近三年高考全国卷理科立体几何真题 (1)

合集下载

各省历年高考理科数学试题及答案汇编九立体几何(解答题)(1)

各省历年高考理科数学试题及答案汇编九立体几何(解答题)(1)

各省历年高考理科数学试题及答案汇编九立体几何(安徽、福建、广东、湖北、湖南、江西、山东七省)安徽省(试题)1、18.(12分)(2008安徽)如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.2、18.(13分)(2009安徽)如图所示,四棱锥F﹣ABCD的底面ABCD是菱形,其对角线AC=2,BD=.AE、CF都与平面ABCD垂直,AE=1,CF=2.(1)求二面角B﹣AF﹣D的大小;(2)求四棱锥E﹣ABCD与四棱锥F﹣ABCD公共部分的体积.3、18.(12分)(2010安徽)如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求二面角B﹣DE﹣C的大小.4、17.(12分)(2011安徽)如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O 在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形(I)证明直线BC∥EF;(II)求棱锥F﹣OBED的体积.5、18.(12分)(2012安徽)平面图形ABB1A1C1C如图4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=,A1B1=A1C1=.现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题.(Ⅰ)证明:AA1⊥BC;(Ⅱ)求AA1的长;(Ⅲ)求二面角A﹣BC﹣A1的余弦值.6、19.(13分)(2013安徽)如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°,(1)证明:平面PAB与平面PCD的交线平行于底面;(2)求cos∠COD.7、20.(13分)(2014安徽)如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD 为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.8、19.(13分)(2015安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.福建省(试题)1、18.(12分)(2008福建)如图,在四棱锥P﹣ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的大小;(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.2、18.(13分)(2010福建)如图,圆柱OO1内有一个三棱柱ABC﹣A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径.(1)证明:平面A1ACC1⊥平面B1BCC1;(2)设AB=AA1,在圆柱OO1内随机选取一点,记该点取自于三棱柱ABC﹣A1B1C1内的概率为P.当点C在圆周上运动时,记平面A1ACC1与平面B1OC所成的角为θ(0°<θ≤90°),当P取最大值时,求cosθ的值.3、20.(14分)(2011福建)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=,∠CDA=45°.(Ⅰ)求证:平面PAB⊥平面PAD;(Ⅱ)设AB=AP.(i)若直线PB与平面PCD所成的角为30°,求线段AB的长;(ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.4、18.(13分)(2012福建)如图,在长方体ABCD﹣A1B1C1D1中AA1=AD=1,E为CD中点.(Ⅰ)求证:B1E⊥AD1;(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.(Ⅲ)若二面角A﹣B1E﹣A1的大小为30°,求AB的长.5、19.(13分)(2013福建)如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)(1)求证:CD⊥平面ADD1A1(2)若直线AA1与平面AB1C所成角的正弦值为,求k的值(3)现将与四棱柱ABCD﹣A1B1C1D1形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的解析式.(直接写出答案,不必说明理由)6、17.(13分)(2014福建)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD 沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.7、17.(13分)(2015福建)如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.(1)求证:GF∥平面ADE;(2)求平面AEF与平面BEC所成锐二面角的余弦值.广东省(试题)1、20.(14分)(2008广东)如图所示,四棱锥P﹣ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD=60°,∠BDC=45°,PD垂直底面ABCD,,E,F分别是PB,CD上的点,且,过点E作BC的平行线交PC于G.(1)求BD与平面ABP所成角θ的正弦值;(2)证明:△EFG是直角三角形;(3)当时,求△EFG的面积.2、18.(本小题满分14分)如图6,已知正方体1111ABCD A B C D -的棱长为2,点E 是正方形11BCC B 的中心,点F 、G 分别是棱111,C D AA 的中点.设点11,E G 分别是点E ,G 在平面11DCC D 内的正投影.(1)求以E 为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积;(2)证明:直线⊥1FG 平面1FEE ;(3)求异面直线11E G EA 与所成角的正弦值.3、18.(14分)(2010广东)如图,是半径为a 的半圆,AC 为直径,点E 为的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足,. (1)证明:EB ⊥FD ;(2)已知点Q ,R 为线段FE ,FB 上的点,,,求平面BED 与平面RQD 所成二面角的正弦值.(13分)(2011广东)如图,在锥体P﹣ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,4、18.PA=PD=,PB=2,E,F分别是BC,PC的中点(1)证明:AD⊥平面DEF(2)求二面角P﹣AD﹣B的余弦值.5、18.(13分)(2012广东)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.6、18.(14分)(2013广东)如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E 分别是AC,AB上的点,,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱椎A′﹣BCDE,其中A′O=.(1)证明:A′O⊥平面BCDE;(2)求二面角A′﹣CD﹣B的平面角的余弦值.7、18.(13分)(2014广东)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.8、18.(14分)(2015广东)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.湖北省(试题)1、18.(12分)(2009湖北)如图,四棱锥S﹣ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=a,点E是SD上的点,且DE=λa(0<λ≤2)(Ⅰ)求证:对任意的λ∈(0,2),都有AC⊥BE(Ⅱ)设二面角C﹣AE﹣D的大小为θ,直线BE与平面ABCD所成的角为φ,若tanθ•tanφ=1,求λ的值.2、18.(12分)(2010湖北)如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1(Ⅰ)设为P为AC的中点,Q为AB上一点,使PQ⊥OA,并计算的值;(Ⅱ)求二面角O﹣AC﹣B的平面角的余弦值.3、18.(12分)(2011湖北)如图,已知正三棱柱ABC=A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(Ⅰ)当CF=1时,求证:EF⊥A1C;(Ⅱ)设二面角C﹣AF﹣E的大小为θ,求tanθ的最小值.4、19.(12分)(2012湖北)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.5、19.(12分)(2013湖北)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.6、19.(12分)(2014湖北)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2)(Ⅰ)当λ=1时,证明:直线BC1∥平面EFPQ;(Ⅱ)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.7、19.(12分)(2015湖北)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD 中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF与面ABCD所成二面角的大小为,求的值.湖南省(试题)1、18.(12分)(2008湖南)把边长为2的正三角形ABC沿BC上的高AD折成直二面角,设折叠后BC的中点为P,(I)求异面直线AC,PD所成的角的余弦值;(II)求二面角C﹣AB﹣D的大小.2、17.(12分)(2008湖南)如图所示,四棱锥P﹣ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.(Ⅰ)证明:平面PBE⊥平面PAB;(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.3、18.(12分)(2009湖南)如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1,点D是A1B1的中点,点E在A1C1上,且DE⊥AE.(1)证明:平面ADE⊥平面ACC1A1;(2)求直线AD和平面ABC1所成角的正弦值.4、18.(12分)(2010湖南)如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.5、19.(12分)(2011湖南)如图,在圆锥PO中,已知PO=,⊙O的直径AB=2,C是的中点,D为AC的中点.(Ⅰ)证明:平面POD⊥平面PAC;(Ⅱ)求二面角B﹣PA﹣C的余弦值.6、18.(12分)(2012湖南)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P﹣ABCD 的体积.7、19.(12分)正四棱柱ABCD﹣A1B1C1D1的底面边长是,侧棱长是3,点E、F分别在BB1、DD1上,且AE⊥A1B,AF⊥A1D.(1)求证:A1C⊥面AEF;(2)求截面AEF与底面ABCD所成二面角θ的正切值.8、19.(12分)(2014湖南)如图,四棱柱ABCD﹣A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(Ⅰ)证明:O1O⊥底面ABCD;(Ⅱ)若∠CBA=60°,求二面角C1﹣OB1﹣D的余弦值.9、21.(2015湖南)如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ的体积.江西省(试题)1、20.(12分)(2008江西)如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知.(1)求证:B1C1⊥平面OAH;(2)求二面角O﹣A1B1﹣C1的大小.(2009江西)在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,(12分)2、20.AB=2.以AC的中点O为球心、AC为直径的球面交PD于点M,交PC于点N(1)求证:平面ABM⊥平面PCD;(2)求直线CD与平面ACM所成的角的大小;(3)求点N到平面ACM的距离.3、20.(12分)(2010江西)如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2.(1)求直线AM与平面BCD所成的角的大小;(2)求平面ACM与平面BCD所成的二面角的正弦值.4、21.(14分)(2011江西)(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的α1,α2,α3,α4,使得A i∈αi(i=1,2,3,4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi(i=1,2,3,4),求该正四面体A1A2A3A4的体积.5、19.(12分)(2012江西)在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1=,BC=4,点A1在底面ABC的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的余弦值.6、20.(12分)(2013江西)如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,E为BD的中点,G 为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F(1)求证:AD⊥平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值.7、20.(12分)(2014江西)如图,四棱锥P﹣ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90°,PB=,PC=2,问AB为何值时,四棱锥P﹣ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.山东省(试题)1、20.(12分)(2008山东)如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E﹣AF﹣C 的余弦值.2、18.(12分)(2009山东)如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,E、F是AA1、AB的中点.(Ⅰ)证明:直线EE1∥平面FCC1;(Ⅱ)求二面角B﹣FC1﹣C的余弦值.3、19.(12分)(2010山东)如图,在五棱锥P﹣ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2,BC=2AE=4,三角形PAB是等腰三角形.(Ⅰ)求证:平面PCD⊥平面PAC;(Ⅱ)求直线PB与平面PCD所成角的大小;(Ⅲ)求四棱锥P﹣ACDE的体积.(12分)(2011山东)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,4、19.EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A﹣BF﹣C的大小.5、18.(12分)(2012山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(Ⅰ)求证:BD⊥平面AED;(Ⅱ)求二面角F﹣BD﹣C的余弦值.6、18.(12分)(2013山东)如图所示,在三棱锥P﹣ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D﹣GH﹣E的余弦值.7、17.(12分)(2014山东)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.8、17.(12分)(2015山东)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC 的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.9、17.(12分)(2016山东)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.10、17.(12分)(2017山东)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.安徽省(答案)1、解:方法一(综合法)(1)取OB中点E,连接ME,NE∵ME∥AB,AB∥CD,∴ME∥CD又∵NE∥OC,∴平面MNE∥平面OCD∴MN∥平面OCD(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)作AP⊥CD于P,连接MP∵OA⊥平面ABCD,∴CD⊥MP∵,∴,,∴所以AB与MD所成角的大小为.(3)∵AB∥平面OCD,∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD.又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,∵,,∴,所以点B到平面OCD的距离为.方法二(向量法)作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:A(0,0,0),B(1,0,0),,,O(0,0,2),M(0,0,1),(1),,设平面OCD的法向量为n=(x,y,z),则•=0,•=0即取,解得∵•=(,,﹣1)•(0,4,)=0,∴MN∥平面OCD.(2)设AB与MD所成的角为θ,∵∴,∴,AB与MD所成角的大小为.(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,由,得d==所以点B到平面OCD的距离为.2、解:(1)解:连接AC、BD交于菱形的中心O,过O作OG⊥AF,G为垂足,连接BG、DG.由BD⊥AC,BD⊥CF得BD⊥平面ACF,故BD⊥AF.于是AF⊥平面BGD,所以BG⊥AF,DG⊥AF,∠BGD为二面角B﹣AF﹣D的平面角.由FC⊥AC,FC=AC=2,得∠FAC=,OG=.由OB⊥OG,OB=OD=,得∠BGD=2∠BGO=.(2)解:连接EB、EC、ED,设直线AF与直线CE相交于点H,则四棱锥E﹣ABCD与四棱锥F﹣ABCD的公共部分为四棱锥H﹣ABCD.过H作HP⊥平面ABCD,P为垂足.因为EA⊥平面ABCD,FC⊥平面ABCD,所以平面ACEF⊥平面ABCD,从而P∈AC,HP⊥AC.由+=+=1,得HP=.又因为S菱形ABCD=AC•BD=,故四棱锥H﹣ABCD的体积V=S菱形ABCD•HP=.3、证明:(1)设AC于BD交于点G,则G为AC的中点,连接EG,GH,又H为BC的中点,∴GH∥AB且GH=AB,又EF∥AB且EF=AB,∴EF∥GH且EF=GH,∴四边形EFHG为平行四边形∴EG∥FH,而EG⊂平面EDB,∴FH∥平面EDB.(2)由四边形ABCD为正方形,有AB⊥BC,又EF∥AB,∴EF⊥BC而EF⊥FB,∴EF⊥平面BFC,∴EF⊥FH,∴AB⊥FH,又BF=FC,H为BC的中点,∴FH⊥BC∴FH⊥平面ABCD,∴FH⊥BC,FH⊥AC,又FH∥EG,∴AC⊥EG又AC⊥BD,EG∩BD=G,∴AC⊥平面EDB,(3)EF⊥FB,∠BFC=90°,∴BF⊥平面CDEF,在平面CDEF内过点F作FK⊥DE交DE的延长线与k,则∠FKB为二面角B﹣DE﹣C的一个平面角,设EF=1,则AB=2,FC=,DE=,又EF∥DC,∴∠KEF=∠EDC,∴sin∠EDC=sin∠KEF=,∴FK=EFsin∠KEF=,tan∠FKB==,∴∠FKB=60°,∴二面角B﹣DE﹣C为60°.4、解:(I)证明:设G是线段DA与线段EB延长线的交点,由于△OAB与△ODE都是正三角形,所以OB∥DE,OB=同理,设G′是线段DA与线段FC延长线的交点,有OG′=OD=2,又由于G与G′都在线段DA的延长线上,所以G与G′重合,在△GED和△GFD中,由和可知B,C分别是GE,GF的中点,所以BC是△GFE 的中位线,故BC∥EF(II)解:由OB=1,OE=2,∠EOB=60°,知而△OED是边长为2的正三角形,故所以过点F作FQ⊥AD,交AD于点Q.