2008年-江西省高考数学试卷(理科)
2008年数学(理科)试卷(江西卷)(1)

绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分。
第Ⅰ卷考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上作答。
若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
参考公式如果事件,A B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件,A B ,相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ⋅=⋅ 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 343VR π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k kn k n n P k C p p -=-一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,复数sin 2cos 2z i =+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【解析】D 。
因sin 20,cos 20><所以sin 2cos 2z i =+对应的点在第四象限。
2.定义集合运算:{},,.A B z z xy x A y B *==∈∈设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为A .0B .2C .3D .6 【解析】D 因{0,2,4}A B *=。
3.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是A .1[,3]2B .10[2,]3C .510[,]23D .10[3,]3【解析】B. (换元法)令()t f x =,则1[,3]2t ∈,110()2,[2,]3F x t t =+≥ ∈4.1x →=A .12 B .0 C .12- D .不存在 【解析】A1x x →→=112x →==. 5.在数列{}n a 中,12a =,11ln(1)n n a a n+=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 【解析】A. 211ln(1)1a a =++,321ln(1)2a a =++,…,11ln(1)1n n a a n -=++- 121321()()()n n n a a a a a a a a -⇒=+-+-+⋅⋅⋅+-1234ln()()()()2ln 1231na n n =+⋅⋅⋅⋅=+- .6.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是【解析】D.函数2tan ,tan sin ,,2tan sin tan sin 32sin ,tan sin ,,2x x x x y x x x x x x x x ππππ⎧⎛⎤<∈ ⎪⎥⎪⎝⎦=+--=⎨⎛⎫⎪≥∈ ⎪⎪⎝⎭⎩当时当时即即7.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .1(0,]2 C .(0,)2 D.[,1)2【解析】C . 由题知,垂足的轨迹为以焦距为直径的圆,则2222c b c b a c <⇒<=-212e ⇒<。
2008年高考试题——数学理(江西卷)(有答案解析及评分标准)

绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分。
第Ⅰ卷考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上作答。
若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
参考公式如果事件,A B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件,A B ,相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ⋅=⋅ 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 343V R π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)kkn kn n P k C p p -=-一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,复数sin 2cos 2z i =+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.定义集合运算:{},,.A B z z xy x A y B *==∈∈设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为A .0B .2C .3D .63.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是A .1[,3]2B .10[2,]3C .510[,]23 D .10[3,]34.1limx →=A .12B .0C .12-D .不存在5.在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++6.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是7.已知1F 、2F 是椭圆的两个焦点,满足120M F M F ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .1(0,]2 C .2(0,2D .228.610(1(1++展开式中的常数项为A .1B .46C .4245D .42469若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是 A .1122a b a b + B .1212a a b b + C .1221a b a b + D .1210.连结球面上两点的线段称为球的弦。
2008年高考试题——数学理(江西卷)(有答案解析及评分标准)

绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分。
第Ⅰ卷考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上作答。
若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
参考公式如果事件,A B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件,A B ,相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ⋅=⋅ 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 343VR π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k kn k n n P k C p p -=-一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,复数sin 2cos 2z i =+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.定义集合运算:{},,.A B z z xy x A y B *==∈∈设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为A .0B .2C .3D .63.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是 A .1[,3]2 B .10[2,]3 C .510[,]23 D .10[3,]34.1x →=A .12B .0C .12- D .不存在 5.在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++6.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是7.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .1(0,]2 C. D. 8.610(1(1+展开式中的常数项为 A .1 B .46 C .4245 D .42469若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是A .1122a b a b +B .1212a a bb +C .1221a b a b +D .1210.连结球面上两点的线段称为球的弦。
2008年普通高等学校招生全国统一考试江西数学理科试卷及答案

2008年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分。
第Ⅰ卷考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上作答。
若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
参考公式如果事件,A B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件,A B ,相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ⋅=⋅ 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 343V R π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)kkn kn n P k C p p -=-一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,复数sin 2cos 2z i =+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.定义集合运算:{},,.A B z z xy x A y B *==∈∈设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为A .0B .2C .3D .63.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是A .1[,3]2B .10[2,]3C .510[,]23 D .10[3,]34.1limx →=A .12B .0C .12- D .不存在5.在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++6.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是7.已知1F 、2F 是椭圆的两个焦点,满足120M F M F ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .1(0,]2 C.(0,2D.28.6101(1(1++展开式中的常数项为A .1B .46C .4245D .42469若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是 A .1122a b a b + B .1212a a b b + C .1221a b a b + D .1210.连结球面上两点的线段称为球的弦。
2008年高考理科数学试题(江西卷)

2008年普通高等学校招生全国统一考试江西卷数学试题(理科)全解全析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C kn P k (1一P )k n -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数z =sin2+i cos 2对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【标准答案】D【试题解析】易知sin2>0 ,cos 2<0。
根据复数的几何意义可知z 所对应的点位于第四象限。
【高考考点】三角函数的定义和复数的几何意义 【易错提醒】实数值与三角函数角的大小的对应。
【学科网备考提示】注意复数的几何意义。
2.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为A .0B .2C .3D .6【标准答案】D【试题解析】A ,B 两个集合中的元素的乘积:1⨯0=0,1⨯2=2,2⨯0=0,2⨯2=4.故集合A *B 有三个元素0,2,4,它们的和为6。
2008年江西、辽宁、山东、陕西数学(理科)高考真题 共4套 及答案

D.[ 2 ,1) 2
8.(1+ 3 x )6(1+ 1 )10 展开式中的常数项为 4x
A.1
B.46
C.4245
D.4246
9.若 0 a1 a2 , 0 b1 b2 ,且 a1 + a2 = b1 + b2 = 1 ,则下列代数式中值最大的是
A. a1b1 + a2b2
B. a1a2 + b1b2
理科数学
第Ⅱ卷
注意事项: 第Ⅱ卷 2 页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.
二.填空题:本大题共 4 小题,每小题 4 分,共 16 分.请把答案填在答题卡上.
13.直角坐标平面内三点 A(1, 2)、B (3, −2)、C (9, 7) ,若 E、F 为线段 BC 的三等分点,则
6.函数 y = tan x + sin x − tan x − sin x 在区间( , 3 )内的图象大致是 22
A
B
C
D
7.已知 F1、F2 是椭圆的两个焦点.满足 MF1 · MF2 =0 的点 M 总在椭圆内部,则椭圆离心率
的取值范围是
A.(0,1)
B.(0, 1 ] 2
C.(0,
2
)
2
m (1)过点 A 作直线 x − y = 0 的垂线,垂足为 N ,试
求△ AMN 的重心 G 所在的曲线方程; (2)求证: A、M、B 三点共线.
22.(本小题满分 14 分)
已知函数 f ( x) = 1 + 1 + ax ,x∈(0,+∞).
1+ x 1+ a ax + 8
(1)当 a = 8 时,求 f ( x) 的单调区间; (2)对任意正数 a ,证明:1 f ( x) 2 .
2008年高考数学江西卷(理)全解全析

