2020年中考数学专题突破专题十一:最短路径——造桥选址问题

合集下载

数学人教版八年级上册最短路径问题——造桥选址问题

数学人教版八年级上册最短路径问题——造桥选址问题

问题延伸一
如图,A和B两地之间 有两条河,现要在两 条河上各造一座桥MN 和PQ.桥分别建在何处 才能使从A到B的路径 最短?(假定河的两 岸是平行的直线,桥 要与河岸垂直)
A
B
问题解决
沿垂直于河岸方向依次把 A点移到A1、A1点移 到A2,使AA1=MN, A1A2 =PQ ; 连接A2B交于B点相邻 河岸于Q点,建桥PQ; 连接A1P交A1的对岸 于N点,建桥MN; 从A点到B点的最短路径 为AM+MN+NP+P Q+QB.
A
A1
M
M1
N
N1
B
理由;另任作桥M1N1,连接AM1,BN1,A1N1. 由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1. AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1 转 化为AA1+A1N1+BN1. 在△A1N1B中,由线段公理知A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN
A M
M1
A1 N
L1
L2 B
N1
问题:
1、直接连接AB可以吗? 2、路径是哪些线段之和?
3、当桥的位置变化后,路径中哪些是始终不变的? 哪些在变?
4、路径最短就是哪些线段之和最小?
5、路径可以转化为其它哪些线段之和?Fra bibliotek问题解决
如图,平移A沿与河岸垂 直的方向到A1,使AA1 等于河宽,连接A1B交河 岸于N点,建桥MN,此 时路径AM+MN+BN 最短.
A A1 A2 M N P Q B
问题延伸二
A
如图,A和B两地之间 有三条河,现要在两 条河上各造一座桥MN、 PQ和GH.桥分别建在 何处才能使从A到B的 路径最短?(假定河 的两岸是平行的直线, 桥要与河岸垂直)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形最值问题在几何图形中分两大类:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。

由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。

举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。

已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。

即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。

(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。

上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。

类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。

(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。

(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。

最短路径问题——造桥选址问题幻灯片课件

最短路径问题——造桥选址问题幻灯片课件

M N
P Q
G H
B
延伸小结
同样,当A、B两点之间有4、5、 6,...n条河时,我们仍可以利用 平移转化桥长来解决问题.
例如: 沿垂直于河岸方向平移A点依次至 A1、A2、A3 ,...,An,平移距离分 别等于各自河宽,AnB交第n条河近B点河岸于 Nn,建桥MnNn,连接MnAn-1交第(n-1)条河近 B点河岸与Nn-1,建桥Mn-1Nn-1,...,连接 M1A交第一条河近B点河岸于N1,建桥M1N1, 此时所走路径最短.
最短路径问题——造桥选址问 题
问题2(造桥选址问题)如图,A和B两地在一条河的两 岸,现要在河上建一座桥MN,桥造在何处才能使从A 到B的路径AMNB最短?(假设河的两岸是平行的直 线,桥要与河垂直)
A
M1
M
A1
L1
N1
问题:
N
L2
B
1、直接连接AB可以吗?
2、路径是哪些线段之和?
3、当桥的位置变化后,路径中哪些是始终不变的? 哪些在变?
4、路径最短就是哪些线段之和最小?
5、路径可以转化为其它哪些线段之和?
问题解决
如图,平移A沿与河岸垂 A
直的方向到A1,使AA1 等于河宽,连接A1B交河
A1Leabharlann 岸于N点,建桥MN,此时路径AM+MN+BN
最短.
M M1
N
N1
B
理由;另任作桥M1N1,连接AM1,BN1,A1N1.
由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1. AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1 转 化为AA1+A1N1+BN1.
归纳小结

青岛版八年级数学上册专题突破讲练解密最短距离之建桥选址试题

青岛版八年级数学上册专题突破讲练解密最短距离之建桥选址试题

解密最短距离之建桥选址一、解题依据1. 两点间线段最短。

2. 三角形的三边关系(1)三角形三边关系定理:三角形任何两边的和大于第三边; (2)三角形三边关系定理的推论:三角形任何两边之差小于第三边。

3. 勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方。

二、基本模型定点在两侧的动线段问题(建桥问题)如图所示,A 、B 两村庄位于一条河的两岸。

假定河的两岸笔直且平行。

问:应把桥建在什么位置,才能使由A 村经过这座桥到B 村的路程最短?答案:如右下图。

说明:这种问题首先要把桥的长度平移出来(作CD B B ='),连接B ',C 两点交河流两岸两个点,此时一定要在C 处建桥,才能得到最短路程。

(即:平行四边形要在B A '的同侧。

)例题1 如图,A 和B 两地之间有两条河,现要在两条河上各造一座桥MN 和PQ 。

桥分别建在何处才能使从A 到B 的路径最短?(假定河的两岸是平行的直线,桥要与河岸垂直)解析:按照垂直河流的方向,先把两桥的长度移至端点,把可变化的路径连接到一起,利用两点间线段最短就可以确定两桥的位置。

答案:如图。

或NMPQA1A或NMB2B1PQB点拨:本题的关键还是在于两点之间线段最短,要注意找到线段与河的交点后,选择正确的建桥位置。

总结技巧建桥选址问题最少由三条线段组成,其中桥的长度是固定不变的,而且桥在整个路径的中间,另外两条线段不固定,所以我们要先把桥的长度平移出来,利用平行四边形的性质,使变化的线段连接在一起,然后利用两点间线段最短或三角形三边关系确定桥的位置。