由平面ABED⊥平面ACFD,FQ就是四棱锥F﹣OBED的高,且FQ=,所以另外本题还可以用向量法解答,同学们可参考图片,自行解一下,解法略.5、(Ⅰ)证明:取BC,B1C1的中点为点O,O1,连接AO,OO1,A1O,A1O1,∵AB=AC,∴AO⊥BC∵平面ABC⊥平面BB1C1C,平面ABC∩平面BB1C1C=BC∴AO⊥平面BB1C1C同理A1O1⊥平面BB1C1C,∴AO∥A1O1,∴A、O、A1、O1共面∵OO1⊥BC,AO⊥BC,OO1∩AO=O,∴BC⊥平面OO1A1A∵AA1⊂平面OO1A1A,∴AA1⊥BC;(Ⅱ)解:延长A1O1到D,使O1D=OA,则∵O1D∥OA,∴AD∥OO1,AD=OO1,∵OO1⊥BC,平面A1B1C1⊥平面BB1C1C,平面A1B1C1∩平面BB1C1C=B1C1,∴OO1⊥面A1B1C1,∵AD∥OO1,∴AD⊥面A1B1C1,∵AD=BB1=4,A1D=A1O1+O1D=2+1=3∴AA1==5;(Ⅲ)解:∵AO⊥BC,A1O⊥BC,∴∠AOA1是二面角A﹣BC﹣A1的平面角在直角△OO1A1中,A1O=在△OAA1中,cos∠AOA1=﹣∴二面角A﹣BC﹣A1的余弦值为﹣.6、(1)证明:设平面PAB与平面PCD的交线为l,则∵AB∥CD,AB⊄平面PCD,∴AB∥平面PCD∵AB⊂面PAB,平面PAB与平面PCD的交线为l,∴AB∥l∵AB在底面上,l在底面外∴l与底面平行;(2)解:设CD的中点为F,连接OF,PF由圆的性质,∠COD=2∠COF,OF⊥CD∵OP⊥底面,CD⊂底面,∴OP⊥CD∵OP∩OF=O∴CD⊥平面OPF∵CD⊂平面PCD∴平面OPF⊥平面PCD∴直线OP在平面PCD上的射影为直线PF∴∠OPF为OP与平面PCD所成的角由题设,∠OPF=60°设OP=h,则OF=OPtan∠OPF=∵∠OCP=22.5°,∴∵tan45°==1∴tan22.5°=∴OC==在Rt△OCF中,cos∠COF===∴cos∠COD=cos(2∠COF)=2cos2∠COF﹣1=17﹣127、(Ⅰ)证明:∵四棱柱ABCD﹣A1B1C1D1中,四边形ABCD为梯形,AD∥BC,∴平面QBC∥平面A1D1DA,∴平面A1CD与面QBC、平面A1D1DA的交线平行,∴QC∥A1D∴△QBC∽△A1AD,∴=,∴Q为BB1的中点;(Ⅱ)解:连接QA,QD,设AA1=h,梯形ABCD的高为d,四棱柱被平面α所分成上、下两部分的体积为V1,V2,设BC=a,则AD=2a,∴==,V Q﹣ABCD==ahd,∴V2=,∵V棱柱=ahd,∴V1=ahd,∴四棱柱被平面α所分成上、下两部分的体积之比;(Ⅲ)解:在△ADC中,作AE⊥DC,垂足为E,连接A1E,则DE⊥平面AEA1,∴DE⊥A1E,∴∠AEA1为平面α与底面ABCD所成二面角的平面角,∵BC∥AD,AD=2BC,∴S△ADC=2S△ABC,∵梯形ABCD的面积为6,DC=2,∴S△ADC=4,AE=4,∴tan∠AEA1==1,∴∠AEA1=,∴平面α与底面ABCD所成二面角的大小为.8、(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos<,>==,∴二面角E﹣A1D﹣B1的余弦值为.福建省(答案)1、解:(Ⅰ)证明:在△PAD中,PA=PD,O为AD的中点,所以PO⊥AD又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD所以PO⊥平面ABCD.(Ⅱ)连接BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC=2有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,所以OB∥DC由(Ⅰ)知PO⊥OB,∠PBC是锐角,所以∠PBC是异面直线PB与CD所成的角因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=在Rt△AOP中因为AP=AO=1,所以OP=1在Rt△AOP中tan∠PBC=所以:异面直线PB与CD所成角的大小.(Ⅲ)假设存在点Q,使得它到平面PCD的距离为.设QD=x,则,由(Ⅱ)得CD=OB=,在Rt△POC中,,所以PC=CD=DP,,由V p﹣DQC=V Q﹣PCD,得x=,所以存在点Q满足题意,此时.解法二:(Ⅰ)同解法一.(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O﹣xyz,依题意,易得A(0,﹣1,0),B(1,﹣1,0),C(1,0,0),D(0,1,0),P(0,0,1),所以.所以异面直线PB与CD所成的角是arccos,(Ⅲ)假设存在点Q,使得它到平面PCD的距离为,由(Ⅱ)知.设平面PCD的法向量为n=(x0,y0,z0).则所以即x0=y0=z0,取x0=1,得平面PCD的一个法向量为=(1,1,1).设,由,得,解y=﹣或y=(舍去),此时,所以存在点Q满足题意,此时.2、解:(Ⅰ)因为AA1⊥平面ABC,BC⊂平面ABC,所以AA1⊥BC,因为AB是圆O直径,所以BC⊥AC,又AC∩AA1=A,所以BC⊥平面A1ACC1,而BC⊂平面B1BCC1,所以平面A1ACC1⊥平面B1BCC1.(Ⅱ)设圆柱的底面半径为r,则AB=AA1=2r,故三棱柱ABC﹣A1B1C1的体积为=AC•BC•r,又因为AC2+BC2=AB2=4r2,所以=2r2,当且仅当时等号成立,从而V1≤2r3,而圆柱的体积V=πr2•2r=2πr3,故P=,当且仅当,即OC⊥AB时等号成立,所以P的最大值是.P取最大值时,OC⊥AB,于是以O为坐标原点,建立空间直角坐标系O﹣xyz,设OB为y轴的正半轴,OC为x轴正半轴,OO1为z轴的正半轴,则C(r,0,0),B(0,r,0),B1(0,r,2r),因为BC⊥平面A1ACC1,所以是平面A1ACC1的一个法向量,设平面B1OC的法向量,由,故,取z=1得平面B1OC的一个法向量为,因为0°<θ≤90°,所以===.3、解:(I)证明:∵PA⊥平面ABCD,AB⊂平面ABCD∴PA⊥AB又∵AB⊥AD,PA∩AD=A∴AB⊥平面PAD又∵AB⊂平面PAB,∴平面PAB⊥平面PAD(II)(i)以A为坐标原点,建立空间直角坐标系A﹣xyz(如图)在平面ABCD内,作CE∥AB交于点E,则CE⊥AD 在Rt△CDE中,DE=CD•cos45°=1,CE=CD•sin45°=1设AB=AP=t,则B(t,0,0),P(0,0,t)由AB+AD=4,得AD=4﹣t,所以E(0,3﹣t,0),C(1,3﹣t,0),D(0,4﹣t,0),设平面PCD的法向量为=(x,y,z)由,,得取x=t,得平面PCD的一个法向量为又,故由直线PB与平面PCD所成的角为30°得cos(90°﹣30°)==即解得或t=4(舍去,因为AD=4﹣t>0)所以AB=(ii)假设在线段AD上存在一个点G到P、B、C、D的距离都相等由GC=GD,得∠GCD=∠GDC=45°从而∠CGD=90°,即CG⊥AD所以GD=CD•cos45°=1设AB=λ,则AD=4﹣λ,AG=AD﹣GD=3﹣λ在Rt△ABG中,GB=这GB=GD与矛盾.所以在线段AD上不存在一个点G,使得点G到B、C、D的距离都相等.从而,在线段AD上不存在一个点G,使得点G到点P、B、C、D的距离都相等.4、解:(I)以A为原点,,,的方向为X轴,Y轴,Z轴的正方向建立空间直角坐标系,如图,设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E(,1,0),B1(a,0,1)故=(0,1,1),=(﹣,1,﹣1),=(a,0,1),=(,1,0),∵•=1﹣1=0∴B1E⊥AD1;(II)假设在棱AA1上存在一点P(0,0,t),使得DP∥平面B1AE.此时=(0,﹣1,t).又设平面B1AE的法向量=(x,y,z).∵⊥平面B1AE,∴⊥B1A,⊥AE,得,取x=1,得平面B1AE的一个法向量=(1,﹣,﹣a).要使DP∥平面B1AE,只要⊥,即有•=0,有此得﹣at=0,解得t=,即P(0,0,),又DP⊈平面B1AE,∴存在点P,满足DP∥平面B1AE,此时AP=(III)连接A1D,B1C,由长方体ABCD﹣A1B1C1D1及AA1=AD=1,得AD1⊥A1D.∵B1C∥A1D,∴AD1⊥B1C.由(I)知,B1E⊥AD1,且B1C∩B1E=B1.∴AD1⊥平面DCB1A1,∴AD1是平面B1A1E的一个法向量,此时=(0,1,1).设与所成的角为θ,则cosθ==∵二面角A﹣B1E﹣A1的大小为30°,∴|cosθ|=cos30°=,即||=,解得a=2,即AB的长为25、(1)证明:取DC的中点E,连接BE,∵AB∥ED,AB=ED=3k,∴四边形ABED是平行四边形,∴BE∥AD,且BE=AD=4k,∴BE2+EC2=(4k)2+(3k)2=(5k)2=BC2,∴∠BEC=90°,∴BE⊥CD,又∵BE∥AD,∴CD⊥AD.∵侧棱AA1⊥底面ABCD,∴AA1⊥CD,∵AA1∩AD=A,∴CD⊥平面ADD1A1.(2)解:以D为坐标原点,、、的方向为x,y,z轴的正方向建立空间直角坐标系,则A(4k,0,0),C(0,6k,0),B1(4k,3k,1),A1(4k,0,1).∴,,.设平面AB1C的一个法向量为=(x,y,z),则,取y=2,则z=﹣6k,x=3.∴.设AA1与平面AB1C所成角为θ,则===,解得k=1,故所求k=1.(3)由题意可与左右平面ADD1A1,BCC1B1,上或下面ABCD,A1B1C1D1拼接得到方案新四棱柱共有此4种不同方案.写出每一方案下的表面积,通过比较即可得出f(k)=6、(1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD,又CD⊂平面BCD,∴AB⊥CD.(2)解:建立如图所示的空间直角坐标系.∵AB=BD=CD=1,AB⊥BD,CD⊥BD,∴B(0,0,0),C(1,1,0),A(0,0,1),D(0,1,0),M.∴=(0,1,﹣1),=(1,1,0),=.设平面BCM的法向量=(x,y,z),则,令y=﹣1,则x=1,z=1.∴=(1,﹣1,1).设直线AD与平面MBC所成角为θ.则sinθ=|cos|===.7、解法一:(1)如图,取AE的中点H,连接HG,HD,∵G是BE的中点,∴GH∥AB,且GH=AB,又∵F是CD中点,四边形ABCD是矩形,∴DF∥AB,且DF=AB,即GH∥DF,且GH=DF,∴四边形HGFD是平行四边形,∴GF∥DH,又∵DH⊂平面ADE,GF⊄平面ADE,∴GF∥平面ADE.(2)如图,在平面BEG内,过点B作BQ∥CE,∵BE⊥EC,∴BQ⊥BE,又∵AB⊥平面BEC,∴AB⊥BE,AB⊥BQ,以B为原点,分别以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1)∵AB⊥平面BEC,∴为平面BEC的法向量,设=(x,y,z)为平面AEF的法向量.又=(2,0,﹣2),=(2,2,﹣1)由垂直关系可得,取z=2可得.∴cos<,>==∴平面AEF与平面BEC所成锐二面角的余弦值为.解法二:(1)如图,取AB中点M,连接MG,MF,又G是BE的中点,可知GM∥AE,且GM=AE又AE⊂平面ADE,GM⊄平面ADE,∴GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点可得MF∥AD.又AD⊂平面ADE,MF⊄平面ADE,∴MF∥平面ADE.又∵GM∩MF=M,GM⊂平面GMF,MF⊂平面GMF∴平面GMF∥平面ADE,∵GF⊂平面GMF,∴GF∥平面ADE(2)同解法一.广东省(答案)1、解:(1)在Rt△BAD中,∵∠ABD=60°,∴而PD垂直底面ABCD,,,在△PAB中,PA2+AB2=PB2,即△PAB为以∠PAB为直角的直角三角形.设点D到面PAB的距离为H,由V P﹣ABD=V D﹣PAB,有PA•AB•H=AB•AD•PD,即,.(2)EG∥BC,∴,而,即,∴GF∥PD,∴GF⊥BC,∴GF⊥EG,∴△EFG是直角三角形.(3)时,,即,∴△EFG 的面积.2、解:(1)依题作点E 、G 在平面11DCC D 内的正投影1E 、1G ,则1E 、1G 分别为1CC 、1DD 的中点,连结1EE 、1EG 、ED 、1DE ,则所求为四棱锥11FG DE E -的体积,其底面11FG DE 面积为111111E D G Rt FG E Rt FG D E S S S ∆∆+=221212221=⨯⨯+⨯⨯=, 又⊥1EE 面11FG DE ,11=EE ,∴323111111=⋅=-EE S V FG DE FG DE E .(2)以D 为坐标原点,DA 、DC 、1DD 所在直线分别作x 轴,y 轴,z 轴,得)1,2,0(1E 、)1,0,0(1G ,又)1,0,2(G ,)2,1,0(F ,)1,2,1(E ,则)1,1,0(1--=FG ,)1,1,1(-=FE ,)1,1,0(1-=FE ,∴01)1(01=+-+=⋅FG ,01)1(011=+-+=⋅FE FG ,即FE FG ⊥1,11FE FG ⊥, 又F FE FE =⋂1,∴⊥1FG 平面1FEE .(3))0,2,0(11-=G E ,)1,2,1(--=EA,则62,cos 11=>=<G E ,设异面直线11E G EA 与所成角为θ,则33321sin =-=θ3、(1)证明:连接CF ,因为是半径为a 的半圆,AC 为直径,点E 为的中点,所以EB ⊥AC . 在RT △BCE 中,.在△BDF中,,△BDF为等腰三角形,且点C是底边BD的中点,故CF⊥BD.在△CEF中,,所以△CEF为Rt△,且CF⊥EC.因为CF⊥BD,CF⊥EC,且CE∩BD=C,所以CF⊥平面BED,而EB⊂平面BED,∴CF⊥EB.因为EB⊥AC,EB⊥CF,且AC∩CF=C,所以EB⊥平面BDF,而FD⊂平面BDF,∴EB⊥FD.(2)解:设平面BED与平面RQD的交线为DG.由,,知QR∥EB.而EB⊂平面BDE,∴QR∥平面BDE,而平面BDE∩平面RQD=DG,∴QR∥DG∥EB.由(1)知,BE⊥平面BDF,∴DG⊥平面BDF,而DR,DB⊂平面BDF,∴DG⊥DR,DG⊥DB,∴∠RDB是平面BED与平面RQD所成二面角的平面角.在Rt△BCF中,,,.在△BDR中,由知,,由余弦定理得,=由正弦定理得,,即,.故平面BED与平面RQD所成二面角的正弦值为.4、解:(1)取AD的中点G,连接PG,BG,在△ABG中,根据余弦定理可以算出BG=,发现AG2+BG2=AB2,可以得出AD⊥BG,又DE∥BG∴DE⊥AD,又PA=PD,可以得出AD⊥PG,而PG∩BG=G,∴AD⊥平面PBG,而PB⊂平面PBG,∴AD⊥PB,又PB∥EF,∴AD⊥EF.又EF∩DE=E,∴AD⊥平面DEF.(2)由(1)知,AD⊥平面PBG,所以∠PGB为二面角P﹣AD﹣B的平面角,在△PBG中,PG=,BG=,PB=2,由余弦定理得cos∠PGB=,因此二面角P﹣AD﹣B的余弦值为.5、解:(1)∵PA⊥平面ABCD∴PA⊥BD∵PC⊥平面BDE∴PC⊥BD,又PA∩PC=P∴BD⊥平面PAC(2)设AC与BD交点为O,连OE∵PC⊥平面BDE∴PC⊥平面BOE∴PC⊥BE∴∠BEO为二面角B﹣PC﹣A的平面角∵BD⊥平面PAC∴BD⊥AC∴四边形ABCD为正方形,又PA=1,AD=2,可得BD=AC=2,PC=3∴OC=在△PAC∽△OEC中,又BD⊥OE,∴∴二面角B﹣PC﹣A的平面角的正切值为36、(1)证明:连接OD,OE.因为在等腰直角三角形ABC中,∠B=∠C=45°,,CO=BO=3.在△COD中,,同理得.因为,.所以A′O2+OD2=A′D2,A′O2+OE2=A′E2.所以∠A′OD=∠A′OE=90°所以A′O⊥OD,A′O⊥OE,OD∩OE=O.所以A′O⊥平面BCDE.(2)方法一:过点O作OF⊥CD的延长线于F,连接A′F因为A′O⊥平面BCDE.根据三垂线定理,有A′F⊥CD.所以∠A′FO为二面角A′﹣CD﹣B的平面角.在Rt△COF中,.在Rt△A′OF中,.所以.所以二面角A′﹣CD﹣B的平面角的余弦值为.方法二:取DE中点H,则OH⊥OB.以O为坐标原点,OH、OB、OA′分别为x、y、z轴建立空间直角坐标系.则O(0,0,0),A′(0,0,),C(0,﹣3,0),D(1,﹣2,0)=(0,0,)是平面BCDE的一个法向量.设平面A′CD的法向量为n=(x,y,z),.所以,令x=1,则y=﹣1,.所以是平面A′CD的一个法向量设二面角A′﹣CD﹣B的平面角为θ,且所以所以二面角A′﹣CD﹣B的平面角的余弦值为7、解:(1)∵PD⊥平面ABCD,∴PD⊥AD,又CD⊥AD,PD∩CD=D,∴AD⊥平面PCD,∴AD⊥PC,又AF⊥PC,∴PC⊥平面ADF,即CF⊥平面ADF;(2)设AB=1,在RT△PDC中,CD=1,∠DPC=30°,∴PC=2,PD=,由(1)知CF⊥DF,∴DF=,AF==,∴CF==,又FE∥CD,∴,∴DE=,同理可得EF=CD=,如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E(,0,0),F(,,0),P(,0,0),C(0,1,0)设向量=(x,y,z)为平面AEF的法向量,则有,,∴,令x=4可得z=,∴=(4,0,),由(1)知平面ADF的一个法向量为=(,1,0),设二面角D﹣AF﹣E的平面角为θ,可知θ为锐角,cosθ=|cos<,>|===∴二面角D﹣AF﹣E的余弦值为:8、(1)证明:在△POC中PO=PC且E为CD中点,∴PE⊥CD,又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PCD,∴PE⊥平面ABCD,又∵FG⊂平面ABCD,∴PE⊥FG;(2)解:由(1)知PE⊥平面ABCD,∴PE⊥AD,又∵CD⊥AD且PE∩CD=E,∴AD⊥平面PDC,又∵PD⊂平面PDC,∴AD⊥PD,又∵AD⊥CD,∴∠PDC为二面角P﹣AD﹣C的平面角,在Rt△PDE中,由勾股定理可得:PE===,∴tan∠PDC==;(3)解:连结AC,则AC==3,在Rt△ADP中,AP===5,∵AF=2FB,CG=2GB,∴FG∥AC,∴直线PA与直线FG所成角即为直线PA与直线FG所成角∠PAC,在△PAC中,由余弦定理得cos∠PAC===.湖北省(答案)1、解:(Ⅰ)证法1:如图1,连接BE、BD,由地面ABCD是正方形可得AC⊥BD.∵SD⊥平面ABCD,∴BD是BE在平面ABCD上的射影,∴AC⊥BE(Ⅱ)解法1:如图1,由SD⊥平面ABCD知,∠DBE=φ,∵SD⊥平面ABCD,CD⊂平面ABCD,∴SD⊥CD.又底面ABCD是正方形,∴CD⊥AD,而SD∩AD=D,CD⊥平面SAD.连接AE、CE,过点D在平面SAD内作DF⊥AE于F,连接CF,则CF⊥AE,故∠CFD是二面角C﹣AE﹣D的平面角,即∠CFD=θ.在Rt△BDE中,∵BD=2a,DE=λa∴tanφ=在Rt△ADE中,∵,DE=λa∴AE=a从而DF=在Rt△CDF中,tanθ=.由tanθ•tanφ=1,得即=2,所以λ2=2.由0<λ≤2,解得,即为所求.(Ⅰ)证法2:以D为原点,以DA.DC.DS的方向分别作为x,y,z轴的正方向建立如图2所示的空间直角坐标系,则D(0,0,0),A(,0,0),B(a,a,0),C(0,a,0),E(0,0,λa),∴,∴,即AC⊥BE.(Ⅱ)解法2:由(I)得,,.设平面ACE的法向量为n=(x,y,z),则由,得即取,得.易知平面ABCD与平面ADE的一个法向量分别为与.∴,.∵0<θ<,λ>0∴tanθ•tanφ=1⇔θ+φ=⇔sinφ=cosθ⇔⇔λ2=2.由0<λ≤2,解得,即为所求.2、解:法一:(Ⅰ)在平面OAB内作ON⊥OA交AB于N,连接NC.又OA⊥OC,∴OA⊥平面ONC。