绝密★启用前2008年普通高等学校招生全国统一考试江西卷数学试题(理科)全解全析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C kn P k (1一P )k n -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数z =sin2+i cos 2对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【标准答案】D【试题解析】易知sin2>0 ,cos 2<0。
根据复数的几何意义可知z 所对应的点位于第四象限。
【高考考点】三角函数的定义和复数的几何意义 【易错提醒】实数值与三角函数角的大小的对应。
【学科网备考提示】注意复数的几何意义。
2.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为 A .0 B .2 C .3 D .6 【标准答案】D【试题解析】A ,B 两个集合中的元素的乘积:1⨯0=0,1⨯2=2,2⨯0=0,2⨯2=4.故集合A *B 有三个元素0,2,4,它们的和为6。
2008年高考理科数学试题(江西卷)

《诚信是金》教学设计南和县实验中学祁素倩教学目标:通过多种形式的教育活动,利用生活的众多事例,使学生了解诚信的基本内容,懂得诚信是做人的基本准则,学会辨识各种情境下的诚信表现并增强学生法律意识,提高守法、守规的自觉性,牢固树立守信为荣、失信可耻的道德观念,从小立志做讲诚信、讲道德的人。
教学重点:诚信的重要作用、如何做到诚信。
课时安排:1课时教学过程:1、情景设计,巧妙导入师举例:有一个年轻人跋涉在人生漫长的路上,到了一个渡口的时候,他已经拥有了“健康”、“美貌”、“诚信”、“机敏”、“才学”、“金钱”、“荣誉”七个背囊。
渡船开出时风平浪静,说不清过了多久,风起浪涌,小船上下颠簸,险象环生。
艄公说:“船小负载重,客官必须丢弃一个背囊方可渡难关。
”如果你是那位年轻人,你会怎么办?设计意图:通过情景导入,激发学生的学习兴趣,增强学生的好奇心,使学生迅速进入学习的兴奋状态。
学生讨论回答:(略)师:年轻人思索了一会儿,把“诚信”抛在了水里。
请同学们思考一下,没有了诚信对这位年轻人今后的人生道路有没有影响?设计意图:由此导入诚信是金的课题。
板书:一、言而有信,一诺千金2、阅读故事,导出概念师精心挑选能较好提现诚信概念的故事《十二个第一名》、《一个贫穷的小提琴手》作为泛读故事,之后给学生3分钟时间体会故事的启发意义并结合自己的知识经验谈谈诚信是什么?设计意图:激活学生的已有诚信知识经验,使学生能很好地构建新的诚信知识结构。
师:我们为人处世、与人交往,要讲究诚信,即诚实守信。
“诚”,就是诚实无欺、诚实做人、诚实做事、实事求是;“信”,即有信用、讲信誉、守信义、不虚假。
板书:1、诚信的概念3、合作探究,加深感悟在我们的社会生活中,有哪些诚信事例?对个人和社会有何作用?缺乏诚信对与个人来说有何让学生分组讨论回答“影响?生活中存在那些缺乏诚信的事例,这些不诚信会给我们社会带来什么影响呢?”在学生讨论后,教师要求学生总结诚信的重要作用,并举例说明。
自-2008年高考数学江西卷(理)全解全析

绝密★启用前2008年普通高等学校招生全国统一考试江西卷数学试题(理科)全解全析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A+B )=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A·B)=P (A)·P (B) 球的体积公式如果事件A在一次试验中发生的概率是P,那么 V=34πR 3n 次独立重复试验中恰好发生k次的概率 其中R 表示球的半径P n (k )=C k n Pk(1一P )kn -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z =s in 2+i cos 2对应的点位于A.第一象限 B .第二象限 C .第三象限 D .第四象限【标准答案】D ﻫ【试题解析】易知sin2>0 ,cos 2<0。
根据复数的几何意义可知z 所对应的点位于第四象限。
ﻫ【高考考点】三角函数的定义和复数的几何意义【易错提醒】实数值与三角函数角的大小的对应。
ﻫ【学科网备考提示】注意复数的几何意义。
2.定义集合运算:A*B={z |z =x y,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为A.0B.2 C.3 D.6 【标准答案】D 【试题解析】A,B两个集合中的元素的乘积:1⨯0=0,1⨯2=2,2⨯0=0,2⨯2=4.故集合A *B有三个元素0,2,4,它们的和为6。
2008年高考理科数学试题(江西卷)

怀特把关模式
1950《把关人:一个新弃的 新闻 N2、N3=选择的新闻
N1
N
N2
N3 N4
N2` N3`
M
N1 N4
模式说明:社会上存在大量的新闻素材,大众传 媒的新闻报道不是也不可能是“有闻必录”,而是一个 取舍选择的过程。 不足:这个模式并没有意识到把关是一种组织行 为,而认为它主要是新闻编辑基于个人主观判断的取舍 选择活动,并且只强调了编辑的把关人作用。
3、麦克内利的把关研究
1959年,麦克内利在研究了国际新闻传播后指出, 在整个传播过程中存在着一系列的守门人,如记者、编 辑、总编等,并且最初的接收者也经常为其他人充当守 门人。 守门行为也远不止是简单的选择或拒绝,因为中间 人经常改变那些在运转过程中保留下来的信息的形式和 内容(如删节、修改、与其他信息合并等)。
二、把关人和把关理论
1、卢因的把关概念
1)、1974年,卢因去世前不久,他首次在一篇文章 中提到把关一词(gatekeeping),它来源于 英文的守门人一词(gatekeeper)。 2)、把关:指传播者对信息进行筛选与过滤的行为 3)、把关人:对信息进行筛选和过滤的人即把关人 采集、制作信息过程中对各个环节乃 至决策发生影响的人
麦克内利的把关链模式
S3
S4
C4 S5
S2
C2 S1 C1 E 各种 事件
C3
C5
C6 S6
C:把关人 S:新闻
新闻 受众
R
把关链模式评述: 1)优点:整个信息流通过程中存在着一条有许多 关口组成的把关链. 2)缺点:把每个把关人及其作用都等同了,不分主次
经过新闻媒介的多重把关之后,一幅人为的现实 图景便基本完成了,而它同世界的真正面貌并不是 一回事,也不完全一致。 李金铨说:“大众媒介中的大部分音讯从来源 到目的地,都是历经沧桑,而失去本来面目的。任 何一个大众传播组织,都没有办法避免守门人的干 扰;所以,没有一家大众传播媒介,不管报道网如 何普遍,设备如何完美,态度如何真诚,都没有办 法把世界的本来面目,十分真确地表现出来。”
2008年江西省高考数学试卷(理科)答案与解析