例题如图,荆州古城河在'CC处直角转弯,河宽均为5米,从A处到达B处,须经两座桥:'DD,'EE(桥宽不计),设护城河以及两桥都是东西、南北方向的,A,B在东西方向上相距65米,南北方向上相距85米,恰当地架桥可使''ADD E EB的路程最短,这个最短路程是多少米?解析:先分别从A、B两点把两条桥的长平移出来,把平移后的两个点连接,就可以确定桥的位置。

人教版初中数学 2020年中考数学复习 专题 最短路径问题(36张ppt)

人教版初中数学 2020年中考数学复习 专题  最短路径问题(36张ppt)
第5题图
课后精练 6.如图,在锐角△ABC中,AB=4,∠BAC=45°, ∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动 点,则BM+MN的最小值是___2___.
第6题图
课后精练 7.如图,在平面直角坐标系中,平行四边形ABCD 的坐标分别为A(-1,0),B(0,2),C(3,2),D(2,0), 点P是AD边上的一个动点,若点A关于BP的对称点为A′, 则A′C的最小值为__________.
单击此处编辑母版标题样式
的最小值是( C )
A.3
B.4
第 3 题图 C.5 D.6
课后精练
4.如图,矩形 ABCD 中,AB=4,AD=2,E 为边 AD 上一个动点,连接 BE,取 BE 的中点 G,点 G 绕点 E 逆时针旋转 90°得到点 F,连接 CF,则△CEF 面积
的最小值是( B )
答案图
第 4 题图
【提示】如图,过点F作AD的垂线交AD 的延长线于点H;证明△FEH∽△EBA,
∴C(0,-k),OC=k.
∵点 P 在第一象限内的抛物线上,∴∠ABP 为钝角.
因此若两个三角形相似,只可能是△ABC∽△APB
或△ABC∽△PAB.
①若△ABC∽△APB,则有∠BAC=∠PAB.
设 P(x,y),过点 P 作 PN⊥x 轴于点 N,如图 1,
图1
则 ON=x,PN=y.
课堂精讲
中考·数学
2020版
第一部分 系统复习
专题11 最短路径问题
考点解读
最短路径问题在近三年成都中考中都占了重要地位, 都是在大题中结合题目的背景进行综合考查,重在考查 学生对知识应用能力.考查的基本类型有:线段和最小、 差最大、多条线段和最小、点到点的距离与点到直线距 离之和最小、多条线路上速度不同时的最短时间问题, 这些问题大多是利用数形结合、转化思想将问题转化为 两点间线段最短或者垂线段最短来加以解决.

2020年中考数学专题突破专题十一:最短路径——造桥选址问题

2020年中考数学专题突破专题十一:最短路径——造桥选址问题

专题十一:最短路径——造桥选址问题【导例引入】导例:如图1,已知正方形ABCD 边长为3,点E 在AB 边上且BE=1,点P ,Q 分别是边BC ,CD 的动点(均不与顶点重合),当四边形AEPQ 的周长取最小值时,四边形AEPQ 的面积是.【方法指引】(1)如图,在直线l 上找M 、N 两点(M 在左),使得AM+MN+NB 最小,且MN=d 。

方法:将点A 向右平移d 个单位到A ′,作A ′关于直线l 的对称点A",连接A"B 交直线l 于点N ,将点N 向左平移d 个单位到M ,点M 、N 即为所求,此时AM+MN+NB 最小为A"B 。

(2)如图,1l ∥2l ,1l ,2l 之间距离为d ,在1l ,2l 分别找M 、N 两点,使得MN ⊥1l ,且AM+MN+NB 最小。

方法:将点A 向下平移d 个单位到A ′,连接A ′B 交直线2l 于点N ,将点N 向上平移d 个单位到M ,点M ,N 即为所求,AM+MN+NB 的最小值为A ′B+d 。

(3)如图,点P ,Q 在∠AOB ,分别在OA ,OB 上找点C ,点D ,使四边形PCDQ 的周长最小.方法:分别作P,Q关于OA,OB的对称点P′,Q′,连接P′Q′分别交OA,OB与点C,D,则此时四边形PCDQ的周长最小本质为转化思想:(1)化同侧为异侧(对称变换),(2)平移定距离(平移变换),(3)化折线为直线(两点之间线段最短)“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。