近三年高考全卷理科立体几何真题

近三年高考全卷理科立体几何真题

新课标卷近三年高考题1、(2016年全国I高考)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF 为正方形,AF=2FD,90AFD∠=o,且二面角D-AF-E与二面角C-BE-F都是60o.(I)证明:平面ABEF⊥平面EFDC;(II)求二面角E-BC-A的余弦值.【解析】⑴∵ABEF为正方形∴AF EF⊥∵90∠=︒∴AF DFAFD⊥∵=DF EF FI∴AF⊥面EFDC AF⊥面ABEF∴平面ABEF⊥平面EFDC⑵由⑴知60DFE CEF∠=∠=︒∵AB EF∥AB⊄平面EFDCEF⊂平面EFDC∴AB∥平面ABCDAB⊂平面ABCD∵面ABCD I面EFDC CD=∴AB CD∥∥,∴CD EF∴四边形EFDC为等腰梯形以E 为原点,如图建立坐标系,设FD a =()()000020E B a ,,,, ()3022022a C a A a a ⎛⎫⎪ ⎪⎝⎭,,,,()020EB a =u u u r ,,,3222a BC a a ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,()200AB a =-u u u r ,, 设面BEC 法向量为()m x y z =u r,,.00m EB m BC ⎧⋅=⎪⎨⋅=⎪⎩u r u u u r u r u u u r ,即11112032022a y a x ay a z ⋅=⎧⎪⎨⋅-+⋅=⎪⎩ 111301x y z ===-,,()301m =-u r,,设面ABC 法向量为()222n x y z =r,,=00n BC n AB ⎧⋅⎪⎨⋅=⎪⎩r u u u r r u u u r .即22223202220a x ay az ax ⎧-+=⎪⎨⎪=⎩ 222034x y z ===,, ()034n =r,,设二面角E BC A --的大小为θ.4219cos 1931316m n m nθ⋅-===-+⋅+⋅u r ru r r ∴二面角E BC A --的余弦值为21919-2、(2016年全国II 高考)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到'D EF ∆位置,10OD '=.(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.【解析】⑴证明:∵54AE CF ==,∴AE CFAD CD=, ∴EF AC ∥.∵四边形ABCD 为菱形,∴AC BD ⊥, ∴EF BD ⊥,∴EF DH ⊥,∴EF D H '⊥. ∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =, ∴1AEOH OD AO=⋅=,∴3DH D H '==, ∴222'OD OH D H '=+,∴'D H OH ⊥. 又∵OH EF H =I ,∴'D H ⊥面ABCD . ⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =uu u r ,,,()'133AD =-uuur ,,,()060AC =uuu r,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩u u r u u u r u u r u u u u r 得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r,,.同理可得面'AD C 的法向量()2301n =u u r,,,∴12129575cos 255210n n n n θ⋅+===⋅u r u u ru r u u r, ∴295sin 25θ=.3、(2016年全国III 高考)如图,四棱锥P ABC -中,PA ⊥地面ABCD ,AD BC P ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN P 平面PAB ; (II )求直线AN 与平面PMN 所成角的正弦值.设),,(z y x n =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取)1,2,0(=n ,于是2558|||||||,cos |=⋅=><AN n AN n AN n .4、【2015高考新课标2,理19】如图,长方体1111ABCD A B C D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11C D 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面 所成角的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)4515. 【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角.DD 1 C 1A 1 EF A BCB 1A1AB 1BD 1DC 1CFE HGM【名师点睛】根据线面平行和面面平行的性质画平面α与长方体的面的交线;由交线的位置可确定公共点的位置,坐标法是求解空间角问题时常用的方法,但因其计算量大的特点很容易出错,故坐标系的选择是很重要的,便于用坐标表示相关点,先求出面α的法向量,利用sin cos ,n AF θ=<>r u u u r求直线AF 与平面α所成角的正弦值.5、【2015高考新课标1,理18】如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值.【答案】(Ⅰ)见解析(Ⅱ)33又∵AE ⊥EC ,∴EG =3,EG ⊥AC , 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22可得EF =322, ∴222EG FG EF +=,∴EG ⊥FG , ∵AC ∩FG=G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC . ……6分(Ⅱ)如图,以G 为坐标原点,分别以,GB GC u u u r u u u r 的方向为x 轴,y 轴正方向,||GB u u u r为单位长度,建立空间直角坐标系G-xyz ,由(Ⅰ)可得A (0,-3,0),E (1,0,2),F (-1,0,22),C (0,3,0),∴AE u u u r =(1,3,2),CF u u u r =(-1,-3,22).…10分 故3cos ,3||||AE CF AE CF AE CF •<>==-u u u r u u u ru u u r u u u r u u u r u u u r .所以直线AE 与CF 所成的角的余弦值为33. ……12分 【考点定位】空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力【名师点睛】对空间面面垂直问题的证明有两种思路,思路1:几何法,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;思路2:利用向量法,通过计算两个平面的法向量,证明其法向量垂直,从而证明面面垂直;对异面直线所成角问题,也有两种思路,思路1:几何法,步骤为一找二作三证四解,一找就是先在图形中找有没有异面直线所成角,若没有,则通常做平行线或中位线作出异面直线所成角,再证明该角是异面直线所成角,利用解三角形解出该角. 6、[2014·新课标全国卷Ⅱ] 如图1-3,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D -AE -C 为60°,AP =1,AD =3,求三棱锥E -ACD 的体积.图1-3解:(1)证明:连接BD 交AC 于点O ,连接EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . 因为EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)因为PA ⊥平面ABCD ,ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB→,AD ,AP 的方向为x 轴、y 轴、z 轴的正方向,|AP →|为单位长,建立空间直角坐标系A -xyz ,则D ⎝⎛⎭⎫0,3,0,E ⎝ ⎛⎭⎪⎪⎫0,32,12,AE →=⎝ ⎛⎭⎪⎪⎫0,32,12.设B (m ,0,0)(m >0),则C (m ,3,0),AC →=(m ,3,0).设n 1=(x ,y ,z )为平面ACE 的法向量, 则⎩⎨⎧n 1·AC →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0, 可取n 1=⎝ ⎛⎭⎪⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量,由题设易知|cos 〈n 1,n 2〉|=12,即 33+4m 2=12,解得m =32. 因为E 为PD 的中点,所以三棱锥E -ACD 的高为12.三棱锥E -ACD 的体积V =13×12×3×32×12=38. 7、[2014·新课标全国卷Ⅰ] 如图1-5,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .图1-5(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1­C1的余弦值.解:(1)证明:连接BC1,交B1C于点O,连接AO,因为侧面BB1C1C为菱形,所以B1C⊥BC1,且O为B1C及BC1的中点.又AB⊥B1C,所以B1C⊥平面ABO.由于AO⊂平面ABO,故B1C⊥AO.又B1O=CO,故AC=AB1.(2)因为AC⊥AB1,且O为B1C的中点,所以AO=CO.又因为AB=BC,所以△BOA≌△BOC.故OA⊥OB,从而OA,OB,OB1两两垂直.以O为坐标原点,OB的方向为x轴正方向,|OB|为单位长,建立如图所示的空间直角坐标系O­xyz.因为∠CBB 1=60°,所以△CBB 1为等边三角形,又AB =BC ,则A ⎝ ⎛⎭⎪⎪⎫0,0,33,B (1,0,0),B 1⎝ ⎛⎭⎪⎪⎫0,33,0,C ⎝ ⎛⎭⎪⎪⎫0,-33,0. AB 1→=⎝ ⎛⎭⎪⎪⎫0,33,-33, A 1B 1→=AB =⎝ ⎛⎭⎪⎪⎫1,0,-33, B 1C →1=BC =⎝ ⎛⎭⎪⎪⎫-1,-33,0. 设n =(x ,y ,z )是平面AA 1B 1的法向量,则⎩⎨⎧n ·AB 1=0,n ·A 1B 1→=0,即⎩⎪⎨⎪⎧33y -33z =0,x -33z =0.所以可取n =(1,3,3).设m 是平面A 1B 1C 1的法向量,则⎩⎨⎧m ·A 1B 1→=0,m ·B 1C 1→=0,同理可取m =(1,-3,3).则cos〈n,m〉=n·m|n||m|=17.所以结合图形知二面角A-A1B1­C1的余弦值为1 7 .感谢下载!欢迎您的下载,资料仅供参考。

2020年高考全国ⅰ、ⅱ、ⅲ卷数学(理)立体几何解答题对比

2020年高考全国ⅰ、ⅱ、ⅲ卷数学(理)立体几何解答题对比

2020年高考全国Ⅰ、Ⅱ、Ⅲ卷数学(理)立体几何解答题对比1.(2020•新课标Ⅰ)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC ∆是底面的内接正三角形,P 为DO 上一点,6PO DO =. (1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.【解答】解:(1)不妨设圆O 的半径为1,1OA OB OC ===,2AE AD ==,3AB BC AC ===22623,DO DA OA PO =-=226PA PB PC PO AO ===+=在PAC ∆中,222PA PC AC +=,故PA PC ⊥, 同理可得PA PB ⊥,又PB PC P =,故PA ⊥平面PBC ;(2)建立如图所示的空间直角坐标系,则有31312(,0),(,0),)22B C P ,(0E ,1,0),故31312(3,0,0),(,,0),(,22BC CE CP =-==-, 设平面PBC 的法向量为(,,)m x y z =,则30312022m BC m CP x y z ⎧=-=⎪⎨=-=⎪⎩,可取(0,2,1)m =, 同理可求得平面PCE 的法向量为(2,6,3)n =--,故||25cos ||||5m n m n θ==,即二面角B PC E --25.【点评】本题考查线面垂直的判定以及利用空间向量求解二面角,考查推理能力及计算能力,属于基础题.2.(2020•新课标Ⅱ)如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1//AA MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.【解答】解:(1)证明:M ,N 分别为BC ,11B C 的中点,底面为正三角形,1B N BM ∴=,四边形1BB NM 为矩形,111A N B C ⊥, 1//BB MN ∴,11//AA BB ,1//AA MN ∴,11MN B C ⊥,111A N B C ⊥,1MN A N N =,11B C ∴⊥平面1A AMN , 11B C ⊂平面11EB C F , ∴平面1A AMN ⊥平面11EB C F ,综上,1//AA MN ,且平面1A AMN ⊥平面11EB C F .(2)解:三棱柱上下底面平行,平面11EB C F 与上下底面分别交于11B C ,EF , 11////EF B C BC ∴,//AO 面11EB C F ,AO ⊂面1AMNA ,面1AMNA ⋂面11EB C F PN =,//AO PN ∴,四边形APNO 为平行四边形, O 是正三角形的中心,AO AB =,13A N ON ∴=,3AM AP =,1133PN BC B C AP EF ====,由(1)知直线1B E 在平面1A AMN 内的投影为PN ,直线1B E 与平面1A AMN 所成角即为等腰梯形11EFC B 中1B E 与PN 所成角, 在等腰梯形11EFC B 中,令1EF =,过E 作11EH B C ⊥于H , 则113PN B C EH ===,11B H =,110B E =,11110sin B H B EH B E ∠==, ∴直线1B E 与平面1A AMN 所成角的正弦值为10.【点评】本题考查线线平行、面面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.3.(2020•新课标Ⅲ)如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =. (1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解答】(1)证明:在1AA 上取点M ,使得12A M AM =,连接EM ,1B M ,1EC ,1FC , 在长方体1111ABCD A B C D -中,有111////DD AA BB ,且111DD AA BB ==. 又12DE ED =,12A M AM =,12BF FB =,1DE AM FB ∴==. ∴四边形1B FAM 和四边形EDAM 都是平行四边形.1//AF MB ∴,且1AF MB =,//AD ME ,且AD ME =.又在长方体1111ABCD A B C D -中,有11//AD B C ,且11AD B C =, 11//B C ME ∴且11B C ME =,则四边形11B C EM 为平行四边形, 11//EC MB ∴,且11EC MB =,又1//AF MB ,且1AF MB =,1//AF EC ∴,且1AF EC =, 则四边形1AFC E 为平行四边形, ∴点1C 在平面AEF 内;(2)解:在长方体1111ABCD A B C D -中,以1C 为坐标原点,分别以11C D ,11C B ,1C C 所在直线为x ,y ,z 轴建立空间直角坐标系.2AB =,1AD =,13AA =,12DE ED =,12BF FB =,(2A ∴,1,3),(2B ,0,2),(0F ,1,1),1(2A ,1,0),则(2,1,1)EF =--,(0,1,1)AE =--,1(0,1,2)A E =-. 设平面AEF 的一个法向量为1111(,,)n x y z =.则1111111200n EF x y z n AE y z ⎧=-+-=⎪⎨=--=⎪⎩,取11x =,得1(1,1,1)n =-; 设平面1A EF 的一个法向量为2222(,,)n x y z =.则222221222020n EF x y z n A E y z ⎧=-+-=⎪⎨=-+=⎪⎩,取21x =,得2(1,4,2)n =. 1212127cos ,||||321n n n n n n ∴<>===. 设二面角1A EF A --为θ,则142sin 177θ=-=. ∴二面角1A EF A --的正弦值为42.【点评】本题考查平面的基本性质与推理,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.。

高考数学近三年真题立体几何(理科专用)

高考数学近三年真题立体几何(理科专用)

三年专题 立体几何(选择题、填空题)(理科专用)1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km 2;水位为海拔157.5m 时,相应水面的面积为180.0km 2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(√7≈2.65)( ) A .1.0×109m 3B .1.2×109m 3C .1.4×109m 3D .1.6×109m 32.【2022年新高考1卷】已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤3√3,则该正四棱锥体积的取值范围是( ) A .[18,814]B .[274,814]C .[274,643]D .[18,27]3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( ) A .100πB .128πC .144πD .192π4.【2021年甲卷理科】2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45A C B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,B B '与C C '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差A A C C ''- 1.732≈)( )A .346B .373C .446D .4735.【2021年甲卷理科】已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1A CBC A C B C ⊥==,则三棱锥O A B C-的体积为( )A 12B 12C 4D 46.【2021年新高考1的母线长为( )A .2B .C .4D .7.【2021年新高考2卷】正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .201+B .2C .563D 38.【2020年新课标1卷理科】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A 4B 2C 4D 29.【2020年新课标1卷理科】已知,,A B C 为球O 的球面上的三个点,⊙1O 为A B C的外接圆,若⊙1O 的面积为4π,1A BB C A C O O ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π10.【2020年新课标2卷理科】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H11.【2020年新课标2卷理科】已知△ABC 4的等边三角形,且其顶点都在球O的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 212.【2020年新课标3卷理科】下图为某几何体的三视图,则该几何体的表面积是( )A.B .C .D .13.【2020年新高考1卷(山东卷)】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°14.【2022年新高考1卷】已知正方体ABCD −A 1B 1C 1D 1,则( ) A .直线BC 1与DA 1所成的角为90° B .直线BC 1与CA 1所成的角为90° C .直线BC 1与平面BB 1D 1D 所成的角为45°D .直线BC 1与平面ABCD 所成的角为45°15.【2022年新高考2卷】如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,FB ∥ED,AB =ED =2FB ,记三棱锥E −ACD ,F −ABC ,F −ACE 的体积分别为V 1,V 2,V 3,则( )A .V 3=2V 2B .V 3=V 1C .V 3=V 1+V 2D .2V 3=3V 116.【2021年新高考1卷】在正三棱柱111A B CA B C -中,11A BA A ==,点P 满足1B P BC B B λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1A B P△的周长为定值B .当1μ=时,三棱锥1P A B C-的体积为定值C .当12λ=时,有且仅有一个点P ,使得1AP B P⊥D .当12μ=时,有且仅有一个点P ,使得1AB ⊥平面1A BP17.【2021年新高考2卷】如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足M NO P⊥的是( )A .B .C .D .18.【2020年新课标3卷理科】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.19.【2020年新高考1卷(山东卷)】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD=60°.以1D BCC 1B 1的交线长为________.20.【2020年新高考2卷(海南卷)】已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________三年专题立体几何(解答题)(理科专用)1.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1 ,AB=2,DP=√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.2.【2022年全国乙卷】如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC 的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.3.【2022年新高考1卷】如图,直三棱柱ABC−A1B1C1的体积为4,△A1BC的面积为2√2.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A −BD −C 的正弦值.4.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE//平面PAC ;(2)若∠ABO =∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值. 5.【2021年甲卷理科】已知直三棱柱111A B C A B C -中,侧面11A AB B为正方形,2A BB C ==,E ,F 分别为A C 和1C C 的中点,D 为棱11AB 上的点.11B FA B ⊥(1)证明:B F D E⊥;(2)当1BD为何值时,面11B BC C与面D F E 所成的二面角的正弦值最小?6.【2021年乙卷理科】如图,四棱锥P A B C D==,P D D C-的底面是矩形,P D⊥底面A B C D,1M为B C的中点,且P B A M⊥.(1)求B C;(2)求二面角A P M B--的正弦值.7.【2021年新高考1卷】如图,在三棱锥A B C D-中,平面A B D⊥平面B C D,A B A D=,O为B D的中点.(1)证明:O A C D⊥;(2)若OCD是边长为1的等边三角形,点E在棱A D上,2--=,且二面角E B C DD E E A的大小为45︒,求三棱锥A B C D-的体积.8.【2021年新高考2卷】在四棱锥Q A B C D-中,底面A B C D是正方形,若====.A D Q D Q A Q C2,3(1)证明:平面Q A D ⊥平面A B C D ; (2)求二面角BQ D A--的平面角的余弦值.9.【2020年新课标1卷理科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,A E 为底面直径,A EA D=.A B C是底面的内接正三角形,P 为D O 上一点,6P OO=.(1)证明:P A ⊥平面P B C ;(2)求二面角BP C E--的余弦值.10.【2020年新课标2卷理科】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AM N 所成角的正弦值.11.【2020年新课标3卷理科】如图,在长方体1111A B C D A B C D -中,点,E F 分别在棱11,D DB B 上,且12D EE D =,12B FF B =.(1)证明:点1C 在平面A E F 内;(2)若2A B=,1A D=,13A A=,求二面角1AE F A --的正弦值.12.【2020年新高考1卷(山东卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面A BCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 13.【2020年新高考2卷(海南卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面A BCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB ,求PB 与平面QCD 所成角的正弦值.。

历年高考立体几何真题+答案

历年高考立体几何真题+答案

历年高考真题1、2003(理科)(本题满分12分)已知平行六面体ABCD —A 1B 1C 1D 1中,A 1A ⊥平面ABCD ,AB=4,AD=2.若B 1D ⊥BC ,直线B 1D 与平面ABCD 所成的角等于30°,求平行六面体ABCD —A 1B 1C 1D 1的体积..[解]连结BD ,因为B 1B ⊥平面ABCD ,B 1D ⊥BC ,所以BC ⊥BD.在△BCD 中,BC=2,CD=4,所以BD=32.又因为直线B 1D 与平面ABCD 所成的角等于30°,所以 ∠B 1DB=30°,于是BB 1=31BD=2.故平行六面体ABCD —A 1B 1C 1D 1的体积为S ABCD ·BB 1=38. 2.2005(理科)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知正三棱锥ABC P -的体积为372,侧面与底面所成的二面角的大小为 60. (1)证明:BC PA ⊥;(2)求底面中心O 到侧面的距离.[证明](1)取BC 边的中点D ,连接AD 、PD ,则BC AD ⊥,BC PD ⊥,故⊥BC 平面APD . BCPA ⊥[解](2)如图, 由(1)可知平面⊥PBC 平面APD ,则PDA ∠面所成二面角的平面角.过点O 作E PD OE ,⊥为垂足,则OE 就是点O 到侧面的距离. 设OE 为h ,由题意可知点O 在AD 上,∴ 60=∠PDO ,h OP 2=.h BC h OD 4,32=∴=,∴ 2234)4(43h h S ABC ==∆, ∵ 3233823431372h h h =⋅⋅=,∴ 3=h . 即底面中心O 到侧面的距离为3.3、2006(理科)(本题满分 14分)本题共有 2个小题,第 1小题满分 5分,第 2小题满分满分 9分。