2008年江西省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•江西)在复平面内,复数z=sin2+icos2对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的代数表示法及其几何意义.【分析】由复数的几何意义作出相应判断.【解答】解:∵sin2>0,cos2<0,∴z=sin2+icos2对应的点在第四象限,故选D.【点评】本题考查的是复数的几何意义,属于基础题.2.(5分)(2008•江西)定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0 B.2 C.3 D.6【考点】集合的确定性、互异性、无序性.【分析】根据题意,结合题目的新运算法则,可得集合A*B中的元素可能的情况;再由集合元素的互异性,可得集合A*B,进而可得答案.【解答】解:根据题意,设A={1,2},B={0,2},则集合A*B中的元素可能为:0、2、0、4,又有集合元素的互异性,则A*B={0,2,4},其所有元素之和为6;故选D.【点评】解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍.3.(5分)(2008•江西)若函数y=f(x)的值域是,则函数的值域是()A.B.C.D.【考点】基本不等式在最值问题中的应用.【分析】先换元,转化成积定和的值域,利用基本不等式.【解答】解:令t=f(x),则,则y=t+≥=2当且仅当t=即t=1时取“=”,所以y的最小值为2故选项为B【点评】做选择题时,求得最小值通过排除法得值域;考查用基本不等式求最值4.(5分)(2008•江西)=()A.B.0 C. D.不存在【考点】极限及其运算.【专题】计算题.【分析】把原式进行分母有理化,得:,消除零因子简化为,由此可求出的值.【解答】解:==,故选A.【点评】本题考查池函数的极限,解题时要注意计算能力的培养.5.(5分)(2008•江西)在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+lnn B.2+(n﹣1)lnn C.2+nlnn D.1+n+lnn【考点】数列的概念及简单表示法.【专题】点列、递归数列与数学归纳法.【分析】把递推式整理,先整理对数的真数,通分变成,用迭代法整理出结果,约分后选出正确选项.【解答】解:∵,,…∴=故选:A.【点评】数列的通项a n或前n项和S n中的n通常是对任意n∈N成立,因此可将其中的n 换成n+1或n﹣1等,这种办法通常称迭代或递推.解答本题需了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项.6.(5分)(2008•江西)函数y=tanx+sinx﹣|tanx﹣sinx|在区间内的图象是()A.B.C.D.【考点】正切函数的图象;分段函数的解析式求法及其图象的作法;三角函数值的符号;正弦函数的图象;余弦函数的图象.【专题】压轴题;分类讨论.【分析】本题的解题关键是分析正弦函数与正切函数在区间上的符号,但因为已知区间即包含第II象限内的角,也包含第III象限内的角,因此要进行分类讨论.【解答】解:函数,分段画出函数图象如D图示,故选D.【点评】准确记忆三角函数在不同象限内的符号是解决本题的关键,其口决是“第一象限全为正,第二象限负余弦,第三象限负正切,第四象限负正弦.”7.(5分)(2008•江西)已知F1、F2是椭圆的两个焦点,满足•=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.(0,]C.(0,)D.[,1)【考点】椭圆的应用.【专题】计算题.【分析】由•=0知M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴c<b,c2<b2=a2﹣c2.由此能够推导出椭圆离心率的取值范围.【解答】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵•=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.8.(5分)(2008•江西)展开式中的常数项为()A.1 B.46 C.4245 D.4246【考点】二项式定理的应用.【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的通项,令x 的指数为0得常数项.【解答】解:的展开式的通项为,其中r=0,1,2 (6)的展开式的通项为=,其中k=0,1,2, (10)的通项为=当时,展开式中的项为常数项∴,,时,展开式中的项为常数项∴展开式中的常数项为1+C63C104+C66C108=4246故选项为D【点评】本题考查二项展开式的通项公式是解决展开式的特定项问题的工具.9.(5分)(2008•江西)若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中值最大的是()A.a1b1+a2b2 B.a1a2+b1b2 C.a1b2+a2b1 D.【考点】基本不等式.【分析】本题为比较一些式子的大小问题,可利用做差法和基本不等式比较,较复杂;也可取特值比较.【解答】解:又∵a1b1+a2b2﹣(a1b2+a2b1)=(a1﹣a2)b1﹣(a1﹣a2)b2=(a2﹣a1)(b2﹣b1)>0∴a1b1+a2b2>(a1b2+a2b1)而1=(a1+a2)(b1+b2)=a1b1+a2b1+a1b2+a2b2<2(a1b1+a2b2)∴解法二:取,,,即可.故选A【点评】本题主要考查比较大小问题,注意选择题的特殊做法,切勿“小题大做”10.(5分)(2008•江西)连接球面上两点的线段称为球的弦.半径为4的球的两条弦AB、CD的长度分别等于、,M、N分别为AB、CD的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB、CD可能相交于点M;②弦AB、CD可能相交于点N;③MN的最大值为5;④MN的最小值为1其中真命题的个数为()A.1个B.2个C.3个D.4个【考点】球面距离及相关计算.【专题】计算题;综合题.【分析】根据题意,由球的弦与直径的关系,判定选项的正误,然后回答该题.【解答】解:因为直径是8,则①③④正确;②错误.易求得M、N到球心O的距离分别为3、2,若两弦交于N,则OM⊥MN,Rt△OMN中,有OM<ON,矛盾.当M、O、N共线时分别取最大值5最小值1.故选C.【点评】本题考查球面距离及其计算,考查空间想象能力,逻辑思维能力,是基础题.11.(5分)(2008•江西)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为()A.B.C.D.【考点】等可能事件的概率.【专题】计算题;压轴题.【分析】本题是一个古典概型,解题时要看清试验发生时的总事件数和一天中任一时刻的四个数字之和为23事件数,前者可以根据生活经验推出,后者需要列举得到事件数.【解答】解:一天显示的时间总共有24×60=1440种,和为23有09:59,19:58,18:59,19:49总共有4种,故所求概率为P==.