【例题精讲】类型一:两定点两动点形成最短路径型例1 如图1,已知A(0, 2)、B(6, 4),E(a,0),F(a+1, 0),求a为何值时,四边形ABFE周长最小?请说明理由.【分析】四边ABFE的四条边中,AB,EF的长度固定,只要AE+BF最小,则四边形周长将取得最小值,将B点向左平移一个单位长(EF的长度),得到点M,再作A关于x轴的对称点A′,连接A′M,可得点E的位置,从而问题得解.类型二:两定点一定角形成最短路径型例2.如图,在∠POQ部有两点M,N,∠MOP=∠NOQ.(1)画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小;(2)直接写出AM+AN与BM+BN的大小关系.【分析】分别作M关于射线OP的对称点M′,点N关于射线OQ的对称点N′,连接N′M,连接M′N,即可得到答案.【专题过关】1.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为 .2, 2.如图,正方形的ABCD的边长为6,E,F是对角线BD上的两个动点,且,EF=2连接CE,CF,则△CEF周长的最小值为.3.在平面直角坐标系中,已知点A(-2,0),点B(0,4),点E(0,1),将△AEO沿x轴向右平移得到△A′E′O′,连接A′B,BE′,则当A′B+BE′取最小值时,点E′的坐标为.4.直线l外有一点D,点D到直线l的距离为5,在△ABC中,∠ABC=90°,AB=6,tan∠CAB=,边AB在直线l上滑动,则四边形ABCD周长的最小值为.5.如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ 最小,此时PA+BQ=.6.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x +c的图象交x轴于另一点B.(1)二次函数的解析式为;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.7.矩形OABC 在直角坐标系中的位置如图所示,A 、C 两点的坐标分别为A (6,0)、C (O ,3),直线y=x 与与BC 边相交于点D .(1)求点D 的坐标;(2)若抛物线y=ax 2+bx 经过D 、A 两点,试确定此抛物线的解析式;(3)在(2)中抛物线的对称轴是否存在点P ,使四边形ABDP 的周长最小,并求出最小值;8. 如图,抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C ,点O 为坐标原点,点D 为抛物线的顶点,点E 在抛物线上,点F 在x 轴上,四边形OCEF 为矩形,且OF =2,EF =3.(1)求抛物线的解析式;(2)连接CB 交EF 于点M ,连接AM 交OC 于点R ,连接AC ,求△ACR 的周长;(3)设G (4,-5)在该抛物线上,P 是y 轴上一动点,过点P 作PH ⊥EF 于点H ,连接AP ,GH ,问AP +PH +HG 是否有最小值?如果有,求出点P 的坐标;如果没有,请说明理由.10. 已知,如图,二次函数()2230y ax ax a a =+-≠的图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线l :333y x =+对称. (1)求A ,B 两点坐标,并证明点A 在直线l 上;(2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M ,N 分别为直线AH 和直线l 上的两个动点,连接HN ,NM ,MK ,求HN+NM+MK 和的最小值.10(备用).在平面直角坐标系中,已知抛物线y =ax 2+bx +c 经过点A (-3,0)、B (0,3)、C (1,0)三点.(1)求抛物线的解析式和它的顶点坐标;(2)若点P 、Q 分别是抛物线的对称轴l 上两动点,且纵坐标分别为m ,m +2,当四边形CBQP 周长最小时,求出此时点P 、Q 的坐标以及四边形CBQP 周长的最小值.备用图答案:例1 .在四边形ABEF 中,AB ,EF 为定值,求AE +BF 的最小值,先把这两条线段经过平移,使得两条线段有公共端点.如图6-2,将线段BF 向左平移两个单位,得到线段ME .如图6-3,作点A 关于x 轴的对称点A ′,MA ′与x 轴的交点E ,满足AE +ME 最小. 由△A ′OE ∽△BHF ,得'OE HF OA HB =.解方程6(2)24a a -+=,得43a =.例2.(1)图略,点A ,B 即为所求.画法:①作点M 关于射线OP 的对称点M ′;②连接M ′N 交OP 于点A ;③作点N 关于射线OQ 的对称点N ′;④连接N ′M 交OQ 于点B.(2)AM +AN =BM +BN.【专题过关】1.80°.2.2254 .3.(,1). 4.18 .5. 4 .作PE ⊥l 1于E 交l 2于F ,在PF 上截取PC=8,连接QC 交l 2于B ,作BA ⊥l 1于A ,此时PA+AB+BQ 最短.作QD ⊥PF 于D .在Rt △PQD 中,∵∠D=90°,PQ=4,PD=18, ∴DQ==,∵AB=PC=8,AB ∥PC ,∴四边形ABCP 是平行四边形,∴PA=BC ,∴PA+BQ=CB+BQ=QC===4 .6.(1)y =-x 2+4x +5;(2)如图①,图①∵点B是二次函数的图象与x轴的交点,∴由二次函数的解析式为y=-x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴505k bb+=⎧⎨=⎩,解得15kb=-⎧⎨=⎩,∴直线BC解析式为y=-x+5,设ND的长为d,N点的横坐标为n,则N点的坐标为(n,-n+5),D点的坐标为(n,-n2+4n+5),则d=|-n2+4n+5-(-n+5)| . 