在三棱柱 ABC —A1B1C1 中,∠ABC=90°,AB=BC=1。

2012-2021十年全国高考数学(理科)真题分类汇编解析 立体几何大题

2012-2021十年全国高考数学(理科)真题分类汇编解析  立体几何大题
(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;
(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成Байду номын сангаас的正弦值.
5.(2020年高考数学课标Ⅲ卷理科)如图,在长方体 中,点 分别在棱 上,且 , .
(1)证明:点 平面 内;
(2)若 , , ,求二面角 的正弦值.
7.(2019年高考数学课标全国Ⅱ卷理科)如图,长方体 的底面 是正方形,点 在棱 上, .
证明: 平面 ;
若 ,求二面角 的正弦值.
8.(2019年高考数学课标全国Ⅰ卷理科) 如图,直四棱柱 的底面是菱形, 分别是 , , 的中点.
(1)证明: 平面 ;
(2)求二面角 的正弦值.
9.(2018年高考数学课标Ⅲ卷(理))(12分)如图,边长为 的正方形 所在平面与半圆弧 所在的平面垂直, 是弧 上异于 的点.
( )证明平面 ;
( )求二面角 的余弦值.
18.(2015高考数学新课标2理科)(本题满分12分)如图,长方体 中, , , ,点 , 分别在 , 上, .过点 , 的平面 与此长方体的面相交,交线围成一个正方形.
(Ⅰ)在图中画出这个正方形(不必说出画法和理由);
(Ⅱ)求直线 与平面 所成角的正弦值.
6.(2019年高考数学课标Ⅲ卷理科)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.
(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
(2)求图2中的二面角B−CG−A的大小.
(1)证明:平面 平面 ;

近三年高考全国卷政治科立体几何真题

近三年高考全国卷政治科立体几何真题

近三年高考全国卷政治科立体几何真题
1. 2019年高考全国卷政治科真题
选择题:
1. 立体几何中,以下哪一条件不足以判定两个立体图形全等?
A. 有一对相等的正视图的对应边相等
B. 有一对相等的正视图的对应角相等
C. 有一对相等的平面角的对应边相等
D. 有对应边相等的对应面有一对角相等
2. 设立体立方体ABCDA'B'C'D',以下哪一种将该立方体剖分的方法不正确?
A. 用一平面将立方体的后侧面与下侧面分离
B. 用一平面将立方体的前侧面与右侧面分离
C. 用一平面将立方体的下侧面与右侧面分离
D. 用一平面将立方体的上侧面与后侧面分离
填空题:
3. 立体几何中,已知两个立体图形的正视图和侧视图全等,则这两个立体图形 __相等__。

2. 2018年高考全国卷政治科真题
选择题:
1. 若已知一个平面图形的两个平面角都等于60°,则这个平面图形可能是 __正三角形__。

填空题:
2. 平面直角坐标系中,图像x^2+x^2=16 是圆x对于y轴的镜像图形的方程是 __x^2+x^2=x^2__。

2. 2017年高考全国卷政治科真题
选择题:
1. 根据下列作图过程,选择中能得到正方形的方案是 __作正方形内切于给定⚪x__
填空题:
2. 解下列方程:xxx^2x+xxxx=1的解的个数是 __6__。

以上是近三年高考全国卷政治科的立体几何真题的部分题目和答案。

近5年高考数学理科试卷(全国卷1)分类汇编立体几何(解析版)(大题版)(2011年2012年2013年2014年2015年)整理版

近5年高考数学理科试卷(全国卷1)分类汇编立体几何(解析版)(大题版)(2011年2012年2013年2014年2015年)整理版

2011(18)(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD,PD ⊥底面ABCD.(Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD=AD ,求二面角A-PB-C 的余弦值。

解:(Ⅰ )因为60,2DAB AB AD ∠=︒=,由余弦定理得BD =从而BD 2+AD 2= AB 2,故BD ⊥AD又PD ⊥底面ABCD ,可得BD ⊥PD所以BD ⊥平面PAD. 故PA ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则()1,0,0A,()0B,()C -,()0,0,1P 。

(1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=-设平面PAB 的法向量为n=(x,y,z ),则0z =-=因此可取n=设平面PBC 的法向量为m ,则 00m PB m BC ⋅=⋅=可取m=(0,-1, cos ,7m n ==-故二面角A-PB-C 的余弦值为7-2012、19.(本小题满分12分)如图,直三棱柱111C B A ABC -中,121AA BC AC ==,D 是棱1AA 的中点,BD DC ⊥1.(Ⅰ)证明:BC DC ⊥1;(Ⅱ)求二面角11C BD A --的大小.【解析】(1)在Rt DAC ∆中,AD AC =得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠= 得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥(2)11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC A BC AC ⇒⊥取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H111111A C B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1O H B D C H B D⊥⇒⊥ 得:点H 与点D 重合 且1C DO ∠是二面角11C BD A --的平面角设AC a =,则12C O =,111230C D C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒A C B1B 1A D 1C2013,理18)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz.由题设知A (1,0,0),A 1(0,3,0),C (0,0,B (-1,0,0). 则BC =(1,0,1BB =1AA =(-10),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,30.x x y ⎧+=⎪⎨-+=⎪⎩可取n =1,-1).故cos 〈n ,1AC 〉=11AC AC ⋅n n =5-. 所以A 1C 与平面BB 1C 1C 所成角的正弦值为5.2014、19. (本小题满分12分)如图三棱锥111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (I )证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o 160CBB ∠=,AB=Bc ,求二面角111A A B C --的余弦值.【解析】:(Ⅰ)连结1BC ,交1B C 于O ,连结AO .因为侧面11BB C C 为菱形,所以1B C 1BC ⊥,且O 为1B C 与1BC 的中点.又1AB B C ⊥,所以1B C ⊥平面ABO ,故1B C AO ⊥又 1B O CO =,故1AC AB = ………6分(Ⅱ)因为1AC AB ⊥且O 为1B C 的中点,所以又因为,所以BOA BOC ∆≅∆故OA ⊥,从而OA ,OB ,1OB 两两互相垂直.以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示空间直角坐标系O-xyz . 因为0160CBB ∠=,所以1CBB ∆为等边三角形.又,则A ⎛ ⎝,()1,0,0B,1B ⎛⎫ ⎪ ⎪⎝⎭,0,C ⎛⎫ ⎪ ⎪⎝⎭1AB ⎛= ⎝,111,0,,A B AB ⎛== ⎝111,B C BC ⎛⎫==- ⎪ ⎪⎝⎭ 设(),,n x y z =是平面的法向量,则11100n AB n A B ⎧=⎪⎨=⎪⎩,即00y z x z =⎪-=⎪⎩所以可取(1,3,n = 设m 是平面的法向量,则111100m A B n B C ⎧=⎪⎨=⎪⎩,同理可取(1,m = 则1cos ,7n mn m n m ==,所以二面角111A A B C --的余弦值为17.2015(18)如图,,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC。

历年全国理科数学高考试题立体几何部分精选(含答案)

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,==,则棱锥AB BC-的体积为。

O ABCD3.如图,四棱锥P—ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

1.D2.3. 解:(Ⅰ)因为60,2DAB AB AD ∠=︒=,由余弦定理得BD =从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则()1,0,0A,()0B,()C -,()0,0,1P 。

(1),(1,0,0)AB PB BC =-=-=-uu u v uu v uu u v设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ⋅=⋅=u u u r u u u r00z =-=因此可取n=设平面PBC 的法向量为m ,则m 0,m 0,{PB BC ⋅=⋅=u u u ru u u r可取m=(0,-1, cos ,m n == 故二面角A-PB-C 的余弦值为1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为C 232. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为(A) 4- (B)3-+ (C) 4-+3-+3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(C)4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .1. D2. D3. B4. 解法一:(Ⅰ)连接BD,取DC 的中点G ,连接BG,由此知 1,DG GC BG ===即ABC ∆为直角三角形,故BC BD ⊥. 又ABCD,BC SD SD ⊥⊥平面故,所以,BC ⊥⊥平面BDS,BC DE .作BK ⊥EC,EDC SBC K ⊥为垂足,因平面平面,故,BK EDC BK DE DE ⊥⊥平面,与平面SBC 内的两条相交直线BK 、BC 都垂直 DE ⊥平面SBC ,DE ⊥EC,DE ⊥SBSB =SD DB DE SB ==-EB SE SB EB ====所以,SE=2EB(Ⅱ) 由1,2,,SA AB SE EB AB SA ===⊥知1,AD=1AE ==又.故ADE ∆为等腰三角形.取ED 中点F,连接AF ,则,AF DE AF ⊥==. 连接FG ,则//,FG EC FG DE ⊥.所以,AFG ∠是二面角A DE C --的平面角.连接AG,A G=,3FG ==, 2221cos 22AF FG AG AFG AF FG +-∠==-,所以,二面角A DE C --的大小为120°. 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示的直角坐标系D xyz -, 设A(1,0,0),则B(1,1,0),C(0,2,0),S(0,0,2)(Ⅰ)(0,2,-2),(-1,1,0)SC BC ==设平面SBC 的法向量为n=(a, b, c) 由,n SC n BC ⊥⊥,得0,0n SC n BC == 故2b-2c=0,-a+b=0令a=1,则b=c,c=1,n=(1,1,1) 又设SE EB λ= (0)λ>,则2(,,)111E λλλλλ+++ 2(,,),(0,2,0)111DE DC λλλλλ==+++设平面CDE 的法向量m=(x,y,z) 由,m DE m DC ⊥⊥,得0m DE ⊥=,0m DC ⊥= 故20,20111x y zy λλλλλ++==+++. 令2x =,则(2,0,)m λ=-.由平面DEC ⊥平面SBC 得m ⊥n,0,20,2m n λλ=-== 故SE=2EB(Ⅱ)由(Ⅰ)知222(,,)333E ,取DE 的中点F ,则111211(,,),(,,)333333F FA =--,故0FA DE =,由此得FA DE ⊥ 又242(,,)333EC =--,故0EC DE =,由此得EC DE ⊥, 向量FA 与EC 的夹角等于二面角A DE C --的平面角 于是 1cos(,)2||||FA EC FA EC FA EC ==-所以,二面角A DE C --的大小为120(三)1. 已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A (B (C (D) 342. 已知二面角l αβ--为60o,动点P 、Q 分别在面α、β内,P 到β,Q 到α的距离为则P 、Q 两点之间距离的最小值为( )(A) (B)2 (C) 3. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===, 120BAC ∠=︒,则此球的表面积等于 。