故选C【点评】本题考查的是古典概型,如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数是解题的关键.12.(5分)(2008•江西)已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)【考点】一元二次不等式的应用.【专题】压轴题.【分析】当m≤0时,显然不成立;当m>0时,因为f(0)=1>0,所以仅对对称轴进行讨论即可.【解答】解:当m≤0时,当x接近+∞时,函数f(x)=2mx2﹣2(4﹣m)x+1与g(x)=mx均为负值,显然不成立当x=0时,因f(0)=1>0当m>0时,若,即0<m≤4时结论显然成立;若,时只要△=4(4﹣m)2﹣8m=4(m﹣8)(m﹣2)<0即可,即4<m<8则0<m<8故选B.【点评】本题主要考查对一元二次函数图象的理解.对于一元二次不等式,一定要注意其开口方向、对称轴和判别式.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2008•江西)直角坐标平面上三点A(1,2)、B(3,﹣2)、C(9,7),若E、F为线段BC的三等分点,则=22.【考点】平面向量数量积的运算.【分析】本题首先要用等比分点的公式计算出E和F两点的坐标,根据所求的坐标得到向量的坐标,把向量的坐标代入向量的数量积公式,求出结果.【解答】解:根据三等分点的坐标公式,得E(5,1),F(7,4);=(4,﹣1),=(6,2)=4×6﹣2=22,故答案为:22【点评】看清问题的实质,认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.14.(4分)(2008•江西)不等式的解集为(﹣∞,﹣3]∪(0,1].【考点】指数函数的单调性与特殊点;其他不等式的解法.【专题】计算题.【分析】≤0⇒x ∈(﹣∞,﹣3]∪(0,1]【解答】解:∵,∴,∴,∴∴x∈(﹣∞,﹣3]∪(0,1]答案:(﹣∞,﹣3]∪(0,1].【点评】本题考查指数函数的性质和应用,解题时要认真审题,仔细解答.15.(4分)(2008•江西)过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴左侧),则=.【考点】抛物线的简单性质.【专题】计算题;压轴题.【分析】作AA1⊥x轴,BB1⊥x轴.则可知AA1∥OF∥BB1,根据比例线段的性质可知==,根据抛物线的焦点和直线的倾斜角可表示出直线的方程,与抛物线方程联立消去x,根据韦达定理求得x A+x B和x A x B的表达式,进而可求得x A x B=﹣()2得关于的一元二次方程,求得的值,进而求得.2,整理后两边同除以xB【解答】解:如图,作AA1⊥x轴,BB1⊥x轴.则AA1∥OF∥BB1,∴==,又已知x A<0,x B>0,∴=﹣,∵直线AB方程为y=xtan30°+即y=x+,与x2=2py联立得x2﹣px﹣p2=0∴x A+x B=p,x A•x B=﹣p2,∴x A x B=﹣p2=﹣()2=﹣(x A2+x B2+2x A x B)∴3x A2+3x B2+10x A x B=0两边同除以x B2(x B2≠0)得3()2+10+3=0∴=﹣3或﹣.又∵x A+x B=p>0,∴x A>﹣x B,∴>﹣1,∴=﹣=﹣(﹣)=.故答案为:【点评】本题主要考查了抛物线的性质,直线与抛物线的关系以及比例线段的知识.考查了学生综合分析问题和解决问题的能力.16.(4分)(2008•江西)如图(1),一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a升水时,水面恰好经过正四棱锥的顶点P.如果将容器倒置,水面也恰好过点P(图(2))有下列四个命题:A.正四棱锥的高等于正四棱柱高的一半B.将容器侧面水平放置时,水面也恰好过点PC.任意摆放该容器,当水面静止时,水面都恰好经过点PD.若往容器内再注入a升水,则容器恰好能装满.其中真命题的代号是:BD(写出所有真命题的代号).【考点】棱柱的结构特征.【专题】综合题;压轴题;探究型.【分析】设出图(1)的水高,和几何体的高,计算水的体积,容易判断A、D的正误;对于B,当容器侧面水平放置时,P点在长方体中截面上,根据体积判断它是正确的.根据当水面与正四棱锥的一个侧面重合时,计算水的体积和实际不符,是错误的.【解答】解:设图(1)水的高度h2几何体的高为h1图(2)中水的体积为b2h1﹣b2h2=b2(h1﹣h2),所以b2h2=b2(h1﹣h2),所以h1=h2,故A错误,D正确.对于B,当容器侧面水平放置时,P点在长方体中截面上,又水占容器内空间的一半,所以水面也恰好经过P点,故B正确.对于C,假设C正确,当水面与正四棱锥的一个侧面重合时,经计算得水的体积为b2h2>b2h2,矛盾,故C不正确.故选BD【点评】本题考查空间想象能力,逻辑思维能力,几何体的体积,是难题.三、解答题(共6小题,满分74分)17.(12分)(2008•江西)在△ABC中,角A,B,C所对应的边分别为a,b,c,,,2sinBcosC=sinA,求A,B及b,c.【考点】三角形中的几何计算.【专题】计算题.【分析】由可求得得,把切转化成弦化简整理可求得sinC=,进而求得C,对2sinBcosC=sinA化简可得sin(B﹣C)=0,进而求得B,最后由正弦定理即可求得b,c.【解答】解:由得∴∴∴,又C∈(0,π)∴,或由2sinBcosC=sinA得2sinBcosC=sin(B+C)即sin(B﹣C)=0∴由正弦定理得【点评】本题主要考查三角形中的几何计算.常涉及正弦定理、余弦定理和面积公式及三角函数公式等常用公式.18.(12分)(2008•江西)某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令ξi(i=1,2)表示方案实施两年后柑桔产量达到灾前产量的倍数.(1).写出ξ1、ξ2的分布列;(2).实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3).不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】计算题;应用题.【分析】(1)根据题意得到两个变量的可能取值,根据条件中所给的方案一和方案二的两年柑桔产量的变化有关数据写出两个变量的分布列.(2)根据两种方案对应的数据,做出方案一、方案二两年后柑桔产量超过灾前产量的概率,得到结论:方案二两年后柑桔产量超过灾前产量的概率更大.(3)根据两年后柑桔产量和灾前产量的比较,做出达不到灾前产量,达到灾前产量,超过灾前产量的概率,列出柑橘带来效益的分布列,做出期望.【解答】解:(1)ξ1的所有取值为0.8、0.9、1.0、1.125、1.25ξ2的所有取值为0.8、0.96、1.0、1.2、1.44,ξ1、ξ2的分布列分别为:(2)令A、B分别表示方案一、方案二两年后柑桔产量超过灾前产量这一事件,P(A)=0.15+0.15=0.3,P(B)=0.24+0.08=0.32∴方案二两年后柑桔产量超过灾前产量的概率更大(3)令ηi表示方案i所带来的效益,则∴Eη1=14.75,Eη2=14.1∴方案一所带来的平均效益更大.