由题意可知:-n2+4n+5>-n+5,∴d=-n2+4n+5-(-n+5)=-n2+5n=-(n-52)2+254,∴当n=52时,线段ND长度的最大值是25 4;(3)∵点M(4,m)在抛物线y=-x2+4x+5上,∴m=5,∴M(4,5).∵抛物线y=-x2+4x+5=-(x-2)2+9,∴顶点坐标为H(2,9),如图②,作点H(2,9)关于y轴的对称点H1,则点H1的坐标为H1(-2,9);作点M(4,5)关于x轴的对称点M1,则点M1的坐标为M1(4,-5),连接H1M1分别交x轴于点F,y轴于点E,∴H1M1+HM的长度是四边形HEFM的最小周长,则点F,E即为所求的点.图②设直线H1M 1的函数解析式为y=mx +n ,∵直线H1M1过点H1(-2,9),M1(4,-5),∴9254m nm n=-+⎧⎨-=+⎩,解得73133mn⎧=-⎪⎪⎨⎪=⎪⎩,∴y=-73x+133.∴当x=0时,y=133,即点E坐标为(0,133);当y=0时,x=137,即点F坐标为(137,0) .故所求点F,E的坐标分别为(137,0),(0,133).7.(1)由题知,直线y=x与BC交于点D(x,3).把y=3代入y=x中得,x=4,∴D(4,3);(2)抛物线y=ax2+bx经过D(4,3)、A(6,0)两点,把x=4,y=3;x=6,y=0,分别代入y=ax2+bx中,得解得∴抛物线的解析式为y=﹣x2+x;(3)如图1:作D(4,3)点关于对称轴x=3的对称点E(2,3),连接AE交对称轴于点P,直线AE的解析式为y=kx+b,图象经过点A,点E,得解得,直线AE的解析式为y=﹣x+. 当x=3时,y=﹣×3+,即P(3,).四边形ABDP周长的最小值=AB+DB+DP+AP=AB+DB+A E=3+2+=3+2+5=10.8. 如图,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求抛物线的解析式;(2)连接CB交EF于点M,连接AM交OC于点R,连接AC,求△ACR的周长;(3)设G(4,-5)在该抛物线上,P是y轴上一动点,过点P作PH⊥EF于点H,连接AP,GH,问AP+PH+HG是否有最小值?如果有,求出点P的坐标;如果没有,请说明理由.解:(1)∵四边形OCEF为矩形,OF=2,EF=3,∴C点坐标为(0,3),E点坐标为(2,3).将C、E点坐标代入抛物线解析式y=-x2+bx+c得:解得∴抛物线的解析式为:y=-x2+2x+3;(2)由(1)得y=-x2+2x+3,令y=0,得-x2+2x+3=0.解得x1=-1,x2=3.∴A(-1,0),B(3,0) .∵AO=1,CO=3,在Rt△AOC中,AC==.∵CO=BO=3,∴∠OBC=∠OCB=45°.∴FM=BF=1.∵RO∥MF,∠RAO=∠MAF,∴△ARO∽△AMF.∴,即=.解得RO=.∴CR=OC-OR=3-=,AR===,∴△ACR的周长为:AC+CR+AR=++=;(3)如解图①,取OF中点A′,连接A′G交直线EF的延长线于点H,过点H作HP′⊥y 轴于点P′,连接AP′.图①则当P在P′处时,使AP+PH+HG最小,∵A′为OF中点,∴A′坐标为(1,0) . 设直线A′G的解析式为y=kx+a,将点G(4,-5),A′(1,0)分别代入,得解得∴直线A′G的解析式为:y=-x+.令x=2,得y=-+=-,∴点H的坐标为(2,-) .∴符合题意的点P的坐标为(0,-).9. (1)依题意,得ax2+2ax-3a=0(a≠0),解得x1=﹣3,x2=1,∵B点在A点右侧,∴A点坐标为(﹣3,0),B点坐标为(1,0)证明:∵直线l:333y x=+,当x=﹣3时,3-33y=⨯+(3)=0,∴点A在直线l上.(2)∵点H、B关于过A点的直线l:333y x=+对称,∴AH=AB=4.过顶点H作HC⊥AB交AB于C点,则AC=AB=2,HC=2. ∴顶点H(-1,2),代入二次函数解析式,解得a=-.∴二次函数解析式为2-3333-+22y x x =; (3)直线AH 的解析式为=333y x +.直线BK 的解析式为=33y x -,由3=33= 33y x y x ⎧+⎪⎨⎪-⎩ ,解得=3=23 x y ⎧⎪⎨⎪⎩,即()323K ,,则BK =4,∵点H 、B 关于直线AK 对称,()323K ,,∴HN +MN 的最小值是MB .过K 作KD ⊥x 轴于点D ,作点K 关于直线AH 的对称点Q ,连接QK ,交直线AH 于点E ,==23KD KE ,则QM =MK ,==23QE EK ,AE ⊥QK , ∴根据两点之间线段最短得出BM +MK 的最小值是BQ ,即BQ 的长是HN +NM +MK 的最小值,∵BK ∥AH ,∴∠BKQ =∠HEQ =90°.由勾股定理得()2222423238QB BK QK =+=++=,∴HN +NM +MK 的最小值为8.(备用)9.(1)将A ,B ,C 的坐标代入函数解析式,得,解得 ∴ 抛物线的解析式为y =-x 2-2x +3=-(x +1)2+4,即顶点坐标为(-1,4);(2)如解图②,将B 点向下平移两个单位,得D 点,连接AD 交对称轴于点P ,作BQ ∥PD 交对称轴于Q 点,∵PQ ∥BD ,BQ ∥PD ,∴四边形BDPQ 是平行四边形.∴BQ =PD ,PQ =BD =2.∴BQ +PC =PD +AP =AD .由勾股定理,得AD ===,BC ===. ∴四边形CBQP 周长的最小值为BC +BQ +PQ +PC =BC +PQ +(BQ +PC )=BC +PQ +AD=+2+=2+2.设AD 的解析式为y =kx +b ,将A ,D 点坐标代入得,301k b b -+=⎧⎨=⎩,解得131k b ⎧=⎪⎨⎪=⎩,∴直线AD 的解析式为y =x +1. 当x =-1时,y =,即P (-1,) .由|PQ |=2,且Q 点纵坐标大于P 点纵坐标得Q (-1,),故当四边形CBQP 周长最小时,点P 的坐标为(-1,),点Q 的坐标为(-1,),四边形CBQP 周长的最小值是2+2.。

