M (x2 ,
y2 )
,点
N
与M
关于
x
轴对称,求
5
10
(1)求 tan( ) 的值; (2)求 cos(2 ) 的值.
cos πsin 2π tan 2π
变式 2..已知 cos 1 ,且 π 0 ,化简并求

三角函数--2024年数学高考真题和模拟好题分类汇编(解析版)

三角函数--2024年数学高考真题和模拟好题分类汇编(解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos(α+β)=m,tanαtanβ=2,则cos(α-β)=()A.-3mB.-m3C.m3D.3m【答案】A【分析】根据两角和的余弦可求cosαcosβ,sinαsinβ的关系,结合tanαtanβ的值可求前者,故可求cosα-β的值.【详解】因为cosα+β=m,所以cosαcosβ-sinαsinβ=m,而tanαtanβ=2,所以=12×2b×kb×sin A2+12×kb×b×sin A2,故cosαcosβ-2cosαcosβ=m即cosαcosβ=-m,从而sinαsinβ=-2m,故cosα-β=-3m,故选:A.2(新课标全国Ⅰ卷)当x∈[0,2π]时,曲线y=sin x与y=2sin3x-π6的交点个数为() A.3 B.4 C.6 D.8【答案】C【分析】画出两函数在0,2π上的图象,根据图象即可求解【详解】因为函数y=sin x的的最小正周期为T=2π,函数y=2sin3x-π6的最小正周期为T=2π3,所以在x∈0,2π上函数y=2sin3x-π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f(x)=a(x+1)2-1,g(x)=cos x+2ax,当x∈(-1,1)时,曲线y=f(x)与y=g(x)恰有一个交点,则a=()A.-1B.12C.1D.2【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3 ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A:当x∈-π8 ,π3时,2x-π3∈-7π12,π3,由函数y=sin x在-7π12,π3上不为单调递增,故f x 在区间-π8 ,π3上不为单调递增,故A错误;对B:当x=5π6时,2x-π3=4π3,由x=4π3不是函数y=sin x的对称轴,故x=5π6不是f x 图象的对称轴,故B错误;对C:当x∈-π6 ,π4时,2x-π3∈-2π3,π6,则f x ∈-1,1 2,故C错误;对D:将f x 图象上的所有点向左平移5π12个长度单位后,可得y=sin2x+2×5π12-π3=sin2x+π2=cos2x,该函数关于y轴对称,故D正确.故选:D.8(2024·广东广州·二模)已知函数f(x)=2sin(ωx+φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f(x)的图象向右平移θ(θ>0)个单位后所得曲线关于y轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由fπ4=1,得sinπ4ω+φ=22,又点π4,1及附近点从左到右是上升的,则π4ω+φ=π4+2kπ,k∈Z,由f5π8=0,点5π8,0及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2kπ,k∈Z,联立解得ω=2,φ=-π4+2kπ,k∈Z,而|φ|<π2,于是φ=-π4,f(x)=2sin2x-π4,若将函数f(x)的图像向右平移θ(θ>0)个单位后,得到y=sin2x-2θ-π4,则-2θ-π4=π2-kπ,k∈Z,而θ>0,因此θ=-3π8+kπ2,k∈N,所以当k=1时,θ取得最小值为π8 .故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。

三角函数50题精选题附答案

三角函数50题精选题附答案

1. 已知方程(a 为大于1的常数)的两根为,,且、,则的值是_________________.解析:属于易错题,由于限定了角的范围,所以最终答案只有一个,1>a ∴a 4tan tan -=+βα0<,o a >+=⋅13tan tan βα∴βαtan ,tan 是方程01342=+++a ax x 的两个负根 又⎪⎭⎫ ⎝⎛-∈2,2,ππβα ⎪⎭⎫⎝⎛-∈∴0,2,πβα 即⎪⎭⎫ ⎝⎛-∈+0,22πβα由tan ()βα+=βαβαtan tan 1tan tan ⋅-+=()1314+--a a =34可得.22tan -=+βα2.函数f(x)=的值域为______________。

