数学物理方法第四版第五章习题答案
数学物理方法习题解答(完整版)
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方法习题解答(完整版)
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方法(5)答案
数学物理方法第五次作业一、单项选择题【 】1、函数()f z 以b 为中心的罗朗(Laurent )展开的系数公式为11().2()k k f A C d i b γζζπζ+=-⎰ ()().!k k f b B C k = 1().2k f C C d i b γζζπζ=-⎰ 1!().2()k k k f D C d i b γζζπζ+=-⎰ 【 】2、本征值问题()()0,(0)0,()0X x X x X X l λ''+===的本征函数是A .cosn x l π B .sin n x l π C .(21)sin 2n x l π- D .(21)cos 2n x lπ- 【 】3、点z =∞是函数cot z 的 A. 解析点 B. 孤立奇点 C. 非孤立奇点 D. 以上都不对【 】4、可以用分离变量法求解定解问题的必要条件是A. 泛定方程和初始条件为齐次B. 泛定方程和边界条件为齐次C. 初始条件和边界条件为齐次D. 泛定方程、初始条件和边界条件为齐次【 】5、设函数()f z 在单连通区域D 内解析,C 为D 内的分段光滑曲线,端点为A 和B ,则积分()C f z dz ⎰A. 与积分路径及端点坐标有关B. 与积分路径有关,但与端点坐标无关C. 与积分路径及端点坐标无关D. 与积分路径无关,但与端点坐标有关【 】6、 条件1z <所确定的是一个A .单连通开区域 B. 复连通开区域 C. 单连通闭区域 D. 复连通闭区域【 】7、条件210<-<z 所确定的是一个A .单连通开区域 B. 复连通开区域 C. 单连通闭区域 D. 复连通闭区域【 】8、积分2||1cos z z z dz ==⎰A .1B .12-C .12D .0 【 】9、函数1()1f z z =-在12z +>内展成1z +的级数为 A .102(1)n n n z ∞+=-+∑ B .101n n z ∞+=∑ C .10(1)2nn n z ∞+=+∑ D .0n n z ∞=∑ 【 】10、点0z =是函数11()sin f z z -⎛⎫= ⎪⎝⎭的A. 解析点B. 孤立奇点C. 非孤立奇点D. 以上都不对二、填空题1.复数231i -的三角形式为,其指数形式为.2.复数5cos 5sin ππi +的三角形式为,其指数形式为.3.的实部u =,虚部v =,模r =,幅角θ=.4. 复数22i +-的实部=u ,虚部=v ,模=r ,幅角 =θ .5. 014=--i z 的解为.6.积分dz zz cos ==⎰1. 7. 积分⎰==++1222z z z dz . 8. 积分⎰==13cos z zdz z . 9. 积分=⎰b a dz z z 2cos .10. 积分=⎰10sin zdz z . 11.积分=⎰202sin πdz z z 12.幂级数n n n z ∑∞=121的收敛半径为. 13.幂级数∑∞=-1)1(n nn z 的收敛半径为. 14.幂级数211-1n n z n ∞=∑()的收敛半径为.15.函数zz f -=11)(在2|1|<+z 上展成)1(+z 的泰勒级数为 . 16. 0=z 为3cos 1)(z z z f -=的.(奇点的类型,极点的阶数) 17. 0=z 为3sin )(z z z f =的.(奇点的类型,极点的阶数)。
数学物理方法第五章
第五章留数定理习题课
本章内容小结 习题求解与讨论 一、计算留数 二、用留数定理计算围道积分 三、计算实积分 四、计算多值函数的积分 五、其它
Wuhan University
一、计算留数
1、公式:
第五章留数 定理习题课
⎧C −1 ⎧− C −1 ⎪ ⎪ resf (bk ) = ⎨ 1 resf( ∞ ) = ⎨ 1 ⎪ 2πi ∫lk f ( z ) dz ⎪ 2πi ∫ l f ( z ) dz ⎩ ⎩ 1 d n −1 resf (bk ) = ⋅ n −1 [( z − bk ) n f ( z )] z = bk , bk − n阶极点 ( n − 1 ! dz ) n = 1 ⎧ lim [( z − b ) f ( z )] k z → bk ⎪ = ⎨ ϕ (bk ) ⎪ψ ' (b ) k ⎩
答:1
1 答: 2
1 答:−1) n n! (
1 5、 res [ f ( z ⋅ sin ), 0 ] = ? 1 z