13.4.最短路径(2)—造桥选址问题电子教案

13.4.最短路径(2)—造桥选址问题电子教案

13.4.最短路径(2)—
造桥选址问题
精品资料
仅供学习与交流,如有侵权请联系网站删除 谢谢2
13.4造桥选址问题
一.学习目标:
1、能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.
2、在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想. 二.重点难点:
学习重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题. 学习难点:如何利用轴对称将最短路径问题转化为线段和最小问题. 三.合作探究:(同学合作,教师引导) 1.温故知新:
前面我们研究过最短路径问题,求最短路径的依据有:
(1) . (2) . 2.探究新知: 问题2 造桥选址问题
如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN.桥建在何处才能使从A 到B 的路径AMNB 最短?(假定河的两岸是平行的直线,桥要与河垂直)
思维分析:
1.如右图假定任选位置造桥MN,连接AM 和BN,从A 到B 的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?
2.利用上面的“求最短路径的依据”解决问题:我们遇到了什么障碍呢?
四.感悟与反思:
A ·
· B
A ·
· B。

13.4 课题学习 造桥选址问题

13.4 课题学习 造桥选址问题

学习要求: 1.独立思考 2.小组交流 3.评价
Ma b
N B
分析:
A
A'
Ma
A
C
l
bNLeabharlann BB如左图,如果将点A沿与河岸垂直的方向平移到点 A′,使AA′等于河宽,则AA′=MN,AM=A′N,问题转 化为:当点N在直线b的什么位置时,A′N+NB最小?
参考右图,利用“两点之间,线段最短”可以解决.
B
∴AM+MN+BN=AA′+A′B, AM′+M′N′+BN′=AA′+A′N′+BN′.
在△A′N′B中,由线段公理知A′N′+BN′ >A′B,
∴AM′ +M′N′ +BN′ > AM+MN+BN.
问题2 归纳
解决实 际问题
A
A'
M
a
b
N
B
抽象为数学问题 用旧知解决新知
A
Ma Nb
B
联想旧知
问题2
(造桥选址问题)如图,A和B两地在同一条河的两岸, 现要在河上造一座桥MN.桥造在何处可使从A到B的路径 AMNB最短?(假定河的两岸是平行的直线,桥要与河垂 直.)
思考:
你能把这个问题转化
为数学问题吗?
探究合作:
1.要求A到B的路径AMNB最短就是 求哪三条线段的和的最小值? 2.这三条线段中,哪一条的长度是 A 一定的?所以求这三条线段和的最 小值就是哪两条线段和的最小值? 3.此时能否直接连接AB?如果直接 连接AB与直线a和直线b的交点满足 题意吗? 4.我们能不能把这里的两条直线变 成一条直线,从而转化为前一次课 所学的知识?

最短路径(将军饮马+造桥选址)

最短路径(将军饮马+造桥选址)

为AM+MN+NP+P
B
Q+QB.
11/24/2019
思维方法二
沿垂直于第一条河岸方
A
向平移A点至A1 点,沿 A1
垂直于第二条河岸方向平移
B点至B1点,连接A1B1
M
分别交A、B的对岸于N、P 两点,建桥MN和PQ.
N P
最短路径 AM+MN+NP+PQ+QB转化为
AA1+A1B1+BB1.
Q B
M N P Q
B
平移的方法有三种:两个桥长都平移 到A点处、都平移到B点处、MN平移 到A点处,PQ平移到B点处
11/24/2019
思维方法一
1、沿垂直于第一条河岸的方向平移A点至 AA1使AA1=MN,此时问题转化为问题基本题 型两点(A1、B点)和一条河建桥(PQ)
A A1
B
11/24/2019
最短路径 问题
将军饮马 造桥选址
问题
问题
郧西县河夹中学
段廉洁
最短路径问题
①垂线段最短。
B L
A
②两点之间,线段最短。
A L
C B
问题1 如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马
人到河边的什么地方饮马,可使所走的路径最短?
A C
B
L
两种情形
① 点A,B分别是直线l异 侧的两个点
a
A
M
b
N
B
解决问题 2
① 作图
A A′
M N
a b
B
② 证明
A A′
a
M′
b
M
N′
N
B

人教版2020八年级数学上册 专题突破讲练 解密最短距离之建桥选址试题 (新版)青岛版

人教版2020八年级数学上册 专题突破讲练 解密最短距离之建桥选址试题 (新版)青岛版

解密最短距离之建桥选址一、解题依据1. 两点间线段最短。

2. 三角形的三边关系(1)三角形三边关系定理:三角形任何两边的和大于第三边; (2)三角形三边关系定理的推论:三角形任何两边之差小于第三边。

3. 勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方。

二、基本模型定点在两侧的动线段问题(建桥问题)如图所示,A 、B 两村庄位于一条河的两岸。

假定河的两岸笔直且平行。

问:应把桥建在什么位置,才能使由A 村经过这座桥到B 村的路程最短?答案:如右下图。

说明:这种问题首先要把桥的长度平移出来(作CD B B ='),连接B ',C 两点交河流两岸两个点,此时一定要在C 处建桥,才能得到最短路程。

(即:平行四边形要在B A '的同侧。

)例题1 如图,A 和B 两地之间有两条河,现要在两条河上各造一座桥MN 和PQ 。

桥分别建在何处才能使从A 到B 的路径最短?(假定河的两岸是平行的直线,桥要与河岸垂直)A解析:按照垂直河流的方向,先把两桥的长度移至端点,把可变化的路径连接到一起,利用两点间线段最短就可以确定两桥的位置。

