三相异步电机定子绕线方法

合集下载

三相异步电动机绕线方法

三相异步电动机绕线方法

三相异步电动机绕线方法
三相异步电动机是一种常见的电动机类型,被广泛应用于各种机械设备中。

该类型电机的绕线方法有许多种,不同的绕线方法具有不同的特点和应用场合。

本文将介绍四种常见的三相异步电动机绕线方法及其特点。

1. Y型绕线法
Y型绕线法是三相异步电动机中最常用的绕线方法之一,也称为星形绕线法。

该绕线方法将三个相位的线圈分别串联在一起,形成一个Y型结构。

其中,每个相位线圈的两端分别接到电源相位线上,中点接地。

Y型绕线法具有以下优点:
(1)相对于其他绕线方法,Y型绕线法的绕制更为简单,技术难度较低。

(2)在低功率电机中,Y型绕线法具有较好的性能。

(4)在整个运行过程中,Y型绕线法的电机容易启动,同时对电机的维修和维护也相对较为简单。

(3)在齿轮机械设备中,由于Δ型绕线法可提供较高的额定电流,因此该绕线方法被广泛应用。

(1)U型绕线法相对于Y型绕线法更适合于应用于大功率电机中。

(3)U型绕线法的绕制工艺相对较为复杂,但可以提高三相电动机的效率。

多速绕线法是一种相对于上述三种绕线方法更为复杂的绕线法,它使三相异步电机可以实现不同的工作速度。

该绕线方法利用两个或多个线圈,分别连接在电机定子的恒定或可变容量上,并且使它们在相同的电源频率和电压下运行。

(1)可实现电机的多速运行。

(3)可对不同应用场合的电机工作速度进行精确控制。

总之,不同的三相异步电动机绕线方法具有不同的适用场合和优点,我们需要根据实际需求选择适合的绕线方法。

三相异步电动机的定子

三相异步电动机的定子

三相异步电动机的定子一、三相异步电动机的定子结构三相异步电动机的定子是电动机的重要组成部分,主要由铁心和绕组组成。

铁心通常由0.5mm厚的硅钢片叠压而成,其主要作用是导磁。

绕组则是固定在铁心上的铜导线绕成的线圈,其主要作用是通过电流产生磁场。

根据结构形式,三相异步电动机的定子可分为卧式和立式两种。

二、三相异步电动机的定子绕组三相异步电动机的定子绕组是电动机中产生旋转磁场的关键部分,通常采用分布式绕组的形式,即每个线圈都有一定的节距,且每个线圈在空间上均匀分布。

这样可以在电动相异步电动机中产生旋转磁场,进而驱动转子旋转。

根据绕组的形式,三相异步电动机的定子绕组可以分为单层绕组和双层绕组两种。

单层绕组只有一层线圈,通常采用庶极式或显极式结构。

单层绕组的优点是结构简单、制造方便,适用于功率较小的电动机。

双层绕组则有两层线圈,通常采用分布式绕组的形式。

双层绕组的优点是线圈数多、分布均匀,可以产生较强的磁场,适用于功率较大的电动机。

三、三相异步电动机的定子绕组展开图为了更清晰地展示三相异步电动机的定子绕组结构,通常会采用定子绕组展开图的方式来表示。

定子绕组展开图是一种将绕组展开成平面的示意图,可以直观地展示绕组的分布、匝数、接线方式等信息。

在展开图中,通常会用不同颜色的线条表示不同的相带,以便于区分。

此外,展开图还会标注出各相带的接线方式,方便进行电动机的接线操作。

总之,三相异步电动机的定子是电动机的核心部分,其结构和工作原理对于电动机的性能和使用寿命有着重要的影响。

了解三相异步电动机的定子结构、绕组形式和展开图等方面的知识,有助于更好地理解和应用电动机。

三相异步电动机定子绕组首尾端的判别方法及原理

三相异步电动机定子绕组首尾端的判别方法及原理

案例C ASESOCCUPATION2013 0690摘 要:本文从实际应用出发,结合生产实习,介绍了三相异步电动机定子绕组6个线头的区分,判别首尾端的几种方法,从而解决生产实习中存在的具体问题。

关键词:三相异步电动机 绕组 判别方法 原理三相异步电动机定子绕组首尾端的判别方法及原理黄 河定子绕组作为三相异步电动机产生旋转磁场、实现能量转换的关键部件,电动机的主要组成部分,同时也是最容易在使用中受到损伤的部位。

在生产实践中,约80%的损坏电动机均需要对定子绕组进行维修。

对于三相异步电动机定子绕组来说,在日常工作中,会经常遇到因各种原因造成电动机的6个引出线头分不清首尾端的情况,必须先分清三相绕组的首尾端,才能进行电动机的Y形和△形连接。

Y形接法的电动机应把3个尾端或3个首端连接在一起,其余3个线头作为3个引出线与三相电源相连;△形接法的电动机3个绕组的首尾端依次相连,从3个连接点引出3根线与三相电源相连。

对于Y形接法的电动机,如果首尾端接错,轻则会引起电动机三相电流不平衡,定子绕组过热,转速降低,使得电动机输出功率下降,带载能力降低,重则烧毁电动机。

对于△形接法的电动机,如果首尾端接错,将直接烧毁电动机。

因此,三相定子绕组的首尾端应正确连接,而分清首尾端,判别首尾端就显得尤其重要。

在生产实践及实训教学中,我们根据电动机结构原理及剩磁现象,采取如下几种方法判断三相定子绕组的首尾端。

一、剩磁感应法1.判别方法首先,我们使用万用表电阻挡,用一支表笔与电动机的6根引出线中的任何一根相接触,然后把另一支表笔轮流与其他5根引出线相接触,电阻值最小或(通路)的2根线头即是同一相绕组的2根引出线。