2011—2019年高考真题全国卷1理科数学分类汇编——8.立体几何

2011—2019年高考真题全国卷1理科数学分类汇编——8.立体几何

2011—2019年高考真题全国卷1理科数学分类汇编——8.立体几何一、选择题【2019.12】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68π B .64π C .62πD .6π【2018,7】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .172B .52C .3D .2【2018,12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .334B .233C .324D .32【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A .10 B .12 C .14 D .16【2016,11】平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =,I α平面n A ABB =11,则n m ,所成角的正弦值为A .23 B .22 C .33 D .31 【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是( ) A .π17 B .π18 C .π20 D .π28【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为1620π+,则r=()A.1 B.2 C.4 D.8【2015年,11题】【2014年,12题】【2013年,6题】【2014,12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为()A.62B.42C.6 D.4【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为()A.500π3cm3B.866π3cm3 C.1372π3cm3D.2048π3cm3【2013,8】某几何体的三视图如图所示,则该几何体的体积为().A.16+8π B.8+8π C.16+16π D.8+16π【2013年,8】 【2012年,7】 【2011年,6】 【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .15【2012,11】已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A .26B .36C .23D .22【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )二、填空题【2011,15】已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 .三、解答题【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A −MA 1−N 的正弦值.【2018,18】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【2017,18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.【2016,18】 如图,在以F E D C B A ,,,,,为顶点的五面体中,面ABEF 为正方形,︒=∠=90,2AFD FD AF ,且二面角E AF D --与二面角F BE C --都是︒60.(Ⅰ)证明:平面⊥ABEF 平面EFDC ;(Ⅱ)求二面角A BC E --的余弦值.【2015,18】如图,四边形ABCD 为菱形,120ABC ∠=o,,E F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,2BE DF =,AE EC ⊥.ABCDE F(I )证明:平面AEC ⊥平面AFC ;(II )求直线AE 与直线CF 所成角的余弦值.【2014,19】如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥.(Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=BC ,求二面角111A A B C --的余弦值.【2013,18】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.【2012,19】如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=21AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.A 1【2011,18】如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:P A⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值.C7.立体几何(解析版)一、选择题1.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68π B .64π C .62πD .6π【答案】D【解析】解法一:,PA PB PC ABC ==Q △为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥I 平面PAC ,∴PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,22226R =++=,即364466,π62338R V R =∴=π=⨯=π,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC Q △为边长为2的等边三角形,3CF ∴=,又90CEF ∠=︒,213,2CE x AE PA x ∴=-==, AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =Q ,D \为AC 的中点,1cos 2AD EAC PA x∠==,2243142x x x x+-+∴=, 22122122x x x ∴+=∴==,,,2PA PB PC ∴===, 又===2AB BC AC ,,,PA PB PC ∴两两垂直,22226R ∴=++=,62R ∴=,344666338V R ∴=π=π⨯=π,故选D.8.【2018年理新课标I 卷】已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. 334B. 233C. 324D. 32 【答案】A详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体ABCD-A1B1C1D1中,平面AB1D1与线AA1,A1B1,A1D1所成的角是相等的,所以平面AB1D1与正方体的每条棱所在的直线所成角都是相等的,同理平面C1BD 也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面AB1D1与C1BD 中间的,且过棱的中点的正六边形,且边长为22,所以其面积为S=6×34⋅(22)2=334,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.+【2018年理新课标I 卷】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A. 217B. 25C. 3D. 2 【答案】B【解析】分析:首先根据题中所给的三视图,得到点M 和点N 在圆柱上所处的位置,点M 在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M 、N 在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M 和点N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为42+22=25,故选B.【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16(7)【解析】由三视图可画出立体图,该立体图平面内只有两个相同的梯形的面,()24226S =+⨯÷=梯,6212S =⨯=全梯,故选B ;【2016,11】平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =,I α平面n A ABB =11,则n m ,所成角的正弦值为A .23 B .22 C .33 D .31 【解析】如图所示:αAA 1B1DC1D 1∵11CB D α∥平面,∴若设平面11CB D I 平面1ABCD m =,则1m m ∥ 又∵平面ABCD ∥平面1111A B C D ,结合平面11B D C I 平面111111A B C D B D = ∴111B D m ∥,故11B D m ∥,同理可得:1CD n ∥故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小. 而1111B C B D CD ==(均为面对交线),因此113CD B π∠=,即113sin CD B ∠=. 故选A .【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的 表面积是( )A .π17B .π18C .π20D .π28【解析】:原立体图如图所示:是一个球被切掉左上角的18后的三视图表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S ⨯⨯⨯⨯πππ,故选A . 【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:284R π=,圆锥底面半径16R π=,米堆体积21320123V R h ππ==,堆放的米约有221.62V≈,选B ..【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为1620π+,则r =( )A .1B .2C .4D .8解析:由正视图和俯视图知,该几何体是半球和半个圆柱的组合体,圆柱的半径与球的半径都r ,圆柱的高为2r ,其表面积为2222142225416202r r r r r r r r πππππ⨯+⨯++⨯=+=-,解得2r =,故选B .. 【2014,12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )A .62B .42C .6D .4【解析】如图所示,原几何体为三棱锥D ABC -, 其中4,42,25AB BC AC DB DC =====,()24246DA =+=,故最长的棱的长度为6DA =,选C【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A .500π3cm 3 B .866π3cm 3 C .1372π3cm 3 D .2048π3cm 3解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π 答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A.【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .15【解析】由三视图可知,该几何体为三棱锥A-BCD , 底面△BCD 为 底边为6,高为3的等腰三角形,侧面ABD ⊥底面BCD , AO ⊥底面BCD , 因此此几何体的体积为11(63)3932V =⨯⨯⨯⨯=,故选择B .【2012,11】已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A .26B .36C .23D .22【解析】如图所示,根据球的性质,知⊥1OO 平面ABC ,则C O OO 11⊥.在直角C OO 1∆中,1=OC ,331=C O , ODA所以36)33(122121=-=-=C O OC OO . 因此三棱锥S -ABC 的体积6236433122=⨯⨯⨯==-ABC O V V ,故选择A .【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的.故选D 二、填空题【2011,15】已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 .解析:设ABCD 所在的截面圆的圆心为M,则AM=221(23)6232+=,OM=224(23)2-=,16232833O ABCD V -=⨯⨯⨯=.三、解答题【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE ; (2)求二面角A −MA 1−N 的正弦值. 【答案】(1)见解析;(2)10. 【解析】(1)连结B 1C ,ME . 因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C . 又因为N 为A 1D 的中点,所以ND =12A 1D . 由题设知A 1B 1=P DC ,可得B 1C =P A 1D ,故ME =P ND , 因此四边形MNDE 为平行四边形,MN ∥ED . 又MN ⊄平面EDC 1,所以MN ∥平面C 1DE . (2)由已知可得DE ⊥DA .以D 为坐标原点,DA uuu r的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),(1,3,2)M ,(1,0,2)N ,1(0,0,4)A A =-u u u r ,1(1,3,2)A M =--u u u u r,1(1,0,2)A N =--u u u u r ,(0,3,0)MN =-u u u u r.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r m m , 所以32040x y z z ⎧-+-=⎪⎨-=⎪⎩,.可取(3,1,0)=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u ur ,.n n 所以3020q p r ⎧-=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是2315cos ,||25⋅〈〉===⨯‖m n m n m n , 所以二面角1A MA N --的正弦值为10. 13.【2018年理新课标I 卷】如图,四边形ABCD 为正方形,E,F 分别为AD,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF⊥BF . (1)证明:平面PEF⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 【答案】(1)证明见解析.(2) 34.(2)结合题意,建立相应的空间直角坐标系,正确写出相应的点的坐标,求得平面ABFD 的法向量,设DP 与平面ABFD 所成角为θ,利用线面角的定义,可以求得sinθ=|HP⋅DP|HP|⋅|DP||=343=34,得到结果. 详解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,又PF∩EF=F ,所以BF ⊥平面PEF . 又BF⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,|BF|为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE =3.又PF =1,EF =2,故PE ⊥PF .可得PH=32,EH=32.则H(0,0,0),P(0,0,32),D(-1,-32,0),DP=(1,32,32), HP=(0,0,32)为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sinθ=|HP⋅DP|HP|⋅|DP||=343=34. 所以DP 与平面ABFD 所成角的正弦值为34.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的证明以及线面角的正弦值的求解,属于常规题目,在解题的过程中,需要明确面面垂直的判定定理的条件,这里需要先证明线面垂直,所以要明确线线垂直、线面垂直和面面垂直的关系,从而证得结果;对于线面角的正弦值可以借助于平面的法向量来完成,注意相对应的等量关系即可.【2017,18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o (1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.【解析】(1)证明:∵90BAP CDP ∠=∠=︒,∴PA AB ⊥,PD CD ⊥, 又∵AB CD ∥,∴PD AB ⊥,又∵PD PA P =I ,PD 、PA ⊂平面PAD , ∴AB ⊥平面PAD ,又AB ⊂平面PAB ,∴平面PAB ⊥平面PAD . (2)取AD 中点O ,BC 中点E ,连接PO ,OE ,∵AB CD ,∴四边形ABCD 为平行四边形,∴OEAB ,由(1)知,AB ⊥平面PAD ,∴OE ⊥平面PAD , 又PO 、AD ⊂平面PAD ,∴OE PO ⊥,OE AD ⊥, 又∵PA PD =,∴PO AD ⊥,∴PO 、OE 、AD 两两垂直,∴以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,设2PA =,∴()002D -,、()220B ,、(002P ,,、()202C -,, ∴(022PD =-u u u r ,、222PB =u u u r,,、()2200BC =-u u u r,,设()n x y z =r ,,为平面PBC 的法向量,由00n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r ,得2220220x y z x ⎧+=⎪⎨-=⎪⎩, 令1y =,则2z =,0x =,可得平面PBC 的一个法向量(012n =r,,,∵90APD ∠=︒,∴PD PA ⊥,又知AB ⊥平面PAD ,PD ⊂平面PAD ,∴PD AB ⊥,又PA AB A =I ,∴PD ⊥平面PAB ,即PD u u u r是平面PAB 的一个法向量,(022PD =-u u u r ,,,∴3cos 23PD n PD n PD n ⋅===⋅u u u r ru u u r r u u u r r ,,由图知二面角A PB C --为钝角,所以它的余弦值为3. 【2016,18】 如图,在以F E D C B A ,,,,,为顶点的五面体中,面ABEF 为正方形,︒=∠=90,2AFD FD AF ,且二面角E AF D --与二面角F BE C --都是︒60. (Ⅰ)证明:平面⊥ABEF 平面EFDC ;(Ⅱ)求二面角A BC E --的余弦值.【解析】:⑴ ∵ABEF 为正方形,∴AF EF ⊥,∵90AFD ∠=︒,∴AF DF ⊥,∵=DF EF F I∴AF ⊥面EFDC ,AF ⊂面ABEF ,∴平面ABEF ⊥平面EFDC⑵ 由⑴知60DFE CEF ∠=∠=︒,∵AB EF ∥,AB ⊄平面EFDC ,EF ⊂平面EFDC ∴AB ∥平面ABCD ,AB ⊂平面ABCD ∵面ABCD I 面EFDC CD = ∴AB CD ∥,∴CD EF ∥ ∴四边形EFDC 为等腰梯形以E 为原点,如图建立坐标系,设FD a =,()()000020E B a ,,,,()302202a C A a a ⎛⎫⎪ ⎪⎝⎭,,,,, ()020EB a =uu r ,,,322a BC a ⎛⎫=- ⎪ ⎪⎝⎭uu u r ,,,()200AB a =-uu u r ,,,设面BEC 法向量为()m x y z =u r ,,,00m EB m BC ⎧⋅=⎪⎨⋅=⎪⎩u r uu r u r uu u r ,即1111203202a y a x ay z ⋅=⎧⎪⎨⋅-⋅=⎪⎩,111301x y z ===-,,)301m =-u r ,ABCDE F设面ABC 法向量为()222n x y z =r,,,=00n BC n AB ⎧⋅⎪⎨⋅=⎪⎩r uu u r r uu u r .即2222320220a x ay az ax ⎧-+=⎪⎨⎪=⎩ 222034x y z ===,,,()034n =r,,,设二面角E BC A --的大小为θ.219cos 31316m n m n⋅===-+⋅+⋅u r r u r r θ,∴二面角E BC A --的余弦值为219-【2015,18】如图,四边形ABCD 为菱形,120ABC ∠=o ,,E F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,2BE DF =,AE EC ⊥.(I )证明:平面AEC ⊥平面AFC ; (II )求直线AE 与直线CF 所成角的余弦值.解:(Ⅰ)证明:连接BD ,设BD AC G =I ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设1GB =,由120ABC ∠=o ,可得3AG GC ==,由BE ⊥平面ABCD ,AB BC =,可知AE EC =.又AE EC ⊥,所以3EG =,且EG AC ⊥.在Rt EBG ∆中,可得2BE =,故22DF =.在Rt FDG ∆中,可得6FG =.在直角梯形BDFE 中,由2BD =,2BE =,22DF =,可得322EF =.因为222EG FG EF +=,所以EG FG ⊥,又AC FG G =I ,则EG ⊥平面AFC . 因为EG ⊂平面AEC ,所以平面AFC ⊥平面AEC . ……6分(Ⅱ)如图,以G 为坐标原点,分别以,GB GC u u u r u u u r 的方向为x 轴,y 轴正方向,||GB u u u r为单位长度,建立空间直角坐标系G xyz -,由(Ⅰ)可得(0,3,0)A -,(1,0,2)E ,2(1,0,)2F -,(0,3,0)E ,(1,3,2)AE =u u u r ,2(1,3,)2CF =--u u u r .故3cos ,3||||AE CF AE CF AE CF ⋅<>==-u u u r u u u ru u u r u u u r u u ur u u u r . 所以直线AE 与直线CF 所成的角的余弦值为33. ……12分 【2014,19】如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=BC求二面角111A A B C --的余弦值.【解析】:(Ⅰ)连结1BC ,交1B C 于O ,连结AO .因为侧面11BB C C 为菱形,所以1B C 1BC ⊥,且O 为1B C 与1BC 的中点.又1AB B C ⊥,所以1B C ⊥平面ABO ,故1B C AO ⊥又 1B O CO =,故1AC AB =(Ⅱ)因为1AC AB ⊥且O 为1B C 的中点,所以AO=CO 又因为AB=BC ,所以BOA BOC ∆≅∆ 故OA ⊥OB ,从而OA ,OB ,1OB 两两互相垂直.以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示空间直角坐标系O-xyz . 因为0160CBB ∠=,所以1CBB ∆为等边三角形.又AB=BC ,则30,0,3A ⎛⎫ ⎪ ⎪⎝⎭,()1,0,0B ,130,,03B ⎛⎫ ⎪ ⎪⎝⎭,30,,03C ⎛⎫- ⎪ ⎪⎝⎭ 1330,,33AB ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,1131,0,,A B AB ⎛⎫==- ⎪ ⎪⎝⎭u u u u r u u u r 1131,,0B C BC ⎛⎫==-- ⎪ ⎪⎝⎭u u u u r u u u r 设(),,n x y z =r是平面的法向量,则11100n AB n A B ⎧=⎪⎨=⎪⎩r u u u r g r u u u ur g ,即33030y z x z ⎧-=⎪⎨⎪-=⎪⎩所以可取()1,3,3n =r设m u r 是平面的法向量,则111100m A B n B C ⎧=⎪⎨=⎪⎩u r u u u u rg r u u u u rg,同理可取(1,m =u r 则1cos ,7n m n m n m ==r u rr u r g r u r g ,所以二面角111A A B C --的余弦值为17.【2013,18】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. 证明:(1)取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C . (2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA u u u r 的方向为x 轴的正方向,|OA u u u r|为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0).则BC uuu r =(1,0,3),1BB u u u =1AA u u r =(-1,3,0),1AC u u u r=(0,3-,3). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即30,30.x z x y ⎧+=⎪⎨-+=⎪⎩可取n =(3,1,-1). 故cos 〈n ,1AC u u u r 〉=11A C A C⋅u u u ru u u r n n =10-. 所以A 1C 与平面BB 1C 1C 所成角的正弦值为105. 【2012,19】如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=21AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.【解析】(1)在Rt DAC ∆中,AD AC =,得:45ADC ︒∠=,同理:1114590A DC CDC ︒︒∠=⇒∠=,得:1DC DC ⊥.又DC 1⊥BD ,DC BD D =I , 所以1DC ⊥平面BCD .而BC ⊂平面BCD ,所以1DC BC ⊥.(2)解法一:(几何法)由11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC ADA 1B 1CABC 1BC AC ⇒⊥.取11A B 的中点O ,连接1C O ,OD . 因为1111AC B C =,所以111C O A B ⊥,因为面111A B C ⊥面1A BD ,所以1C O ⊥面1A BD ,从而1C O BD ⊥,又DC 1⊥BD ,所以BD ⊥面1DC O ,因为OD ⊂平面1DC O ,所以BD OD ⊥. 由BD OD ⊥,BD ⊥DC 1,所以1C DO ∠为二面角A 1-BD -C 1的平面角. 设12AA a =,AC BC a ==,则122aC O =,12CD a =,在直角△1C OD ,1C O OD ⊥,1112C O CD =, 所以130C DO ︒∠=. 因此二面角11C BD A --的大小为30︒.解法二:(向量法)由11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC ABC AC ⇒⊥.又1C C ⊥平面ABC ,所以1C C AC ⊥,1C C BC ⊥,以C 点为原点,CA 、CB 、CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系C xyz -.不妨设AA 1=2,则AC=BC=21AA 1=1, 从而A 1(1,0,2),D (1,0,1), B (0,1,0),C 1(0,0,2),所以1(0,0,1)DA =u u u u r ,(1,1,1)DB =--u u u r , 1(1,0,1)DC =-u u u u r.设平面1A BD 的法向量为1111(,,)n x y z =u r, 则11n DA ⊥u r u u u u r ,1n DB ⊥u r u u u r ,所以111100z x y z =⎧⎨-+-=⎩,即1110z x y =⎧⎨=⎩,令11y =,则1(1,1,0)n =u r .设平面1C BD 的法向量为2222(,,)n x y z =≤u u r ,则21n DC ⊥u u r u u u u r ,2n DB ⊥u u r u u u r, 所以2222200x z x y z -+=⎧⎨-+-=⎩,即22222x z y z =⎧⎨=⎩,令21z =,则2(1,2,1)n =u u r .所以121212cos ,2||||n n n n n n ⋅<>===⋅u r u u ru r u u r u r u u r 12,30n n <>=︒u r u u r .因为二面角11C BD A --为锐角,因此二面角11C BD A --的大小为30︒.【2011,18】如图,四棱锥P-ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值.解:(I )因为60DAB ∠=︒,2AB AD =,由余弦定理得BD =.从而222BD AD AB +=,故BD AD ⊥. 又PD ⊥底面ABCD ,可得BD PD ⊥. 所以BD ⊥平面PAD . 故PA BD ⊥.(II )如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D xyz -,则()1,0,0A,()B,()C -,()0,0,1P,()AB =-u u u r,()1PB =-u u u r,()1,0,0BC =-u u u r设平面PAB 的法向量为(),,x y z =n ,则00AB PB ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u rn n,即x z ⎧-⎪-=因此可取=n .设平面PBC 的法向量为m ,则00PB BC ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u rm m ,可取(0,1,m =-. cos ,〈〉==m n 故二面角A PB C --的余弦值为.。

近三年高考全国卷理科立体几何真的题目

近三年高考全国卷理科立体几何真的题目

新课标卷近三年高考题1、(2016年全国I 高考)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面 ABEF 为正方形,AF =2FD ,90AFD ∠= ,且二面角D -AF -E 与二面角C -BE - F 都是60 .(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值. 【解析】 ⑴ ∵ABEF 为正方形 ∴AF EF ⊥∵90AFD ∠=︒ ∴AF DF ⊥∵=DF EF F ∴AF ⊥面EFDC AF ⊥面ABEF ∴平面ABEF ⊥平面EFDC⑵ 由⑴知60DFE CEF ∠=∠=︒ ∵AB EF ∥AB ⊄平面EFDC EF ⊂平面EFDC ∴AB ∥平面ABCD AB ⊂平面ABCD ∵面ABCD 面EFDC CD = ∴AB CD ∥,∴CD EF ∥∴四边形EFDC 为等腰梯形以E 为原点,如图建立坐标系,设FD a =()()000020E B a ,,,, ()3022022a C a A a a ⎛⎫⎪ ⎪⎝⎭,,,,()020EB a = ,,,3222a BC a a ⎛⎫=- ⎪ ⎪⎝⎭,,,()200AB a =- ,, 设面BEC 法向量为()m x y z =,,.0m EB m BC ⎧⋅=⎪⎨⋅=⎪⎩ ,即11112032022a y a x ay a z ⋅=⎧⎪⎨⋅-+⋅=⎪⎩ 111301x y z ===-,,()301m =- ,,设面ABC 法向量为()222n x y z =,,=00n BC n AB ⎧⋅⎪⎨⋅=⎪⎩.即22223202220a x ay az ax ⎧-+=⎪⎨⎪=⎩ 222034x y z ===,, ()034n =,,设二面角E BC A --的大小为θ.4219cos 1931316m n m nθ⋅-===-+⋅+⋅ ∴二面角E BC A --的余弦值为21919-2、(2016年全国II 高考)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到'D EF ∆位置,10OD '=.(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.【解析】⑴证明:∵54AE CF ==,∴AE CFAD CD=, ∴EF AC ∥.∵四边形ABCD 为菱形,∴AC BD ⊥, ∴EF BD ⊥,∴EF DH ⊥,∴EF D H '⊥. ∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =,∴1AEOH OD AO=⋅=,∴3DH D H '==, ∴222'OD OH D H '=+,∴'D H OH ⊥. 又∵OH EF H =I ,∴'D H ⊥面ABCD . ⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =uu u r ,,,()'133AD =-uuur ,,,()060AC =uuu r,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩ 得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r,,.同理可得面'AD C 的法向量()2301n =u u r,,,∴12129575cos 255210n n n n θ⋅+===⋅u r u u ru r u u r , ∴295sin 25θ=.3、(2016年全国III 高考)如图,四棱锥P ABC -中,PA ⊥地面ABCD ,AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN 平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.设),,(z y x n =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取)1,2,0(=n , 于是2558|||||||,cos |=⋅=><AN n AN n AN n .4、【2015高考新课标2,理19】如图,长方体1111ABCD A B C D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11C D 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)4515.【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角.DD 1C 1A 1 EFA BCB 1A 1AB 1BD 1DC 1CFE HGM【名师点睛】根据线面平行和面面平行的性质画平面α与长方体的面的交线;由交线的位置可确定公共点的位置,坐标法是求解空间角问题时常用的方法,但因其计算量大的特点很容易出错,故坐标系的选择是很重要的,便于用坐标表示相关点,先求出面α的法向量,利用sin cos ,n AF θ=<>求直线AF 与平面α所成角的正弦值.5、【2015高考新课标1,理18】如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值.【答案】(Ⅰ)见解析(Ⅱ)33又∵AE ⊥EC ,∴EG =3,EG ⊥AC , 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22可得EF =322, ∴222EG FG EF +=,∴EG ⊥FG , ∵AC ∩FG=G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC . ……6分(Ⅱ)如图,以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB为单位长度,建立空间直角坐标系G-xyz ,由(Ⅰ)可得A (0,-3,0),E (1,0,2),F (-1,0,22),C (0,3,0),∴AE =(1,3,2),CF =(-1,-3,22).…10分故3cos ,3||||AE CF AE CF AE CF ∙<>==-.所以直线AE 与CF 所成的角的余弦值为33. ……12分 【考点定位】空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力【名师点睛】对空间面面垂直问题的证明有两种思路,思路1:几何法,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;思路2:利用向量法,通过计算两个平面的法向量,证明其法向量垂直,从而证明面面垂直;对异面直线所成角问题,也有两种思路,思路1:几何法,步骤为一找二作三证四解,一找就是先在图形中找有没有异面直线所成角,若没有,则通常做平行线或中位线作出异面直线所成角,再证明该角是异面直线所成角,利用解三角形解出该角. 6、[2014·新课标全国卷Ⅱ] 如图1-3,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ; (2)设二面角D -AE -C 为60°,AP =1,AD =3,求三棱锥E -ACD 的体积.图1-3解:(1)证明:连接BD 交AC 于点O ,连接EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . 因为EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)因为P A ⊥平面ABCD ,ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB→,AD ,AP 的方向为x 轴、y 轴、z 轴的正方向,|AP →|为单位长,建立空间直角坐标系A -xyz ,则D ()0,3,0,E ⎝⎛⎭⎪⎫0,32,12,AE→=⎝ ⎛⎭⎪⎫0,32,12.设B (m ,0,0)(m >0),则C (m ,3,0),AC →=(m ,3,0).设n 1=(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧n 1·AC→=0,n 1·AE →=0,即⎩⎨⎧mx +3y =0,32y +12z =0,可取n 1=⎝ ⎛⎭⎪⎫3m ,-1,3.又n 2=(1,0,0)为平面DAE 的法向量,由题设易知|cos 〈n 1,n 2〉|=12,即33+4m 2=12,解得m =32. 因为E 为PD 的中点,所以三棱锥E -ACD 的高为12.三棱锥E -ACD 的体积V=13×12×3×32×12=38.7、[2014·新课标全国卷Ⅰ] 如图1-5,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .图1-5(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A -A 1B 1 ­C 1的余弦值.解:(1)证明:连接BC 1,交B 1C 于点O ,连接AO ,因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为B 1C 及BC 1的中点.又AB ⊥B 1C ,所以B 1C ⊥平面ABO .由于AO ⊂平面ABO ,故B 1C ⊥AO .又B 1O =CO ,故AC =AB 1.(2)因为AC ⊥AB 1,且O 为B 1C 的中点,所以AO =CO .又因为AB =BC ,所以△BOA ≌ △BOC .故OA ⊥OB ,从而OA ,OB ,OB 1两两垂直.以O 为坐标原点,OB 的方向为x 轴正方向,|OB |为单位长,建立如图所示的空间直角坐标系O ­ xyz .因为∠CBB 1=60°,所以△CBB 1为等边三角形,又AB =BC ,则A ⎝ ⎛⎭⎪⎫0,0,33,B (1,0,0),B 1⎝ ⎛⎭⎪⎫0,33,0,C ⎝ ⎛⎭⎪⎫0,-33,0.AB 1→=⎝ ⎛⎭⎪⎫0,33,-33, A 1B 1→=AB =⎝⎛⎭⎪⎫1,0,-33, B 1C →1=BC =⎝ ⎛⎭⎪⎫-1,-33,0. 设n =(x ,y ,z )是平面AA 1B 1的法向量,则⎩⎪⎨⎪⎧n ·AB 1=0,n ·A 1B 1→=0,即⎩⎪⎨⎪⎧33y -33z =0,x -33z =0.所以可取n =(1,3,3).设m 是平面A 1B 1C 1的法向量, 则⎩⎪⎨⎪⎧m ·A 1B 1→=0,m ·B 1C 1→=0,同理可取m =(1,-3,3). 则cos 〈n ,m 〉=n ·m |n ||m |=17.所以结合图形知二面角A -A 1B 1 ­ C 1的余弦值为17.。