解析:易错题,错因:令x x t cos sin +=后忽视1-≠t ,从而121)(-≠-=t t g ,得到错解:⎥⎦⎤⎢⎣⎡---2122,2122 正解:⎥⎦⎤ ⎝⎛--⋃⎪⎪⎭⎫⎢⎣⎡---2122,11,2122 3.在△ABC 中,2sinA+cosB=2,sinB+2cosA=,则∠C 的大小应为( )A .B .C .或D .或解析:遇到这类型题,首先排除两个答案,因为给定条件就是让我们去排除4.已知tana tanb 是方程x 2+3x+4=0的两根,若a ,b ∈(-),则a+b=( )A .B .或-C .-或D .-解析:tana .tanb=4;tana +tanb=-3,所以tana tanb 均为负,即a ,b 都属于四象限 5.在中,,则的大小为( )A. B. C.D.解析:由3s i n 463c o s 41A B A B +=+=⎧⎨⎩c o s s i n 平方相加得115sin()sin 2266A B C C ππ+=∴=∴=或若C =56π, 则A B +=π6113cos 4sin 0cos 3A B A -=>∴<又1312<5366A C C πππ∴>∴≠∴= ∴选A ,实际上首先排除两个答案的6.函数为增函数的区间是……………… ( ) A.B.C.D.解析:注意x 前面系数为负7.已知且,这下列各式中成立的是( ) A.B.C.D.解析:解法1sin β>-cos α=sin (3π/2-α),因为β、(3π/2-α)都在二象限,sinx 二象限为减函数,所以β<(3π/2-α)解法2:首先排除AC(为什么),由特殊值法排除B8.△ABC中,已知cosA=,sinB=,则cosC的值为()A、 B、 C、或 D、9.设cos1000=k,则tan800是()A、 B、 C、 D、10.函数的单调减区间是()A、()B、C、 D、11.在△ABC中,则∠C的大小为()A、30°B、150°C、30°或150°D、60°或150°12.若,且,则_______________.13、设ω>0,函数f(x)=2sinωx在上为增函数,那么ω的取值范围是_____14已知奇函数单调减函数,又α,β为锐角三角形内角,则()A、f(cosα)> f(cosβ)B、f(sinα)> f(sinβ)C、f(sinα)<f(cosβ)D、f(sinα)> f(cosβ)15.函数的值域是.16.若,α是第二象限角,则=__________17.已知定义在区间[-p,]上的函数y=f(x)的图象关于直线x= -对称,当xÎ[-,]时,函数f(x)=Asin(wx+j)(A>0, w>0,-<j<),其图象如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的易错点以及典型例题与真题1.三角公式记住了吗?两角和与差的公式________________;二倍角公式:_________________ 万能公式______________正切半角公式____________________;解题时本着“三看”的基本原则来进行:“看角,看函数,看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次。

万能公式:(1) (sinα)2+(cosα)2=1 (2)1+(tanα)2=(secα)2(3)1+(cotα)2=(cscα)2(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC(证明:利用A+B=π-C )同理可得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论:(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC(9)设tan(A/2)=tsinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k∈Z)2.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?正切函数在整个定义域是否为单调函数?你注意到正弦函数、余弦函数的有界性了吗? 3.在三角中,你知道1等于什么吗?(x x x x 2222tan sec cos sin 1-=+= ΛΛ====⋅=0cos 2sin4tancot tan ππx x 这些统称为1的代换) 常数 “1”的种种代换有着广泛的应用.(还有同角关系公式:商的关系,倒数关系,平方关系;诱导公试:奇变偶不变,符号看象限)4.在三角的恒等变形中,要特别注意角的各种变换.(如,)(αβαβ-+=,)(αβαβ+-=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=+βαβαβα222等)5.你还记得三角化简题的要什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值的式子,一定要算出值来)6.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角,异名化同名,高次化低次);你还记得降幂公式吗?cos 2x=(1+cos2x)/2;sin 2x=(1-cos2x)/2 7.你还记得某些特殊角的三角函数值吗? (41518sin ,42615cos 75sin ,42675cos 15sin -=︒+=︒=︒-=︒=︒) 8.你还记得在弧度制下弧长公式和扇形面积公式吗?(lr S r l 21,==扇形α) 9. 辅助角公式:()θ++=+x b a x b x a sin cos sin 22(其中θ角所在的象限由a, b 的符号确定,θ角的值由ab=θtan 确定)在求最值、化简时起着重要作用. 10.三角函数(正弦、余弦、正切)图象的草图能迅速画出吗?能写出他们的单调区、对称轴、对称中心,取最值时的x 值的集合吗?(别忘了k ∈Z ) 三角函数性质要记牢。

函数y=++⋅)sin(ϕωx A k 的图象及性质: 振幅|A|,周期T=ωπ2, 若x=x 0为此函数的对称轴,则x 0是使y 取到最值的点,反之亦然,使y 取到最值的x 的集合为——————————, 当0,0>>A ω时函数的增区间为————— ,减区间为—————;当0<ω时要利用诱导公式将ω变为大于零后再用上面的结论。

五点作图法:令ϕω+x 依次为ππππ2,23,,2求出x 与y ,依点()y x ,作图 注意(1)ϕω+x 的整体化法思维求单调性、对称轴、对称中心、值域等。

(2)用换元法时,注意新的定义域围。

11.三角函数图像变换还记得吗?平移公式(1)如果点 P (x ,y )按向量()k h a ,=→平移至P ′(x ′,y ′),则⎪⎩⎪⎨⎧+=+=.,''k y y h x x (2) 曲线f (x ,y )=0沿向量()k h a ,=→平移后的方程为f (x-h ,y-k )=0 12.解三角形的几个结论:(1) 正弦定理: (2)余弦定理: (3)面积公式13.在用反三角函数表示直线的倾斜角、两条异面直线所成的角等时,你是否注意到它们各自的取值围及意义?①异面直线所成的角、直线与平面所成的角、向量的夹角的取值围依次是],0[],2,0[,2,0πππ⎥⎦⎤⎝⎛。