同理,可找出其他两相绕组的引出线头,这样就将三相定子绕组属于同一相的3对引出线头区别开,然后对区别开后的三相绕组的6个线头分三组进行假设编号,分别编为:U 1、U 2;V 1、V 2;W 1、W 2。

接着,将编号为U 1、V 1、W 1连接在一起,将编号为U 2、V 2、W 2连接在一起(见图1),然后,在绕组两端接装微安表,用手均匀地转动电动机转子,观察万用表指针的摆动情况,若此时并接在绕组两端的微安表指针不动或摆动甚微,则说明假设的各相绕组的首尾端是正确的;若转子转动时,微安表指针有较大偏转,则说明其中存在一相绕组的首尾端假设编号不对,应逐相对调重测,观察万用表指针的摆动情况,若万用表指针仍大幅度摆动,应重复上述过程重测,直至微安表指针不动或摆动甚微为止,判别完成。

4三相异步电动机定子绕组

4三相异步电动机定子绕组

集中式绕组
判断依据:根据
线圈绕组的形状与嵌 装布线的方式。
分布式绕组
Page 8
集中式绕组
集中式绕组一般仅有一个或几个矩形框线图形成。绕制后用纱 带包扎定型,在经浸漆烘干处理后嵌装在凸形磁极的铁心上。
Page 9
分布式绕组
采用分布式绕组的电动机定子没有凸形的极掌,每个磁极都是由一个或几 个线圈按照一定的规律嵌装布线组成线圈组。
同心式绕组
判断依据:根据
嵌装布线排列的形 式。
叠式绕组
Page 10
同心式绕组
同一线圈组的几个大小不同矩形线圈,按同一中心的位置逐个嵌装排列成 回字形的型式。一般单相电动机和部分小功率三相异步电动机的定子绕组采用 这种型式。
Page 11
叠式绕组
所有线圈的形状大小完全相同,分别以每槽嵌装一个线圈边,并在槽外 端部逐个相叠均匀分布的型式。一般为三相异步电动机的定子绕组较多采用叠 式绕组。
z 36 t = = =9 2p 2´ 2
习惯上说: 极距为9槽,就是第1槽到第10槽。
Page 22
电角度
一个圆周的机 械角度是360°, 把这种定义的角度 称为空间机械角, 用θ表示。
机械角 机械角
当导体每经过一个磁极时,其感应电动势交变一次,因此 一对极数所对应360°电角度,用α表示。
电角度 电角度
电动机修理的大 部分工作是对绕 组的修理,所以 必须对电动机绕 组的结构形式以 及接线方法有清 楚的了解。
Page 4
电动机绕组的结构
以定子绕组形成磁极数来区分 以定子绕组形成磁极数来区分
庶极式绕组
判断依据:根据
电动机的磁极数与绕 组分布形成实际磁极 数的关系。

电机星三角接法(三相异步电动机星形接法(Y)和三角形接法(Δ))

电机星三角接法(三相异步电动机星形接法(Y)和三角形接法(Δ))