res [ f ( z ⋅ sin
Wuhan University
答:1 答:0 (本性) 答:0
), ∞ ] = ? (可去) z
一、计算留数
(2) res [
法一:
第五章留数 定理习题课
−3 −3
第五章留数 定理习题课
(2) res [
e z −1
,0] = ? (2阶极点)
1 答: 2
z z (−3)(−3 − 1) z 2 z 4 = z −3 [1 + (−3)(− + + L) + (− + + L) 2 + L] 3! 5! 2! 3! 5! 1 2 17 4 1 −1 17 −3 −3 −3 = z [1 + z − z + L)→ sin z = z + z − z + O( z 3 ) 2 120 2 120
数学物理方法梁昆淼答案
数学物理方法梁昆淼答案【篇一:第五章傅里叶变换数学物理方法梁昆淼】>?t1.函数 f(t)???0?12. 函数 f(t)???03.设(|t|?1)(|t|?1)的傅里叶变换为2(?cos??sin?/?)/(??)(|t|?1)(|t|?1)的傅里叶变换为f(?)?2sin?/??。
的傅立叶变换像函数,的傅立叶变换像函数为 _______________________ 。
4.?2012?2011excosx??(x??) dx?[sinx??(x??e??。
5. ?12009?6 ?2008) ]dx? 6.?xsinx?(x? ?1?3) dx?。
7. ?xsinx?(x?) dx? ?128.?[(x2?1)tan(sinx)??(x?)] dx? 。
?201038?911??9.?x3 ?(x?3) dx?-27 。
?tf(t)?10.函数 ??0(|t|?1)(|t|?1)的傅里叶变换为2(?cos??sin?/?)/(??)。
(0?t?1)?1?(?1?t?0)的傅里叶变换为。
11. f(t)???1?0(|t|?1)?12. 在(??,?)这个周期上,f(x)?x。
其傅里叶级数展开为?k?1?2sinkx k13.当0?x?2时,f(x)??1;当?2?x?0时,f(x)?1;当|x|?2时,f(x)?0。
则函数的f(x)傅里叶变换为b(?)?2??(1?cos2?)1?14已知函数f(x)的傅里叶变换为f(?),试证明f(ax)的傅里叶变换为f()。
af[f(ax)]?1?2????f(ax)e?i?xdx【令x?y/a】?1?2????f(y)e?i?aydya【令y?x】?1?f(x) ?i?ax2????aedx?1?af(a)a---(2分) ---(2分) ---(2分) ---(2分) 证明:【篇二:8000份课程课后习题答案与大家分享~~】> 还有很多,可以去课后答案网(/bbs)查找。
数学物理方法 第5章 傅里叶变换
0 xl l x 0 x l
-l 0
F(x)
l
x
图5.7(a)
1 l 1 l 1 l l a0 F ( x)dx f ( x) xdx l 0 l 0 l 0 2
2 l kx 2 l kx 2 l kx ak F ( x) cos dx f ( x) cos dx x cos dx 0 0 0 l l l l l l
k 1
a0 E (t )dt 2 2
1
0
E0 cost E 0 sin tdt 2
0
E0
E0 a k E0 sin t cos ktdt 0 2
0
[sin(k 1)t sin(k 1)t ]dt
解:
l 2 l kx 2 l kx l bk x sin dx x( ) cos 0 l l l k l 0 k
l 2 l l 2 kx 2l l ( )( 1) k ( ) sin (1) k 1 l k k l 0 k
f ( x)
0
A( ) cosxd
0
B( ) sin xd
(称为傅里叶积分式)
A( )
B( )
1
1
f ( x) cosxdx
f ( x) sin xdx
(称为傅里叶变换式)
在 f (x) 的间断点,傅里叶积分的值
1 [ f ( x 0) f ( x 0)] 2
例4:定义在区间 (0, l ) 上的函数 f ( x) x ,试把它 展开为傅里叶级数。 解:方法一:偶延拓法,所找的周期函数 F (x)为偶 函数,如图5.7(a)所示。
数学物理方法答案(5) 刘连寿
(2) 用 c1 表示 c3k 1
c3k 1 c3k 2 1 c3k 5 3k (3k 1) 3k (3k 1) (3k 2)(3k 3) 1 c1 (3k 1)3k (3k 2)(3k 3) 7 6 4 3
Ck k (k 1) z k 2 Ck 2 (k 2)(k 1) z k
k 2 k 0
这样(2)式可写成
(k 2)(k 1)C
k 0
k 2
k (2k )Ck z 0