②直线的倾斜角、1l 到2l 的角、1l 与2l 的夹角的取值围依次是]2,0(),,0[),,0[πππ。

③反正弦、反余弦、反正切函数的取值围分别是)2,2(],,0[],2,2[πππππ--。

14.三角函数易错点的典型例题(1)隐含条件例1.设πα<<0,21cos sin =+αα,则α2cos 的值为 。

错解:432sin -=α,∵πα220<<,∴472cos ±=α。

正解:∵0cos ,0sin <>αα且021cos sin >=+αα, ∴432παπ<<,∴232παπ<<,∴472cos -=α。

例1-1.已知π<≤=+x x x 0,137cos sin ,则=x tan 。

错解:512-或125-。

正解:512-。

例1-2.一组似是而非的问题①在ΔABC 中,53cos =A ,135sin =B ,求C sin 的值。

②在ΔABC 中,53cos =A ,135sin =B ,求C cos 的值。

③在ΔABC 中,54sin =A ,1312cos =B ,求C sin 的值。

①解∵ππ<<<<B A 0,0,∴54)53(1cos 1sin 22=-=-=A A ,1312)135(1sin 1cos 22±=-±=-±=B B , ∴B A B A B A B A C sin cos cos sin )sin()](sin[sin +=+=+-=π,∴656313553131254sin =⨯+⨯=C ,或6533135********sin -=⨯+⨯-=C , 又∵C 为三角形的角,∴0sin >C ,∴6563sin =C 。

②解:∵ππ<<<<B A 0,0,∴54)53(1cos 1sin 22=-=-=A A ,1312)135(1sin 1cos 22±=-±=-±=B B ,∴B A B A B A B A C sin sin cos cos )cos()](cos[cos +-=+-=+-=π,∴当1312cos =B 时,651613554131253cos -=⨯+⨯-=C ; 当1312cos -=B 时,6556135********cos =⨯+⨯=C , ∵)cos(cos 13126556cos B B C -=-=<=π∴B C ->π,即π>+C B , ∴6516cos -=C 。

注:舍去增解是难点,可利用单位圆中的余弦线段先作直观判断。

③解:∵ππ<<<<B A 0,0,∴53)54(1sin 1cos 22±=-±=-±=A A ,135)1312(1cos 1sin 22=-=-=B B , ∴B A B A B A B A C sin cos cos sin )sin()](sin[sin +=+=+-=π, ∴656313553131254sin =⨯+⨯=C ,或6533135********sin =⨯-⨯=C 。

注:此题两解均成立。

若求C sin ,必为两情形之一:两解均成立或一解为负值;例2.已知方程01342=+++a ax x (a 为大于1的常数)的两根为αtan ,βtan ,且α、β)2,2(ππ-∈,则2tanβα+的值是 。

错解:21或-2。

正解:由0tan ,0tan <<βα知:022<+<-βαπ,∴2tanβα+的值是-2。

例2-1.已知θtan 和)4tan(θπ-是方程02=++q px x 的两根,则p 、q 间的关系是( ) (A )01=+-q p (B )01=++q p (C )01=-+q p (D )01=--q p 答案:C 。

例2-2.已知30cot cot ,25tan tan =+=+y x y x ,则=+)tan(y x ( ) (A )120(B )150(C )180(D )200 答案:B 。

(2)综合应用题型时,注意考虑全例3.关于x 的方程0cot sin 2sin 2=-+θθθx x 的两根为α、β,且πθ20<<。

若数列1,)11(βα+,2)11(βα+,……,的前100项和为0,求θ的值。

错解:由韦达定理知:θαβθβαcos ,2sin -=-=+,∴θβαsin 2)11(=+,由0sin 21)sin 2(1100100=--=θθS 得21sin ±=θ,∵πθ20<<,∴6πθ=或65πθ=或67πθ=或611πθ=。

正解:(1)当1=q 与1≠q 时,等比数列的求和公式不同; (2)方程有解还应考虑△≥0。

∴611πθ=。

(3)去绝对值要注意分类讨论例4.若m =αcot ,)2,(ππα∈,则=αcos 。

错解:由αα22csc cot1=+解得2211sin m+=α, ∴2221cos m m +=α,∴22211cos m mm m +±=+±=α。

正解:22211cos mmm m +-=+±=α。

∵当0>m 时,α为第三象限角,0cos <α,当0<m 时,α为第四象限角,0cos >α,当0=m 时,0cos =α。

例4-1若x y A -=(定值),则sin sin x y -的最大值为 。

错解:sin sin 2cossin 2cos sin 222x y x y x yx y A +-+-==, ∴sin sin x y -的最大值为2sin A 。

相关文档
最新文档