三相异步电动机星形接法(Y)和三角形接法(Δ)每根绕组都有两个接头,一为首端,一为尾端。

图 1中U1、 V1、 W1是首端,而U2、V2、W2是尾端。

连接绕组时,首端尾端不能搞错,错了就不能保证相间的空间电角度为120&s30;,影响正常旋转磁场的形成,这是我们接线时必须十分注意的问题。

绕组引出线标志Y系列电机第一相、第二相、第三相的首端分别为 U1、 V1、 W1;尾端分别为U2、V2、W2。

JO2老系列电机第一相、第二相、第三相的首端分别为Dl、D2、D3;尾端分别为D4、D5、 D6。

有些电机,绕组内部连接好了,只引出三根线,那它们的标志:在新系列电机为U、V、W,在老系列电机为D1、D2、D3。

要是有第四根标志为N的引出线,这是星接绕组的中性点。

接线螺技标志与绕组的标志完全相同,其标志有的用标号垫,有的在绝缘底座上压出凸纹。

接地螺钉的标志3.三相异步电动机有那几种接线方法?在接线盒里是怎样连接的?答:三相异步电动机定于绕组通常采用两种接线方法,即星形接法(Y)和三角形接法(Δ)。

功率大的电机,在每相绕组里由两条或两条以上的支路并联。

星形接法见图2,把三相统组的尾端连在一起,由三个首端去接电源。

当然也可以把三个首端连在一起,由三个尾端去接电源。

但是决不可在短接的星点上既有首端,又有尾端,否队便不能形成正常的旋转磁场.(参见问题1)在接线盒里(见图动)星点是用两个连接片连接的。

三角形接法见图3,它是由一根绕组的首端与另一格的尾端相连,形成一个三角形,再由三角形的顶点接向电源。

同样的道理,采用三角形接法,决不可用绕组的同名端(两个首端或两个尾端)接成三角形的顶点,否则,电机将不能正常运转。

一台电机,究竟采用星接还是角接,必须按照铭牌的规定,是不能随意变更的。

无论那种按法,接线时如果首尾端错了,接通电源后,不能形成正常的旋转磁场,这时:电机起动困难;有特殊响声;三相绕组中电流很不平衡,即使空载,电流也将大于额定值。

三相异步电动机24槽4极链式绕组展开图和嵌线和接线方法

三相异步电动机24槽4极链式绕组展开图和嵌线和接线方法

3.分相(q) q Z1 24 2 2 pm 2 23
相带按U1、W2、V1、U2、W1、V2的顺序进行。
N
S
N
u1 w2 v1 u2 w1 v2 u1 w2 v1
S u2 w1 v2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
U1 (2)
U2 (20)
(7.2) V相绕组
N
S
N
u1 w2 v1 u2 w1 v2 u1 w2 v1
S u2 w1 v2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
V2(24)
V1(6)
(7.3) W相绕组
N
S
N
(5.2) V相线圈
N
S
N
u1 w2 v1 u2 w1 v2 u1 w2 v1
S u2 w1 v2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
(5.3) W相线圈
N
S
N
u1 w2 v1 u2 w1 v2 u1 w2 v1
S u2 w1 v2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
6.确定各相绕组的首(尾)端
3600 p 1200
Z1
x
x 4
• 设U1(2),则V1(2+4)、W1(2+4+4)。尾端顺着 电流的方向即可以得到。U2(20)、V2(24)、W2 (4)。

三相异步电动机的定子绕组解读

三相异步电动机的定子绕组解读

3.绕组及绕组展开图
绕组是由多个线圈按一定方式连接起来构成的。表示绕组的 连接规律一般用绕组展开图,即设想把定子(或转子)沿轴向展 开、拉平,将绕组的连接关系画在平面上。
4.极距
每个磁极沿定子铁心内圆所占的范围称为极距。极距 可用 磁极所占范围的长度或定子槽数z1表示 D z1 或 2p 2p 式中D——定子铁心内径 z1——定子铁心槽数
3.2.4 三相双层绕组
双层绕组是铁心的每个线槽中分上、下两层 嵌放两条线圈边的绕组。为了使各线圈分布对称, 安排嵌线时一般某个线圈的一条边如在上层,另 一条则一定在下层。以叠绕组为例,这种绕组的 线圈用一绕线模绕制,线圈端部逐个相叠,均匀 分布,故称“叠绕组”。为使绕组产生的磁场分 布尽量接近正弦分布,一般取线圈节距等于极距 5 5 y 的 左右,即 ,这种 6 y< 的绕组叫短距 6 绕组。这种绕组可使电动机工作性能得到改善, 线圈绕制也方便,目前10kW以上的电动机,几 乎都采用双层短距叠绕组。现以4极限24槽三相 电动机为例,讨论三相双层叠绕组的排列和连接 的规律。
5.节距y 一个线圈的两个有效边所跨定子内圆上的距离称为节距。一般 z 节距y用槽数表示。当 y 2 p 时,称为整距绕组,当y< 时,称为 短距绕组,当y> 时,称为长距绕组。长距绕组端部较长,费铜料 ,故较少采用。
1
6.槽距角 相邻两槽之间的电角度称为槽距角,槽距角 p 360 用下式表示 z 槽距角 的大小即表示了两相邻槽的空间电 角度,也反映了两相邻槽中导体感应电动势在时 间上的相位移。 7.每极每相槽数q 每一个极下每相所占有的槽数称为每极每相 槽数,以q表示 z1 式中 m1——定子绕组的相数 q
2.定子绕组的分类 异步电动机定子绕组的种类很多,按相数分, 有单相、两相和三相绕组;按槽中绕组数量的不 同,有单层、双层和单双层混和绕组;按绕组端 接部分的形状分,单层绕组有同心式、交叉式和 链式之分;双层绕组有叠绕组和波绕组之分;按 每极每相所占的槽数是整数还是分数,有整数槽 和分数槽之分等。但构成原则是一致的。

三相异步电动机定子绕组同相线圈之间的连接

三相异步电动机定子绕组同相线圈之间的连接

三相异步电动机定子绕组同相线圈之间的连接三相异步电动机是工业领域常用的电动机类型之一。

它形式简单、结构紧凑、可靠性高,被广泛应用于各类电动设备中。

在三相异步电动机的设计中,定子绕组同相线圈之间的连接是关键的一环。

以下是定子绕组同相线圈之间连接的相关资料。

一、连接方法三相异步电动机的定子绕组是由三组同构的绕组平均分布在120度的圆周上,这三组绕组分别与三条电源相线接通,实现三相交流电的输入和转换。

定子绕组中,同相线圈互相连接,最终形成了三个电路,对应着电机的三个相位。

同相线圈之间的连接方法通常有以下几种:1.串联连接法所谓串联连接法,就是将同相线圈依次相连,每个线圈将自己的一端连接到另一个线圈的另一端。

这种连接方法具有电压高、电流低的特点,但是其缺点是线圈数量多,难以制造。

同时,如果任意一组线圈发生故障,则整个电机将失效。

2.星形连接法星形连接法,也称Y型连接法,是将同相线圈的一端连接在一起,另一端连接到电源相线上。

这种连接方法具有线圈数量少,制造难度小的优点。

但是,其电压低、电流高的特点使得使用范围受到限制,而且发生故障时对整个电机的影响较大。

3.三角连接法三角连接法,也称∆型连接法,是将同相线圈中间的连接点连接到电源相线上,两端分别接地。

这种连接方法具有电压和电流均较为平衡的特点,稳定性较高,被广泛应用于各类电动机。

但是,其线圈数量较多,相对制造难度稍高。

二、电机自启动问题同相线圈之间的连接在电机启动过程中也具有重要作用。

由于三相异步电动机启动时需要消耗较大的启动电流,故而需要一些技术手段保证电机能够稳定启动。

常用的技术手段包括星角启动法、多速启动法、电阻启动法等。

在电机起动时,如通过三角方式连接,则电机在起动过程中会产生自起效应,即因电机转子自感电动势的作用,其电流增加,同时旋转速度也增加,最终使电机达到额定转速及额定电流。