由于上式在 z0 的邻域内点点成立,故 z 的同次幂项的系数和为零,即
k 2 k 0
2c2 [( k 2)( k 1)ck 2 ck 1 ]z k 0
k 1
c 2)( k 1)
即 ck
ck 3 k (k 1)
亦即 c3k
c3k 3 3k (3k 1)
(1) 用 c0 表示 c3k
C2 k 2(2k 2) 4k 4 C2 k 2 C2 k 2 2k (2k 1) 2k (2k 1) (4k 4 ) 2(2k 2 2) C2 k 2 2 2k (2k 1) (2k 2)(2k 2 1) (4k 4 )(4k 8 ) C2 k 4 2k (2k 1)(2k 2)(2k 3) (4k 4 )(4k 8 ) (4 )( ) C0 (2k )! (4k 2 )(4k 6 ) (6 )(2 ) C1 (2k 1)!
电磁场与电磁波(第4版)第5章部分习题参考解答-电磁场与电磁波第五章
5.1 在自由空间中,已知电场3(,)10sin() V/m y E z t e t z ωβ=−G G,试求磁场强度。
(,)H z t G解:以余弦为基准,重新写出已知的电场表示式3π(,)10cos( V/m 2y E z t e t z ωβ=−−G G这是一个沿方向传播的均匀平面波的电场,其初相角为z +90−D 。
与之相伴的磁场为300311π(,)(,)10cos(210πcos() 2.65sin() A/m120π2z z y x x H z t e E z t e e t z e t z e t z ωβηηωβωβ=×=×−−=−−−=−−G G G G G G G5.2 理想介质(参数为0μμ=、r 0εεε=、0σ=)中有一均匀平面波沿x 方向传播,已知其电场瞬时值表达式为9(,)377cos(105) V/m y E x t e t x =−G G试求:(1) 该理想介质的相对介电常数;(2) 与(,)E x t G相伴的磁场;(3) 该平面波的平均功率密度。
(,)H x t G 解:(1) 理想介质中的均匀平面波的电场E G应满足波动方程2220EE tμε∂∇−=∂G G据此即可求出欲使给定的E G满足方程所需的媒质参数。
方程中222929425cos(105)y y y y y E E e E e e t x x∂∇=∇==−−∂G G G G 221892237710cos(105)y y y E E e e t t x∂∂==−×−∂∂G G G x = 故得91899425cos(105)[37710cos(105)]0t x t x με−−+×−即18189425251037710με−==×× 故181882r 0025102510(310) 2.25εμε−−×==×××=其实,观察题目给定的电场表达式,可知它表征一个沿x +方向传播的均匀平面波,其相速为98p 10210 m/s 5v k ω===× 而8p 310v ====×故2r 3() 2.252ε==(2) 与电场相伴的磁场E G H G 可由0j E ωμ∇×=−H G G求得。
数学物理方法第五章傅里叶变换
l
l
l
l kx nx
sin cos dx0
l
l
l
l
1 2 dx 2 l
l
l
sin
2 k x dx
l
l
l
cos
2 k x dx
l
l
2、可以由函数的正交性求出傅立叶级数中的系数;
a f 1 l
0 2l l
xdx
a f 1l n l l
xconsxdx
l
(n1,2,3, )
b f 1l n l l
( a k cos
kπx l
b k sin
kπx )
l
k 1
2
2l l
说明 1、三角函数族是两两正交的
l kx
cos d x 0
l
l
(k 0),
l kx
sin d x 0
l
l
l kx nx
cos cos d x 0 (k n)
l
l
l
l kx nx
sin sin dx0 (kn),
f (x)
a
x
l
延拓到(- l,l)后再周期延拓,如图做偶延拓:
f (x)
a
l 0 l
x
所以
1l
x
a
a0
l
a(1
0
l
)dx 2
ak2 l0 la(1x l)co k lx sd x 2(2 4 n a 0 1 )2(k (k 2n )2n1 )
如图做奇延拓: f (x)
a
l
0l
x
2l x kx 2a
An 2cn
A n 称为f ( x)的振幅频谱(简称为频谱).它描述了各次谐波 的振幅随频率变化的分布情况。它清楚地表明了一个非正旋 周期函数包含了哪些频率分量及各分量所占的比重(如振幅 的大小)。因此频谱图在工程技术中应用比较广泛.所谓频谱 图,通常是指频率和振幅的关系图。
《高等数学》第四册(数学物理方法)课后答案
z1
x
z2
z3
.