【点评】本题考查离散型随机变量的分布列和期望,考查解决实际问题的能力,考查对题干较长的应用题的理解,是一个综合题.19.(12分)(2008•江西)数列{a n}为等差数列,a n为正整数,其前n项和为S n,数列{b n}为等比数列,且a1=3,b1=1,数列是公比为64的等比数列,b2S2=64.(1)求a n,b n;(2)求证.【考点】数列与不等式的综合;等差数列的通项公式;等比数列的通项公式.【专题】证明题;综合题.【分析】(1)设{a n}的公差为d,{b n}的公比为q,则d为正整数,a n=3+(n﹣1)d,b n=q n ﹣1,依题意有,由此可导出a n与b n.(2)S n=3+5+…+(2n+1)=n(n+2),所以,然后用裂项求和法进行求解.【解答】解:(1)设{a n}的公差为d,{b n}的公比为q,则d为正整数,a n=3+(n﹣1)d,b n=q n﹣1依题意有①由(6+d)q=64知q为正有理数,故d为6的因子1,2,3,6之一,解①得d=2,q=8故a n=3+2(n﹣1)=2n+1,b n=8n﹣1(2)S n=3+5+…+(2n+1)=n(n+2)∴==.【点评】本题考查数列和不等式的综合应用,解题时要认真审题,注意裂项求和法的应用.20.(12分)(2008•江西)如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知.(1)求证:B1C1⊥平面OAH;(2)求二面角O﹣A1B1﹣C1的大小.【考点】直线与平面垂直的判定;与二面角有关的立体几何综合题.【专题】计算题;证明题;综合题.【分析】(1)要证B1C1⊥平面OAH,直线证明直线垂直平面OAH内的两条相交直线:AH、OA即可;(2)作出二面角O﹣A1B1﹣C1的平面角,然后求解即可;或者建立空间直角坐标系,利用法向量的数量积求解.【解答】解:(1)证明:依题设,EF是△ABC的中位线,所以EF∥BC,则EF∥平面OBC,所以EF∥B1C1.又H是EF的中点,所以AH⊥EF,则AH⊥B1C1.因为OA⊥OB,OA⊥OC,所以OA⊥面OBC,则OA⊥B1C1,因此B1C1⊥面OAH.(2)作ON⊥A1B1于N,连C1N.因为OC1⊥平面OA1B1,根据三垂线定理知,C1N⊥A1B1,∠ONC1就是二面角O﹣A1B1﹣C1的平面角.作EM⊥OB1于M,则EM∥OA,则M是OB的中点,则EM=OM=1.设OB1=x,由得,,解得x=3,在Rt△OA1B1中,,则,.所以,故二面角O﹣A1B1﹣C1为.解法二:(1)以直线OA、OC、OB分别为x、y、z轴,建立空间直角坐标系,O﹣xyz则所以所以所以BC⊥平面OAH,由EF∥BC得B1C1∥BC,故:B1C1⊥平面OAH(2)由已知,设B1(0,0,z)则由与共线得:存在λ∈R有得同理:C1(0,3,0),∴设是平面A1B1C1的一个法向量,则令x=2,得y=z=1,∴.又是平面OA1B1的一个法量∴所以二面角的大小为(3)由(2)知,,B(0,0,2),平面A1B1C1的一个法向量为.则.则点B到平面A1B1C1的距离为.【点评】本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.21.(12分)(2008•江西)设点P(x0,y0)在直线x=m(y≠±m,0<m<1)上,过点P作双曲线x2﹣y2=1的两条切线PA、PB,切点为A、B,定点.(1)求证:三点A、M、B共线.(2)过点A作直线x﹣y=0的垂线,垂足为N,试求△AMN的重心G所在曲线方程.【考点】直线与圆锥曲线的综合问题.【专题】计算题;综合题;压轴题;数形结合;转化思想.【分析】(1)先根据题意设A(x1,y1),B(x2,y2),将切线PA的方程代入双曲线的方程,消去y得到关于x的一元二次方程,再结合根的判别式等于0即可表示出切线的斜率,因此PA的方程和PB的方程都可以利用A,B两点的坐标表示,又P在PA、PB上,得到点A (x1,y1),B(x2,y2)都在直线y0y=mx﹣1上,从而证得三点A、M、B共线,从而解决问题.(2)设重心G(x,y),欲求△AMN的重心G所在曲线方程,即求出其坐标x,y的关系式,利用点A在双曲线上即可得重心G所在曲线方程.【解答】证明:(1)设A(x1,y1),B(x2,y2),由已知得到y1y2≠0,且x12﹣y12=1,x22﹣y22=1,设切线PA的方程为:y﹣y1=k(x﹣x1)由得(1﹣k2)x2﹣2k(y1﹣kx1)x﹣(y1﹣kx1)2﹣1=0从而△=4k2(y1﹣kx1)2+4(1﹣k2)(y1﹣kx1)2+4(1﹣k2)=0,解得因此PA的方程为:y1y=x1x﹣1同理PB的方程为:y2y=x2x﹣1又P(m,y0)在PA、PB上,所以y1y0=mx1﹣1,y2y0=mx2﹣1即点A(x1,y1),B(x2,y2)都在直线y0y=mx﹣1上又也在直线y0y=mx﹣1上,所以三点A、M、B共线(2)垂线AN的方程为:y﹣y1=﹣x+x1,由得垂足,设重心G(x,y)所以解得由x12﹣y12=1可得即为重心G 所在曲线方程【点评】本小题主要考查直线与圆锥曲线的综合问题、三角形重心、双曲线的标准方程的问题等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.22.(14分)(2008•江西)已知函数f(x)=++,x∈(0,+∞)(1)当a=8时,求f(x)的单调区间;(2)对任意正数a,证明:1<f(x)<2.【考点】利用导数研究函数的单调性;不等式的证明.【专题】函数的性质及应用;不等式的解法及应用.【分析】(1)把a=8代入函数解析式,求出函数的导数,并判断导数的符号,得到函数的单调区间.(2)令,则abx=8①,②,将f(x)解析式进行放缩,使用基本不等式,可证f(x)>1,由①、②式中关于x,a,b的对称性,不妨设x≥a≥b.则0<b≤2,当a+b≥7,将f(x)解析式进行放缩,可证f(x)<2;当a+b<7③,将f(x)解析式进行放缩,再使用基本不等式证明f(x)<2,结论得证.【解答】解:(1)当a=8时,,求得,于是当x∈(0,1]时,f'(x)≥0;而当x∈[1,+∞)时,f'(x)≤0.即f(x)在(0,1]中单调递增,而在[1,+∞)中单调递减.(2)对任意给定的a>0,x>0,由,若令,则abx=8①,且②.(一)先证f(x)>1:因为,,,又由,得a+b+x≥6.所以==.(二)再证f(x)<2:由①、②式中关于x,a,b的对称性,不妨设x≥a≥b,则0<b≤2.(ⅰ)当a+b≥7,则a≥5,所以x≥a≥5,因为,,此时,.(ⅱ)当a+b<7③,由①得,,,因为,所以④,同理得⑤.于是⑥.今证明⑦:因为,故只要证,即证ab+8>(1+a)(1+b),即证a+b<7.据③可得此式显然成立,因此⑦得证.再由⑥可得得f(x)<2.综上所述,对任何正数a,x,皆有1<f(x)<2.【点评】本题考查利用导数研究函数的单调性,用放缩法、基本不等式法证明不等式,体现分类讨论的数学思想,属于中档题.。
2008年高考数学试卷(江西.理)含详解