但是,在星形连接方式下,电机由于启动时电流大、电压低,无法自行达到额定转速,需要特别措施进行启动。

三相异步电动机接线图

三相异步电动机接线图

三相异步电动机接线图2010年02月25日星期 10:49 A.M.三相异步电机接线图:三相电动机的三相定子绕组每相绕组都有两个引出线头。

一头叫做首端,另一头叫末端。

规定第一相绕组首端用D 1表示,末端用D 4表示;第二相绕组首端用D2表示,末端用D5表示;第三相绕组首末端分别用D3和D6来表示。

这六个引出线头引入接线盒的接线柱上,接线柱相应地标出D1~D6的标记,见图(1)。

三相定子绕组的六根端头可将三相定子绕组接成星形或三角形,星形接法是将三相绕组的末端并联起来,即将D4、D5、D6三个接线柱用铜片连结在一起,而将三相绕组首端分别接入三相交流电源,即将D1、D2、D3分别接入A、B、C相电源,如图(2)所示。

而三角形接法则是将第一相绕组的首端D 1与第三相绕组的末端D6相连接,再接入一相电源;第二相绕组的首端D2与第一相绕组的末端D4相连接,再接入第二相电源;第三相绕组的首端D3与第二相绕组的末端D5相连接,再接入第三相电源。

即在接线板上将接线柱D1和D6、D2和D4、D3和D5分别用铜片连接起来,再分别接入三相电源,如图(3)所示。

一台电动机是接成星形还是接成三角形,应视厂家规定而进行,可以从电动机铭牌上查到。

三相定子绕组的首末端是生产厂家事先设定好的,绝不可任意颠倒,但可将三相绕组的首末端一起颠倒,例如将三相绕组的末端D4、D5、D6倒过来作为首端,而将D1、D2、D3作为末端,但绝不可单独将一相绕组的首末端颠倒,否则将产生接线错误。

如果接线盒中发生接线错误,或者绕组首末端弄错,轻则电动机不能正常起动,长时间通电造成启动电流过大,电动机发热严重,影响寿命,重则烧毁电动机绕组,或造成电源短路。

三相电机接线图2011年05月20日星期五 15:07 电机接线盒电机y接时,接线盒里,连接片的连接方式电机角接时,接线盒连接片的连接方式学习三相电机的两种接法学习电工 2009-08-07 20:41:28 阅读1936 评论3字号:大中小订阅当电工也20多天了,学了点零零碎碎的东西,今天在现场学了点三相异步电机的基本接法:星型接法和三角接法。

三相异步电动机的结构原理(定子、转子)讲解

三相异步电动机的结构原理(定子、转子)讲解

三相异步电动机的结构原理(定子、转子)讲解三相异步电动机定子电动机的静止部分称为定子,其组成部分主要包括定子铁芯、定子绕组、机座等部分。

定子铁芯:定子铁芯的作用是作为电机磁路的一部分,并在其上放置定子绕组。

定子铁芯一般由0.35~0.5毫米厚,表面涂有绝缘漆的环状冲片槽的硅钢片叠压而成,如右图所示。

定子绕组:定子绕组是电动机的电路部分,通入三相交流电,产生旋转磁场。

小型号异步电动机定子绕组通常用高强度漆包线(铜线或铝线)绕制成各种线圈后,在嵌放在定子铁芯槽内。

大中型电动机则用各种规格的铜条经过绝缘处理后,再嵌放在定子铁芯槽内。

为了保证绕组的各导电部分与铁芯之间的可靠绝缘以及绕组本身之间的可靠绝缘,故在定子绕组制造过程中采取了许多绝缘措施,三相异步电动机定子绕组的主要绝缘项目有以下三种:1.对地绝缘:定子绕组整体与定子铁心之间的绝缘。