17.证明:三角形内角和等于
证明:有复数的性质得:
π。
Q α ∈ (0, π ); β ∈ (0, π ); γ ∈ (0, π ); ∴α + β + β ∈ (0,3π );
7.试解方程
w.
i
θ + 2 kπ i ⎛z⎞ z iπ = cos π + sin π = i e = e 4 (k = 0,1, 2,3) ⎜ ⎟ ⎝a⎠ ;所以 a ;
(5). a + bi = (a + bi ) 2 = [ a 2 + b 2 (
1
= [ a 2 + b 2 (cos θ + i sin θ )]2 = (a 2 + b 2 ) 4 (cos z1 =
3.设
解:
1 π π π π 1 5π 5π z1 z2 = [cos( + ) + i sin( + )] = (cos + i sin ); 2 4 6 4 6 2 12 12 z1 π π π π π π = 2[cos( − ) + i sin( − )] = 2(cos + i sin ); z2 4 6 4 6 12 12
4
4
π
i
3π 4
; z3 = ae
; z4 = ae
i
7π 4
.
解:
z −1 < z + 1 ; ( x − 1)2 + y 2 < ( x + 1) 2 + y 2 ; −2 x < 2 x; x > 0; 此图形为 x>0 的区域。
数学物理方法习题解答
第一章 复变函数1.1 复数与复数运算【1】下列式子在复数平面上各具有怎样的意义? 5,arg ,Re ,z a z b αβ<<<<(,,a αβ和b 为实常数)解:射线ϕα=与ϕβ=,直线x a =与x b =所围成的梯形。
7,111z z -≤+解:11111z z z z -≤⇒-≤++,令z x iy =+,则11z z -≤+即()()2222110x y x y x -+≤++⇒≥。
即复数平面的右半平面0x ≥。
【2】将下列复数用代数式,三角式和指数式几种形式表示出来。
3,1+解:代数式即:1z =+;2ρ=,且z 的辐角主值arg 3z π=,因此三角式:2cos2sin33z i ππ=+;指数式:232i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈ 。
7,1i 1i-+解:21i (1i)2i i 1i(1i)(1i)2---===-++-,因此,其代数式:i z =-,三角式:33cos sin22z i ππ=+;指数式:322i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈ 。
【3】计算下列数值。
(a ,b 和ϕ为实常数)2,解:将被开方的i 用指数式表示:22ei k i ππ⎛⎫+ ⎪⎝⎭=,k ∈ 。
那么2322eexp 63i k k i ππππ⎛⎫+ ⎪⎝⎭⎡⎤⎛⎫==+ ⎪⎢⎥⎝⎭⎣⎦,k ∈ 。
7,cos cos 2cos 3cos n ϕϕϕϕ++++ 解:因为,cos R e (1)ik k e k n ϕϕ=≤≤,因此()[]2323cos cos 2cos 3cos R e R e R e R e (1)R e R e 1cos cos(1)sin sin(1)R e 1cos sin 222sin sin cos 222R e 2sin sin 2i i i in i in i i i in i n e eeee e eeeee n i n i n n n i ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++=++++⎡⎤-=++++=⎢⎥-⎣⎦⎧⎫-++-+⎪⎪=⎨⎬--⎪⎪⎩⎭++⎛⎫- ⎪⎝⎭= 222(1)2sin 2R e sin cos 2221(1)sin sin sin sin cos 22222R e sin sin2sin222n i i n i n e i e n n n n e ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++⎡⎤⎢⎥⎢⎥=⎛⎫⎢⎥- ⎪⎢⎥⎝⎭⎣⎦⎛⎫++- ⎪⎝⎭===1.2 复变函数【2】计算下列数值。