准考证号 姓名(在此卷上答题无效)绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C kn P k (1一P )kn -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数sin 2cos2z i =+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.定义集合运算:{}|,,A B z z xy x A y B *==∈∈.设{}{}1,2,0,2A B ==,则集合A B *的所有元素之和为A .0B .2C .3D .63.若函数()y f x =的值域是1,32⎡⎤⎢⎥⎣⎦,则函数()()1()F x f x f x =+的值域是A .[21,3] B .[2,310] C .[25,310] D .[3,310] 4.123lim1--+→x x x =A .21 B .0 C .-21D .不存在 5.在数列{}n a 中,1112,ln 1n n a a a n +⎛⎫==++⎪⎝⎭,则n a = A .2ln n + B .()21ln n n +- C .2ln n n + D .1ln n n ++ 6.函数tan sin tan sin y x x x x =+--在区间(2π,23π)内的图象大致是A B C D7.已知12F F 、是椭圆的两个焦点.满足1MF ·2MF =0的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .(0,21] C .(0,22) D .[22,1)8.(1+3x )6(1+41x)10展开式中的常数项为A .1B .46C .4245D .42469.若12120,0a a b b <<<<,且12121a a b b +=+=,则下列代数式中值最大的是A .1122a b a b +B .1212a a b b +C .1221a b a b +D .2110.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于27、43,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题: ①弦AB 、CD 可能相交于点M ②弦AB 、CD 可能相交于点N ③MN 的最大值为5 ④MN 的最小值为l 其中真命题的个数为A .1个B .2个C .3个D .4个11.电子钟一天显示的时间是从00∶00到23∶59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为 A .1801 B .2881 C .3601 D .480112.已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅱ卷注意事项:第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上.13.直角坐标平面内三点()()()1,23,29,7A B C -、、,若E F 、为线段BC 的三等分点,则AE ·AF = .14.不等式132+-xx ≤21的解集为 . 15.过抛物线()220x py p =>的焦点F 作倾斜角为30°的直线,与抛物线分别交于A 、B 两点(点A 在y 轴左侧),则FBAF= . 16.如图1,一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P .如果将容器倒置,水面也恰好过点P (图2).有下列四个命题:A .正四棱锥的高等于正四棱柱高的一半B .将容器侧面水平放置时,水面也恰好过点PC .任意摆放该容器,当水面静止时,水面都恰好 经过点PD .若往容器内再注入a 升水,则容器恰好能装满其中真命题的代号是 .(写出所有真命题的代号) .三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中.a 、b 、c 分别为角A 、B 、C 所对的边长,a =23,tan 2B A ++tan 2C =4,sin B sin C =cos 22A.求A 、B 及b 、c .18.(本小题满分12分)因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分两年实施.若实施方案一,预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立,令()1,2i i ξ=表示方案i 实施两年后柑桔产量达到灾前产量的倍数. (1)写出ξ1、ξ2的分布列;(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3)不管哪种方案,如果实施两年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大? 19.(本小题满分12分)等差数列{}n a 各项均为正整数,13a =,前n 项和为n S ,等比数列{}n b 中,11b =,且2264b S =,{}n b 是公比为64的等比数列.(1)求n a 与n b ; (2)证明:11S +21S +……+n S 1<43.20.(本小题满分12分)正三棱锥O ABC -的三条侧棱OA OB OC 、、两两垂直,且长度均为2.E F 、分别是AB AC 、的中点,H 是EF 的中点,过EF 的一个平面与侧棱OA OB OC 、、或其延长线分别相交于111A B C 、、,已知132OA =. (1)证明:11B C ⊥平面OAH ; (2)求二面角111O A B C --的大小.21.(本小题满分12分)设点()00,P x y 在直线(),01x m y m m =≠±<<上,过点P 作双曲线221x y -=的两条切线PA PB 、,切点为A B 、,定点M (m1,0). (1)过点A 作直线0x y -=的垂线,垂足为N ,试求△AMN 的重心G 所在的曲线方程;(2)求证:A M B 、、三点共线. 22.(本小题满分14分) 已知函数()f x =x+11+a+11+8+ax ax,x ∈(0,+∞).(1)当8a =时,求()f x 的单调区间; (2)对任意正数a ,证明:()12f x <<.2008年普通高等学校招生全国统一考试(江西卷)理科数学参考答案一.选择题:本大题共12小题,每小题5分,共60分。
高中数学2008年普通高等学校招生全国统一考试(江西卷)(理科)试题