答案:如图。

M NP QA2A1A 或NM P QA1A或NMB 2B 1P QAB点拨:本题的关键还是在于两点之间线段最短,要注意找到线段与河的交点后,选择正确的建桥位置。

总结技巧建桥选址问题最少由三条线段组成,其中桥的长度是固定不变的,而且桥在整个路径的中间,另外两条线段不固定,所以我们要先把桥的长度平移出来,利用平行四边形的性质,使变化的线段连接在一起,然后利用两点间线段最短或三角形三边关系确定桥的位置。

例题 如图,荆州古城河在'CC 处直角转弯,河宽均为5米,从A 处到达B 处,须经两座桥:'DD ,'EE (桥宽不计),设护城河以及两桥都是东西、南北方向的,A ,B 在东西方向上相距65米,南北方向上相距85米,恰当地架桥可使''ADD E EB 的路程最短,这个最短路程是多少米?解析:先分别从A 、B 两点把两条桥的长平移出来,把平移后的两个点连接,就可以确定桥的位置。

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。

由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。

余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。

已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。

即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。

(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。

上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。

类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。

(一)直接包含基本图形例 1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B 重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。

(三)动线(定点)位置需变换线段变换的方法:(1)等值变换:翻折、平移;(2)比例变换:三角、相似。

最短路径(几何最值)问题难点突破——中考数学压轴题

最短路径(几何最值)问题难点突破——中考数学压轴题

最短路径(几何最值)问题难点突破——中考数学压轴题
以下是人教版八年级上的教材截图:
问题简化如下所示:
如图,A和B两地在一条河的两岸,现要在河上建一座桥CD,桥造在何处才能使从A到B的路径ACDB最短?(假设河的两岸是平行的直线,桥要与河垂直)
应该怎么做呢?请看下面的视频演示:
但是一般中考题中会换一种说法。

例如:
②如图所示,长度不变的线段CD在直线l上运动,在直线l上找到使得AC+BD最小的CD的位置.分别过点A,D作AA′∥CD,DA′∥AC,AA′与DA′交于点A′,再作点B关于直线l的对称点B′,连接A′B′与直线l交于点D′,此时点D′即为所求.
总结一下:
过两动点与一个定点构造平行四边形。

把两条分开的线段其中一条进行平移,使他们有公共点,再利用将军饮马模型即可解决。

【典型例题】
1.(14海南)如图,对称轴为直线x=2的抛物线经过A(-1,
0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;
(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;
(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.。

中考压轴题突破:几何最值问题(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。

由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。

余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。

已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。

即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。

(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。

上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。

类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。

(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。

(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。

2020年中考数学专题突破专题十一:最短路径——造桥选址问题

2020年中考数学专题突破专题十一:最短路径——造桥选址问题
专题十一:最短路径——造桥选址问题
【导例引入】
导例:如图 1,已知正方形 ABCD 边长为 3,点 E 在 AB 边上且 BE=1,点 P,Q 分别是边 BC,CD 的动点(均不与顶点重合),当四边形 AEPQ 的周长取最小值时,四边形 AEPQ 的面积 是.
【方法指引】
(1)如图,在直线 l 上找 M、N 两点(M 在左),使得 A M+MN+NB 最小,且 MN= d 。
7.矩形 OABC 在直角坐标系 中的位置如图所示,A、C 两点的坐标分别为 A(6,0)、C (O,3),直线 y= x 与与 BC 边相交于点 D.
(1)求点 D 的坐标; (2)若抛物线 பைடு நூலகம்=ax2+bx 经过 D、A 两点,试确定此抛物线的解析式; (3)在(2)中抛物线的对称轴是否存在点 P,使四边形 ABDP 的周长最小,并求出最 小值;
【例题精讲】
类型一:两定点两动点形成最短路径型 例 1 如图 1,已知 A(0, 2)、B(6, 4),E(a, 0),F(a+1, 0),求 a 为何 值时,四边 形 ABFE 周长最小请说明理由.
【分析】四边 ABFE 的四条边中,AB,EF 的长度固定,只要 AE+BF 最小,则四边形周长 将取得最小值,将 B 点向左平移一个单位长(EF 的长度),得到点 M,再作 A 关于 x 轴的对 称点 A′,连接 A′M,可得点 E 的位置,从而问题得解.
连接 CE,CF,则 △CEF 周长的最小值为

3.在平面直角坐标系中,已知点 A(-2,0),点 B(0,4),点 E(0,1),将
△AEO 沿 x 轴向右平移得到△A′E′O′,连接 A′B,BE′,则当 A′B+BE′取最小

2020 中考数学 造桥选址问题

2020 中考数学 造桥选址问题

使用日期:2020年 月 日 2020 中考 数学 培优压轴题训练 第 讲 “造桥选址”最值问题模型分析:“造桥选址”最短问题情景模式 作图方法 证明过程题目:已知A ,B 两村,问桥PQ 建在河岸的何处,使得AP+PQ+QB 最短?(要求桥PQ ⊥河岸)原型变式①考试时例1 已知A (-1,0),C (0,3),DE 在直线x=1上运动,DE=1,是否存在D ,E 两点,使得四边形AEDC 的周长最小?若存在,求出这个最小值;若不存在,请说明理由.河河河河例2 (中考题-删减) 如图,已知点A (-4,8)和点B (2,n )在抛物线2ax y =上. 平移抛物线,记平移后A 的对应点为A ',点B 的对应点为 B ',点C (-2,0)和点D (-4,0)是x 轴上的两个定点. 当抛物线向左或向右平移时,是否存在某个位置,使四边形CD B A '' 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由。