数学物理方法课后答案
数学物理方法课后答案【篇一:数学物理方法习题】1、求解定解问题:utt?a2uxx?0,(0?x?1),u|x?0?u|x?l?0,l?n0hx,(0?x?),?ln0?(p-223) ?u|t?0??hl(l?x),(?x?l),?ln0?l???n0u|t?0?0,(0?x?l).2、长为l的弦,两端固定,弦中张力为t,在距一端为x0的一点以力f0把弦拉开,然后撤出这力,求解弦的震动。
[提示:定解问题为 utt?a2uxx?0,(0?x?l),u(0,t)?u(l,t)?0,?f0l?x0x,(0?x?x0), ??tlu(x,0)???f0x0(l?x),(x?x?l),0??tlut|t?0?0.] (p-227)3、求解细杆导热问题,杆长l,两端保持为零度,初始温度分布u|t?0?bx(l?x)/l2。
[定解问题为k?22u?au?0,(a?)(0?x?l),xx?tc???] (p-230)u|x?0?u|x?l?0,??u|t?0?bx(l?x)/l2.???4、求解定解问题??2u?2u2??a?0,0?x?l,t?022??t?x?ux?0?0,ux?l?0. ??3?x?u?u ?asin,?0.?t?0l?tt?0?4、长为l的均匀杆,两端受压从而长度缩为l(1?2?),放手后自由振动,求解杆的这一振动。
[提示:定解问题为?utt?a2uxx?0,(0?x?l),?ux|x?0?ux|x?l?0,??](p-236) ?2u|?2?(?x),t?0?l?ut|t?0?0.??5、长为l的杆,一端固定,另一端受力f0而伸长,求解杆在放手后的振动。
[提示:定解问题为?utt?a2uxx?0,(0?x?l),?u|x?0?0,ux|x?l?0,??] (p-238)x?uxf?0?u(x,0)??0dx??0,?xys?ut|t?0?0.??6、长为l的杆,上端固定在电梯天花板,杆身竖直,下端自由、电梯下降,当速度为v0时突然停止,求解杆的振动。
高等数学第四册(数学物理方法)
第一章 复数与复变函数(1)1.计算)(1)2;i i i i i -=-=-()122(12)(34)(2)5102122.;345(34)(34)591655i i i i i i i i i i i i +-++--+++=+=-=---+-+5551(3).;(1)(2)(3)(13)(3)102i i i i i i i ===------4222(4).(1)[(1)](2)4;i i i -=-=-=-1122())]a bi =+=112224sin )]()(cossin );22i a b i θθθθ=+=++3.设1z=2;z i =试用三角形式表示12z z 及12z z 。
解:121cossin;(cos sin );44266z i z i ππππ=+=+121155[cos()sin()](cos sin );2464621212z z i i ππππππ=+++=+ 122[cos()sin()]2(cos sin );46461212z i i z ππππππ=-+-=+11.设123,,z z z 三点适合条件1230z z z ++=及1231;z z z ===试证明123,,z z z 是一个内接于单位圆z =1的正三角形的顶点。
—证明:1230;z z ++=z 123231;312;;z z z z z z z z z ∴=--=--=--122331;z z z z z z ∴-=-=-123,,z z z ∴所组成的三角形为正三角形。
1231z z z ===123,,z z z ∴为以z 为圆心,1为半径的圆上的三点。
即123z ,z ,z 是内接于单位圆的正三角形。
17.证明:三角形内角和等于π。
证明:有复数的性质得:3213213arg;arg ;arg ;z z z z z z z z z z z z αβγ---===---21z z z z -•-arg(1)2;k αβγπ∴++=-+ (0,);(0,);(0,);απβπγπ∈∈∈ (0,3);αββπ∴++∈0;k ∴=;αβγπ∴++=第一章 复数与复变函数(2)7.试解方程()4400z a a +=>。