2.相间绝缘:各相定子绕组之间的绝缘。

3.匝间绝缘:每相定子绕组各线匝之间的绝缘。

定子三相绕组的槽内嵌放完毕后共有六个出线端引到电动机机座的接线盒内,可按需要将三相绕组接成星形接法(Y接)或三角形接法(△接),如右图所示。

机座:它的作用是固定定子铁芯和定子绕组,并以两个端盖支撑转子,同时起保护整台电动机的电磁部分和散发电动机运行中产生的热量,一般是铁或铝铸造而成。

三相异步电动机转子转子是电动机的旋转部分,包括转子铁芯,转子绕组和转轴等部分。

•转子铁芯:作为电机磁路的一部分,并放置转子绕组。

一般由0.5毫米厚的硅钢片冲制叠压而成。

如右图所示。

•转子绕组:其作为切割定子磁场,产生感应电动势和电流,并在旋转磁场的作用下受力使转子转动。

根据构造的不同可分为鼠笼式和绕线式转子两种类型。

1.鼠笼式转子:它的结构是转子铁芯的槽沟内插入铜条,在铜条两端焊接两个铜环,如下图(a)所示。

这样转子绕组好像一个鼠笼型转子。

为了节约铜材和便于制造。

目前绝大部分鼠笼均采用铝代替。

如下图(b)所示。

三相异步电动机定子绕组同相线圈之间的连接

三相异步电动机定子绕组同相线圈之间的连接

三相异步电动机定子绕组同相线圈之间的连接三相异步电动机是一种常见的电动机类型,它由定子和转子组成。

在三相异步电动机的定子中,有许多同相线圈,这些线圈之间需要进行连接。

本文将详细介绍三相异步电动机定子绕组同相线圈之间的连接方式。

在三相异步电动机的定子中,同相线圈之间的连接通常采用星型连接或三角形连接。

这两种连接方式都有各自的特点和应用场景。

首先是星型连接。

在星型连接中,同一相的线圈的一个端子被连接在一起,形成一个共点,而另一个端子则分别连接到不同的电源相线上。

这种连接方式可以使电流在线圈之间均匀分布,从而提高电机的运行效率和稳定性。

此外,星型连接还可以减小线圈的电压,降低线圈的绕组成本。

因此,在大多数情况下,三相异步电动机采用星型连接。

其次是三角形连接。

在三角形连接中,同一相的线圈的一个端子连接到另一相的线圈的一个端子,形成一个环形连接。

这种连接方式可以使电机在启动时获得更高的起动转矩,适用于一些需要较大起动转矩的场合。

然而,三角形连接的缺点是线圈之间的电流不够均匀,容易造成电机的振动和噪音。

除了星型连接和三角形连接,还有一种特殊的连接方式,称为混合连接。

混合连接是将星型连接和三角形连接结合起来,使得电机在启动时既能获得较大的起动转矩,又能保持较好的运行效率和稳定性。

混合连接适用于某些特殊的应用场景,如起动转矩要求较大且需要保持高效率的情况。

在实际应用中,根据电机的功率和负载要求,可以选择不同的连接方式。

一般而言,小功率的三相异步电动机常采用星型连接,而大功率的电机则常采用混合连接。

对于需要较大起动转矩的场合,可以选择三角形连接。

三相异步电动机的定子绕组同相线圈之间的连接方式有星型连接、三角形连接和混合连接。

不同的连接方式适用于不同的应用场景,选择合适的连接方式可以提高电机的运行效率和稳定性。

在实际应用中,根据电机的功率和负载要求进行选择,以满足工业生产的需求。

三相异步电动机定子绕组的嵌线方法

三相异步电动机定子绕组的嵌线方法

技术与应用A PPLICATION145OCCUPATION2015 10三相异步电动机定子绕组的嵌线方法文/刘 妍摘 要:三相异步电动机定子绕组的嵌线对于中职学生来说是一项非常重要的技能。

把电动机的定子绕组嵌入定子铁芯槽内,是学生在实操过程中迫切需要解决的问题,也是我们一体化教师为学生考虑的问题。

本文现以几种典型的三相异步电动机为例,介绍三相异步电动机定子绕组嵌线的方法。

关键词:定子绕组 嵌线 端部接线三相异步电动机的定子绕组是电动机定子的主要组成部分,也是电动机的电路部分。

因为它将通过电磁感应实现电能向机械能的转换,因此可以把三相定子绕组说成是三相异步电动机的心脏。

电动机在使用过程中,出现故障最多的就是定子绕组,当定子绕组严重损坏,无法做局部修复时,就要把原绕组整体拆掉,重新嵌放新的绕组。

了解定子绕组的嵌线工艺、连线方法,对电动机的制造和维修都是十分必要的。

三相定子绕组(U 相、V 相、W 相)中的每一相由许多个线圈按一定的规律嵌放在定子铁心槽内,它可以是单层的,也可以是双层的,也可以是全节距的也可以是短节距的。

现以几种典型的三相异步电动机为例,介绍一下三相异步电动机定子绕组嵌线的方法。

一、24槽4极全节距三相异步电动机1.嵌线方法此绕组嵌线方法可归纳为“嵌二、空二、嵌二、反二、吊二”。

例如:嵌第1、2槽,空第3、4槽,嵌第5、6槽,先将第6槽线圈的另一个有效边反到24槽,再将第5槽线圈的另一个有效边反到23槽……在嵌入第一组线圈有效边的第1、2槽后把它们另一有效边19、20槽先行吊起。

2.端部接线方法电动机定子绕组全部嵌好后将线圈连接,从展开图端部可以得出:找同相顺序隔二,找临相顺序排列,并按:“首尾相连”的串连接法进行连接。

二、24槽2极短节距三相异步电动机1.嵌线方法此绕组嵌线方法可归纳为“嵌二、空二、嵌二、空二、吊四、嵌二、反二”。

例如:嵌第1槽、2槽,空第3槽、4槽,嵌第5、6槽,空7、8槽,在嵌入第1、2槽和5、6槽后把它们另一有效边先行吊起,然后将嵌入第9、10槽的另一个有效边反到第23、24槽,空第11、12槽,以后就按嵌二反二空二的规律嵌下去……2.端部接线方法整台电动机定子绕组全部嵌好后将线圈连接,从展开图端部可以得出:找同相顺序隔二,找临相顺序隔一,并按:“首首相连,尾尾相连”的反串连接法进行连接。

定子绕组星形连接

定子绕组星形连接

一般的发电机都采用星形接法,主要是为了防止三次谐波的流通,因为制造上的原因,必然存在着大量的各次谐波(其中最主要的部分就是三次谐波分量最大),如果将发电机接成三角形,则三次谐波磁势所产生的三次谐波电流在内阻很小的绕组中产生很强大的环流,就会大大降低发电机的输出功率。