高中数学2008年普通高等学校招生全国统一考试(江西卷)(理科) 试题 2019.091,若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 .2,若将复数11ii +-表示为(,,a bi a b R i +∈是虚数单位)的形式,则a b += .3,若集合2{|(1)37,}A x x x x R =-<+∈,则A Z 中有 个元素 4,已知向量a 和b 的夹角为0120,||1,||3a b ==,则|5|a b -= .5,在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是6,某地区为了解7080-岁的老人的日平均睡眠时间(单位:h ),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:在上述统计数据的分析中一部分计算见算法流程图,则输出的S 的值为7,设直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b 的值是8,如图,在平面直角坐标系xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO 上的一点(异于端点),这里pc b a ,,,均为非零实数,设直线CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方程为01111=⎪⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你完成直线OF 的方程:( )011=⎪⎪⎭⎫⎝⎛-+y a p x 。
9,将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3≥n )从左向右的第3个数为10,设,,x y z 为正实数,满足230x y z -+=,则2y xz 的最小值是11,在平面直角坐标系xOy 中,椭圆)0(12222>>=+b a b y a x 的焦距为2c ,以O 为圆心,a 为半径作圆M ,若过20a P c ⎛⎫⎪⎝⎭,作圆M 的两条切线相互垂直,则椭圆的离心率为12,满足条件BC AC AB 2,2==的三角形ABC 的面积的最大值13,设函数3()31()f x ax x x R =-+∈,若对于任意的[]1,1-∈x 都有0)(≥x f 成立,则实数a 的值为14,如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角αβ,,它们的终边分别交单位圆于A B ,两点.已知A B ,两点的横坐标分别是10,5.(1)求tan()αβ+的值; (2)求2αβ+的值.15,如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F ,分别是AB BD ,的中点. 求证:(1)直线//EF 面ACD ;(2)平面EFC ⊥面BCD .16,如图,某地有三家工厂,分别位于矩形ABCD 的两个顶点A ,B 及CD 的中点P 处.AB =20km ,BC =10km .为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A ,B 等距的一点O 处,建造一个污水处理厂,并铺设三条排污管道AO ,BO ,PO .记铺设管道的总长度为ykm . (1)按下列要求建立函数关系式:(Ⅰ)设BAO θ∠=(rad ),将y 表示成θ的函数; (Ⅱ)设OP x =(km ),将y 表示成x 的函数; (2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短。
2008年普通高等学校招生全国统一考试(江西卷) 理科数学 解析版