例3 如图,对称轴为直线x=2的抛物线经过点A(-1,0),C(0,5)两点,与x轴另一交点为B,已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小.【巩固练习】1.(2010 天津)在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.2.(2017•深圳二模)如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0),B(1,0),与y轴的交点为D,对称轴与抛物线交于点C,与x轴负半轴交于点H.(1)求抛物线的表达式;(2)点E,F分别是抛物线对称轴CH上的两个动点(点E在点F上方),且EF=1,求使四边形BDEF的周长最小时的点E,F坐标及最小值;(3)如图2,点P为对称轴左侧,x轴上方的抛物线上的点,PQ⊥AC于点Q,是否存在这样的点P使△PCQ 与△ACH相似?若存在请求出点P的坐标,若不存在请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图②
设直线 H1M1 的函 数解析式为 y=mx+n,∵直线 H1M1 过点 H1(-2,9),M1(4,-5),

9 2m 5 4m
n n
,解得
m
n
7 3
13 3
,∴y=-
7 3
x+ 13 3
.
∴当 x=0 时,y= 13 ,即点 E 坐标为(0, 13 );当 y=0 时,x= 13 ,即点 F 坐标为( 13 ,
∴DQ=
=
,∵AB=PC=8,AB∥PC,
∴四边形 ABCP 是平行四边形,∴PA=BC,
∴PA+BQ=CB+BQ=QC=
=
=4

6.(1)y=-x2+4x+5; (2)如图①,
图①
∵点 B 是二次函数的图象与 x 轴的交点,
∴由二次函数的解析式为 y=-x2+4x+5 得,点 B 的坐标 B(5,0),
连接 CE,CF,则 △CEF 周长的最小值为

3.在平面直角坐标系中,已知点 A(-2,0),点 B(0,4),点 E(0,1),将△AEO
沿 x 轴向右平移得到△A′E′O′,连接 A′B,BE′,则当 A′B+BE′取最小值时,
点 E′的坐标为
.
4.直线 l 外有一点 D,点 D 到直线 l 的距离为 5,在△ABC 中,∠ABC=90°,AB=6,tan∠CAB= ,
由题意可知:-n2+4n+5>-n+5,
∴d=-n2+4n+5-(-n+5)=-n2+5n=-(n- 5 )2+ 25 ,∴当 n= 5 时,线段 ND 长度
24
2
的最大值是 25 ; 4
(3)∵点 M(4,m)在抛物线 y=-x2+4x+5 上,∴m=5,∴M(4,5).
∵抛物线 y=-x2+4x+5=-(x-2)2+9,∴顶点坐标为 H(2,9),
6.如图,直线 y=5x+5 交 x 轴于点 A,交 y 轴于点 C,过 A,C 两点的二次函数 y=ax2+4x
+c 的图象交 x 轴于另一点 B.
(1)二次函数的解析式为

(2)连接 BC,点 N 是线段 BC 上的动点,作 ND⊥x 轴交二次函数的图象于点 D,求线段 ND
长度的最大值;
(3)若点 H 为二次函数 y=ax2+4x+c 图象的顶点,点 M(4,m)是该二次函数图象上一点,在
【专题过关】
°.2. 4 5 2 2 . 3.( ,1). 4.18 .
5. 4