1、发电机采用星型接法而不用三角形接法原因在于星型接法可以抑制三次谐波电流,防止发电机三相绕组产生三次谐波环流,但是不能抑制三次谐波电压。

2、发电机采用星型接法是为了降低绕组的电压降,从而达到节省材料,降低绝缘材料的要求,减小电机的制造尺寸,降低发电机造价的目的。

发电机定子接成星形,主要是考虑发电机的定子感应电动势中存在高次谐波,特别是三次谐波。

各基波之间的相位差是120˚,三次谐波电动势之间的相位差则为3×120˚=360˚,即三相绕组中三次谐波的电动势是同相位的。

若此时定子接成三角形,就相当于三个电压源串联,势必会在三相绕组中产生较大的循环电流,引起定子绕组过热。

三相交流电动机星形三角形接线方法电路图(精品) 1、同样一台电机,可以安装绕成 Y 型绕组,也可以安装绕成△型绕组; 2、同样一台电机,安装绕成△型绕组时,导线截面小,串联匝数多,工作相电压高,相电流低; 3、同样一台电机,安装绕成 Y 型绕组时,导线截面大,串联匝数小,工作相电压低,相电流高; 4、△型绕组要求三相对称性要好,电源对称性也要高,这样就不会出现环流,否则会发热,增大损耗; 5、Y 型绕组在三相对称性不好、电源对称性不高时,不会出现环流,但会出现零点飘移,三相工作严重不对称; 6、在使用上,△型绕组可以用 Y-△启动方式启动,而 Y 型绕组不能用 Y-△启动方式启动; 7、由于电阻热损耗与电流的平方成正比,所以同样一台电机,安装绕成△型绕组时热损耗小;线电压相同,三相电动机电源的三角形接法和星形接法的功率有什么不同?(三角形的功率是星形的多少倍??!!!)星形接法和三角形接法都是指电机本身的绕组接法,星形接法指将电机绕组三相末端接在一起,三相首端为电源端;三角形接法指将三相绕组首尾互相连接,三个端点为电源端;无论那种接法,都必须要有三相相位互差 120 度的三相正弦交流电源供电,不可用 220V 的代替的。

三相异步电动机的定子绕组

三相异步电动机的定子绕组
→U2 4、嵌线规律:嵌二空二吊四,先小后大。
5、用途
同心式绕组端部连线较长,适用于q=4、6、
8等偶数的2极小型三相异步电动机。
2023年8月26日
星期六 §3-2 三相异步电动机的定子绕组(中)
八、 三相 单层 绕组 的优 缺点
元件少,结构简 单,嵌线方便, 槽内无层间绝缘
优点
单层绕组为 整距绕组
§4-3 三相异步电动机定子绕组
2、举例 已知三相异步电动机,Z1=24槽,
2P=4,m=3,双层绕组,a=1,试作出表示 极相组之间连接规律的U相接线图。 解:极相组 = 2Pm = 4×3 = 12 个 3、练习:
已知三相异步电动机,Z1=36槽,2P=6, m=3,单层短距绕组,a=1,试作出表示极 相组之间连接规律的圆形接线图。 返回首页
画出Z1 = 36槽,2P=4,m=3,a=1单
层短距交叉式绕组展开图。
解:⑴τ= Z1/2P = 36 / 4 = 9槽
⑵q = Z1/2Pm = 36 /(4×3) = 3槽
⑶ys = 2q + 2 = 2×3 + 2 = 8 槽 yd = 2q + 1 = 2×3 + 1 = 7槽
2023年8月26日
§4-3 三相异步电动机定子绕组
本节要点: 一、三相定子绕组的基本要求和分类 二、绕组的基本术语 三、绕组的连接方式 四、三相定子绕组的构成原则 五、三相单层绕组 ㈠画展开图的步骤 ㈡单层链式绕组 ㈢交叉式绕组 ㈣同心式绕组 ㈤单层、双层绕组的特点 ㈥双层绕组的展开图
2023年8月26日
星期六
§4-3 三相异步电动机定子绕组
)→(1—20)→U2 嵌线规律:嵌一空一吊二

各种电动机的绕线方法

各种电动机的绕线方法

各种电动机的绕线方法
电动机是一种重要的电力设备,广泛应用于机械制造、冶金、化工、
交通运输等领域。

电动机的绕线方法可分为以下几种:
1. 滑环电机绕线方法:滑环电机是一种有刷直流电机,其绕线方法比
较简单,主要包括励磁线圈、串联电枢以及滑环端子等。

励磁线圈和
串联电枢的绕线方法一般都是采用交叉式或平面式绕线,也有部分厂
家采用槽式绕线。

滑环端子要注意保持确定的相序和正确的引线方式。

2. 三相异步电机绕线方法:三相异步电机是一种常见的交流电机,其
绕线方法主要包括定子绕组和转子绕组。

定子绕组采用Y型或∆型接法,一般都采用槽式绕线,而转子绕组一般采用铜棒绕线。

3. 步进电机绕线方法:步进电机是一种特殊的直流电机,其绕线方法
分为两种:单相步进电机和双相步进电机。

单相步进电机的绕线方法
比较简单,采用两个对称的线圈,一般都采用平面式绕线。

而双相步
进电机则需要采用四个线圈,一般采用两组对称的线圈交替排列,绕
线方式也可采用交叉式。

4. 直线电机绕线方法:直线电机是一种特殊的电机,其绕线方法包括
主磁导体的绕制和励磁线圈的绕制。

主磁导体一般采用导体板粘接的
方式,励磁线圈则采用铜线或铜排绕制。

5. 转子电机绕线方法:转子电机是一种微型电机,其绕线方法主要包括外转子和内转子两种。

外转子绕线采用铜线或铜箔片绕制,内转子则采用铁芯绕线法,即将铜线缠绕在铁芯上。

总之,不同类型的电动机采用不同的绕制方式,但都需要注意保持相位的正确性和线圈排列的合理性。

绕线方法的选择也要依据具体的使用要求和生产工艺进行确定。

三相异步电动机定子绕组

三相异步电动机定子绕组

三相异步电动机定子绕组一、异步电动机绕组参数1、极距极距是指沿定子铁心内圈,每个磁极所占的范围,可用长度表示,也可用槽数表示,则极距:式中:Z——定子铁心总槽数P---磁极对数2、节距节距也称跨距,指的是每把线圈两个有效边之间的距离,用槽数表示。