全国各地市历年高考立体几何题汇编(含参考答案).docx

全国各地市历年高考立体几何题汇编(含参考答案).docx

全国各地市历年高考立体几何题汇编(含参考答案)(一)2018年高考立体几何题1.(北京理16)如图,在三棱柱ABC-me,中,CC~平面/此;D, E, F, G分别为必,AC,4G,B片的中点,AB=B(=yfs , A(=AA l=2.(I )求证:/以平面BEF-,(II )求二面角B-CAC、的余弦值;(III)证明:直线尸G与平面奶相交.2.(浙江-19)如图,已知多面体ABCAEG,AA, B、B,均垂直于平面,此;,"4,砂1,AB=B(=B Y B=2.(I )证明:刀3上平面(II)求直线WG与平面/蹈所成的角的正弦值.3.(课标III理T9)如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直, 肱是CQ上异于。

,。

的点.(1)证明:平面AMD1.平面BMC;(2)当三棱锥M -AB C体积最大时,求面MAB与面MCD所成二面角的正弦值.4.(课标II理-20)。

为AC的中如图,在三棱锥P-A8C 中,AB = BC = 2g, PA = PB = PC = AC = 4 ,(1)证明:POL平面ABC;(2)若点肱在棱BC上,且二面角为30。

,求PC与平面月皈所成角的正弦值.5.(课标I理-18)如图,四边形A3CZ)为正方形,分别为AD,B C的中点,以DF为折痕把△DPC折起, 使点C到达点F的位置,且PF LBF .(1)证明:平面PEF L平面ABFD;(2)求QP与平面A8FD所成角的正弦值.(二)2017年高考立体几何题1.(课标IIIS-19)如图,四面体,夙力中,△ABC是正三角形,△,⑦是直角三角形,/ABAZCBD, AB^BD.(1)证明:平面ACDL平面D(2)过的平面交彻于点&若平面北T把四面体⑦分成体积相等的两部分,求二面角D-AE-C的余弦值.2.(课标II理-19)如图,四棱锥巴ABCD中,侧面0〃为等边三角形且垂直于底面/次,AB = BC = -AD,ZBAD = ZABC = 90°, B是切的中 2点.(1)证明:直线CE〃平面0B;(2)点〃在棱PC上,且直线伽与底面/次所成角为45。

2007-2018全国卷高考真题——立体几何解答题(理科)解析

2007-2018全国卷高考真题——立体几何解答题(理科)解析

专题 立体几何 空间向量与立体几何答案部分1.(2018全国卷Ⅰ)【解析】(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF u u u r的方向为y 轴正方向,||BF uuu r 为单位长,建立如图所示的空间直角坐标系-H xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE又PF =1,EF =2,故PE ⊥PF .可得=PH ,32=EH . 则(0,0,0)H,P ,3(1,,0)2--D,3(1,2=u u u r DP , (0,0,)2HP =u u u r 为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则3sin ||4||||HP DP HP DP θ⋅===⋅u u u r u u u ru u u r u u u r .所以DP 与平面ABFD. 2.(2018全国卷Ⅱ)【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =连结OB.因为2AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==. 由222OP OB PB +=知PO OB ⊥.由⊥OP OB ,⊥OP AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB uu u r的方向为x 轴正方向,建立空间直角坐标系O xyz -.A由已知得(0,0,0)O ,(2,0,0)B ,(0,2,0)-A ,(0,2,0)C,(0,0,P ,=AP u u u r,取平面PAC 的法向量(2,0,0)OB =u u u r . 设(,2,0)(02)-<≤M a a a ,则(,4,0)AM a a =-u u u r.设平面PAM 的法向量为(,,)x y z =n .由0,0AP AM ⋅=⋅=uu u r uuu r n n得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB =uu u rn.由已知得|cos ,|OB =uu u r n .2.解得4a =-(舍去),43a =.所以4()3=-n.又(0,2,PC =-u u u r,所以cos ,PC =uu u r n . 所以PC 与平面PAM所成角的正弦值为4. 3.(2018全国卷Ⅲ)【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为»CD上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又BC I CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA u u u r的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz -.当三棱锥M ABC -体积最大时,M 为»CD的中点. 由题设得(0,0,0)D ,(2,0,0)A ,(2,2,0)B ,(0,2,0)C ,(0,1,1)M ,(2,1,1)AM =-u u u u r ,(0,2,0)AB =u u u r ,(2,0,0)DA =u u u r设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u ur n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA u u u r是平面MCD 的法向量,因此cos ,5||||DA DA DA ⋅==u u u ru u u r u u u r n n n ,sin ,5DA =u u u r n ,所以面MAB 与面MCD所成二面角的正弦值是5. 4.(2017新课标Ⅰ)【解析】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内做PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA u u u r的方向为x 轴正方向,||AB uuu r 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2A,(0,0,2P,,1,0)2B,(2C -.所以(,1,)22PC =--u u u r,CB =u u u r,)22PA =-u u u r , (0,1,0)AB =u u u r.设(,,)x y z =n 是平面PCB 的法向量,则00PC CB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u ur n n,即0220x y z ⎧-+-=⎪=,可取(0,1,=-n .设(,,)x y z =m 是平面PAB 的法向量,则00PA AB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m,即0220x z y -=⎪⎨⎪=⎩, 可取(1,0,1)=n .则cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为 5.(2017新课标Ⅱ)【解析】(1)取PA 的中点F ,连结EF ,BF .因为E 是PD 的中点,所以EF AD ∥,12EF AD =.由90BAD ABC ∠=∠=o 得BC AD ∥,又12BC AD =,所以EF BC ∥,四边形BCEF 是平行四边形,CE BF ∥,又BF ⊂平面PAB ,CE ⊄平面PAB ,故CE ∥平面PAB .(2)由已知得BA AD ⊥,以A 为坐标原点,AB u u u r的方向为x 轴正方向,||AB uuu r 为单位长,建立如图的空间直角坐标系A xyz -,则(0,0,0)A ,(1,0,0)B ,(1,1,0)C,P,(1,0,PC =u u u r ,(1,0,0)AB =u u u r.x设(,,)M x y z (01)x <<,则(1,,)BM x y z =-u u u u r,(,1,PM x y z =-u u u u r.因为BM 与底面ABCD 所成的角为45o,而(0,0,1)=n 是底面ABCD 的法向量,所以|cos ,|sin 45BM <>=ou u u u r n2=, 即222(1)0x y z -+-=. ①又M 在棱PC 上,设PM PC λ=u u u u r u u u r,则x λ=,1y =,z =. ②由①,②解得121x y z ⎧=+⎪⎪⎪=⎨⎪⎪=⎪⎩(舍去),121x y z ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩所以(12M -,从而(12AM =-u u u u r . 设000(,,)x y z =m 是平面ABM 的法向量,则0=0AM AB ⎧⋅=⎪⎨⋅⎪⎩u u u u ru u ur m m,即0000(2200x y x ⎧+=⎪⎨=⎪⎩,所以可取(0,2)=m,于是cos ,||||⋅<>==m n m n m n因此二面角M AB D --的余弦值为5. 6.(2017新课标Ⅲ)【解析】(1)由题设可得,ABD CBD ∆≅∆,从而AD DC =.又ACD ∆是直角三角形,所以0=90ACD ∠取AC 的中点O ,连接DO ,BO ,则DO AC ⊥,DO AO =. 又由于ABC ∆是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB ∆中,222BO AO AB +=.又AB BD =,所以222222BO DO BO AO AB BD +=+==,故90DOB ∠=o . 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA,OB,OD 两两垂直,以O 为坐标原点,OA u u u r的方向为x 轴正方向,OA u u u r为单位长,建立如图所示的空间直角坐标系O xyz -,则(1,0,0)A,B ,(1,0,0)C -,(0,0,1)D .由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB的中点,得1(0,)22E .故(1,0,1)AD =-u u u r ,(2,0,0)AC =-u u u r,1(1,)22AE =-u u u r设()=x,y,z n 是平面DAE 的法向量,则AD AE ⎧=⎪⎨=⎪⎩u u u r g u u u r g 0,0,n n即x z x y z -+=⎧⎪⎨-++=⎪⎩01022可取=n 设m 是平面AEC 的法向量,则0,0,AC AE ⎧=⎪⎨=⎪⎩u u u r g u u u rg m m同理可得(0,=-m则cos ,==g 7n m n m n m 所以二面角D AE C --的余弦值为77.(2016全国I )【解析】(Ⅰ)由已知可得AF DF ⊥,AF FE ⊥,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(Ⅱ)过D 作DG EF ⊥,垂足为G ,由(Ⅰ)知DG ⊥平面ABEF .以G 为坐标原点,GF u u u r 的方向为x 轴正方向,||GF uuu r为单位长度,建立如图所示的空间直角坐标系G xyz -.由(Ⅰ)知DFE ∠为二面角D AF E --的平面角,故60DFE ∠=o,则2DF =,DG =,可得(1,4,0)A ,(3,4,0)B -,(3,0,0)E -,D .由已知,AB EF ∥,所以AB ∥平面EFDC .又平面ABCD I 平面EFDC DC =,故AB CD ∥,CD EF ∥.由BE AF ∥,可得BE ⊥平面EFDC ,所以CEF ∠为二面角C BE F --的平面角,60CEF ∠=o.从而可得(C -.所以EC =u u u r ,(0,4,0)EB =u u u r,(3,AC =--u u u r ,(4,0,0)AB =-u u u r.设(),,n x y z =r是平面BCE 的法向量,则C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩u u u r r u u u r r,即040x y ⎧+=⎪⎨=⎪⎩,所以可取(3,0,n =r.设m r 是平面CD AB 的法向量,则C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩u u u r r u u u rr ,同理可取()4m =r.则cos ,19n m n m n m ⋅==-r r r r r r .故二面角C E-B -A的余弦值为19-.8.(2016全国II )【解析】(I )证明:∵54AE CF ==, ∴AE CFAD CD=,∴EF AC ∥. ∵四边形ABCD 为菱形, ∴AC BD ⊥,∴EF BD ⊥, ∴EF DH ⊥,∴EF D H '⊥. ∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =, ∴1AEOH OD AO=⋅=,∴3DH D H '==, ∴222'OD OH D H '=+,∴'D H OH ⊥. 又∵OH EF H =I ,∴'D H ⊥面ABCD .(Ⅱ)建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,, ()430AB =uu u r ,,,()'133AD =-uuur ,,,()060AC =uuu r,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩u u r u u u r u u r u u u u r得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r ,,. 同理可得面'AD C 的法向量()2301n =u u r,,, ∴12129575cos 5210n n n n θ⋅+==⋅u r u u ru r u u r ,∴295sin θ. 9.(2016全国III )【解析】(Ⅰ)由已知得232==AD AM , 取BP 的中点T ,连接TN AT ,. 由N 为PC 中点知BC TN //,221==BC TN . 又BC AD //,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .(Ⅱ)取BC 的中点E ,连结AE ,由AC AB =得BC AE ⊥,从而AD AE ⊥, 且5)2(2222=-=-=BC AB BE AB AE . 以A 为坐标原点,AE u u u r的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -,由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,25(N , (0,2,4)PM =-u u u u r ,)2,1,25(-=PN ,)2,1,25(=AN . 设(,,)x y z =r n 为平面PMN 的法向量,则00PM PN ⎧⋅=⎪⎨⋅=⎪⎩r u u u u r r u u u rn n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x , 可取(0,2,1)n =r,于是||85|cos ,|||||n AN n AN n AN ⋅<>==r u u u rr u u u r r u u u r .10.(2015新课标Ⅰ)【解析】(Ⅰ)连接BD ,设BD AC G =I ,连接,,EG FG EF .在菱形ABCD 中,不妨设1GB =,由120∠=oABC ,可得3AG GC =由⊥BE 平面ABCD ,AB BC =可知,AE EC =, 又∵⊥AE EC ,∴3EG =,⊥EG AC ,在Rt EBG ∆中,可得2BE 22DF =.在Rt FDG ∆中,可得62FG =.在直角梯形BDFE 中,由2BD =,BE =2DF =,可得2EF =, ∴222EG FG EF +=,∴EG ⊥FG , ∵AC ∩FG =G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC .(Ⅱ)如图,以G 为坐标原点,分别以,GB GC u u u r u u u r 的方向为x 轴,y 轴正方向,||GB u u u r为单位长度,建立空间直角坐标系G-xyz ,由(Ⅰ)可得A (0,0),E(1,0,),F (-1,0,C (00), ∴AE u u u r =(1),CF uuu r =(-12).故cos ,3||||<>==-u u u r u u u ru u u r u u u r g u u u r u u u r AE CF AE CF AE CF .所以直线AE 与CF所成的角的余弦值为3. 11.(2015新课标II )【答案】(Ⅰ)详见解析;. 【解析】(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM AB ⊥,垂足为M ,则14AM A E ==,18EM AA ==,因为EHGF 为正方形,所以10EH EF BC ===.于是6MH ==,所以10AH =.以D为坐标原点,DA u u u r的方向为x 轴的正方向,建立如图所示的空间直角坐标系D xyz -,则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F ,(10,0,0)FE =u u u r ,(0,6,8)HE =-u u u r.设(,,)n x y z =r 是平面EHGF 的法向量,则0,0,n FE n HE ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r即100,680,x y z =⎧⎨-+=⎩所以可取(0,4,3)n =r .又(10,4,8)AF =-u u u r,故cos ,n AF n AF n AF⋅<>==⋅r u u u r r u u u r r u u u r .所以直线AF 与平面α所成角的正弦值为4515. 【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角.A 1AB 1BD 1DC 1CF E H GM12.(2014新课标1)【解析】(Ⅰ)连接1BC ,交1B C O 于点,连接AO ,因为侧面11BB C C 为菱形,所以1111,B C BC O B C BC ⊥且为及的中点. 又11,.AB B C B C ABO ⊥⊥所以平面1AO ABO B C AO ⊂⊥由于平面,故又11,=.B O CO AC AB =故(Ⅱ)因为11,.AC AB O B C AO CO ⊥=且为的中点,所以 又因为,AB BC BOA BOC =∆≅∆所以,1,,,OA OB OA OB OB ⊥故从而两两相互垂直,以O OB x OB 为坐标原点,的方向为轴正方向,为单位长, O xyz =建立如图所示的空间直角坐标系.zyO因为1160,.CBB CBB AB BC∠=︒∆=所以为等边三角形又,则111111(00(100),(0,(0,,(1,0,(1,,0),3333A B B CAB A B AB B C BC=-==-==--u u u r u u u u r u u u r u u u u r u u u r,,11111(,,)=00,330,0.x y z AA By zABA Bx z=-⎧⋅=⎪⎪⎨⎨⋅=⎪⎪⎩=⎪⎩=u u u ru u u u r设是平面的法向量,则,即所以可取nnnn11111110,0,(1,A BA B CB Cm⎧⋅=⎪⎨⋅=⎪⎩=u u u u ru u u u r设是平面的法向量,则同理可取mmm则1cos,.7⋅==n mn mn m1111.7A AB C--所以二面角的余弦值为13.(2014新课标2)【解析】(Ⅰ)连接BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(Ⅱ)因为PA⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,ABu u u r的方向为x轴的正方向,APu u u r为单位长,建立空间直角坐标系A xyz-,则D1(0,),22E1(0,)22AE=u u u r.设(,0,0)(0)Bm m>,则(C m(AC m=u u u r.设1(,,)x y z=n为平面AEC的法向量,则110,0,ACAE⎧⋅=⎪⎨⋅=⎪⎩uu u ru u u rnn即0,10,22mxy z⎧+=+=⎪⎩,可取1=-n.又2(1,0,0)=n为平面DAE的法向量,由题设121cos,2=n n12=,解得32m=.因为E为PD的中点,所以三棱锥EACD-的高为12.三棱锥E ACD-的体积11313222V=⨯⨯=.14.(2013新课标Ⅰ)【解析】(Ⅰ)取AB中点E,连结CE,1A B,1A E,∵AB=1AA,1BAA∠=060,∴1BAA∆是正三角形,∴1A E⊥AB,∵CA=CB,∴CE⊥AB,∵1CE A E⋂=E,∴AB⊥面1CEA,∴AB⊥1A C;(Ⅱ)由(Ⅰ)知EC ⊥AB ,1EA ⊥AB ,又∵面ABC ⊥面11ABB A ,面ABC ∩面11ABB A =AB ,∴EC ⊥面11ABB A ,∴EC ⊥1EA ,∴EA ,EC ,1EA 两两相互垂直,以E 为坐标原点,EA u u u r 的方向为x 轴正方向,|EA u u u r|为单位长度,建立如图所示空间直角坐标系O xyz -,有题设知A (1,0,0),1A 3,0),C 3B (-1,0,0),则BC uuu r=(1,03,1BB u u u r =1AA u u u r =(-31AC u u u r=(0,33), 设n =(,,)x y z 是平面11CBB C 的法向量,则100BC BB ⎧•=⎪⎨•=⎪⎩u u u ru u u r n n ,即3030x z x ⎧=⎪⎨=⎪⎩,可取n =3,1,-1), ∴1cos ,AC u u u r n =11|AC AC •u u u ru u u r n |n ||105, ∴直线A 1C 与平面BB 1C 1C 所成角的正弦值为105. 15.(2013新课标Ⅱ)【解析】(Ⅰ)连结1AC ,交1A C 于点O ,连结DO ,则O 为1AC 的中点,因为D 为AB 的中点,所以OD ∥1BC ,又因为OD ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1BC //平面1A CD ;(Ⅱ)由1AA =AC=CB=22AB 可设:AB=2a ,则1AA 2a ,所以AC⊥BC,又因为直棱柱,所以以点C为坐标原点,分别以直线CA、CB、1CC为x轴、y轴、z轴,建立空间直角坐标系如图,1则(0,0,0)C、1)A、D、E,1)CA=u u u r,,,0)22CD=u u u r,,)2CE=u u u r,1(,)2A E=-u u u r,设平面1A CD的法向量为(,,)n x y z=r,则0n CD⋅=r u u u r且1n CA⋅=r u u u r,可解得y x z=-=,令1x=,得平面1A CD的一个法向量为(1,1,1)n=--r,同理可得平面1A CE的一个法向量为(2,1,2)m=-ur,则cos,n m<>=r u r3,所以sin,3n m<>=r u r,所以二面角D-1A C-E的正弦值为316.(2012新课标)【解析】(Ⅰ)在Rt DAC∆中,AD AC=,得:45ADC︒∠=同理:1114590A DC CDC︒︒∠=⇒∠=得:111,DC DC DC BD DC⊥⊥⇒⊥面1BCD DC BC⇒⊥(Ⅱ)11,DC BC CC BC BC⊥⊥⇒⊥面11ACC A BC AC⇒⊥取11A B的中点O,过点O作OH BD⊥于点H,连接11,C O C H1111111AC B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合且1C DO ∠是二面角11C BD A --的平面角 设AC a =,则122aC O =,1112230C D a C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒17.(2011新课标)【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD . 故 P A ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则()1,0,0A ,()03,0B ,,()3,0C -,()0,0,1P .(3,0),3,1),(1,0,0)AB PB BC =-=-=-uu u v uu v uu u v设平面PAB 的法向量为(,,)x y z =n ,则0AB PB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uu r n n ,即 3030x z ⎧-+=⎪⎨-=⎪⎩因此可取n =3,1,3)设平面PBC的法向量为m,则PBBC⎧⋅=⎪⎨⋅=⎪⎩uu ruu u rmm可取m=(0,-1,3-)27cos,27==-m n故二面角A-PB-C的余弦值为277-.18.(2010新课标)【解析】:以H为原点,,,HA HB HP分别为,,x y z轴,线段HA的长为单位长,建立空间直角坐标系如图,则(1,0,0),(0,1,0)A B(Ⅰ)设(,0,0),(0,0,)(0,0)C m P n m n<>,则1(0,,0),(,,0).22mD m E可得1(,,),(,1,0).22mPE n BC m=-=-因为0022m mPE BC⋅=-+=,所以PE BC⊥(Ⅱ)由已知条件可得331,33m n C=-=-故(313(0,(,(0,0,1)326D E P--设(,,)n x y x=为平面PEH的法向量则0,0,HEHP⎧⋅=⎪⎨⋅=⎪⎩nn即132x yz⎧-=⎪⎨⎪=⎩因此可以取3,0)=n,由(1,0,1)PA=-u u u r,可得2cos,4PA=u u u rn,.所以直线PA与平面PEH所成角的正弦值为4。