2008年普通高等学校招生全国统一考试江西卷数学试题(理科)全解全析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C k n P k(1一P )kn一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z =sin2+i cos 2对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【标准答案】D【试题解析】易知sin2>0 ,cos 2<0。
根据复数的几何意义可知z 所对应的点位于第四象限。
【高考考点】三角函数的定义和复数的几何意义【易错提醒】实数值与三角函数角的大小的对应。
【备考提示】注意复数的几何意义。
2.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为A .0B .2C .3D .6 【标准答案】D【试题解析】A ,B 两个集合中的元素的乘积:1⨯0=0,1⨯2=2,2⨯0=0,2⨯2=4.故集合A *B 有三个元素0,2,4,它们的和为6。
2008年高考数学(理科)试卷及答案(江西卷)

2008年普通高等学校招生全国统一考试(江西卷)理科数学一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z =sin 2+i cos 2对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为A .0B .2C .3D .6 3.若函数y =f (x )的值域是[21,3],则函数F (x )=f (x )+)(1x f 的值域是A .[21,3] B .[2,310] C .[25,310] D .[3,310] 4.123lim1--+→x x x =A .21 B .0 C .-21D .不存在 5.在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 6.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是7.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .1(0,]2 C. D. 8.(1+3x )6(1+41x)10展开式中的常数项为ABCDA .1B .46C .4245D .42469.已知实数1a 、2a 和有理数1b 、2b ,若210a a <<,210b b <<,且12121=+=+b b a a ,则下列代数式中值最大的是 ( )、A 2121b b a a + 、B 2211b a b a + 、C 1221b a b a + 、D 2110.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于27、43,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB 、CD 可能相交于点M ;②弦AB 、CD 可能相交于点N ;③MN 的最大值为5;④MN 的最小值为l .其中真命题的个数为A .1个B .2个C .3个D .4个11.电子钟一天显示的时间是从00∶00到23∶59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为 A .1801 B .2881 C .3601 D .4801 12.已知函数f (x )=2mx 2-2(4-m )x +l ,g (x )=mx ,若对于任一实数x ,f (x )与g (x )的值至少有一个为正数,则实数m 的取值范围是A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上.13.直角坐标平面内三点A(1,2)、B(3,-2)、C(9,7),若E 、F 为线段BC 的三等分点,则²= . 14.不等式132+-x x ≤21的解集为 . 15.过抛物线x 2=2py (p >0)的焦点F 作倾斜角为30°的直线,与抛物线分别交于A 、B 两点(点A 在y 轴左侧),则FBAF= . 16.如图1,一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P .如果将容器倒置,水面也恰好过点P (图2).有下列四个命题: A .正四棱锥的高等于正四棱柱高的一半B .将容器侧面水平放置时,水面也恰好过点PC .任意摆放该容器,当水面静止时,水面都恰好 经过点PD .若往容器内再注入a 升水,则容器恰好能装满其中真命题的代号是 .(写出所有真命题的代号) .三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中.a 、b 、c 分别为角A 、B 、C 所对的边长,a =23,tan2B A ++tan 2C =4,sin B sin C =cos 22A.求A 、B 及b 、c . 18.(本小题满分12分)因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分两年实施.若实施方案一,预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立,令ξi (i =1,2)表示方案i 实施两年后柑桔产量达到灾前产量的倍数. (1)写出ξ1、ξ2的分布列;(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3)不管哪种方案,如果实施两年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大?19.(本小题满分12分)数列{}n a 为等差数列,n a 为正整数,其前n 项和为n S ,数列{}n b 为等比数列,且113,1a b ==,数列{}n a b 是公比为64的等比数列,2264b S =.(1)求,n n a b ;(2)求证1211134n S S S +++< . 20.(本小题满分12分)正三棱锥O -ABC 的三条侧棱OA 、OB 、OC 两两垂直,且长度均为2.E 、F 分别是AB 、AC 的中点,H 是EF 的中点,过EF 的一个平面与侧棱OA 、OB 、OC 或其延长线分别相交于A 1、B 1、C 1,已知OA 1=23. (1)证明:B 1C 1⊥平面OAH ;(2)求二面角O -A 1B 1-C 1的大小.21.(本小题满分12分)设点P (x 0,y 0) 在直线x =m ( y ≠±m ,0<m <1)上,过点P 作双曲线搿x 2-y 2=1的两条切线PA 、PB ,切点为A 、B ,定点M(m1,0). (1)过点A 作直线x -y =0的垂线,垂足为N ,试求△AMN 的重心G 所在的曲线方程;(2)求证:A 、M 、B 三点共线.1C 1A22.(本小题满分14分) 已知函数f (x )=x+11+a+11+8+ax ax,x ∈(0,+∞).(1)当a =8时,求f (x )的单调区间; (2)对任意正数a ,证明:l <f (x )<2.2008年普通高等学校招生全国统一考试(江西卷)理科数学参考答案1.D .因sin 20,cos 20><所以sin 2cos2z i =+对应的点在第四象限, 2.D .因*{0,2,4}A B =3.B .令()t f x =,则1[,3]2t ∈,110()[2,]3F x t t =+∈ 4.A.11x x →→=1 =1=2x →5. A . 211ln(1)1a a =++,321ln(1)2a a =++,…,11ln(1)1n n a a n -=++- 1234ln()()()()2ln 1231n na a n n ⇒=+=+-6.D. 函数2tan ,tan sin tan sin tan sin 2sin ,tan sin x x x y x x x x x x x <⎧=+--=⎨≥⎩当时当时7.C .由题知,垂足的轨迹为以焦距为直径的圆,则2222212c b c b a c e <⇒<=-⇒<又(0,1)e ∈,所以1(0,)2e ∈8.D . 常数项为346861061014246C C C C ++=9. A. 22121212121()()222a ab b a a b b +++≤+=112212************()()()()()0a b a b a b a b a a b a a b a a b b +-+=-+-=--≥ 11221221()a b a b a b a b +≥+12121122112112221()()2()a a b b a b a b a b a b a b a b =++=+++≤+112212a b a b +≥10.C . 解:①③④正确,②错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年-江西省高考数学试卷(理科)
2008年江西省高考数学试卷(理科)
一、选择题(共12小题,每小题5分,满分60分)
1.(5分)(2008•江西)在复平面内,复数
z=sin2+icos2对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
2.(5分)(2008•江西)定义集合运算:
A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0 B.2 C.3 D.6
3.(5分)(2008•江西)若函数y=f(x)的值域是,则函数的值域是()A.B. C.D.
4.(5分)(2008•江西)=()A.B.0 C.D.不存在
5.(5分)(2008•江西)在数列{a n}中,a1=2,
a n+1=a n+ln(1+),则a n=()
A.2+lnn B.2+(n﹣1)lnn C.2+nlnn D.
1+n+lnn
6.(5分)(2008•江西)函数y=tanx+sinx﹣|tanx ﹣sinx|在区间内的图象是()
A.B.C.
D.
7.(5分)(2008•江西)已知F1、F2是椭圆的两个焦点,满足•=0的点M总在椭圆内部,则椭圆离心率的取值范围是()
A.(0,1)B.(0,]C.(0,)D.[,1)
8.(5分)(2008•江西)展开式中的常数项为()
A.1 B.46 C.4245 D.4246
9.(5分)(2008•江西)若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中值最大的是()
A.a 1b1+a2b2B.a1a2+b1b2C.a1b2+a2b1D.
10.(5分)(2008•江西)连接球面上两点的线段称为球的弦.半径为4的球的两条弦AB、CD 的长度分别等于、,M、N分别为AB、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题:
①弦AB、CD可能相交于点M;②弦AB、CD 可能相交于点N;③MN的最大值为5;④MN 的最小值为1
其中真命题的个数为()
A.1个B.2个C.3个D.4个
11.(5分)(2008•江西)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为()
A.B.C.D.
12.(5分)(2008•江西)已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()
A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)
二、填空题(共4小题,每小题4分,满分16分)
13.(4分)(2008•江西)直角坐标平面上三点A (1,2)、B(3,﹣2)、C(9,7),若E、F为线段BC的三等分点,则=.
14.(4分)(2008•江西)不等式的解集为.
15.(4分)(2008•江西)过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线
分别交于A、B两点(点A在y轴左侧),则=.
16.(4分)(2008•江西)如图(1),一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a升水时,水面恰好经过正四棱锥的顶点P.如果将容器倒置,水面也恰好过点P(图(2))
有下列四个命题:
A.正四棱锥的高等于正四棱柱高的一半B.将容器侧面水平放置时,水面也恰好过点P C.任意摆放该容器,当水面静止时,水面都恰好经过点P
D.若往容器内再注入a升水,则容器恰好能装满.
其中真命题的代号是:(写出所有真命题的代号).
三、解答题(共6小题,满分74分)17.(12分)(2008•江西)在△ABC中,角A,B,C所对应的边分别为a,b,c,,,2sinBcosC=sinA,求A,B及b,c.
18.(12分)(2008•江西)某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令ξi(i=1,2)表示方案实施两年后柑桔产量达到灾前产量的
倍数.
(1).写出ξ1、ξ2的分布列;
(2).实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3).不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?
19.(12分)(2008•江西)数列{a n}为等差数列,a n为正整数,其前n项和为S n,数列{b n}为等比数列,且a 1=3,b1=1,数列是公比为64的等比数列,b2S2=64.
(1)求a n,b n;
(2)求证.
20.(12分)(2008•江西)如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H 是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A 1、B1、C1,已知.
(1)求证:B1C1⊥平面OAH;
(2)求二面角O﹣A1B1﹣C1的大小.
21.(12分)(2008•江西)设点P(x0,y0)在直线x=m(y≠±m,0<m<1)上,过点P作双曲线x2﹣y2=1的两条切线PA、PB,切点为A、B,定点.
(1)求证:三点A、M、B共线.
(2)过点A作直线x﹣y=0的垂线,垂足为N,试求△AMN的重心G所在曲线方程.
22.(14分)(2008•江西)已知函数f(x)
=++,x∈(0,+∞)
(1)当a=8时,求f(x)的单调区间;
(2)对任意正数a,证明:1<f(x)<2.。