当线圈节距等于极距时称为全节距;当线圈节距小于极距时称为短节距。

一般单速电动机多采纳短节距,由于可以改善电磁性能,又节约导线材料。

3、每极每相槽数。

定子绕组在每个磁极下,每一相所占的槽数称为每极每相槽数。

表示:m:相数把属于同一相的q 只线圈按肯定方式串联成组,称为极相组,通常在绕线时一次绕成,然后分别嵌装单层绕组,每相的极相组数等于极对数。

4、电角度计量电磁关系的角度称为电角度。

电角度=极对数× 机械角度。

电动机的空间机械角度都是360度。

但不同磁极对数的电动机其电角度不同。

不论电动机有几个磁极,一对磁极即占有360度电角度;一个极距为180度电角度。

相带所谓的相带,就是每极每相所占的电角度,大家知道,三相电动机所产生的旋转磁场是定子三相绕组的合成磁场,因此在每对磁极所占据范围内均应有三相绕组的有效边。

通常把每对磁极下绕组平均分成六个区段。

并把每极下的三个区段分A.B.C三相。

由于一个极距为180度,所以每一相带电角度为60度。

一般状况下,三相单速电动机绕组都绕成60度相带。

二、异步电动机绕组1、绕组种类三相异步电动机定子绕组均属于分布绕组,它的种类结构也较简单多样,主要分为单层绕组,双层绕组等多种。

所谓单层绕组就是每个定子槽中只嵌线圈的一个有效边,因此线圈的绕制和嵌线都比较便利,而且还没有层间绝缘,槽满率较高,不会发生槽内相间短路,但每个线圈的两个端部不易处理整齐。

电气性能也较差,绕组的线圈数等于总槽数的一半。

所以一般应用于小容量的电动机中。

双层绕组的每一个槽都嵌上下两个线圈的有效边,槽的利用率较高,电气性能也得到了提高,因此一般应用于大容量的异步电动机定子绕组。

三相异步电动机的定子绕组

三相异步电动机的定子绕组

三相异步电动机的定子绕组
三相异步电动机的定子绕组是由三组互相间隔120度的线圈构成的,这些线圈分别在交流电源下产生相位差为120度的交变磁场,形成旋转磁场,驱动转子旋转。

一、如何理解旋转磁场?
旋转磁场是三相异步电动机工作的基础。

当三组线圈在三相交流电源下产生交变磁场时,这些磁场按照一定的顺序和频率变化,形成一个旋转的磁场。

这个旋转磁场以一定的速度在定子绕组中旋转,驱动转子跟随旋转,实现电动机的工作。

二、定子绕组的设计和制作有哪些重要因素需要考虑?
定子绕组的设计和制作需要考虑多种因素,包括线圈的材料、线圈的尺寸和形状、线圈的绝缘性能、线圈的排列方式、线圈的电气参数等。

线圈的材料通常选择具有高导电性和良好机械性能的铜或铝,线圈的尺寸和形状需要根据电机的结构和性能要求设计,线圈的排列方式需要确保三组线圈能产生相位差为120度的磁场,线圈的电气参数需要满足电机的功率和效率要求。

三、定子绕组的状态如何影响三相异步电动机的性能?
定子绕组的状态直接影响三相异步电动机的性能。

如果定子绕组有故障,例如线圈断路、短路或接地,将会影响旋转磁场的形成,导致电机性能下降或无法工作。

因此,对定子绕组的维护和保养非常重
要,需要定期进行检查和测试,确保定子绕组的良好状态。

三相异步电动机的定子绕组是其核心部分,旋转磁场的形成、电动机的性能和工作效率等都与定子绕组有密切关系。

因此,对定子绕组的理解和熟悉,对于理解三相异步电动机的工作原理和性能,以及进行电机设计、维护和故障诊断都非常重要。

三相异步电机的定子绕组

三相异步电机的定子绕组

连线圈和线圈组
2. 连线圈和线圈组: • 将一对极域内属于同一相的某两个线圈边连成一个线 圈,共有q个线圈。 • 将一对极域内属于同一相的q个线圈连成一个线圈组; (共有多少个线圈组?) • 以上连接应符合电势相加原则。
精品课件
连相绕组
将属于同一相的p个线 圈组连成一相绕组,并 标记首尾端。
• 串联与并联:电势相 加原则。
基本步骤:
1. 分极分相: • 将总槽数按给定的极数均匀分开(N、S极相邻分布)并标 记假设的电流方向。 • 将每个极域的槽数按三相均匀分开。三相在空间错开120电 角度。
每极每相槽数 q Z 2 pm
精品课件
相带 槽号 极对数
精品课件
q Z 2 pm
相带
槽号 极对数
精品课件
线圈组连接
精品课件
•最大并联支路数a=p 。
精品课件
连三ቤተ መጻሕፍቲ ባይዱ绕组
• 将三个构造好的单相绕组连成完整的三相绕组; • 接法或Y接法;
精品课件
综上分析:
1)单层绕组整距绕组电动势波形不够理想。
2)单层绕组不适宜于大、中型电机;
3)单层绕组不存在线圈层间绝缘问题,不会在槽内发生层间或相 间绝缘击穿故障; 4)单层绕组线圈数等于槽数的一半,绕线和嵌线所费工时少、工 艺简单,广泛应用于10kW以下的异步电动机。
• 绕组系数 kN1 ky1kq1
精品课件
精品课件
绕组基本概念
4、 电角度:
• 转子铁心的横截面是一个圆,其几何角度为360度。 • 从电磁角度看,电流在时间上变化一周,磁场的空间 分布曲线或线圈中的感应电动势正好变化一周,一对 N,S极构成一个磁场周期,即一对磁极为360电角度; • 电机的极对数为p时,气隙 圆周的角度数为p ×360电 角度。