高考立体几何大题及答案(理)

高考立体几何大题及答案(理)

1.(2009全国卷Ⅰ)如图,四棱锥中,底面为矩形,底面,,,点在侧棱上,。

(I )证明:M 是侧棱SC 的中点;()II 求二面角S AM B --的大小。

2.(2009全国卷Ⅱ)如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB =AC (Ⅱ)设二面角A -BD -C 为60°,求B 1C 及平面BCD 所成的角的大小3.(2009浙江卷)如图,DC⊥平面ABC ,//EB DC ,22ACBC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ;(II )求AD 及平面ABE 所成角的正弦值. 4.(2009北京卷)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中点时,求AE 及平面PDB 所成的角的大小.5.(2009江西卷)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . (1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 及平面ABM 所成的角; (3)求点O 到平面ABM 的距离.6.(2009四川卷)如图,正方形ABCD 所在平面及平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ︒==∠=(I )求证:EF BCE ⊥平面;(II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。

7.(2009湖北卷文)如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1),都有AC ⊥BE :(Ⅱ)若二面角C -AE -D 的大小为600C ,求λ的值。

近三年高考全卷理科立体几何真题

近三年高考全卷理科立体几何真题

设面BEC 法向量为m x , y , z .IT uur2am EB 0 即IT uura3m BC 0X 2ay i■—a z 022X i3, y 0, z1新课标卷近三年高考题1、(2016年全国I 高考)如图,在以A , B , C, D , E, F 为顶点的五面体中,面 ABEF 为正方形,AF=2FD, AFD 90°,且二面角 D - AF - E 与二面角 C - BE- F都是60° . (I) 证明:平面 ABEF 平面EFDC (II) 求二面角E - BG A 的余弦值. 【解析】 ⑴ •/ ABEF 为正方形 ••• AF EF •/ AFD 90 • AF DF •/ DF I EF=F• AF 面 EFDC•平面 ABEF 平面 EFDC⑵由⑴知 DFECEF 60•/ AB II EFAF 面 ABEFAB 平面EFDC EF 平面EFDC• AB II 平面 ABCDAB 平面ABCD•/面 ABCD I 面 EFDC CD•- AB II CD •- CD II EFJ•四边形EFDC 为等腰梯形以E 为原点,如图建立坐标系,设FD aB 0 , 2a , 0A 2a , 2a , 0uur muiEB 0, 2a , 0 , BC2a,子uu u AB2a , 0 , 0m 3, o, i设面ABC法向量为n x2, y2, z2面角E BC A的余弦值为2空192、(2016年全国II高考)如图,菱形ABCD的对角线AC与BD交于点O ,5AB 5, AC 6,点E,F 分别在AD,CD 上, AE CF ,EF 交BD 于点H .将4 DEF 沿EF 折到D'EF 位置,OD .10 .(I)证明:D H 平面ABCD ;(U)求二面角B D A C的正弦值.• •• EF II AC .• EF BD,• EF DH ,• EF D H .•/ AC 6,• AO 3;又AB 5,AO OB,• OB 4,uuu —X22ax22ay2-2az22 X2 0, y2 3, Z2 4BC A的大小为4.厂.3 162.1919【解析】⑴证明:••• AE CFAE CF ADCD,•••四边形ABCD为菱形, • AC BD,nrnBC=°即AB 0设二面角Ecosur rm n54AE二OH OD 1 ,••• DH D H 3 ,AO2 2 2• |OD 2 |OH| |D'H| , • D'H OH .又T OH I EF H , • D'H 面ABCD .⑵建立如图坐标系H xyz .B 5 , 0 , 0 ,C 1 , 3 , 0 , D' 0 ,uuu uuurAB 4 , 3, 0 , AD'uuu,AC 设面ABD'法向量niu舟n1由iuuuiABUUUTAD0得4X0 x3y3y3zir同理可得面AD'C的法向量uun0, 1 …cosir inni n2up2届--sin -------------257 525 ,TX# BC f TN^\B C = 1.又TD .•眈,故平行且等于川Mj 四边形AS/XT 为平行四边形,于罡胚V 口「 因为AT^L 平面PAB f XfN x 平面PAB f 所以A&M 平面Mg.(ID 取的中点 E, ^AE ?由 AB = AC^AE-^C ?从 ^AE-AD, & AE 二上曲 _ BE ; = J AS :-(~y =庚.以川为坐标原点,川应的方向为x 轴正万冋,建立如團所示的空间直角坐标系A-xyz }由题知;2x 4z 0,即-5 ,可取 x y 2z 02n (0,2,1),| n AN |8、、5 于是 | cos n, AN ||n || AN |25尸(024〕「C 辰皿》(芈丄2),PW 三(027儿毂三*T ,益■(芈4■ 丄刁. (x, y, z )为平面PMN 的法向量,则n PMn PN3、(2016年全国III 高考)如图,四棱锥P ABC 中,PA 地面ABCD , AD P BC , ABAM试题解析;(I 〉由已知得型厶斗Q 二」収恥的中点匚连接川仁由“为巩?中点知4、【2015高考新课标2,理19】如图,长方体 ABCD AB I GU 中,AB=16, BC=10, AA , 8,点 E , F 分别在AB , C ,D , 上, A ,E D ,F 4 •过点E , F 的平面 与此长方体的面相交,交 线围成一个正方形.(I)在图中画出这个正方形(不必说出画法和理由); (U)求直线AF 与平面 所成角的正弦值.【答案】(I)详见解析;(U) 4 5 .15【解析】(I )宏线围成的正方彪EZTGF 如圈*(II)作垂足冷 4 则= 因为EZTGF 丸正方形】所以EH=EF = BC = 10・于是曲= =6,所乩也=10・以D 为坐标原鼠丙的方向沖工轴的正方向,建立如图所示的空间直角坐标系D —2 则皿阿 H(1CUO” EQCU 罔,— _ _ G 一盘=QF(0.4.£), F£ = (10.0.0),肛= (0—6一股.设是平面的法向矍,则二— 刀 I 小【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角.座.所以直5平航所唤正弦值为爭【名师点睛】根据线面平行和面面平行的性质画平面与长方体的面的交线;由交线的位置可确定公共点的位置,坐标法是求解空间角问题时常用的方法,但因其计算量大的特点很容易出错,故坐标系的选择是很重要的,便于用坐标表示相r uuu关点,先求出面的法向量,利用sin cos n,AF 求直线AF与平面所成角的正弦值.5、【2015高考新课标1,理18】如图,四边形ABCD为菱形,/ ABC=120°, E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF 丄平面ABCD,BE=2DF,AE丄EC.(I)证明:平面AEC丄平面AFC;【答案】(I)见解析⑴33【解析】试題分析I( I [连接03设珀二06连接EG FG詁在菱形中,不妨设匚41易证EG丄通过计胃可证亘G丄芒,申瞬线面垂直判定定理可知前丄平面丄y 由而面垂宜判宦定理知平而仝c丄平面2_^C ; (ID 取G 为坐标原虽,分别\iXGB.GC 的方向为工轴'「轴正方向,至 为单位民既 崔立空阊直角坐标系 g,利用向重法可求出异面直线总与 疔所成角的余弦值试題解析匚(I 〉连援设站IOG,连接三G, 56, 口 在觌萌中,不蛎设C-S=l,由厶L *O 匕冃 可得上G*=GC= .由呢丄平面尙0 .i3=3C 可知,出又••• AE 丄 EC ,: EG= 3 , EG 丄 AC ,厉在 Rt A EBG 中,可得 BE= 2,故 DF= .2在Rt A FDG 中,可得FG= 6 .2J 2o /2 在直角梯形BDFE 中,由BD=2, BE= 2 , DF= 可得EF= 3,22•'• EG 2 FG 2 EF 2,二 EG 丄 FG ,••• ACAFG=G , • EG 丄平面 AFC , ••• EG 面AEC ,:平面 AFC 丄平面AEC.……6分F(n)如图,以G 为坐标原点,分别以GB,GC 的方向为x 轴,y 轴正方向,|GB| 为单位长度,建立空间直角坐标系G-xyz ,由(I)可得A (0,—崩,0), E(1,0,J 2), F (— 1,0, 22 ), C (0, +3 , 0) , • AE = (1, P 3,、: 2 ) , CF = (-1 ,2-■73, —2) (10)分【考点定位】空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力【名师点睛】对空间面面垂直问题的证明有两种思路,思路1:几何法,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;思路2:利用向量法,通过计算两个平面的法向量,证明其法向量垂直,从而证明面面垂直;对异面直线所成角问题,也有两种思路,思路1:几何法,步骤为一找二作三证四解,一找就是先在图形中找有没有异面直线所成角,若没有,则通常做平行线或中位线作出异面直线所成角,再证明该角是异面直线所成角,利用解三角形解出该角6 [2014新课标全国卷U ]如图1-3,四棱锥P-ABCD中,底面ABCD为矩形,FA丄平面ABCD,E为PD的中点.(1) 证明:PB//平面AEC;(2) 设二面角D-AE-C为60°,AP= 1, AD = 3,求三棱锥E-ACD的体积.解:(1)证明:连接BD交AC于点0,连接EO.因为ABCD为矩形,所以O为BD的中点. 又E为PD的中点,所以EO / PB.因为EO?平面AEC,PB?平面AEC,所以PB//平面AEC.(2)因为PA丄平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,AB,AD,AP的方向为x轴、y轴、z轴的正方向,|AP|为单位长,建立空间直角坐标系A-xyz,则D(0,3, 0),E 0, 土,琏uuur uuuuu uuu AE?CF故cos AE,CF uuur ' uuu|AE||CF| 3所以直线AE与CF所成的角的余弦值为3 .12分设 B(m , 0, 0)(m>0),则 C(m , 3, 0), AC= (m , 3, 0).设n i = (x ,y,z)为平面ACE 的法向量,可取 ni = m ,— 1,.3.又n 2= (1, 0, 0)为平面DAE 的法向量,1由题设易知|cos 〈n i , n 2〉| = 2, 即卩1因为E 为PD 的中点,所以三棱锥E-ACD 的高为㊁•三棱锥E-ACD 的体积V7、[2014新课标全国卷I ]如图1-5,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB 丄B 1C.(1) 证明:AC = AB 1;(2) 若 AC 丄 AB 1, / CBB 1 = 60°, AB = BC ,求二面角 A -A 1B 1 -C 1 的余弦值. 解:(1)证明:连接BC 1,交B 1C 于点O ,连接AO ,因为侧面BB 1C 1C 为菱 形,所以B 1C 丄BC 1,且O 为B 1C 及BC 1的中点.又AB 丄B 1C ,所以BQ 丄平面ABO.由于AO?平面ABO , 故 B 1C 丄AO.又 B 1O = CO , 故 AC = AB 1.(2)因为AC 丄AB 1,且O 为B 1C 的中点,所以 AO = CO.又因为 AB = BC ,所以△ BOA 也 △ BOC.故 OA 丄OB ,从而 OA , OB , OB 1两两垂直.以O 为坐标原点,OB 的方向为x 轴正方向,|OB|为单位长,建立如图所示mx + 3y = 0, •心 0, mx + ,3y = 0,n i • AC = 0,n i • AE = 0,,图1-5的空间直角坐标系0- xyz.因为/ CBB iA 0, 0, f ,0), B i 0, f, 0 , Co ,BC ,则又AB i 3,0.B(1,3, 0,—3 ,J3A iB i = AB = 1, 0,—-3 ,BC i = BC = — 1,-f, 0 -z)是平面AA i B i 的法向量,则多-詐0, 即 X -亍=0-AB i = 0,设 n = (x , y ,n AB i = 0, n A ?B i = 0,所以可取 n = (1,〔3, •. 3).设m 是平面A i B i C i 的法向量, m A i B i = 0, 则 一m B I CI ^ 0,同理可取m = (1,— 3,3).m >所以结合图形知二面角A -A i B i1C i 的余弦值为7-。

历年全国理科数学高考试题立体几何部分精选(含答案)

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23==,则棱锥AB BC-的体积为。

O ABCD3.如图,四棱锥P—ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

1.D2.833. 解:(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P 。

(1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ⋅=⋅=即 3030x y y z -+=-=因此可取n=(3,1,3)设平面PBC 的法向量为m ,则m 0,m 0,{PB BC ⋅=⋅=可取m=(0,-1,3-) 27cos ,727m n ==- 故二面角A-PB-C 的余弦值为 27-1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为A23 B 33 C 23D 632. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB •的最小值为(A) 42-+ (B)32-+ (C) 422-+ (D)322-+3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A)23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .1. D2. D3. B4. 解法一:(Ⅰ)连接BD,取DC 的中点G ,连接BG,由此知 1,DG GC BG ===即ABC ∆为直角三角形,故BC BD ⊥. 又ABCD,BC SD SD ⊥⊥平面故,所以,BC ⊥⊥平面BDS,BC DE .作BK ⊥EC,EDC SBC K ⊥为垂足,因平面平面,故,BK EDC BK DE DE ⊥⊥平面,与平面SBC 内的两条相交直线BK 、BC 都垂直 DE ⊥平面SBC ,DE ⊥EC,DE ⊥SB226SB SD DB =+=3SD DB DE SB == 22626-,-EB DB DE SE SB EB ==== 所以,SE=2EB (Ⅱ) 由225,1,2,,SA SD AD AB SE EB AB SA =+===⊥知22121,AD=133AE SA AB ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又.故ADE ∆为等腰三角形.取ED 中点F,连接AF ,则226,AF DE AF AD DF ⊥=-=. 连接FG ,则//,FG EC FG DE ⊥.所以,AFG ∠是二面角A DE C --的平面角. 连接AG,A G=2,2263FG DG DF =-=, 2221cos 22AF FG AG AFG AF FG +-∠==-,所以,二面角A DE C --的大小为120°. 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示的直角坐标系D xyz -, 设A(1,0,0),则B(1,1,0),C(0,2,0),S(0,0,2) (Ⅰ)(0,2,-2),(-1,1,0)SC BC ==设平面SBC 的法向量为n=(a, b, c) 由,n SC n BC ⊥⊥,得0,0n SC n BC == 故2b-2c=0,-a+b=0令a=1,则b=c,c=1,n=(1,1,1) 又设SE EB λ= (0)λ>,则2(,,)111E λλλλλ+++ 2(,,),(0,2,0)111DE DC λλλλλ==+++设平面CDE 的法向量m=(x,y,z) 由,m DE m DC ⊥⊥,得0m DE ⊥=,0m DC ⊥= 故20,20111x y zy λλλλλ++==+++. 令2x =,则(2,0,)m λ=-.由平面DEC ⊥平面SBC 得m ⊥n,0,20,2m n λλ=-== 故SE=2EB(Ⅱ)由(Ⅰ)知222(,,)333E ,取DE 的中点F ,则111211(,,),(,,)333333F FA =--,故0FA DE =,由此得FA DE ⊥又242(,,)333EC =--,故0EC DE =,由此得EC DE ⊥, 向量FA 与EC 的夹角等于二面角A DE C --的平面角 于是 1cos(,)2||||FA EC FA EC FA EC ==-所以,二面角A DE C --的大小为120(三)1. 已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A 3(B 5(C 7 (D) 342. 已知二面角l αβ--为60,动点P 、Q 分别在面α、β内,P 3,Q 到α的距离为3则P 、Q 两点之间距离的最小值为( ) (A) (B)2 (C) 33. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===, 120BAC ∠=︒,则此球的表面积等于 。