作 PE⊥l1 于 E 交 l2 于 F,在 PF 上截取 PC=8,连接 QC 交 l2 于 B,作 BA⊥l1 于 A,此时 PA+AB+BQ 最短.作 QD⊥PF 于 D. 在 Rt△PQD 中,∵∠D=90°,PQ=4 ,PD=18,
方法:分别作 P,Q 关于 OA,OB 的对称点 P′,Q′,连接 P′Q′分别交 OA,OB 与点 C, D,则此时四边形 PCDQ 的周长最小 本质为转化思想: (1)化同侧为异侧(对称变换), (2)平移定距离(平移变换), (3)化折线为直线(两点之间线段最短) “将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等 一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和 竞赛中经常出现,而且大多以压轴题的形式出现。
10(备用).在平面直角坐标系中,已知抛物线 y=ax2+bx+c 经过点 A(-3,0)、B(0,3)、C(1, 0)三点. (1)求抛物线的解析式和它的顶点坐标; (2)若点 P、Q 分别是抛物线的对称轴 l 上两动点,且纵坐标分别为 m,m+2,当四边形 CBQP 周长最小时,求出此时点 P、Q 的坐标以及四边形 CBQP 周长的最小值.
专题十一:最短路径——造桥选址问题
【导例引入】
导例:如图 1,已知正方形 ABCD 边长为 3,点 E 在 AB 边上且 BE=1,点 P,Q 分别是边 BC, CD 的动点(均不与顶点重合),当四边形 AEPQ 的周长取最小值时,四边形 AEPQ 的面积 是.
【方法指引】
(1)如图,在直线 l 上找 M、N 两点(M 在左),使得 A M+MN+NB 最小,且 MN= d 。
解得
∴抛物线的解析式为 y=﹣ x2+ x;
(3)如图 1:作 D(4,3)点关于对称轴 x=3 的对称点 E(2,3),连接 AE 交对称轴于点 P,
直线 AE 的解析式为 y=kx+b,图象经过点 A,点 E,得
解得
,直线 AE 的解析式为 y=﹣ x+ . 当 x=3 时,y=﹣ ×3+ ,即型 例 1 如图 1,已知 A(0, 2)、B(6, 4),E(a, 0),F(a+1, 0),求 a 为何 值时,四边形 ABFE 周长 最小请说明理由.
【分析】四边 ABFE 的四条边中,AB,EF 的长度固定,只要 AE+BF 最小,则四边形周长将 取得最小值,将 B 点向左平移一个单位长(EF 的长度),得到点 M,再作 A 关于 x 轴的对称 点 A′,连接 A′M,可得点 E 的位置,从而问题得解. 类型二:两定点一定角形成最短路径型 例 2.如图,在∠ POQ 内部有两点 M,N,∠MOP=∠ NOQ. (1)画图并简要说明画法:在射线 OP 上取一点 A,使点 A 到点 M 和点 N 的距离和最小;在 射线 OQ 上取一点 B,使点 B 到点 M 和点 N 的距离和最小; (2)直接写出 AM+AN 与 BM+BN 的大小关系.
备用图
答案:
例 1 .在四边形 ABEF 中,AB,EF 为定值,求 AE+BF 的最小值,先把这两条线段经过平移,
使得两条线段有公共端点.
如图 6-2,将线段 BF 向左平移两个单位,得到线段 ME.
如图 6-3,作点 A 关于 x 轴的对称点 A′,MA′与 x 轴的交点 E,满足 AE+ME 最小.
3
3
7
7
0) .故所求点 F,E 的坐标分别为( 13 ,0),(0, 13 ).
7
3
7.(1)由题知,直线 y= x 与 BC 交于点 D(x,3).
把 y=3 代入 y= x 中得,x=4,∴D(4 ,3); (2)抛物线 y=ax2+bx 经过 D(4,3)、A(6,0)两点, 把 x=4,y=3;x=6,y=0,分别代入 y=ax2+bx 中,得
由△A′OE∽△BHF,得 OE HF .解方程 a 6 (a 2) ,得 a 4 .
OA' HB
2
4
3
例 2.(1)图略,点 A,B 即为所求.画法:①作点 M 关于射线 OP 的对称点 M′;②连接 M′N 交 OP 于点 A;③作点 N 关于射线 OQ 的对称点 N′;④连接 N′M 交 OQ 于点 B. (2)AM+AN=BM+BN.
设直线 BC 解析式为 y=kx+b,∵直线 BC 过点 B(5,0),C(0,5),

5k b b 5
0
,解得
k b
1 5
,∴直线
BC
解析式为
y=-x+5,
设 ND 的长为 d,N 点的横坐标为 n,则 N 点的坐标为(n,-n+5),
D 点的坐标为(n,-n2+4n+5),则 d=|-n2+4n+5-(-n+5)| .
四边形 ABDP 周长的最小值=AB+DB+DP+AP=AB+DB+A E=3+2+
=3+2+5=10.
8. 如图,抛物线 y=-x2+bx+c 与 x 轴交于 A,B 两点,与 y 轴交于点 C,点 O 为坐标原点, 点 D 为抛物线的顶点,点 E 在抛物线上,点 F 在 x 轴上,四边形 OCEF 为矩形,且 OF=2, EF=3. (1)求抛物线的解析式; (2)连接 CB 交 EF 于点 M,连接 AM 交 OC 于点 R,连接 AC,求△ACR 的周长;
AM+MN+NB 最小。
方法:将点 A 向下平移 d 个单位到 A′,连接 A′B 交直线 l2 于点 N,将点 N 向上平移 d 个 单位到 M,点 M,N 即为所求,AM+MN+NB 的最小值为 A′B+ d 。
(3)如图,点 P,Q 在∠AOB 内,分别在 OA,OB 上找点 C,点 D,使四边形 PCDQ 的周长 最小.
x 轴,y 轴上分别找点 F,E,使四边形 HEFM 的周长最小,求出点 F,E 的坐标.
7.矩形 OABC 在直角坐标系 中的位置如图所示,A、C 两点的坐标分别为 A(6,0)、C(O, 3),直线 y= x 与与 BC 边相交于点 D. (1)求点 D 的坐标; (2)若抛物线 y=ax2+bx 经过 D、A 两点,试确定此抛物线的解析式; (3)在(2)中抛物线的对称轴是否存在点 P,使四边形 ABDP 的周长最小,并求出最小值;
如图②,作点 H(2,9)关于 y 轴的对称点 H1,则点 H1 的坐标为 H1(-2,9);作点 M(4, 5)关于 x 轴的对称点 M1,则点 M1 的坐标为 M1(4,-5),连接 H1M1 分别交 x 轴于点 F, y 轴于点 E,∴H1M1+HM 的长度是四边形 HEFM 的最小周长,则点 F,E 即为所求的点.
8. 如图,抛物线 y=-x2+bx+c 与 x 轴交于 A,B 两点,与 y 轴交于点 C,点 O 为坐标原点, 点 D 为抛物线的顶点,点 E 在抛物线上,点 F 在 x 轴上,四边形 OCEF 为矩形,且 OF=2, EF=3. (1)求抛物线的解析式; (2)连接 CB 交 EF 于点 M,连接 AM 交 OC 于点 R,连接 AC,求△ACR 的周长; (3)设 G(4,-5)在该抛物线上,P 是 y 轴上一动点,过点 P 作 PH⊥EF 于点 H,连接 AP,GH, 问 AP+PH+HG 是否有最小值如果有,求出点 P 的坐标;如果没有,请说明理由.
相关文档
最新文档