三相异步电动机定子绕组首尾端的判别方法

三相异步电动机定子绕组首尾端的判别方法

三相异步电动机定子绕组首尾端的判别方法首先用万能表分出三相。

在三相电动机每个绕组的两引出线确定的情况下,可进一步判别三绕组引出线的首尾。

测量方法一:(一)万用表选档:直流50μ(二)测量过程:1、将电动机三绕组中每一绕组的一根引出线接在一起,余下三根引出线(每个绕组一根)也接在一起。

这样做成两组引出线。

将两组引出线分别缠绕在万用表的两表笔上。

用手转动电动机转子,同时观察万用表指针,如果指针不偏转(摆动),说明接在一起的三根线同为三相绕组首端(或尾端)引出线,测试结束。

如果指针有偏转(摆动),说明有一相绕组接反,继续下步测试。

2、将其中任一绕组的两根引出线对调,(注意:要记住是对调的哪一绕组。

)这样又做成两组引出线。

重复上述测试:将两组引出线分别缠绕在万用表的两表笔上。

用手转动电动机转子,同时观察万用表指针,如果指针不偏转(摆动),说明接在一起的三根线同为三相绕组首端(或尾端)引出线,测试结束。

如果指针有偏转(摆动),说明有一相绕组接反,继续下步测试。

3、再将余下两绕组中的任一绕组的两根引出线对调,这样又做成两组引出线。

重复上述测试:将两组引出线分别缠绕在万用表的两表笔上。

用手转动电动机转子,同时观察万用表指针,如果指针不偏转(摆动),说明接在一起的三根线同为三相绕组首端(或尾端)引出线,测试结束。

如果指针有偏转(摆动),说明有一相绕组接反,继续下步测试。

4、将第一次对调的两引出线还原(再对调一次)即可。

这时,接在一起的三根线同为三相绕组首端(或尾端)引出线,测试结束。

可以用前述方法验证:将两组引出线分别缠绕在万用表的两表笔上。

用手转动电动机转子,同时观察万用表指针,万用表指针不会偏转(摆动)。

说明判断正确。

测量方法二:(一)万用表选档:直流50μ(二)测量过程:1、将电动机一个绕组的两引出线分别接在万用表的两表笔上,另一绕组的一根引出线接在电池的一极,另一引出线去碰电池的另一极,同时注意观察万用表的指针偏转情况:如指针正向偏转,说明电池正极所接线与万用表负极(黑表笔)所接线同为首端(或尾端),另外两根引出线同为尾端(或首端)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相异步电机定子绕线方法
交流绕组的构成原则
均匀原则:每个极域内的槽数(线圈数)要相等,各相绕组在每个极域内所占的槽数应相等。

每极槽数用极距τ表示
每极每相槽数(举例)
对称原则:三相绕组的结构完全一样,但在电机的圆周空间互相错开120电角度。

如槽距角为α,则相邻两相错开的槽数为120/α。

(举例)
电势相加原则:线圈两个圈边的感应电势应该相加;线圈与线圈之间的连接也应符合这一原则。

如线圈的一个边在N极下,另一个应在S极下。

(举例)
三、三相单层绕组
★构造方法和步骤
分极分相: (看图1000-1)
将总槽数按给定的极数均匀分开(N,S极相邻分布)并标记假设的感应电势方向。


将每个极域的槽数按三相均匀分开。

三相在空间错开120电角度。

连线圈和线圈组:(看图1000-2)
将一对极域内属于同一相的某两个圈边连成一个线圈(共有q个线圈,为什么?)
将一对极域内属于同一相的q个线圈连成一个线圈组(共有多少个线圈组?)
以上连接应符合电势相加原则
连相绕组:(看图1000-3)
将属于同一相的p个线圈组连成一相绕组,并标记首尾端。

串联与并联,电势相加原则。

按照同样的方法构造其他两相。

连三相绕组(看图1000-4)
将三个构造好的单相绕组连成完整的三相绕组
△接法或者Y接法。

★单层绕组分类
等元件式整距叠绕组(看图1000-3)
同心式绕组(看图1000-6)
链式绕组(看图1000-7)
交叉链式绕组(看图1000-8)
单层绕组主要用于小型异步电动机。

四、三相双层绕组
★构造方法和步骤(举例:Z1=24,2p=4,整距,m=3)
分极分相:(看图1001-1)
将总槽数按给定的极数均匀分开(N,S极相邻分布)并标记假设的感应电势方向;
将每个极域的槽数按三相均匀分开。

三相在空间错开120电角度。

连线圈和线圈组:(看图1001-2)
根据给定的线圈节距连线圈(上层边与下层边合一个线圈)
以上层边所在槽号标记线圈编号。

将同一极域内属于同一相的某两个圈边连成一个线圈(共有q个线圈,为什么?)将同一极域内属于同一相的q个线圈连成一个线圈组(共有多少个线圈组?)
以上连接应符合电势相加原则
连相绕组:(看图1001-3)
将属于同一相的2p个线圈组连成一相绕组,并标记首尾端。

串联与并联,电势相加原则。

按照同样的方法构造其他两相。

连三相绕组
将三个构造好的单相绕组连成完整的三相绕组
△接法或者Y接法
★10kW以上的电机主要采用双层绕组。

相关文档
最新文档