高中数学全国ⅠⅡⅢ北京天津卷文科理科立体几何近三年高考题及总结

高中数学全国ⅠⅡⅢ北京天津卷文科理科立体几何近三年高考题及总结

2017~2019全国Ⅰ、Ⅱ、Ⅲ卷、北京卷、天津卷文科立体几何高考题1.2017天津文如图,在四棱锥中,平面,,,,,,.(1)求异面直线与所成角的余弦值;(2)求证:平面;(3)求直线与平面所成角的正弦值.解析(1)如图,由已知,故或其补角即为异面直线与所成的角.因为平面,所以.在中,由已知,得,故.所以,异面直线与所成角的余弦值为.(2)证明:因为平面,直线平面,所以.又因为,所以,又,所以平面.(3)过点作的平行线交于点,连结,则与平面所成的角等于与平面所成的角.因为平面,故为在平面上的射影,所以为直线和平面所成的角.由于,故,由已知,得.又,故,在中,可得.所以,直线与平面所成角的正弦值为.2.2017全国Ⅱ文如图,四棱锥中,侧面为等边三角形且垂直于底面,,.(1)证明:直线平面;(2)若面积为,求四棱锥的体积.解析(1)在平面内,因为,所以,又平面,故平面;(2)取的中点,连接,由及,得四边形为正方形,则,因为侧面为等边直角三角形且垂直于底面,平面平面,所以,底面,因为底面,所以.设,则,,,,取的中点,连接,则,所以,因为的面积为,所以,解得(舍去),,于是,,,所以四棱锥的体积.3.2017全国Ⅰ文如图,在四棱锥中,,且(1)证明:平面PAB⊥平面PAD;(2)若,,且四棱锥的体积为,求该四棱锥的侧面积.解析(1)∵,.∵,∴平面.∵平面,∴平面平面.(2)由(1)知,平面,∵,.取中点,所以底面..∴,∴.∴.∴.(为该四棱锥的侧面积)4.2017全国Ⅲ文如图,四面体中,是正三角形,.(1)证明:;(2)已知是直角三角形,.若为棱上与不重合的点,且,求四面体与四面体的体积比解析(1)证明:取中点,连,∵,为中点,∴,又∵是等边三角形,∴,又∵,∴平面,平面,∴.(2)设,∴,又∵,∴,∴,∴,又∵,,∴,,,,∴点是的中点,则,∴.5.2017北京文如图,在三棱锥中,,为线段的中点,为线段上一点.(Ⅰ)求证:;(Ⅱ)求证:平面平面;(Ⅲ)当平面时,求三棱锥的体积.解析(Ⅰ)∵,平面,平面∴平面,又平面,∴(Ⅱ)∵,为中点,∴,又由(Ⅰ)知∴平面,∵平面,∴平面平面,(Ⅲ)∵平面,又平面平面,∵平面,∴,平面∵是中点,∴为的中点,∴∵是的中点,∴,6.2018天津文如图,在四面体中,是等边三角形,平面平面,点为棱的中点,,,.(Ⅰ)求证:;(Ⅱ)求异面直线与所成角的余弦值;(Ⅲ)求直线与平面所成角的正弦值.解析(Ⅰ)由平面平面,平面平面,,可得平面,故.(Ⅱ)取棱的中点,连接,.又因为为棱的中点,故.所以(或其补角)为异面直线与所成的角.在中,,故.因为平面,故.在中,,故.在等腰三角形中,,可得.所以,异面直线与所成角的余弦值为.(Ⅲ)连接.因为为等边三角形,为边的中点,故,.又因为平面平面,而平面,故平面.所以,为直线与平面所成的角.在中,.在中,.所以,直线与平面所成角的正弦值为.7.2018北京文如图,在四棱锥中,底面为矩形,平面平面,,,,分别为,的中点.(1)求证:;(2)求证:平面平面;(3)求证:平面.解析(1)∵,且为的中点,∴.∵底面为矩形,∴, ∴.(2)∵底面为矩形,∴.∵平面平面,∴平面. ∴.又,∵平面,∴平面平面.(3)如图,取中点,连接,.∵,分别为和的中点,∴,且.∵四边形为矩形,且为的中点,∴,,∴,且,∴四边形为平行四边形, ∴.又平面,平面,∴平面.8.2018全国Ⅱ文如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.解析(1)因为,为的中点,所以,且.连接,因为,所以为等腰直角三角形,且,.由知,.由,知平面.(2)作,垂足为.又由(1)可得,所以平面.故的长为点到平面的距离.由题设可知,,.所以,.所以点到平面的距离为.9.2018全国Ⅰ文如图,在平行四边形中,,,以为折痕将折起,使点到达点的位置,且.(1)证明:平面平面;(2)为线段上一点,为线段上一点,且,求三棱锥的体积.(1)证明:∵为平行四边形且,∴,又∵,∴平面,∵平面,∴平面平面.(2)过点作,交于点,∵平面,∴,又∵,∴平面,∴,∴,∵,∴,又∵为等腰直角三角形,∴,∴.10.2018全国Ⅲ文如图,矩形所在平面与半圆弧所在平面垂直,是弧上异于,的点.(1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由.解析(1)∵正方形半圆面,∴半圆面,∴平面.∵在平面内,∴,又∵是半圆弧上异于的点,∴.又∵,∴平面,∵在平面内,∴平面平面. (2)线段上存在点且为中点,证明如下:连接交于点,连接;在矩形中,是中点,是的中点;∴,∵在平面内,不在平面内,∴平面.11.2019北京文如图,在四棱锥中,平面,底面为菱形,为的中点.(Ⅰ)求证:平面;(Ⅱ)若,求证:平面平面;(Ⅲ)棱上是否存在点,使得平面?说明理由.解析(I)平面且平面,∴,在菱形中,,平面,平面,,∴平面.(II)平面且平面,∴,在菱形中,,即,∴为等边三角形,且为中点,∴,又,,平面,平面,,∴平面,且平面,∴平面平面.(III)棱上存在点,且为中点,取中点为,连接,,,∵分别,中点,∴,,∵底面为菱形,∴,,∴且,∴四边形为平行四边形,∴,∵平面,平面,∴平面.即棱上存在一点,且为中点,使得平面.12.2019天津文如图,在四棱锥中底面为平行四边形,为等边三角形,平面平面,,,.(1)设,分别为,的中点,求证:平面;(2)求证:平面;(3)求直线与平面所成角的正弦值.(1)证明:连接,易知,.又由,故,又因为平面,平面,所以平面.(2)证明:取棱的中点,连接.依题意,得,又因为平面平面,平面平面,所以平面,又平面,故,又已知,,所以平面.(3)解:连接,由(2)中平面,可知为直线与平面所成的角.因为是等边三角形,且为的中点,所以,又,在中,.所以,直线与平面所成角的正弦值为.13.2019全国Ⅰ文如图直四棱柱的底面是菱形,,,分别是的中点.(1)证明:平面(2)求点到平面的距离.解析(1)连结相交于点,再过点作交于点,再连结,.分别是的中点.于是可得到,, 于是得到平面平面,由平面,于是得到平面(2)为中点,为菱形且,又为直四棱柱,,又,,设点到平面的距离为,得解得所以点到平面的距离为14.2019全国Ⅲ文图1是由矩形,和菱形组成的一个平面图形,其中,.将其沿,折起使得与重合,连结,如图2.(1)证明:图2中的四点共面,且平面平面;(2)求图2中的四边形的面积.证明:(1)四边形为矩形,又四边形为菱形与重合即图2中的四点共面由题意知,,,又,平面,又平面,平面平面.(2)如图,分别过点作的平行线相较于点,取的中点为,再过点作垂直于交于点,连结.,且四边形为菱形平面即又,平面,即有,可得,,由勾股定理可得.15.2019全国Ⅱ文如图,长方体的底面是正方形,点E在棱上,.(1)证明:平面(2)若,,求四棱锥的体积.(1)证明: 因为面,面∴又,∴平面;(2)设则,,因为∴,∴文科立体几何总结:1.五套试卷:2017~2019命题背景都发生了变化(1)翻折问题;(2)长方体;(3)直四棱柱;(4)组合;(5)四棱锥(不规则的二面角)2.问题设置:(1)位置关系的证明:平行:线面(未考面面)垂直:线线(线线成角)、线面、面面(2)计算:体积、点面距离、体积比(问题方式的变化)、侧面积、线面角(未考面面距离、面面夹角、二面角)3.联系:2017年Ⅰ与Ⅱ问题互逆(S-->V);2018年Ⅰ考查了V <--2017年北京卷、Ⅰ与Ⅱ都考了V;2019年Ⅰ考查了点面距离<--2018年Ⅱ考了点面距离;2019年北京卷考查了是否存在…使得线面平行<--2018年Ⅱ考了同样问题;4.新的问题:2019年Ⅲ出现了四点共面问题的证明(演绎推理的考查);2018年Ⅲ组合图形的出现(长方形与半圆)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标卷高考真题1、(2016年全国I 高考)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面 ABEF 为正方形,AF =2FD ,90AFD ∠=o,且二面角D -AF -E 与二面角C -BE -F 都是60o.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.2、(2016年全国II 高考)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到'D EF ∆位置,10OD '=.(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值. 3【2015高考新课标1,理18】如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值.4、[2014·新课标全国卷Ⅱ] 如图1-3,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D -AE -C 为60°,AP =1,AD =3,求三棱锥E -ACD 的体积.图1-35、[2014·新课标全国卷Ⅰ] 如图1-5,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .图1-5(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A -A 1B 1 -C 1的余弦值.6、(2017?新课标Ⅱ)如图,四棱锥P ﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC= AD ,∠BAD=∠ABC=90°,E 是PD 的中点. (Ⅰ)证明:直线CE ∥平面PAB ;(Ⅱ)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M ﹣AB ﹣D 的余弦值.7、(2017?新课标Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD=∠CBD ,AB=BD . (Ⅰ)证明:平面ACD ⊥平面ABC ;(Ⅱ)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D ﹣AE ﹣C 的余弦值.8、(2017?新课标Ⅰ卷)如图,在四棱锥P ﹣ABCD 中,AB ∥CD ,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB ⊥平面PAD ;(2)若PA=PD=AB=DC ,∠APD=90°,求二面角A ﹣PB ﹣C 的余弦值.1【解析】 ⑴∵ABEF 为正方形 ∴AF EF ⊥∵90AFD ∠=︒ ∴AF DF ⊥∵=DF EF F I ∴AF ⊥面EFDC AF ⊥面ABEF ∴平面ABEF ⊥平面EFDC ⑵ 由⑴知60DFE CEF ∠=∠=︒ ∵AB EF ∥ AB ⊄平面EFDCEF ⊂平面EFDC ∴AB ∥平面ABCD AB ⊂平面ABCD∵面ABCD I 面EFDC CD = ∴AB CD ∥,∴CD EF ∥ ∴四边形EFDC 为等腰梯形以E 为原点,如图建立坐标系,FD a =()020EB a =u u u r,,,22a BC a ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,()200AB a =-u u u r ,, 设面BEC 法向量为()m x y z =u r,,.00m EB m BC ⎧⋅=⎪⎨⋅=⎪⎩u r u u u ru r u u u r,即111120202a y a x ay z ⋅=⎧⎪⎨⋅-+⋅=⎪⎩设面ABC 法向量为()222n x y z =r,,=0n BC n AB ⎧⋅⎪⎨⋅=⎪⎩r u u u rr u u u r .即222220220a x ay ax ⎧-+=⎪⎨⎪=⎩22204x y z ===,设二面角E BC A --的大小为θ.cos m n m n θ⋅==⋅u r ru r r∴二面角E BC A --的余弦值为2【解析】⑴证明:∵54AE CF ==,∴AE CF AD CD =,∴EF AC ∥.∵四边形ABCD 为菱形,∴AC BD ⊥, ∴EF BD ⊥,∴EF DH ⊥,∴EF D H '⊥.∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =,∴1AEOH OD AO =⋅=,∴3DH D H '==,∴222'OD OH D H '=+,∴'D H OH ⊥.又∵OH EF H =I ,∴'D H ⊥面ABCD . ⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =uu u r,,,()'133AD =-uuur,,,()060AC =uuu r,,,设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩u u r u u u ru u r u u u u r 得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r ,,.同理可得面'AD C 的法向量()2301n =u u r,,,∴12129575cos 255210n n n n θ⋅+===⋅u r u u ru r u u r ,∴295sin 25θ=3,【答案】(Ⅰ)见解析(Ⅱ)33又∵AE ⊥EC ,∴EG 3EG ⊥AC ,在Rt△EBG中,可得BE,故DF.在Rt△FDG中,可得FG在直角梯形BDFE中,由BD=2,BE,DF可得EF∴222EG FG EF+=,∴EG⊥FG,∵AC∩FG=G,∴EG⊥平面AFC,∵EG⊂面AEC,∴平面AFC⊥平面AEC. ……6分(Ⅱ)如图,以G为坐标原点,分别以,GB GCu u u r u u u r的方向为x轴,y轴正方向,||GBu u u r为单位长度,建立空间直角坐标系G-xyz,由(Ⅰ)可得A(0,0),E),F(-1,0),C(0,0),∴AEu u u r=(1),CFu u u r=(-1,) (10)分故cos,||||AE CFAE CFAE CF•<>==u u u r u u u ru u u r u u u ru u u r u u u r.所以直线AE与CF. ……12分4,解:(1)证明:连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.因为EO?平面AEC,PB?平面AEC,所以PB∥平面AEC.(2)因为P A⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,AB→,AD,AP的方向为x轴、y轴、z轴的正方向,|AP→|为单位长,建立空间直角坐标系A-xyz,则D()0,3,0,E⎝⎛⎭⎪⎫0,32,12,AE→=⎝⎛⎭⎪⎫0,32,12.设B(m,0,0)(m>0),则C(m,3,0),AC→=(m,3,0).设n1=(x,y,z)为平面ACE的法向量,则⎩⎪⎨⎪⎧n1·AC→=0,n1·AE→=0,即⎩⎨⎧mx+3y=0,32y+12z=0,可取n 1=⎝ ⎛⎭⎪⎫3m ,-1,3.又n 2=(1,0,0)为平面DAE 的法向量,由题设易知|cos 〈n 1,n 2〉|=12,即33+4m 2=12,解得m =32. 因为E 为PD 的中点,所以三棱锥E -ACD 的高为12.三棱锥E -ACD 的体积V =13×12×3×32×12=38.5解:(1)证明:连接BC 1,交B 1C 于点O ,连接AO ,因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为B 1C 及BC 1的中点.又AB ⊥B 1C ,所以B 1C ⊥平面ABO .由于AO ?平面ABO ,故B 1C ⊥AO .又B 1O =CO ,故AC =AB 1.(2)因为AC ⊥AB 1,且O 为B 1C 的中点,所以AO =CO .又因为AB =BC ,所以△BOA ≌ △BOC .故OA ⊥OB ,从而OA ,OB ,OB 1两两垂直.以O 为坐标原点,OB 的方向为x 轴正方向,|OB |为单位长,建立如图所示的空间直角坐标系O - xyz .因为∠CBB 1=60°,所以△CBB 1为等边三角形,又AB =BC ,则A ⎝⎛⎭⎪⎫0,0,33,B (1,0,0),B 1⎝ ⎛⎭⎪⎫0,33,0,C ⎝ ⎛⎭⎪⎫0,-33,0.AB 1→=⎝ ⎛⎭⎪⎫0,33,-33,A 1B 1→=AB =⎝⎛⎭⎪⎫1,0,-33, B 1C →1=BC =⎝ ⎛⎭⎪⎫-1,-33,0. 设n =(x ,y ,z )是平面AA 1B 1的法向量,则⎩⎪⎨⎪⎧n ·AB 1=0,n ·A 1B 1→=0,即⎩⎪⎨⎪⎧33y -33z =0,x -33z =0.所以可取n =(1,3,3).设m 是平面A 1B 1C 1的法向量,则⎩⎪⎨⎪⎧m ·A 1B 1→=0,m ·B 1C 1→=0,同理可取m =(1,-3,3).则cos 〈n ,m 〉=n ·m |n ||m |=17.所以结合图形知二面角A -A1B1 - C1的余弦值为1 7.6、【答案】(Ⅰ)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC= AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF?平面PAB,CF?平面PAB,∴直线CE∥平面PAB;(Ⅱ)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP= ,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN= MN,BC=1,可得:1+ BN2=BN2, BN= ,MN= ,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ== ,二面角M﹣AB﹣D的余弦值为:= .7、【答案】(Ⅰ)证明:如图所示,取AC的中点O,连接BO,OD.∵△ABC是等边三角形,∴OB⊥AC.△ABD与△CBD中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD是直角三角形,∴AC是斜边,∴∠ADC=90°.∴DO= AC.∴DO2+BO2=AB2=BD2.∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB?平面ABC,∴平面ACD⊥平面ABC.(Ⅱ)解:设点D,B到平面ACE的距离分别为hD , hE.则= .∵平面AEC把四面体ABCD分成体积相等的两部分,∴= = =1.∴点E是BD的中点.建立如图所示的空间直角坐标系.不妨设AB=2.则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E .=(﹣1,0,1),= ,=(﹣2,0,0).设平面ADE的法向量为=(x,y,z),则,即,取= .同理可得:平面ACE的法向量为=(0,1,).∴cos = = =﹣.∴二面角D﹣AE﹣C的余弦值为.8、【答案】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA?平面PAD,PD?平面PAD,∴AB⊥平面PAD,又AB?平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD?平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>= = .由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.。

相关文档
最新文档